JP2006104970A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2006104970A
JP2006104970A JP2004289981A JP2004289981A JP2006104970A JP 2006104970 A JP2006104970 A JP 2006104970A JP 2004289981 A JP2004289981 A JP 2004289981A JP 2004289981 A JP2004289981 A JP 2004289981A JP 2006104970 A JP2006104970 A JP 2006104970A
Authority
JP
Japan
Prior art keywords
nox
fuel ratio
air
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004289981A
Other languages
Japanese (ja)
Inventor
Minoru Sato
稔 佐藤
Akira Shiragami
昭 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004289981A priority Critical patent/JP2006104970A/en
Publication of JP2006104970A publication Critical patent/JP2006104970A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of keeping NOx purifying efficiency high even when a catalyst deteriorates. <P>SOLUTION: This exhaust emission control device is formed by arranging a NOx occlusion reducing catalyst 3 in an exhaust passage 2 for performing reduction processing by occluding NOx exhaust in air-fuel ratio lean combustion of the internal combustion engine 1 and discharging the occluded NOx by temporarily making air-fuel ratio rich; and is constituted by arranging a deterioration detecting means 5 for detecting a deterioration degree of the NOx occlusion reducing catalyst 3 and a plasma device 4 operated in response to the deterioration degree, on the upstream side of the NOx occlusion reducing catalyst 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は内燃機関の排気ガス浄化装置に関するものである。   The present invention relates to an exhaust gas purification device for an internal combustion engine.

従来の内燃機関、特にリーンバーンエンジンでは、排気ガスの空燃比がリーン(酸素過剰)の時にNOx(窒素酸化物)を吸蔵し、空燃比を理論空気量やリッチ(酸素不足)にした時に吸蔵したNOxを放出して浄化するNOx吸蔵還元触媒を排気流路内に配設し、排気ガスの空燃比を時間間隔を隔ててリーンからリッチに一時的に切り換えてNOx吸蔵還元触媒に吸蔵されているNOxを浄化する技術が使われている。(例えば特許文献1参照)。   In a conventional internal combustion engine, particularly a lean burn engine, NOx (nitrogen oxide) is occluded when the air-fuel ratio of exhaust gas is lean (excess oxygen), and occluded when the air-fuel ratio is made the theoretical air amount or rich (oxygen deficient). A NOx occlusion reduction catalyst that releases and purifies the NOx that has been purified is disposed in the exhaust flow path, and the air-fuel ratio of the exhaust gas is temporarily switched from lean to rich over a time interval, and occluded by the NOx occlusion reduction catalyst. Technology that purifies NOx is used. (For example, refer to Patent Document 1).

また、NOx吸蔵還元触媒は使用するうちに次第に劣化してNOx吸蔵能力が低下してくる。NOx吸蔵能力が低下すると、吸蔵し得るNOxの量が減少して早い時期に飽和吸蔵の状態に達する。その後はNOxは触媒に吸蔵されずに下流側へ排出されてしまう。
したがって、触媒の劣化度を検出して、NOx吸蔵還元触媒に流入する排気ガスの空燃比をリーンからリッチに切り換える周期を劣化度が高くなるほど短くすることが考えられている。また、リッチに切り換えた時のリッチ時間を劣化度が高くなるほど短くすることも考えられている。(例えば特許文献2参照)。
Further, the NOx storage reduction catalyst gradually deteriorates while being used, and the NOx storage capacity decreases. When the NOx storage capacity decreases, the amount of NOx that can be stored decreases, and the saturated storage state is reached early. After that, NOx is not occluded by the catalyst and discharged downstream.
Therefore, it is considered to detect the degree of deterioration of the catalyst and shorten the cycle of switching the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst from lean to rich as the degree of deterioration increases. It is also considered that the rich time when switching to rich is shortened as the degree of deterioration increases. (For example, refer to Patent Document 2).

さらに、エンジンからの排気ガスを浄化するために放電プラズマを利用する方法もすでに知られている。(例えば特許文献3参照)。   Further, a method using discharge plasma for purifying exhaust gas from the engine is already known. (For example, refer to Patent Document 3).

