JP2006104975A - Method of manufacturing silencer - Google Patents

Method of manufacturing silencer Download PDF

Info

Publication number
JP2006104975A
JP2006104975A JP2004290131A JP2004290131A JP2006104975A JP 2006104975 A JP2006104975 A JP 2006104975A JP 2004290131 A JP2004290131 A JP 2004290131A JP 2004290131 A JP2004290131 A JP 2004290131A JP 2006104975 A JP2006104975 A JP 2006104975A
Authority
JP
Japan
Prior art keywords
inner pipe
fiber
silencer
stainless steel
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004290131A
Other languages
Japanese (ja)
Other versions
JP4543144B2 (en
Inventor
Yasuhiro Okuda
晏弘 奥田
Kazuo Kodera
和男 小寺
Satomi Ono
さとみ 小野
Hiroyasu Tsuge
弘安 柘植
Yasuo Nishi
保夫 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON GLASSFIBER IND CO Ltd
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Original Assignee
NIHON GLASSFIBER IND CO Ltd
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON GLASSFIBER IND CO Ltd, NIHON GLASSFIBER INDUSTRIAL CO Ltd filed Critical NIHON GLASSFIBER IND CO Ltd
Priority to JP2004290131A priority Critical patent/JP4543144B2/en
Publication of JP2006104975A publication Critical patent/JP2006104975A/en
Application granted granted Critical
Publication of JP4543144B2 publication Critical patent/JP4543144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide superior high temperature oxidation resistance and corrosion resistance, by inexpensively and easily coating a sound absorbing material, an inner pipe or a welding part particularly exposed to the high temperature among a silencer, with a uniform ceramic coating film of a submicron. <P>SOLUTION: After integrally winding stainless fiber 3 having an average fiber diameter of 30 to 150 μm as sound absorbing material fiber in bulk density of 50 to 500 kg/m<SP>3</SP>on the inner pipe 2, these integrated inner pipe 2 and stainless fiber 3 are coated in the film thickness of 0.05 to 1 μm with the ceramic coating film by a chemical solution method for simultaneously soaking and drying these in precursor solutions A and B. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車用等の内燃機関の排気系に設けられる消音器の製造方法に関するものである。   The present invention relates to a method for manufacturing a silencer provided in an exhaust system of an internal combustion engine for automobiles or the like.

自動車の排気ガス温度は、コールドスタート対策や燃費向上等を目的としたエンジン燃焼改善により次第に高温化となる傾向がある。また、消音器内は、排気ガスの凝縮液による内部腐食と、冬期に高速道路等に散布される融雪塩による外部腐食とで、湿腐環境となりやすい。消音器内の温度がより高温環境下となると、高温側に曝される吸音材(ステンレス繊維等)、インナーパイプ又は溶接部位に、優れた耐高温酸化性と耐食性が要求される。   The exhaust gas temperature of automobiles tends to gradually increase due to engine combustion improvement for the purpose of cold start countermeasures and fuel efficiency improvement. Further, the silencer tends to be a moist environment due to internal corrosion due to exhaust gas condensate and external corrosion due to snowmelt salt sprayed on highways and the like in winter. When the temperature in the silencer is in a higher temperature environment, excellent high-temperature oxidation resistance and corrosion resistance are required for the sound-absorbing material (stainless fiber or the like), inner pipe, or welded part exposed to the high temperature side.

この要求に対して、次のような先行技術が提案されている。
(1)排気ガスの温度が高く、汎用のステンレス鋼繊維では酸化劣化を生ずる過酷な用途に、高Al含有フェライト系ステンレス鋼繊維に希土類元素等を添加して耐熱特性向上を図った技術が、特許文献1〜3などに開示されている。
(2)さらに、高温引張強さを改善したものが、特許文献4などに開示されている。
(3)また、ステンレスの耐熱性改質や触媒機能加味のためのセラミックス被覆の先行技術が、特許文献5〜10に開示されている。特許文献5はコロイド状アルミナを含むアルミナゾルへの浸漬であり、特許文献6はアルミナ等のスラリーへの浸漬であり、特許文献7はセラミック混合混濁液の塗布であり、特許文献8はCVD法であり、特許文献9は粒子又は箔からの溶融被覆であり、特許文献10はシリカスラリー・アルミナスラリーへの浸漬である。
(4)他に耐熱塗料を被覆する方法もある。
特開平4−354850号公報 特開平6−172932号公報 特開平6−172933号公報 特開2000−273588号公報 特開昭55−94646号公報 特開平7−178343号公報 特開平8−225956号公報 特開平9−67672号公報 特開平10−251862号公報 特開平10−5603号公報
In response to this demand, the following prior art has been proposed.
(1) Technology for improving heat resistance by adding rare earth elements to high Al-containing ferritic stainless steel fibers for severe applications where the exhaust gas temperature is high and general-purpose stainless steel fibers cause oxidative degradation. It is disclosed in Patent Documents 1-3.
(2) Furthermore, what improved high temperature tensile strength is disclosed by patent document 4 etc.
(3) Moreover, the prior art of the ceramic coating | cover for the heat resistance modification | reformation of stainless steel and catalyst function consideration is disclosed by patent documents 5-10. Patent Literature 5 is immersion in an alumina sol containing colloidal alumina, Patent Literature 6 is immersion in a slurry such as alumina, Patent Literature 7 is application of a ceramic mixed turbid liquid, and Patent Literature 8 is a CVD method. Yes, Patent Document 9 is melt coating from particles or foil, and Patent Document 10 is immersion in silica slurry / alumina slurry.
(4) There is another method of coating a heat-resistant paint.
JP-A-4-354850 JP-A-6-172932 JP-A-6-172933 JP 2000-273588 A JP 55-94646 A JP 7-178343 A Japanese Patent Laid-Open No. 8-225956 JP-A-9-67672 Japanese Patent Laid-Open No. 10-251862 Japanese Patent Laid-Open No. 10-5603

ところが、上記(1)〜(3)の各材料又は(5)〜(10)の各被覆加工品は、高価であり、低コストを要求される自動車用消音器の部品として不向きである。また、上記(4)の耐熱塗料の被覆では、膜厚が1μmを大きく超え、通常10〜50μmとなるため、吸音材に被覆した場合に吸音性能を著しく低下させてしまう。また、耐熱塗料としては宇部興産株式会社製の商品名チラノコート等が市販されているが、高価である。   However, each material of the above (1) to (3) or each coated processed product of (5) to (10) is expensive and unsuitable as a part of an automobile silencer that requires low cost. Moreover, in the coating of the heat-resistant paint of (4) above, the film thickness greatly exceeds 1 μm and is usually 10 to 50 μm. Therefore, when the sound absorbing material is coated, the sound absorbing performance is remarkably deteriorated. Moreover, although the brand name Tyranno Coat manufactured by Ube Industries Co., Ltd. is commercially available as a heat resistant paint, it is expensive.