特許2600492号公報Japanese Patent No. 2600492 特許2836523号公報Japanese Patent No. 2836523 特開昭61−31615号公報JP 61-31615 A

従来の排気浄化装置において、NOx吸蔵還元触媒が劣化した場合は、排気ガスの空燃比をリーンにしてNOxを吸蔵する場合と、空燃比をリッチにしてNOxを還元処理する場合の両方で触媒の性能が悪化する。触媒性能は吸蔵し得るNOxの量だけでなく、吸蔵したり還元したりする速さも悪化する。そのため、触媒が劣化した場合に、劣化度が高くなるほど空燃比をリーンからリッチに切り換える周期を短くしたり、リーンからリッチに切り換えた時のリッチ時間を短くしたりする時間的な調整だけではNOx浄化率の改善は不十分であるという問題点があった。   In the conventional exhaust purification device, when the NOx occlusion reduction catalyst deteriorates, the NOx occlusion reduction catalyst leans the air-fuel ratio of the exhaust gas to occlude NOx, and when the NOx is reduced by making the air-fuel ratio rich, the catalyst is reduced. Performance deteriorates. The catalyst performance deteriorates not only the amount of NOx that can be stored, but also the speed at which it is stored and reduced. Therefore, when the catalyst is deteriorated, NOx is simply adjusted by temporal adjustment to shorten the cycle for switching the air-fuel ratio from lean to rich as the degree of deterioration increases, or to shorten the rich time when switching from lean to rich. There was a problem that improvement of the purification rate was insufficient.

また、排気ガスを浄化するために放電プラズマを常時使用すると、エネルギーロスが多く消費電力が増大するという問題点もあった。   Further, when discharge plasma is always used for purifying exhaust gas, there is a problem that energy loss increases and power consumption increases.

この発明は上記のような問題点を解決するためになされたものであり、触媒が劣化した場合でも消費電力の増大を抑えながらNOx浄化率を高く保つことができる内燃機関の排気浄化装置を提供することを目的とする。   The present invention has been made to solve the above problems, and provides an exhaust purification device for an internal combustion engine that can maintain a high NOx purification rate while suppressing an increase in power consumption even when the catalyst is deteriorated. The purpose is to do.

この発明に係る内燃機関の排気浄化装置は、内燃機関の空燃比リーン燃焼時に排出されるNOxを吸蔵し、空燃比を一時的にリッチにして吸蔵NOxを放出して還元処理するNOx吸蔵還元触媒を排気流路内に配設する排気浄化装置において、前記NOx吸蔵還元触媒の劣化度を検出する劣化検出手段と、前記劣化度に応じて動作するプラズマ装置を前記NOx吸蔵還元触媒の上流側に配設したものである。   An exhaust gas purification apparatus for an internal combustion engine according to the present invention stores NOx discharged when the air-fuel ratio of the internal combustion engine is lean-burned, temporarily enriches the air-fuel ratio, releases the stored NOx, and performs a reduction process. In the exhaust gas purification apparatus, a deterioration detecting means for detecting the deterioration degree of the NOx storage reduction catalyst, and a plasma device that operates in accordance with the deterioration degree are arranged upstream of the NOx storage reduction catalyst. It is arranged.

この発明に係る内燃機関の排気浄化装置は上記のように構成されているため、触媒が劣化した場合において、空燃比リーンのNOx吸蔵期間においても、また、空燃比リッチのNOx還元処理期間においても浄化効率を向上させることができる、という従来にない顕著な効果を奏するものである。   Since the exhaust gas purification apparatus for an internal combustion engine according to the present invention is configured as described above, when the catalyst is deteriorated, even in the NOx occlusion period in which the air-fuel ratio is lean, and also in the NOx reduction process period in which the air-fuel ratio is rich. There is an unprecedented remarkable effect that the purification efficiency can be improved.

実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、劣化してない触媒のリーンとリッチにおけるNOxの排出量の変化状況を示した図で、横軸は時間、縦軸はNOxの排出量を示す。空燃比をリーンにした初期では触媒のNOx吸蔵能力が大きく、触媒出口に排出されるNOxの量は少ないが、NOxが徐々に蓄積されるにつれて吸蔵されずに排出されるNOxが増加していく。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a change state of the NOx emission amount between lean and rich in a catalyst that has not deteriorated, in which the horizontal axis represents time and the vertical axis represents NOx emission. In the initial stage when the air-fuel ratio is made lean, the NOx storage capacity of the catalyst is large and the amount of NOx discharged to the catalyst outlet is small, but as NOx is gradually stored, the NOx discharged without being stored increases. .

空燃比をリッチに切り換えると、排気ガスの酸素濃度が低下するために触媒に吸蔵されていたNOxが放出され、排気ガスに含まれる炭化水素などの還元成分と反応して浄化される。この際、触媒から放出されるNOxの量が多いため、還元成分と反応しきれなかったNOxは図1に示すように排出される。   When the air-fuel ratio is switched to rich, the NOx stored in the catalyst is released because the oxygen concentration of the exhaust gas decreases, and it is purified by reacting with reducing components such as hydrocarbons contained in the exhaust gas. At this time, since the amount of NOx released from the catalyst is large, NOx that has not fully reacted with the reducing component is discharged as shown in FIG.

図2は、劣化した触媒のリーンとリッチにおけるNOxの排出量の変化状況を示す図である。空燃比リーンで吸蔵し得るNOxの量(飽和吸蔵量)が小さくなるためリーンの期間を短くしなければならず、また、吸蔵する速度も遅くなるため劣化してない触媒(図1)と同一経過時間において排出されるNOxの量も多くなる。また、劣化した触媒では、リーンの期間で吸蔵されたNOxの量が劣化してない触媒に比較して少ないため、空燃比リッチの期間も短くなり、この期間での還元能力も劣化しているために排出されるNOxの量も増加する。   FIG. 2 is a diagram showing a change state of the NOx emission amount between lean and rich of a deteriorated catalyst. The amount of NOx that can be occluded by air-fuel ratio lean (saturated occlusion amount) becomes smaller, so the lean period must be shortened, and the occlusion speed becomes slower, so the catalyst is not deteriorated (FIG. 1). The amount of NOx discharged during the elapsed time also increases. In addition, since the deteriorated catalyst has a smaller amount of NOx occluded during the lean period than the catalyst that has not deteriorated, the air-fuel ratio rich period is also shortened, and the reducing ability in this period is also deteriorated. Therefore, the amount of NOx discharged increases.

図3は、実施の形態1に係る内燃機関の排気浄化装置の構成を示す概略図である。
エンジン1から排出された排気ガスが流れる排気流路2にNOx吸蔵還元触媒3を配設する。そのNOx吸蔵還元触媒3の上流側にプラズマ装置4を備える。また、NOx吸蔵還元触媒3の劣化度を検出する劣化検出装置5と、その劣化検出装置5からの信号によりプラズマ装置4を制御するプラズマ制御装置6を備える。
FIG. 3 is a schematic diagram showing the configuration of the exhaust gas purification apparatus for an internal combustion engine according to the first embodiment.
A NOx occlusion reduction catalyst 3 is disposed in an exhaust passage 2 through which exhaust gas discharged from the engine 1 flows. A plasma device 4 is provided upstream of the NOx storage reduction catalyst 3. In addition, a deterioration detection device 5 that detects the degree of deterioration of the NOx occlusion reduction catalyst 3 and a plasma control device 6 that controls the plasma device 4 by a signal from the deterioration detection device 5 are provided.

プラズマ制御装置6には高電圧電源(図示せず)が内蔵され、モニターした触媒の劣化度の情報に基づいて、高電圧電源を制御することによってプラズマ装置4のプラズマ生成量を制御する。劣化検出装置5で触媒の劣化が検出された場合には、その劣化度に応じて空燃比リーンの期間でプラズマ制御装置6によりプラズマ装置4を動作させる。プラズマ装置4内の高電圧電源では直流電圧を交流電圧へ変換すると共に、その周波数と交流電圧値を調整して投入電力を変化させる。   The plasma control device 6 incorporates a high voltage power source (not shown), and controls the amount of plasma generated by the plasma device 4 by controlling the high voltage power source based on the monitored information on the degree of deterioration of the catalyst. When the deterioration detector 5 detects the deterioration of the catalyst, the plasma controller 4 is operated by the plasma controller 6 during the air-fuel ratio lean period according to the degree of deterioration. The high voltage power source in the plasma apparatus 4 converts the DC voltage into an AC voltage and adjusts the frequency and the AC voltage value to change the input power.