本発明の目的は、消音器のうち特に高温に曝される吸音材、インナーパイプ又は溶接部位に、サブミクロンの均一なセラミックス被膜を、安価に且つ簡単に被覆し、もって優れた耐高温酸化性と耐食性を得ることにある。さらに、吸音材がステンレス繊維である場合に、その吸音性能を損なうことなく耐高温酸化性と耐蝕性を改善することにある。   An object of the present invention is to provide a submicron uniform ceramic coating on a sound absorbing material, an inner pipe or a welded part that is exposed to a high temperature in a silencer, easily and inexpensively, and has excellent high temperature oxidation resistance. And to get corrosion resistance. Furthermore, when the sound absorbing material is a stainless fiber, the high temperature oxidation resistance and the corrosion resistance are improved without impairing the sound absorbing performance.

本発明は、内燃機関の排気系に設けられる消音器の製造方法において、消音器の吸音材繊維、インナーパイプ又は溶接部位に、化学溶液法によりセラミックス被膜を被覆することを特徴とする。内燃機関の用途は、特に限定されず、自動車、鉄道車両、船舶等を例示できる。   The present invention is characterized in that, in a method of manufacturing a silencer provided in an exhaust system of an internal combustion engine, a sound absorbing material fiber, an inner pipe or a welded portion of the silencer is coated with a ceramic film by a chemical solution method. The use of the internal combustion engine is not particularly limited, and examples thereof include automobiles, railway vehicles, and ships.

[被覆部位:吸音材繊維、インナーパイプ又は溶接部]
吸音材繊維の材料としては、特に限定されないが、ステンレス鋼、ステンレス合金等のステンレス材料(ステンレス繊維)が好ましく、フェライト系ステンレス鋼(例えばSUS434)が特に好ましい。繊維の製作法としては、特に限定されないが、単線引抜き法、集束伸線法、ワイヤー切削法、ひびり振動切削法、コイル材切削法等を例示できる。また、平均繊維径は、ステンレス繊維の場合には30〜150μmを例示でき、80〜120μmが好ましい。平均繊維径が細いほど、吸音性能が良好となるが、比表面積が高くなり、耐高温酸化性能が低下する。嵩密度は、ステンレス繊維の場合には50〜500kg/m3 が好ましい。50kg/m3 未満であると吸音性能がほとんどなく、500kg/m3 を越えると重くなる。
[Coating part: sound absorbing material fiber, inner pipe or welded part]
The material of the sound-absorbing material fiber is not particularly limited, but stainless material (stainless fiber) such as stainless steel and stainless alloy is preferable, and ferritic stainless steel (for example, SUS434) is particularly preferable. Although it does not specifically limit as a manufacturing method of a fiber, A single wire drawing method, a focused wire drawing method, a wire cutting method, a vibration vibration cutting method, a coil material cutting method etc. can be illustrated. Moreover, in the case of a stainless fiber, an average fiber diameter can illustrate 30-150 micrometers, and 80-120 micrometers is preferable. The thinner the average fiber diameter, the better the sound absorption performance, but the specific surface area increases and the high temperature oxidation resistance decreases. The bulk density is preferably 50 to 500 kg / m 3 in the case of stainless steel fibers. If it is less than 50 kg / m 3 , there is almost no sound absorption performance, and if it exceeds 500 kg / m 3 , it becomes heavy.

インナーパイプは、サブマフラーやメインマフラーの内管として使用されるものである。インナーパイプの材料としては、特に限定されないが、ステンレス鋼、ステンレス合金等のステンレス材料が好ましい。   The inner pipe is used as an inner pipe of a sub muffler or a main muffler. The material of the inner pipe is not particularly limited, but a stainless material such as stainless steel or stainless alloy is preferable.

溶接部位としては、インナーパイプ自体の継ぎ目、インナーパイプと外筒やセパレータとの接合部等における溶接部位を例示できる。溶接部位の溶接金属としては、特に限定されないが、ステンレス鋼、ステンレス合金等のステンレス材料が好ましい。溶接方法としては、特に限定されないが、MIG(金属−不活性ガス)、TIG(タングステン−不活性ガス)、MAG溶接、電子ビーム溶接、レーザ溶接、被覆アーク溶接、サブマージアーク溶接、プラズマアーク溶接、抵抗溶接、溶加材で接合するろう接を例示できる。   Examples of the welded part include a joint part of the inner pipe itself, a welded part at a joint part between the inner pipe and the outer cylinder or the separator, and the like. Although it does not specifically limit as a weld metal of a welding part, Stainless steel, such as stainless steel and a stainless alloy, is preferable. Although it does not specifically limit as a welding method, MIG (metal-inert gas), TIG (tungsten-inert gas), MAG welding, electron beam welding, laser welding, covering arc welding, submerged arc welding, plasma arc welding, Examples thereof include resistance welding and brazing with a filler metal.