空燃比リーンの場合、NOxに加えて数%〜10%程度の酸素(O)や水蒸気(HO)が排気ガス中に含まれる。NOxは主にNO(一酸化窒素)とNO(二酸化窒素)からなり、NOの割合は約90%を占めている。NOx吸蔵還元触媒3ではNOxを吸蔵する際に、アルカリ金属酸化物またはアルカリ土類金属酸化物によって硝酸塩として吸蔵することが一般的である。この場合、バリウムやカリウムが使用されることが多い。 In the case of the air-fuel ratio lean, in addition to NOx, oxygen (O 2 ) and water vapor (H 2 O) of about several to 10% are included in the exhaust gas. NOx mainly consists of NO (nitrogen monoxide) and NO 2 (nitrogen dioxide), and the proportion of NO occupies about 90%. In the NOx occlusion reduction catalyst 3, when NOx is occluded, it is generally occluded as a nitrate with an alkali metal oxide or an alkaline earth metal oxide. In this case, barium and potassium are often used.

硝酸塩にする過程では、貴金属触媒によりNOが酸化されてNOに変わり、このNOを硝酸塩の形で吸蔵する。触媒が劣化すると貴金属の酸化性能も低下し、NO→NOの変換速度が遅くなる。プラズマ装置4を動作させると、排気ガス中における酸素濃度や水蒸気濃度が高いため次のような放電化学反応の作用を受ける。 In the process of converting to nitrate, NO is oxidized by the noble metal catalyst to change to NO 2 , and this NO 2 is occluded in the form of nitrate. When the catalyst deteriorates, the oxidation performance of the noble metal also decreases, and the conversion rate of NO → NO 2 becomes slow. When the plasma apparatus 4 is operated, the oxygen concentration and the water vapor concentration in the exhaust gas are high, so that the following discharge chemical reaction is affected.

まず、排気ガス中の酸素分子や水分子が放電されると次のような解離が生じる。
→2O*
O→H*+OH*
このO*とOH*はNOと反応してNOが生じる。
NO+O*→NO
First, when oxygen molecules or water molecules in the exhaust gas are discharged, the following dissociation occurs.
O 2 → 2O *
H 2 O → H * + OH *
The O * and OH * are NO 2 is caused to react with NO.
NO + O * → NO 2

このようにNOの少なくとも一部はプラズマ装置4を通過することでNOへと酸化される。硝酸塩になりやすいNOが多くなると吸蔵効果が向上し、排出されるNOxが減少する。触媒の劣化初期では排出NOxが大きくなるリーン期間後半のみでプラズマ装置4を動作させることでもNOx排出防止効果は発揮される。 In this way, at least a part of NO passes through the plasma device 4 and is oxidized to NO 2 . When the amount of NO 2 that tends to become nitrate increases, the occlusion effect improves and the NOx that is discharged decreases. The NOx emission preventing effect can also be exhibited by operating the plasma device 4 only in the latter half of the lean period when the exhausted NOx becomes large at the early stage of catalyst deterioration.

劣化が進行した場合には、プラズマ装置4を動作させる時間を長くすることでNOx排出防止効果が維持される。このようにプラズマ装置4の動作期間をNOxの排出防止効果のある期間に限定することで省エネ性が実現できる。   When the deterioration progresses, the NOx emission preventing effect is maintained by extending the time for which the plasma apparatus 4 is operated. In this way, energy saving can be realized by limiting the operation period of the plasma device 4 to a period having an NOx emission preventing effect.

また、空燃比リッチの場合、排気ガス中の酸素濃度は0.1%程度まで低下し、炭化水素(HC)などの還元成分が増加する。しかし、エンジンの運転モードによっては排気ガス中の炭化水素は大部分が飽和HCの場合もあり、飽和HCは不飽和HCや一酸化炭素(CO)やアルデヒドや水素(H)に比較してNOxとの反応性が低いために、NOx還元効率が低下する場合がある。触媒の劣化度に応じて空燃比リッチでプラズマ装置4を動作させると、水蒸気の解離が進行する。 When the air-fuel ratio is rich, the oxygen concentration in the exhaust gas decreases to about 0.1%, and reducing components such as hydrocarbon (HC) increase. However, depending on the operating mode of the engine, the hydrocarbons in the exhaust gas may be mostly saturated HC, and saturated HC is compared to unsaturated HC, carbon monoxide (CO), aldehyde, and hydrogen (H 2 ). Since the reactivity with NOx is low, the NOx reduction efficiency may decrease. When the plasma apparatus 4 is operated with rich air-fuel ratio according to the degree of deterioration of the catalyst, dissociation of water vapor proceeds.

O→H*+OH*
このOH*は飽和HCと反応して、最終的に不飽和HCやCOやホルムアルデヒドやアセトアルデヒドやHなどが生じる。
飽和HC+OH*→不飽和HC、CO、アルデヒド、H
H 2 O → H * + OH *
This OH * reacts with saturated HC, and finally, unsaturated HC, CO, formaldehyde, acetaldehyde, H 2 and the like are generated.
Saturated HC + OH * → unsaturated HC, CO, aldehyde, H 2

酸素濃度が低下して触媒から放出されたNOxと、これら不飽和HCやCOやアルデヒドやHが反応して、NOxが浄化されて排出される量が少なくなる。プラズマ装置4を動作させる期間としては、触媒の劣化度が小さな場合は空燃比リッチ期間の一部、例えば、排出NOxの量がピークを示す時期のみでもよい。劣化が進行した場合には、リッチの全期間でプラズマ装置4を動作させてもよい。 NOx released from the catalyst due to a decrease in oxygen concentration reacts with these unsaturated HC, CO, aldehyde, and H 2 to reduce the amount of NOx that is purified and discharged. The period during which the plasma apparatus 4 is operated may be a part of the air-fuel ratio rich period, for example, only when the amount of exhausted NOx has a peak when the degree of deterioration of the catalyst is small. If the deterioration has progressed, the plasma apparatus 4 may be operated over the entire rich period.

図4は、プラズマ装置4をさらに具体的に示す一部破断斜視図である。プラズマ装置31は、排気管21を備え、その排気管21の内部を排気ガスが通過する構造になっており、例えば図4において左から右へ排気ガスを通過させることができる。この排気管21の両端部には、排気流路2が接続できるようにフランジ28を備えている。また、この排気管21の材質は絶縁物であればよく、一つに限定されるものではないが、例えば酸化アルミニウム等のセラミックを用いることができる。   FIG. 4 is a partially broken perspective view showing the plasma device 4 more specifically. The plasma apparatus 31 includes an exhaust pipe 21 and has a structure in which exhaust gas passes through the exhaust pipe 21. For example, the exhaust gas can be passed from left to right in FIG. At both ends of the exhaust pipe 21, flanges 28 are provided so that the exhaust flow path 2 can be connected. The material of the exhaust pipe 21 may be an insulating material and is not limited to one. For example, ceramic such as aluminum oxide can be used.

排気管21の内部には、メッシュ23で固定された高電圧電極22が排気管21と同軸になるように配設されている。高電圧電極22に電圧を供給するために、高電圧電極端子22aと給電端子22bが高電圧ケーブル26によって接続されている。この給電端子22bはプラズマ制御装置6とケーブル(図示せず)で接続される。排気管21の周囲(外周面)には接地電極24が排気管21と接触するように取り付けられている。   Inside the exhaust pipe 21, a high voltage electrode 22 fixed by a mesh 23 is disposed so as to be coaxial with the exhaust pipe 21. In order to supply a voltage to the high voltage electrode 22, the high voltage electrode terminal 22 a and the power supply terminal 22 b are connected by a high voltage cable 26. The power supply terminal 22b is connected to the plasma control device 6 by a cable (not shown). A ground electrode 24 is attached to the periphery (outer peripheral surface) of the exhaust pipe 21 so as to contact the exhaust pipe 21.