[セラミックス被膜]
セラミックス被膜の膜厚(複数積層の場合は合計膜厚)は、特に限定されないが、0.05〜1μmが好ましく、0.1〜0.3μmが特に好ましい。1μmを超えると、被膜にひび割れが生じやすくなり、また、特に吸音材繊維に被覆した場合には吸音性能の低下が始まる。一方、0.05μm未満であると、十分な耐高温酸化性能が得られにくい。従って、吸音材繊維、インナーパイプ又は溶接部位のうち、少なくとも平均繊維径30〜150μmの吸音材繊維としてのステンレス繊維にセラミックス被膜を膜厚0.05〜1μmに被覆することが好ましい。
[Ceramic coating]
The film thickness of the ceramic coating (total film thickness in the case of multiple layers) is not particularly limited, but is preferably 0.05 to 1 μm, and particularly preferably 0.1 to 0.3 μm. If it exceeds 1 μm, cracks are likely to occur in the coating, and particularly when the sound absorbing material fibers are coated, the sound absorbing performance starts to deteriorate. On the other hand, when it is less than 0.05 μm, it is difficult to obtain sufficient high-temperature oxidation resistance. Therefore, it is preferable to coat a ceramic film with a film thickness of 0.05 to 1 μm on a stainless fiber as a sound absorbing material fiber having an average fiber diameter of 30 to 150 μm among the sound absorbing material fiber, the inner pipe or the welded portion.

セラミックス被膜のセラミックスとしては、特に限定されないが、シリカ、アルミナ、ジルコニア、チタニア等を例示できる。また、セラミックスの単体若しくは混合物による単層又は複数積層、あるいはセラミックスの異材による複数積層が可能である。但し、金属との密着性とコストからはシリカが好ましく、従ってセラミックス被膜はシリカを主成分とするものが好ましい。具体的には、シリカの単体若しくはシリカを主とする混合物によるシリカ被膜の単層又は複数積層、あるいはシリカ被膜を含む異材の複数積層が好ましい。   Although it does not specifically limit as ceramics of a ceramic film, A silica, an alumina, a zirconia, a titania etc. can be illustrated. In addition, a single layer or a plurality of layers of ceramics alone or a mixture thereof, or a plurality of layers of different ceramic materials can be used. However, silica is preferable from the viewpoint of adhesion to metal and cost, and therefore, the ceramic coating is preferably composed mainly of silica. Specifically, a single layer or a plurality of layers of a silica film by a single substance of silica or a mixture mainly containing silica, or a plurality of layers of different materials including a silica film are preferable.

化学溶液法を用いたセラミックスコーティングは、主として、出発原料である金属有機化合物を酸や水とともに溶液中に混合溶解してなる前駆体溶液を、被処理物に塗布して乾燥させた後、加熱処理して製膜する方法である。同法は、比較的安価で、複雑形状(吸音材繊維等)に対しても、サブミクロンの均一な被覆が得られやすい。   Ceramic coating using the chemical solution method is mainly performed by applying a precursor solution obtained by mixing and dissolving a metal organic compound, which is a starting material, together with an acid or water in a solution to the object to be processed, followed by heating. This is a method of forming a film by processing. This method is relatively inexpensive, and it is easy to obtain a uniform submicron coating even for complicated shapes (such as sound absorbing material fibers).

(ア)シリカ被膜の場合、テトラエトキシシランを出発原料とするものが好ましく、そのための前駆体溶液としては、テトラエトキシシラン、酢酸及び水を適度なモル比でエタノール中に混合溶解し、加熱濃縮して生成したものを例示できる。
(イ)アルミナ被膜の場合、酢酸エチルに溶解したアルミニウムブトキシドを出発原料とするものが好ましく、そのための前駆体溶液としては、アルミニウムブトキシド、酢酸及び水を適度なモル比でエタノール中に混合溶解し、加熱濃縮して生成したものを例示できる。
(ウ)ジルコニア被膜の場合、ジルコニウムテトラ−n−プロポキシドを出発原料とするものが好ましく、そのための前駆体溶液としては、ジルコニウムテトラ−n−プロポキシド、アセチルアセトン及び酢酸を適度なモル比でエタノール中に混合溶解し、加熱濃縮して生成したものを例示できる。
(エ)チタニア被膜の場合、チタニウムテトラ−n−ブトキシドを出発原料とするものが好ましく、そのための前駆体溶液としては、チタニウムテトラ−n−ブトキシド及び酢酸を適度なモル比でエタノール中に混合溶解し、加熱濃縮して生成したものを例示できる。
(A) In the case of a silica coating, tetraethoxysilane is preferably used as a starting material, and as a precursor solution therefor, tetraethoxysilane, acetic acid and water are mixed and dissolved in ethanol at an appropriate molar ratio and concentrated by heating. Can be exemplified.
(A) In the case of an alumina coating, it is preferable to use aluminum butoxide dissolved in ethyl acetate as a starting material. As a precursor solution therefor, aluminum butoxide, acetic acid and water are mixed and dissolved in ethanol at an appropriate molar ratio. Examples thereof are those produced by heating and concentration.
(C) In the case of a zirconia coating, it is preferable to use zirconium tetra-n-propoxide as a starting material, and as a precursor solution therefor, ethanol in an appropriate molar ratio of zirconium tetra-n-propoxide, acetylacetone and acetic acid is used. Examples thereof include those produced by mixing and dissolving in the solution and concentrating by heating.
(D) In the case of a titania coating, it is preferable to use titanium tetra-n-butoxide as a starting material, and as a precursor solution therefor, titanium tetra-n-butoxide and acetic acid are mixed and dissolved in ethanol at an appropriate molar ratio. And can be produced by heating and concentrating.

酸は、酢酸の他、硝酸、塩酸等でもよく、特に限定しない。アルコールは、エタノールの他、メタノール、トルエン、キシレン等でもよく、特に限定しない。アルコールの代わりに、シリコーンオイル等をオイル系を使用してもよく、また水のみでもよい。これら各種のアルコール、酸、オイル、水を、複数、適度に混合してもよい。また、これらのセラミックス溶液に市販の耐熱塗料を希釈し、混合使用してもよい。溶液は、金属有機化合物が溶液中で混合溶解していれば、特に限定されるものではない。   The acid may be nitric acid, hydrochloric acid or the like in addition to acetic acid, and is not particularly limited. The alcohol may be methanol, toluene, xylene or the like in addition to ethanol, and is not particularly limited. Instead of alcohol, an oil system such as silicone oil may be used, or only water may be used. A plurality of these various alcohols, acids, oils, and water may be appropriately mixed. In addition, commercially available heat-resistant paints may be diluted in these ceramic solutions and used by mixing. The solution is not particularly limited as long as the metal organic compound is mixed and dissolved in the solution.