この接地電極24は固定ネジ27で締め付けられている。また、この固定ネジ27によって、プラズマ制御装置6と接続するための上述のケーブル(図示せず)も取り付けられている。なお、メッシュ23の材質は絶縁体であればよく、一つに限定されるものではないが、例えば酸化アルミニウム等のセラミックを用いることができる。また、高電圧電極22および接地電極24の材質は導電体であればよく、一つに限定されるものではないが、例えばステンレスを用いることができる。   The ground electrode 24 is fastened with a fixing screw 27. Further, the above-described cable (not shown) for connecting to the plasma control device 6 is also attached by the fixing screw 27. In addition, the material of the mesh 23 should just be an insulator, and although it is not limited to one, For example, ceramics, such as aluminum oxide, can be used. Further, the material of the high voltage electrode 22 and the ground electrode 24 may be a conductor and is not limited to one. For example, stainless steel can be used.

このように構成されたプラズマ装置31において、高電圧電極22と接地電極24間に交流高電圧またはパルス状高電圧を印加することにより、高電圧電極22とセラミック製排気管21の間の空間に無声放電を発生させる。無声放電が生じる空間のガス流方向の長さは接地電極24のガス流方向の長さと同じである。つまり、接地電極24で囲まれた空間内に無声放電が生じる。このプラズマ装置31に導入された排気ガスはメッシュ23を通り無声放電空間内を通過する。この通過過程で排気ガスはプラズマによって化学反応をする。   In the plasma apparatus 31 configured as described above, an AC high voltage or a pulsed high voltage is applied between the high voltage electrode 22 and the ground electrode 24, whereby a space between the high voltage electrode 22 and the ceramic exhaust pipe 21 is formed. Generate silent discharge. The length in the gas flow direction of the space where silent discharge occurs is the same as the length of the ground electrode 24 in the gas flow direction. That is, silent discharge occurs in the space surrounded by the ground electrode 24. The exhaust gas introduced into the plasma apparatus 31 passes through the mesh 23 and passes through the silent discharge space. In this passage process, the exhaust gas undergoes a chemical reaction by the plasma.

次に、劣化検出装置5について説明する。劣化検出装置5の一例としては、触媒に担持した酸素貯蔵機能物質の劣化度を検出する方法がある。触媒の上流側や下流側に設置した空燃比センサ(図示せず)の信号に基づいて酸素貯蔵量を算出して劣化度を検出するものである。空燃比センサはジルコニア式の限界電流式を使用する。安定化ジルコニアは酸素イオン導電性を有し、白金等の電極をつけたものの両端に電圧を加えると、測定ガスが酸素雰囲気の時には酸素は酸素イオンとなり安定化ジルコニアを通過する。この時の電流値が酸素濃度に比例する。   Next, the deterioration detection device 5 will be described. As an example of the deterioration detection device 5, there is a method of detecting the degree of deterioration of the oxygen storage function substance carried on the catalyst. The oxygen storage amount is calculated based on a signal from an air-fuel ratio sensor (not shown) installed on the upstream side or downstream side of the catalyst to detect the degree of deterioration. The air-fuel ratio sensor uses a zirconia limit current type. Stabilized zirconia has oxygen ion conductivity. When a voltage is applied to both ends of an electrode having platinum or the like attached thereto, oxygen becomes oxygen ions and passes through the stabilized zirconia when the measurement gas is in an oxygen atmosphere. The current value at this time is proportional to the oxygen concentration.

空燃比センサで検出された電流値から酸素濃度を算出し、触媒の上流側と下流側の酸素濃度差を計算すれば、触媒に貯蔵された酸素を算出することができる。この酸素貯蔵量を初期のそれと比較することで触媒の劣化検出を行うことが可能となる。
また、NOx吸蔵還元触媒3の下流側に設置したNOxセンサ(図示せず)の信号に基づいて劣化度を検出するものでもよい。
By calculating the oxygen concentration from the current value detected by the air-fuel ratio sensor and calculating the oxygen concentration difference between the upstream side and the downstream side of the catalyst, the oxygen stored in the catalyst can be calculated. It is possible to detect the deterioration of the catalyst by comparing this oxygen storage amount with that in the initial stage.
Further, the degree of deterioration may be detected based on a signal from a NOx sensor (not shown) installed on the downstream side of the NOx storage reduction catalyst 3.

図5に上記の実施の形態1を空燃比リーンおよびリッチにおいて動作させた場合のNOxの排出量の変化状況を示す。プラズマ装置4の効果により、リーンの期間ではNOの割合が増加するため吸蔵効果が向上し、リッチの期間では飽和HCが反応性の高い不飽和HCなどの物質に改質されるため吸蔵NOxの浄化効果が向上し、排出されるNOxは図1に示す劣化していない触媒の場合とほぼ同等レベルになっている。 FIG. 5 shows a change state of the NOx emission amount when the first embodiment is operated in the air-fuel ratio lean and rich. Due to the effect of the plasma device 4, the occlusion effect is improved because the ratio of NO 2 increases in the lean period, and the occluded NOx is improved in the rich period because saturated HC is reformed to a highly reactive substance such as unsaturated HC. The purification effect of NOx is improved, and the exhausted NOx is almost the same level as in the case of the non-degraded catalyst shown in FIG.

劣化してない触媒のリーンとリッチにおけるNOxの排出量の変化状況を示す図である。It is a figure which shows the change condition of the discharge | emission amount of NOx in the lean and rich of the catalyst which has not deteriorated. 劣化した触媒のリーンとリッチにおけるNOxの排出量の変化状況を示す図である。It is a figure which shows the change condition of the discharge | emission amount of NOx in the lean and rich of the deteriorated catalyst. 実施の形態1に係る内燃機関の排気浄化装置の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an exhaust gas purification apparatus for an internal combustion engine according to Embodiment 1. FIG. 図3に示したプラズマ装置の具体的な構成を一部破断して示す斜視図である。FIG. 4 is a perspective view showing a specific configuration of the plasma device shown in FIG. 実施の形態1を空燃比リーンとリッチにおいて動作させた場合のNOxの排出量の変化状況を示す図である。It is a figure which shows the change condition of the discharge | emission amount of NOx at the time of operating Embodiment 1 in an air fuel ratio lean and rich.

符号の説明Explanation of symbols

1 エンジン、 2 排気流路、 3 NOx吸蔵還元触媒、 4 プラズマ装置、
5 劣化検出装置、 6 プラズマ制御装置、 21 排気管、 22 高電圧電極、
22a 高電圧電極端子、 22b 給電端子、 23 メッシュ、
24 接地電極、 26 高電圧ケーブル、 27 固定ネジ、 28 フランジ、
31 プラズマ装置。
1 engine, 2 exhaust flow path, 3 NOx storage reduction catalyst, 4 plasma device,
5 Deterioration detection device, 6 Plasma control device, 21 Exhaust pipe, 22 High voltage electrode,
22a high voltage electrode terminal, 22b power supply terminal, 23 mesh,
24 ground electrode, 26 high voltage cable, 27 fixing screw, 28 flange,
31 Plasma device.

Claims (5)