前駆体溶液には、次のような添加物を加えることもできる。
(カ)有機バインダーを添加することにより、溶液の長期安定化と適度な被膜厚さの確保を図ることができる。有機バインダーとしては、PVB(ポリビニルブチラール)が、エタノールに直接可溶することから好ましく、添加量は0.5〜1質量%が作業性から最も好ましい。
(キ)ハフニウム(Hf)、スカンジウム(Sc)、イットリウム(Y)、セリウム(Ce)、ランタンド(Ln)等の稀土類元素を少量添加することにより、耐酸化性と密着性がより一層向上する。
(ク)白金(Pt)、パラジウム(Pd)、ロジウム(Rh)のうち少なくとも1種を含有させると、触媒担体が担時され、より高温側に適用することで、排気ガス浄化性能の向上に寄与することができる。
(ケ)部分安定化ジルコニア、アルミナ、チタニア、ランタン(La)−ジルコニウム(Zr)系酸化物、ストロンチウム(Sr)−ニオブ(Nb)系酸化物等の微粒子又は繊維質体を添加することにより、遮熱効果が高まり、耐酸化性能を向上することもできる。
The following additives can also be added to the precursor solution.
(F) By adding an organic binder, it is possible to stabilize the solution for a long period of time and secure an appropriate film thickness. As the organic binder, PVB (polyvinyl butyral) is preferable because it is directly soluble in ethanol, and the addition amount is most preferably 0.5 to 1% by mass from the viewpoint of workability.
(G) Addition of a small amount of rare earth elements such as hafnium (Hf), scandium (Sc), yttrium (Y), cerium (Ce), and lanthanum (Ln) further improves oxidation resistance and adhesion. .
(H) When at least one of platinum (Pt), palladium (Pd), and rhodium (Rh) is contained, the catalyst carrier is loaded and applied to a higher temperature side to improve exhaust gas purification performance. Can contribute.
(G) By adding fine particles or fibrous materials such as partially stabilized zirconia, alumina, titania, lanthanum (La) -zirconium (Zr) -based oxide, strontium (Sr) -niobium (Nb) -based oxide, The heat shielding effect is increased, and the oxidation resistance can be improved.

前駆体溶液の塗布方法としては、特に限定されないが、前駆体溶液に浸漬する方法、前駆体溶液をスプレーで吹き付ける方法等を例示できる。塗布後の乾燥温度は、200〜500℃が好ましく、250〜350℃が特に好ましい。200℃未満であると、付着した前駆体溶液(シリカ溶液等)分子中の水酸基の重縮合反応を進めるのに不十分で、密着性が劣り、350℃を超えると、エネルギー効率と生産性が低下し、コストが顕著に高くなる。   Although it does not specifically limit as a coating method of a precursor solution, The method of immersing in a precursor solution, the method of spraying a precursor solution with a spray etc. can be illustrated. 200-500 degreeC is preferable and, as for the drying temperature after application | coating, 250-350 degreeC is especially preferable. If it is lower than 200 ° C., it is insufficient for proceeding with the polycondensation reaction of hydroxyl groups in the molecules of the precursor solution (silica solution, etc.) attached, and the adhesion is inferior. If it exceeds 350 ° C., energy efficiency and productivity are increased. The cost is significantly increased.

より具体的には、内燃機関の排気系に設けられる消音器の製造方法において、インナーパイプに吸音材繊維としてのステンレス繊維を嵩密度50〜500kg/m3 に巻設して一体化した後、この一体化したインナーパイプ及びステンレス繊維に、同時に化学溶液法によりセラミックス被膜を被覆することが好ましい。ステンレス繊維のセラミックス被膜の飛散・脱落・ひび割れを抑制でき、インナーパイプ(及び(有る場合には)溶接部位)も同時に被覆することができるからである。また、インナーパイプに巻設するステンレス繊維の密着性を高めることもできる。なお、ステンレス繊維に化学溶液法によりセラミックス被膜を被覆した後、これをインナーパイプに巻設してもよいが、その場合には、巻設時にステンレス繊維のセラミックス被膜の飛散・脱落・ひび割れが起こるおそれがある。 More specifically, in a method of manufacturing a silencer provided in an exhaust system of an internal combustion engine, after stainless steel fibers as sound absorbing material fibers are wound around an inner pipe to a bulk density of 50 to 500 kg / m 3 and integrated, It is preferable that the integrated inner pipe and the stainless fiber are simultaneously coated with a ceramic film by a chemical solution method. This is because scattering, dropping, and cracking of the ceramic coating of the stainless steel fiber can be suppressed, and the inner pipe (and the welded portion (if any)) can be covered at the same time. Moreover, the adhesiveness of the stainless steel fiber wound around an inner pipe can also be improved. In addition, after coating the ceramic coating on the stainless steel fiber by the chemical solution method, it may be wound around the inner pipe, but in that case, the stainless steel fiber ceramic coating is scattered, dropped off, or cracked during winding. There is a fear.

本発明に係る消音器の製造方法によれば、吸音材繊維、インナーパイプ又は溶接部位に、化学溶液法によりサブミクロンの均一なセラミックス被膜を、安価に且つ簡単に被覆することができ、もって優れた耐高温酸化性と耐食性が得られる。   According to the method for manufacturing a silencer according to the present invention, a uniform submicron ceramic coating can be easily and inexpensively applied to a sound absorbing material fiber, an inner pipe, or a welded portion by a chemical solution method. High temperature oxidation resistance and corrosion resistance can be obtained.

上記効果に加え、平均繊維径30〜150μmのステンレス繊維にセラミックス被膜を膜厚0.05〜1μmに被覆することで、吸音性能を損なうことなく、優れた耐高温酸化性と耐食性が得られる。   In addition to the above effects, excellent high temperature oxidation resistance and corrosion resistance can be obtained without impairing the sound absorption performance by coating a stainless steel fiber having an average fiber diameter of 30 to 150 μm with a ceramic film to a film thickness of 0.05 to 1 μm.