内燃機関の空燃比リーン燃焼時に排出されるNOxを吸蔵し、空燃比を一時的にリッチにして吸蔵NOxを放出して還元処理するNOx吸蔵還元触媒を排気流路内に配設する排気浄化装置において、前記NOx吸蔵還元触媒の劣化度を検出する劣化検出手段と、前記劣化度に応じて動作するプラズマ装置を前記NOx吸蔵還元触媒の上流側に配設したことを特徴とする内燃機関の排気浄化装置。   Exhaust gas purifying apparatus for storing NOx occluded and reduced in an exhaust passage for storing NOx exhausted during air-fuel ratio lean combustion of an internal combustion engine and releasing the stored NOx by temporarily enriching the air-fuel ratio The exhaust of the internal combustion engine, wherein a deterioration detecting means for detecting a deterioration degree of the NOx storage reduction catalyst and a plasma device that operates in accordance with the deterioration degree are arranged upstream of the NOx storage reduction catalyst. Purification equipment. 前記プラズマ装置は、劣化度に応じて空燃比リーン時の少なくとも一部の時間に動作させることを特徴とする請求項1記載の内燃機関の排気浄化装置。   2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the plasma device is operated at least during a time when the air-fuel ratio is lean according to the degree of deterioration. 前記プラズマ装置は、空燃比リーンの排気ガスに含まれるNOxのうちのNOの少なくとも一部をNOへ変換することを特徴とする請求項2記載の内燃機関の排気浄化装置。 The plasma apparatus, at least a portion of the exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein the converting NO to NO 2 among NOx contained in the exhaust gas air-fuel ratio lean. 前記プラズマ装置は、劣化度に応じて空燃比リッチ時の少なくとも一部の時間に動作させることを特徴とする請求項1記載の内燃機関の排気浄化装置。   2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the plasma device is operated at least during a time when the air-fuel ratio is rich according to the degree of deterioration. 前記プラズマ装置は、空燃比リッチの排気ガスに含まれる飽和炭化水素の少なくとも一部を不飽和炭化水素もしくは一酸化炭素もしくはアルデヒドもしくは水素へ改質することを特徴とする請求項4記載の内燃機関の排気浄化装置。   5. The internal combustion engine according to claim 4, wherein the plasma device reforms at least a part of saturated hydrocarbons contained in the air-fuel ratio rich exhaust gas into unsaturated hydrocarbons, carbon monoxide, aldehydes, or hydrogen. Exhaust purification equipment.
JP2004289981A 2004-10-01 2004-10-01 Exhaust emission control device of internal combustion engine Pending JP2006104970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289981A JP2006104970A (en) 2004-10-01 2004-10-01 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289981A JP2006104970A (en) 2004-10-01 2004-10-01 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006104970A true JP2006104970A (en) 2006-04-20

Family

ID=36375012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289981A Pending JP2006104970A (en) 2004-10-01 2004-10-01 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006104970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074774A (en) * 2009-09-29 2011-04-14 Toda Seiji Six-way catalyst
JP2013241940A (en) * 2013-07-12 2013-12-05 OGATA Yayoi Co2 reducing device
JPWO2014118892A1 (en) * 2013-01-29 2017-01-26 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074774A (en) * 2009-09-29 2011-04-14 Toda Seiji Six-way catalyst
JPWO2014118892A1 (en) * 2013-01-29 2017-01-26 トヨタ自動車株式会社 Control device for internal combustion engine
US9765672B2 (en) 2013-01-29 2017-09-19 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
JP2013241940A (en) * 2013-07-12 2013-12-05 OGATA Yayoi Co2 reducing device

Similar Documents

Publication Publication Date Title
JP4924646B2 (en) Exhaust gas purification device for internal combustion engine
JP2003146614A (en) Fuel reforming system
EP2098699B1 (en) Exhaust gas purifying apparatus for internal combustion engine
EP2098694B1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2008240698A (en) Exhaust emission control device
JP4189337B2 (en) Exhaust gas purification system
JP5071254B2 (en) Fuel cell power generation system and operation method thereof
JP2005351171A (en) Exhaust emission control device of internal combustion engine
JP2006104970A (en) Exhaust emission control device of internal combustion engine
JP2008163871A (en) Exhaust emission control device for internal combustion engine
JP2006132483A (en) Exhaust emission control device, exhaust emission control method and control method
JP2005344688A (en) Exhaust emission control device of internal combustion engine
JP2009281154A (en) Exhaust gas treatment device
JP4946725B2 (en) Exhaust gas purification method and exhaust gas purification device
JP4765991B2 (en) Exhaust gas purification device
JP2018184924A (en) Exhaust emission control system, and control method for exhaust emission control system
JP4006613B2 (en) Apparatus for measuring hydrogen content in exhaust gas and exhaust gas purification system
JP2010007656A (en) Exhaust emission controller for internal combustion engine
JP4867655B2 (en) Exhaust gas purification device for internal combustion engine
JP2010185347A (en) Exhaust gas purifying apparatus
JP2011185161A (en) Exhaust emission control device
JP2002056874A (en) Device and method for controlling reform of fuel for fuel cell
JP2004353619A (en) Exhaust emission control device
JP4270090B2 (en) Exhaust gas purification device
JPH08319822A (en) Exhaust emission control catalyst of internal combustion engine