また、テトラエトキシシランを出発原料とするシリカ被膜を採用することで、特に優れた耐高温酸化性能が得られる。   Further, by adopting a silica coating using tetraethoxysilane as a starting material, particularly excellent high temperature oxidation resistance can be obtained.

また、インナーパイプに所定嵩密度でステンレス繊維を巻設した後、同時に化学溶液法を行うことで、巻設時のセラミックス被膜の飛散・脱落・ひび割れを抑制でき、インナーパイプ及び溶接部位も同時に被覆でき、優れた耐高温酸化性と耐食性を有する消音器を安価に且つ簡単に製造することができる。   In addition, after winding stainless steel fiber with a predetermined bulk density around the inner pipe, the chemical solution method can be used at the same time to prevent the ceramic coating from scattering, falling off and cracking during winding, and simultaneously covering the inner pipe and welded part. In addition, a silencer having excellent high temperature oxidation resistance and corrosion resistance can be manufactured inexpensively and easily.

内燃機関の排気系に設けられる消音器の製造方法において、インナーパイプに吸音材繊維としての平均繊維径30〜150μmのステンレス繊維を嵩密度50〜500kg/m3 に巻設して一体化した後、この一体化したインナーパイプ及びステンレス繊維に、同時に化学溶液法によりセラミックス被膜を膜厚0.05〜1μmに被覆する。 In a method of manufacturing a silencer provided in an exhaust system of an internal combustion engine, after stainless steel fibers having an average fiber diameter of 30 to 150 μm as sound absorbing material fibers are wound around an inner pipe to a bulk density of 50 to 500 kg / m 3 and integrated. The integrated inner pipe and stainless fiber are simultaneously coated with a ceramic film to a thickness of 0.05 to 1 μm by a chemical solution method.

以下、本発明をサブマフラーに具体化した実施例について説明する。図2(a)に示すように、サブマフラー1は、多数の通気孔が貫設されたステンレス鋼製のインナーパイプ2と、その外周に巻設された吸音材繊維としてのフェライト系のステンレス繊維3と、ステンレス繊維3を覆いインナーパイプ2に溶接された外管4とからなる。インナーパイプ2は、ステンレス鋼板を曲げて接合部をTIG溶接してなる継ぎ目あり鋼管であり、自身に溶接部位5を有している。溶接部位5の溶接金属はJIS Z3321に規定されているY430である。なお、本発明は、図2(b)に示すような、メインマフラー11のインナーパイプ12や吸音材繊維(図示略)に具体化することもできる。   Examples in which the present invention is embodied as a sub-muffler will be described below. As shown in FIG. 2 (a), the sub-muffler 1 includes a stainless steel inner pipe 2 through which a large number of air holes are penetrated, and a ferritic stainless steel fiber as a sound absorbing material fiber wound around the outer periphery thereof. 3 and an outer tube 4 which covers the stainless fiber 3 and is welded to the inner pipe 2. The inner pipe 2 is a steel pipe with a seam formed by bending a stainless steel plate and TIG-welding a joint portion, and has a welded portion 5 in itself. The weld metal of the welded part 5 is Y430 defined in JIS Z3321. In addition, this invention can also be actualized in the inner pipe 12 of the main muffler 11, and a sound-absorbing material fiber (not shown) as shown in FIG.2 (b).

[実施例1] 図1(a)に示すように、平均繊維径80μmに切削加工したSUS434からなるステンレス繊維3をSUS410製のインナーパイプ2に嵩密度400kg/m3 で巻設して一体化した後、この一体化したインナーパイプ2及びステンレス繊維3を、図1(b)に示すように、前駆体溶液Aに浸漬後、軽く振って、図1(c)に示すように、乾燥炉9に入れ250℃にて20分乾燥した。前駆体溶液Aは、テトラエトキシシラン、酢酸及び水を1:3:4のモル比で混合した溶液に、0.5質量%PVBのエタノール溶液を添加し、ホットスターラーを用いて80℃の温度で0.5モル/リットルまで加熱濃縮し作成した。乾燥後、インナーパイプから適量のステンレス繊維を取出して実施例1の供試繊維とした。また、ステンレス繊維を抜取り、インナーパイプを指定サイズに加工して実施例1の供試パイプとした。 [Example 1] As shown in FIG. 1A, a stainless fiber 3 made of SUS434 cut to an average fiber diameter of 80 μm is wound around an inner pipe 2 made of SUS410 at a bulk density of 400 kg / m 3 to be integrated. After that, the integrated inner pipe 2 and stainless fiber 3 are immersed in the precursor solution A as shown in FIG. 1 (b) and shaken lightly, as shown in FIG. 1 (c). 9 and dried at 250 ° C. for 20 minutes. The precursor solution A was prepared by adding a 0.5 mass% PVB ethanol solution to a solution obtained by mixing tetraethoxysilane, acetic acid and water in a molar ratio of 1: 3: 4, and using a hot stirrer to a temperature of 80 ° C. And heated to 0.5 mol / liter. After drying, an appropriate amount of stainless steel fiber was taken out from the inner pipe and used as the test fiber of Example 1. In addition, the stainless steel fiber was pulled out and the inner pipe was processed into a specified size to obtain the test pipe of Example 1.

[実施例2] 実施例1と同様に一体化したインナーパイプ及びステンレス繊維について、実施例1と同様の浸漬から乾燥までの工程を2回繰返し、2回目の乾燥後、インナーパイプから適量のステンレス繊維を取出して実施例2の供試繊維とした。また、ステンレス繊維を抜取り、インナーパイプを指定サイズに加工して実施例2の供試パイプとした。 [Example 2] For the inner pipe and stainless steel fiber integrated in the same manner as in Example 1, the same steps from dipping to drying as in Example 1 were repeated twice, and after the second drying, an appropriate amount of stainless steel was removed from the inner pipe. The fiber was taken out and used as a test fiber of Example 2. Further, the stainless steel fiber was pulled out and the inner pipe was processed into a specified size to obtain a test pipe of Example 2.

[実施例3] 実施例1と同様に一体化したインナーパイプ及びステンレス繊維について、前駆体溶液Bに浸漬後、軽く振って、250℃にて20分乾燥した。前駆体溶液Bは、テトラエトキシシラン、酢酸及び水を1:3:2のモル比で混合した溶液に、1質量%PVBのエタノール溶液を添加し、ホットスターラーを用いて80℃の温度で0.5モル/リットルまで加熱濃縮し作成した。乾燥後、インナーパイプから適量のステンレス繊維を取出して実施例3の供試繊維とした。また、ステンレス繊維を抜取り、インナーパイプを指定サイズに加工して実施例3の供試パイプとした。 [Example 3] The inner pipe and stainless fiber integrated in the same manner as in Example 1 were immersed in the precursor solution B, shaken lightly, and dried at 250 ° C for 20 minutes. The precursor solution B was prepared by adding a 1% by mass PVB ethanol solution to a solution in which tetraethoxysilane, acetic acid and water were mixed at a molar ratio of 1: 3: 2, and using a hot stirrer at a temperature of 80 ° C. It was prepared by heating to 5 mol / liter. After drying, an appropriate amount of stainless steel fiber was taken out from the inner pipe and used as the test fiber of Example 3. In addition, the stainless steel fiber was pulled out and the inner pipe was processed into a specified size to obtain a test pipe of Example 3.

[実施例4] 実施例1と同様のインナーパイプ及びステンレス繊維について、実施例3と同様の浸漬から乾燥までの工程を2回繰返し、2回目の乾燥後、インナーパイプから適量のステンレス繊維を取出して実施例4の供試繊維とした。また、ステンレス繊維を抜取り、インナーパイプを指定サイズに加工して実施例4の供試パイプとした。 [Example 4] For the same inner pipe and stainless fiber as in Example 1, the same steps from immersion to drying as in Example 3 were repeated twice, and after the second drying, an appropriate amount of stainless fiber was taken out from the inner pipe. Thus, the test fiber of Example 4 was obtained. In addition, the stainless steel fiber was pulled out and the inner pipe was processed into a specified size to obtain a test pipe of Example 4.

[比較例1] 実施例1と同様に一体化したインナーパイプ及びステンレス繊維について、セラミックス被覆することなく、インナーパイプから適度のステンレス繊維を取出し、比較例1の供試繊維とした。また、セラミックス被覆していないインナーパイプを指定サイズに加工して比較例1の供試パイプとした。 [Comparative Example 1] About the inner pipe and stainless steel fiber integrated in the same manner as in Example 1, an appropriate stainless steel fiber was taken out from the inner pipe without coating with ceramics, and used as a test fiber of Comparative Example 1. Moreover, the inner pipe which is not coated with ceramics was processed into a specified size to obtain a test pipe of Comparative Example 1.

[比較例2] 平均繊維径120μmに切削加工したSUS434からなるステンレス繊維をSUS410製のインナーパイプに嵩密度400kg/m3 で巻設して一体化した後、セラミックス被覆することなく、インナーパイプから適度のステンレス繊維を取出し、比較例2の供試繊維とした。 [Comparative Example 2] Stainless steel fibers made of SUS434 cut to an average fiber diameter of 120 μm were wound around an inner pipe made of SUS410 at a bulk density of 400 kg / m 3 , and then integrated without being covered with ceramics. Appropriate stainless steel fibers were taken out and used as test fibers of Comparative Example 2.

[試験1]耐高温酸化性試験
各実施例1〜4及び比較例1,2の供試繊維10.00gを耐熱ルツボに入れ、電気炉にて耐高温酸化性能を測定し比較した。結果を表1に示す。加熱条件は、800℃で20時間加熱後、4時間冷却を1サイクルとし、17サイクル繰返し実施した。表1より明らかなように、本発明に従った各実施例1〜4の供試繊維は、何れも酸化増量が低下しており、優れた耐高温酸化性能を発揮している。これに対し、セラミックスを被覆しない同径の比較例1の供試繊維は、約3倍の酸化量が発生している。また、各実施例1〜4の供試繊維は、平均繊維径が80μmであるにも拘わらず、セラミックスを被覆しない120μmの比較例2と近似しており、比表面積当りの耐高温酸化性能に優れたものである。
[Test 1] High-temperature oxidation resistance test 10.00 g of each test fiber of Examples 1 to 4 and Comparative Examples 1 and 2 was placed in a heat-resistant crucible, and the high-temperature oxidation resistance was measured and compared in an electric furnace. The results are shown in Table 1. As heating conditions, heating was performed at 800 ° C. for 20 hours, and then cooling for 4 hours was set as one cycle, and repeated 17 cycles. As is apparent from Table 1, the test fibers of Examples 1 to 4 according to the present invention all have a reduced oxidation gain and exhibit excellent high-temperature oxidation resistance. On the other hand, the test fiber of Comparative Example 1 having the same diameter and not coated with ceramics generates about three times the amount of oxidation. In addition, the test fibers of Examples 1 to 4 are similar to Comparative Example 2 of 120 μm that is not coated with ceramics, although the average fiber diameter is 80 μm, and high temperature oxidation resistance per specific surface area. It is excellent.

Figure 2006104975
Figure 2006104975

[試験2]耐食性試験
各実施例1〜4及び比較例1の供試繊維について、JASO(自動車技術会)M611−92自動車用マフラー内部腐食試験方法により、耐食性を測定し比較した。結果を表2に示す。試験条件は、A法(半浸漬試験)で全含浸とし、24時間毎に液交換し、80℃で試験時間を168hrsとした。表2より明らかなように、本発明に従った各実施例1〜4の供試繊維は、何れも腐食減量が低下しており、耐食性に優れたものである。これに対し、セラミックスを被覆しない比較例1,2の供試繊維は、2〜5倍の腐食が発生している。
[Test 2] Corrosion Resistance Test Corrosion resistance was measured and compared for the test fibers of Examples 1 to 4 and Comparative Example 1 by the JASO (Automobile Technical Society) M611-92 automotive muffler internal corrosion test method. The results are shown in Table 2. The test conditions were full impregnation by Method A (semi-immersion test), the liquid was changed every 24 hours, and the test time was 168 hrs at 80 ° C. As is apparent from Table 2, the test fibers of Examples 1 to 4 according to the present invention all have reduced corrosion weight loss and are excellent in corrosion resistance. On the other hand, the test fibers of Comparative Examples 1 and 2 that are not coated with ceramics are corroded 2 to 5 times.

Figure 2006104975
Figure 2006104975

[試験3]吸音性試験
各実施例1〜4及び比較例1,2の供試繊維からJIS−A−1405に規定される円板形状の試験片(嵩密度400g/m3 、厚み10mm)を作成し、管内法により、垂直入射吸音率測定法に従って各周波数における吸音率を測定し比較した。結果を表3に示す。表3より明らかなように、本発明に従った各実施例1〜4の供試繊維は、何れも垂直入射吸音率の低下を伴うことなく、吸音性能に優れたものである。なお、膜厚が十分に厚い場合は、ステンレス繊維の繊維径が著しく太くなり、吸音性能が低下する。
[Test 3] Sound absorption test Disk-shaped test pieces (bulk density 400 g / m 3 , thickness 10 mm) defined in JIS-A-1405 from the test fibers of Examples 1 to 4 and Comparative Examples 1 and 2 The sound absorption coefficient at each frequency was measured and compared according to the normal incident sound absorption coefficient measurement method by the in-tube method. The results are shown in Table 3. As is apparent from Table 3, all of the test fibers of Examples 1 to 4 according to the present invention have excellent sound absorption performance without being accompanied by a decrease in normal incident sound absorption coefficient. In addition, when the film thickness is sufficiently thick, the fiber diameter of the stainless fiber becomes remarkably large, and the sound absorption performance is deteriorated.

Figure 2006104975
Figure 2006104975

[試験4]パイプの耐食性試験
各実施例1〜4及び比較例1の溶接部位5のある供試パイプについて、JASO M611−92 自動車用マフラー内部腐食試験方法により、耐食性を測定し比較した。結果を表4に示す。試験条件は、冷却水循環機能付き半密閉型三角フラスコ中での半浸漬試験で80℃、500時間実施した。サイズは厚み1mmで、外径寸法φ50mmを円弧25mmに、長さ300mmを100mmに後加工した。表4より明らかなように、本発明に従った各実施例1〜4の供試パイプは、何れも腐食減量が低下しており、優れた耐食性を発揮している。これに対し、セラミックスを被覆しない比較例1の供試パイプは、5〜10倍の腐食減量と3倍以上の腐食孔深さが発生している。
[Test 4] Pipe Corrosion Resistance Test With respect to the test pipes having the welded parts 5 of Examples 1 to 4 and Comparative Example 1, the corrosion resistance was measured and compared by the JASO M611-92 automotive muffler internal corrosion test method. The results are shown in Table 4. The test conditions were a semi-immersion test in a semi-sealed Erlenmeyer flask with a cooling water circulation function, and carried out at 80 ° C. for 500 hours. The size was post-processed with a thickness of 1 mm, an outer diameter of φ50 mm to an arc of 25 mm, and a length of 300 mm to 100 mm. As is clear from Table 4, each of the test pipes of Examples 1 to 4 according to the present invention has a reduced corrosion weight loss and exhibits excellent corrosion resistance. On the other hand, the test pipe of Comparative Example 1 not coated with ceramics has a corrosion weight loss of 5 to 10 times and a corrosion hole depth of 3 times or more.

Figure 2006104975
Figure 2006104975

なお、本発明は前記実施形態に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the meaning of invention, it can change suitably and can be actualized.

本発明に係る実施例のサブマフラーの製造方法を示し、(a)は吸音材繊維の巻設時の斜視図、(b)は前駆体溶液への浸漬時の概略図、(c)は乾燥時の概略図である。The manufacturing method of the sub muffler of the Example which concerns on this invention is shown, (a) is a perspective view at the time of winding of a sound-absorbing material fiber, (b) is the schematic at the time of immersion in a precursor solution, (c) is dry It is the schematic of time. (a)は同サブマフラーの断面図、(b)は別例のメインマフラーの正面図である。(A) is sectional drawing of the sub-muffler, (b) is a front view of another example main muffler.

符号の説明Explanation of symbols

1 サブマフラー
2 インナーパイプ
3 ステンレス繊維
4 外管
5 溶接部位
9 乾燥炉
11 メインマフラー
12 インナーパイプ
A 前駆体溶液
B 前駆体溶液
DESCRIPTION OF SYMBOLS 1 Sub muffler 2 Inner pipe 3 Stainless steel fiber 4 Outer pipe 5 Welded part 9 Drying furnace 11 Main muffler 12 Inner pipe A Precursor solution B Precursor solution

Claims (4)

内燃機関の排気系に設けられる消音器の製造方法において、消音器の吸音材繊維、インナーパイプ又は溶接部位に、化学溶液法によりセラミックス被膜を被覆することを特徴とする消音器の製造方法。   A method for manufacturing a silencer, comprising: a method of manufacturing a silencer provided in an exhaust system of an internal combustion engine, wherein a sound absorbing material fiber, an inner pipe, or a welded portion of the silencer is coated with a ceramic film by a chemical solution method. 前記吸音材繊維が平均繊維径30〜150μmのステンレス繊維であり、少なくとも該吸音材繊維に前記セラミックス被膜を膜厚0.05〜1μmに被覆する請求項1記載の消音器の製造方法。   The method for producing a silencer according to claim 1, wherein the sound absorbing material fibers are stainless steel fibers having an average fiber diameter of 30 to 150 µm, and at least the sound absorbing material fibers are coated with the ceramic coating to a thickness of 0.05 to 1 µm. 前記セラミックス被膜がシリカを主成分とするものであり、前記化学溶液法に用いる出発原料をテトラエトキシシランとする請求項1又は2記載の消音器の製造方法。   The method for producing a silencer according to claim 1 or 2, wherein the ceramic coating is composed mainly of silica, and a starting material used in the chemical solution method is tetraethoxysilane. 内燃機関の排気系に設けられる消音器の製造方法において、インナーパイプに吸音材繊維としてのステンレス繊維を嵩密度50〜500kg/m3 に巻設して一体化した後、この一体化したインナーパイプ及びステンレス繊維に、同時に化学溶液法によりセラミックス被膜を被覆することを特徴とする消音器の製造方法。 In a method of manufacturing a silencer provided in an exhaust system of an internal combustion engine, stainless steel fibers as sound absorbing material fibers are wound around an inner pipe and integrated to a bulk density of 50 to 500 kg / m 3 , and then the integrated inner pipe And a method for producing a silencer, wherein a stainless steel fiber is simultaneously coated with a ceramic film by a chemical solution method.
JP2004290131A 2004-10-01 2004-10-01 Silencer manufacturing method Expired - Fee Related JP4543144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290131A JP4543144B2 (en) 2004-10-01 2004-10-01 Silencer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290131A JP4543144B2 (en) 2004-10-01 2004-10-01 Silencer manufacturing method

Publications (2)

Publication Number Publication Date
JP2006104975A true JP2006104975A (en) 2006-04-20
JP4543144B2 JP4543144B2 (en) 2010-09-15

Family

ID=36375015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290131A Expired - Fee Related JP4543144B2 (en) 2004-10-01 2004-10-01 Silencer manufacturing method

Country Status (1)

Country Link
JP (1) JP4543144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097014A1 (en) * 2009-02-27 2010-09-02 中国科学院声学研究所 Noise elimination method and muffler
WO2017169521A1 (en) * 2016-03-30 2017-10-05 イビデン株式会社 Diffusion member, exhaust gas purification device, and use of diffusion member in exhaust gas purification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616488A (en) * 1992-06-30 1994-01-25 Shima Boeki Kk Composition for inorganic heat insulating coating material
JPH11223119A (en) * 1998-02-05 1999-08-17 Ibiden Co Ltd Silencer for internal combustion engine
JP2000160054A (en) * 1998-11-25 2000-06-13 Teikoku Chem Ind Corp Ltd Coating fluid for forming hydrophilic coating film, hydrophilic coating film prepared therefrom, and its formation
JP2001329376A (en) * 2000-03-14 2001-11-27 Teikoku Chem Ind Corp Ltd Exhaust muffler and its production method
JP2002276359A (en) * 2001-03-22 2002-09-25 Nagase Chemtex Corp Exhaust muffler and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616488A (en) * 1992-06-30 1994-01-25 Shima Boeki Kk Composition for inorganic heat insulating coating material
JPH11223119A (en) * 1998-02-05 1999-08-17 Ibiden Co Ltd Silencer for internal combustion engine
JP2000160054A (en) * 1998-11-25 2000-06-13 Teikoku Chem Ind Corp Ltd Coating fluid for forming hydrophilic coating film, hydrophilic coating film prepared therefrom, and its formation
JP2001329376A (en) * 2000-03-14 2001-11-27 Teikoku Chem Ind Corp Ltd Exhaust muffler and its production method
JP2002276359A (en) * 2001-03-22 2002-09-25 Nagase Chemtex Corp Exhaust muffler and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097014A1 (en) * 2009-02-27 2010-09-02 中国科学院声学研究所 Noise elimination method and muffler
US8408359B2 (en) 2009-02-27 2013-04-02 Institute Of Acoustics, Chinese Academy Of Sciences Acoustic attenuation method based on acoustic ray deflection theory and a muffler
EA019238B1 (en) * 2009-02-27 2014-02-28 Инститьют Оф Акустикс, Чайниз Акэдэми Оф Сайнсиз Noise elimination method and muffler based on sound ray refraction theory
WO2017169521A1 (en) * 2016-03-30 2017-10-05 イビデン株式会社 Diffusion member, exhaust gas purification device, and use of diffusion member in exhaust gas purification device
JP2017180326A (en) * 2016-03-30 2017-10-05 イビデン株式会社 Diffusion member, exhaust gas emission control device and use of diffusion member in exhaust gas emission control device
US10874998B2 (en) 2016-03-30 2020-12-29 Ibiden Co., Ltd. Diffusing member, exhaust gas purification device, and use of diffusing member in exhaust gas purification device

Also Published As

Publication number Publication date
JP4543144B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US7601672B2 (en) High Al stainless steel sheet and honeycomb bodies employing them
WO2005105705A1 (en) Honeycomb structure and method for producing same
CN1302221A (en) Catalyst member having electric arc sprayed substrates and methods of making the same
JPH04284852A (en) Catalyst core for catalytic converter
WO2006137160A1 (en) Honeycomb structure body
US5386696A (en) Exhaust manifold with catalytic wall for internal-combustion engines
EP2336516B1 (en) Mat member
JP2017144377A (en) Honeycomb structure
JP5106261B2 (en) Metal honeycomb substrate, manufacturing method thereof, and metal honeycomb catalytic converter
JP4543144B2 (en) Silencer manufacturing method
US20050186127A1 (en) Catalyst carrier body with passivation layer and method for producing the same
US7647696B2 (en) Catalyst substrate having improved thermal durability
JP2002539929A (en) Catalyst body with reduced inflow side wall thickness and method for producing the same
WO2001053669A1 (en) Coarse surface-finished metallic foil with good corrugating workability and catalytic support for purification of exhaust gas
EP3360612B1 (en) Base for supporting catalyst and catalyst support
US20080209896A1 (en) Catalyst System for an Internal Combustion Engine and Method for Producing It
US20080069717A1 (en) High A1 stainless steel sheet and double layered sheet, process for their fabrication, honeycomb bodies employing them and process for their production
US8361398B2 (en) Catalytic converter and method for making the same
JP4519725B2 (en) Exhaust gas purification catalytic converter with excellent high-temperature oxidation resistance
US6589670B2 (en) Composite of metal foils with a soldering material
JP4669353B2 (en) Particulate filter
JP4694220B2 (en) Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification
WO2007148748A1 (en) Metal base, method for producing the same, and catalyst
JP6340101B1 (en) Catalyst support substrate and catalyst support
JP2017227129A (en) Manufacturing method of holding material for exhaust gas treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees