JP2006104270A - Method for producing organosulfur oxide - Google Patents

Method for producing organosulfur oxide Download PDF

Info

Publication number
JP2006104270A
JP2006104270A JP2004290649A JP2004290649A JP2006104270A JP 2006104270 A JP2006104270 A JP 2006104270A JP 2004290649 A JP2004290649 A JP 2004290649A JP 2004290649 A JP2004290649 A JP 2004290649A JP 2006104270 A JP2006104270 A JP 2006104270A
Authority
JP
Japan
Prior art keywords
solvent
hydrocarbon oil
sulfur
organic sulfur
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004290649A
Other languages
Japanese (ja)
Other versions
JP4520808B2 (en
Inventor
Kimio Ihara
公生 井原
Hachiro Ueda
八郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2004290649A priority Critical patent/JP4520808B2/en
Publication of JP2006104270A publication Critical patent/JP2006104270A/en
Application granted granted Critical
Publication of JP4520808B2 publication Critical patent/JP4520808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an organosulfur oxide in a manner excellent in workability and operability, low in cost, and excellent in mass productivity and production output, in which an organosulfur compound such as a dibenzothiophene is selectively oxidized into a polar organosulfur oxide such as a sulfoxide or sulfone derivative within a short time, and the organosulfur compound is effectively separated from a hydrocarbon oil to produce the desired useful organosulfur oxide in a high purity and a high recovery rate. <P>SOLUTION: The method comprises the step of treating a mixture containing a hydrocarbon oil, a solvent, and an oxidizing agent under supercritical or subcritical high-temperature and high-pressure conditions of the organic solvent to dissolve an organosulfur oxide obtained by oxidizing an organosulfur compound contained in the hydrocarbon oil in the solvent, the step of separating the sulfur-containing solvent in which the organosulfur oxide is dissolved from the hydrocarbon oil, and the sulfur oxide recovery step of purifying and recovering the organosulfur oxide dissolved in the sulfur-containing solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機硫黄化合物を含有する炭化水素油から医薬品,農薬,合成樹脂製品,電子製品等の原料として有用なジベンゾチオフェンスルホン等の有機硫黄酸化物を製造する有機硫黄酸化物の製造方法に関するものである。   The present invention relates to an organic sulfur oxide production method for producing organic sulfur oxides such as dibenzothiophene sulfone useful as raw materials for pharmaceuticals, agricultural chemicals, synthetic resin products, electronic products, etc. from hydrocarbon oils containing organic sulfur compounds. Is.

石油,オイルサンド,オイルシェール,石炭等から得られる炭化水素油には各種の有機硫黄化合物が含有されている。例えば、ディーゼル燃料油として用いられる軽油に含まれる有機硫黄化合物は、燃焼排ガスによってSOxとして環境中へ放出され環境汚染の原因となったり白金触媒等を利用した排ガス処理装置の触媒毒となるため、炭化水素油に含有される有機硫黄化合物を低減する種々の技術が研究されている。   Hydrocarbon oils obtained from petroleum, oil sands, oil shale, coal, etc. contain various organic sulfur compounds. For example, organic sulfur compounds contained in diesel oil used as diesel fuel oil are released into the environment as SOx by combustion exhaust gas, causing environmental pollution and becoming a catalyst poison of exhaust gas treatment equipment using a platinum catalyst, Various techniques for reducing organic sulfur compounds contained in hydrocarbon oils have been studied.

一方、炭化水素油に含有される有機硫黄化合物は、医薬品,農薬,合成樹脂製品,電子製品等を製造する際の貴重な工業用原料として注目されている。例えば、ベンゾチオフェン,ジベンゾチオフェン誘導体等は、有用な工業用原料としての可能性を有するものである。これらを無機物の硫黄から製造しようとすれば、複雑な製造工程と多大な製造コストを要するため、炭化水素油に含まれる有機硫黄化合物を分離・回収する技術が検討されている。
しかしながら、ジベンゾチオフェン類は、硫黄原子周辺にアルキル基等の置換基をもつアルキル置換ジベンゾチオフェン類が含まれており、置換基が立体障害となり平面構造の奥に位置する硫黄原子に触媒反応活性点が接触することを阻害するため、化学的に安定であり水素化脱硫し難い化合物であり、炭化水素油から分離・回収することは極めて困難である。
そこで、炭化水素油からジベンゾチオフェン類を製造するための種々の技術が研究されている。
On the other hand, organic sulfur compounds contained in hydrocarbon oils are attracting attention as valuable industrial raw materials for producing pharmaceuticals, agricultural chemicals, synthetic resin products, electronic products and the like. For example, benzothiophene, dibenzothiophene derivatives and the like have the potential as useful industrial raw materials. If these are produced from inorganic sulfur, a complicated production process and a great production cost are required. Therefore, a technique for separating and recovering an organic sulfur compound contained in hydrocarbon oil has been studied.
However, dibenzothiophenes contain alkyl-substituted dibenzothiophenes having a substituent such as an alkyl group around the sulfur atom, and the substituent becomes a steric hindrance and the catalytic reaction active site is located on the sulfur atom located in the back of the planar structure. Is a compound that is chemically stable and difficult to hydrodesulfurize, and is extremely difficult to separate and recover from hydrocarbon oil.
Therefore, various techniques for producing dibenzothiophenes from hydrocarbon oil have been studied.

例えば、(特許文献1)に「有機硫黄化合物を含有する液状油を酸化剤と0〜100℃の温度範囲で撹拌しながら反応させ、反応後、酸化反応生成物を含む油分から蒸留,吸着等によって分離して、酸化された有機硫黄化合物を液状油から回収する方法」が開示されている。
(特許文献2)に「軽質油等に有機硫黄化合物に対する溶解度の大きい溶剤を加えて混合して有機硫黄化合物を溶剤中に移行させた後、有機硫黄化合物を含む溶剤を分離し、次いで該溶剤を蒸発させ蒸発残渣として有機硫黄化合物を回収する方法」が開示されている。
(特許文献3)に「硫黄化合物を含有する燃料油を、極性有機溶剤と遷移金属触媒の存在下、−100〜120℃の反応温度のもと、酸化剤で処理する燃料油の酸化脱硫方法」が開示されている。
特開平5−286869号公報 特開平7−197036号公報 特開2001−354978号公報
For example, (Patent Document 1) states that “a liquid oil containing an organic sulfur compound is reacted with an oxidizing agent while stirring in a temperature range of 0 to 100 ° C., and after the reaction, distillation, adsorption, etc. are performed from the oil containing the oxidation reaction product. In which the oxidized organic sulfur compound is recovered from the liquid oil.
(Patent Document 2) “After adding a solvent having a high solubility in an organic sulfur compound to light oil or the like and mixing the organic sulfur compound into the solvent, the solvent containing the organic sulfur compound is separated, and then the solvent In which an organic sulfur compound is recovered as an evaporation residue is disclosed.
(Patent Document 3) describes a method for oxidative desulfurization of fuel oil in which a fuel oil containing a sulfur compound is treated with an oxidizing agent in the presence of a polar organic solvent and a transition metal catalyst at a reaction temperature of −100 to 120 ° C. Is disclosed.
Japanese Patent Laid-Open No. 5-286869 Japanese Patent Laid-Open No. 7-197036 JP 2001-354978 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術では、回収される有機硫黄化合物はベンゾチオフェン及びジベンゾチオフェン誘導体であるが、特に有用で付加価値の高いジベンゾチオフェン誘導体の回収率が低いという課題を有していた。
(2)(特許文献2)に開示の技術は、比較的短時間で有機硫黄化合物を溶剤に溶解させた後、溶剤を蒸発して溶解した有機硫黄化合物を回収することはできるが、溶剤による酸化が不十分なので、工業的に特に有用で付加価値の高いジベンゾチオフェンスルホン等の有機硫黄酸化物を効率的に回収することができないという課題を有していた。
(3)(特許文献1)乃至(特許文献3)に開示の技術は、いずれも常圧下で反応させるので、反応温度は溶剤の沸点(メタノールの場合は約66℃、アセトニトリルの場合は約82℃)以上に高くなることはないため、反応性が乏しく、長い反応時間を要し、生産性が著しく低いという課題を有していた。
However, the above conventional techniques have the following problems.
(1) In the technique disclosed in (Patent Document 1), the organic sulfur compounds to be recovered are benzothiophene and dibenzothiophene derivatives. However, there is a problem that the recovery rate of dibenzothiophene derivatives that are particularly useful and have high added value is low. Was.
(2) The technique disclosed in (Patent Document 2) can recover the dissolved organic sulfur compound by evaporating the solvent after dissolving the organic sulfur compound in the solvent in a relatively short time. Since the oxidation is insufficient, there is a problem that organic sulfur oxides such as dibenzothiophene sulfone which is industrially particularly useful and has high added value cannot be efficiently recovered.
(3) Since the techniques disclosed in (Patent Document 1) to (Patent Document 3) are all reacted under normal pressure, the reaction temperature is the boiling point of the solvent (about 66 ° C. in the case of methanol, about 82 in the case of acetonitrile). C.), the reactivity is poor, a long reaction time is required, and the productivity is extremely low.

本発明は上記従来の課題を解決するもので、短時間では回収が困難であったジベンゾチオフェン類等の有機硫黄化合物を選択的にスルホキシドやスルホン誘導体のような極性化合物の有機硫黄酸化物に短時間で酸化させるとともに有機硫黄化合物を炭化水素油から効率的に分離させ、所望する有用な有機硫黄酸化物を高純度で高い回収率で製造でき、作業性と操作性に優れ低原価で量産性、生産性に優れ、さらに炭化水素油の脱硫工程の負荷を軽減することにもなる有機硫黄酸化物の製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and selectively converts organic sulfur compounds such as dibenzothiophenes that have been difficult to recover in a short time to organic sulfur oxides of polar compounds such as sulfoxides and sulfone derivatives. Oxidation over time and efficient separation of organic sulfur compounds from hydrocarbon oils enables production of desired useful organic sulfur oxides with high purity and high recovery rate, excellent workability and operability, low cost and mass productivity Another object of the present invention is to provide a method for producing an organic sulfur oxide which is excellent in productivity and further reduces the load of a hydrocarbon oil desulfurization process.

上記従来の課題を解決するために本発明の有機硫黄酸化物の製造方法は、以下の構成を有している。
本発明の請求項1に記載の有機硫黄酸化物の製造方法は、炭化水素油と溶剤と酸化剤とを含有する混合液を前記溶剤の超臨界状態又は亜臨界状態の高温高圧下で処理し前記炭化水素油に含まれる有機硫黄化合物を酸化させ得られる有機硫黄酸化物を前記溶剤に溶出させる臨界処理工程と、前記有機硫黄酸化物が溶出した硫黄含有溶剤を前記炭化水素油から分離する溶剤分離工程と、前記硫黄含有溶剤に溶出した前記有機硫黄酸化物を精製・回収する硫黄酸化物回収工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)炭化水素油と溶剤と酸化剤とを含有する混合液を溶剤の超臨界状態又は亜臨界状態のもと、沸点以上の高温の溶剤で処理するので、水素化反応の場合とは逆にジベンゾチオフェン類の相対反応性が増加し、ジベンゾチオフェン類をスルホキシドやスルホン誘導体のような極性化合物の有機硫黄酸化物に短時間で酸化させ、炭化水素油から溶剤へ移行させることができ、この結果、有機硫黄化合物を炭化水素油から効率的に分離させ、ジベンゾチオフェンスルホン等の有機硫黄酸化物の回収率を高めることができる。
(2)酸化された有機硫黄化合物は溶剤中に容易に溶出させることができるので、溶剤分離工程で硫黄含有溶剤を分離した後、硫黄含有溶剤を精製することにより、効率よく有機硫黄酸化物を回収し製造することができる。
(3)溶剤分離工程において硫黄含有溶剤と分離された炭化水素油は、有機硫黄化合物が除去されて硫黄濃度が低く、特に水素化脱硫が困難なジベンゾチオフェン類が除去されているので、この炭化水素油を水素化脱硫すれば容易に低硫黄濃度油乃至は硫黄フリー油を得ることができる。
(4)臨界処理工程において混合液を溶剤の亜臨界状態又は超臨界状態の高温高圧下で処理するので、酸化が著しく促進され芳香環にアルキル基等が置換したジベンゾチオフェンスルホン等の芳香環を酸化し、硫黄酸化物回収工程において回収された有機硫黄酸化物を精製し易くすることができる。
In order to solve the above conventional problems, the method for producing an organic sulfur oxide of the present invention has the following configuration.
In the method for producing an organic sulfur oxide according to claim 1 of the present invention, a mixed liquid containing a hydrocarbon oil, a solvent and an oxidizing agent is treated under high temperature and high pressure in a supercritical state or a subcritical state of the solvent. A critical treatment step for eluting the organic sulfur oxide obtained by oxidizing the organic sulfur compound contained in the hydrocarbon oil into the solvent, and a solvent for separating the sulfur-containing solvent from which the organic sulfur oxide is eluted from the hydrocarbon oil A separation step and a sulfur oxide recovery step for purifying and recovering the organic sulfur oxide eluted in the sulfur-containing solvent.
With this configuration, the following effects can be obtained.
(1) Since the liquid mixture containing hydrocarbon oil, solvent and oxidant is treated with a solvent having a boiling point or higher in the supercritical state or subcritical state of the solvent, this is contrary to the hydrogenation reaction. The relative reactivity of dibenzothiophenes increases, and dibenzothiophenes can be oxidized to organic sulfur oxides of polar compounds such as sulfoxides and sulfone derivatives in a short time and transferred from hydrocarbon oil to solvent. As a result, the organic sulfur compound can be efficiently separated from the hydrocarbon oil, and the recovery rate of organic sulfur oxides such as dibenzothiophene sulfone can be increased.
(2) Since the oxidized organic sulfur compound can be easily eluted in the solvent, after separating the sulfur-containing solvent in the solvent separation step, the organic sulfur oxide is efficiently obtained by purifying the sulfur-containing solvent. It can be recovered and manufactured.
(3) The hydrocarbon oil separated from the sulfur-containing solvent in the solvent separation step has a low sulfur concentration by removing organic sulfur compounds, and dibenzothiophenes that are particularly difficult to hydrodesulfurize are removed. If hydrogen oil is hydrodesulfurized, low sulfur concentration oil or sulfur-free oil can be easily obtained.
(4) Since the mixed solution is processed under high temperature and high pressure in the subcritical or supercritical state of the solvent in the critical treatment step, the aromatic ring such as dibenzothiophene sulfone whose alkyl group is substituted on the aromatic ring is promoted significantly. It can be oxidized and the organic sulfur oxide recovered in the sulfur oxide recovery step can be easily purified.

ここで、炭化水素油としては、石油,石炭,オイルサンド,オイルシェール,オリマルジョン等の有機化石資源由来油が用いられる。具体的には、ガソリン,灯油,軽油,重油等の特定の留分からなる蒸留生成物及び原油の石油資源系油、コールタール,液化油等の石炭資源系油、オイルサンド,オイルシェール,オリマルジョン等からの抽出物等の石炭類似資源系油、重質油、超重質油、及び精製油等が用いられる。
特に、石油資源系油等が常圧蒸留装置で分留された軽質軽油,重質軽油、常圧蒸留装置の常圧残油を減圧蒸留装置を用いて分留された軽油留分、A重油等が好適である。有機硫黄化合物のうちベンゾチオフェン、ポリベンゾチオフェン類を多量に含んでいるからである。
なかでも、常圧で蒸留された230〜360℃の留分が好適に用いられる。チオール,環状スルフィド等の有機硫黄化合物は軽質留分として除去され、ベンゾチオフェン、ポリベンゾチオフェン類の含有量が高いからである。蒸留温度が230℃より低くなるにつれ、チオール,環状スルフィド等の含有量が増加し、臨界処理によって製造され特に有用なジベンゾチオフェンスルホン等の純度が低下する傾向がみられ、360℃より高くなるにつれバナジウム,ニッケル等の金属化合物の含有量が増加し臨界処理によって製造されるジベンゾチオフェンスルホン等の純度が低下する傾向がみられるため、いずれも好ましくない。
なお、常圧蒸留後、水素化脱硫される前の炭化水素油を用いるのが好ましい。水素化脱硫によって有機硫黄酸化物の原料となる有機硫黄化合物の濃度が低下するため、生産性が低下するからである。また、臨界処理工程において水素化脱硫における難分解物質を低減することができ、臨界処理された炭化水素油を水素化脱硫することによって、水素化脱硫の脱硫効率を向上させることができるからである。
Here, as the hydrocarbon oil, oils derived from organic fossil resources such as petroleum, coal, oil sand, oil shale, and orimulsion are used. Specifically, distillation products consisting of specific fractions such as gasoline, kerosene, light oil, and heavy oil, and crude oil resources, coal tar, liquefied oil, and other coal resources, oil sands, oil shale, and oil Coal-like resource oils such as extracts from oil, heavy oils, super heavy oils, refined oils and the like are used.
In particular, light gas oil, heavy gas oil obtained by fractionating petroleum resource oils, etc. using an atmospheric distillation unit, gas oil fraction obtained by fractionating an atmospheric residue of an atmospheric distillation unit using a vacuum distillation unit, and heavy oil A Etc. are suitable. This is because the organic sulfur compound contains a large amount of benzothiophene and polybenzothiophene.
Among these, a fraction of 230 to 360 ° C. distilled at normal pressure is preferably used. This is because organic sulfur compounds such as thiol and cyclic sulfide are removed as a light fraction and the content of benzothiophene and polybenzothiophenes is high. As the distillation temperature drops below 230 ° C, the content of thiols, cyclic sulfides, etc. increases, and the purity of dibenzothiophene sulfone, which is produced by critical processing, tends to decrease, and as it rises above 360 ° C. Since the content of metal compounds such as vanadium and nickel increases and the purity of dibenzothiophene sulfone produced by the critical treatment tends to decrease, neither is preferable.
It is preferable to use a hydrocarbon oil after atmospheric distillation and before hydrodesulfurization. This is because the hydrodesulfurization reduces the concentration of the organic sulfur compound that is the raw material for the organic sulfur oxide, and thus the productivity is reduced. In addition, it is possible to reduce the hard-to-decompose substances in hydrodesulfurization in the critical treatment step, and to improve the desulfurization efficiency of hydrodesulfurization by hydrodesulfurizing the critically treated hydrocarbon oil. .

有機硫黄化合物としては、脂肪族炭化水素を構成する炭素鎖中に硫黄原子を含有するチオール類,チオエーテル類等の化合物、芳香族炭化水素の置換基として炭素鎖中に硫黄原子を含有する基を有するチオフェノール類,チオアニソール類等の化合物、骨格中に硫黄原子を含むチオフェン類,ベンゾチオフェン類,ジベンゾチオフェン類等の複素環化合物等を挙げることができる。
ジベンゾチオフェン類に含まれる化合物としては、ジベンゾチオフェン、ジベンゾチオフェンのモノアルキル化体又はジアルキル化体等のアルキル化誘導体、分子内にジベンゾチオフェン骨格を有する化合物等を挙げることができる。
Examples of the organic sulfur compound include compounds such as thiols and thioethers containing a sulfur atom in the carbon chain constituting the aliphatic hydrocarbon, and groups containing a sulfur atom in the carbon chain as a substituent of the aromatic hydrocarbon. Examples thereof include compounds such as thiophenols and thioanisoles, and heterocyclic compounds such as thiophenes, benzothiophenes, and dibenzothiophenes containing a sulfur atom in the skeleton.
Examples of the compound contained in the dibenzothiophenes include dibenzothiophene, alkylated derivatives such as dibenzothiophene monoalkylated or dialkylated compounds, and compounds having a dibenzothiophene skeleton in the molecule.

溶剤としては、炭化水素油に対する溶解度が小さく、かつ、水添精製油に含まれる有機硫黄化合物及びその酸化生成物を抽出する極性溶媒が用いられる。具体的には、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、酢酸、プロピオン酸、酪酸、蟻酸、過酸、メタノール、エタノール、ブタノール、2−ブタノン、アセチルアセトン、ニトロメタン、ニトロエタン、ニトロプロパン、N,N´−ジメチルホルムアミド、N,N´−ジメチルアセトアミド、トリメチルリン酸エステル、トリエチルリン酸エステル、ヘキサメチルリン酸アミド、N−メチル−2−ピロリドン等のピロリドン、1,3−ジメチル−2−イミダゾリジノン等のイミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2−ピリミジノン等のピリミジノン、トリメチルピリジウムハイドロブロマイド、1,2,4,6−テトラメチルピリジニウムヨーダイド等のピリジウム塩等の1種又は複数種を用いることができる。   As the solvent, a polar solvent that has low solubility in hydrocarbon oil and that extracts the organic sulfur compound and its oxidation product contained in the hydrogenated refined oil is used. Specifically, acetonitrile, propionitrile, butyronitrile, valeronitrile, acetic acid, propionic acid, butyric acid, formic acid, peracid, methanol, ethanol, butanol, 2-butanone, acetylacetone, nitromethane, nitroethane, nitropropane, N, N Pyrrolidone such as' -dimethylformamide, N, N'-dimethylacetamide, trimethyl phosphate ester, triethyl phosphate ester, hexamethyl phosphate amide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolide Imidazolidinones such as non, pyrimidinones such as 1,3-dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone, trimethylpyridium hydrobromide, 1,2,4,6-tetramethylpyridinium iodide, etc. One kind of pyridium salt Alternatively, multiple types can be used.

溶剤は、炭化水素油に対する相互溶解度が、0.1〜5%の範囲の溶剤を用いるのが好ましい。臨界処理工程において炭化水素油からの有機硫黄化合物の抽出と、溶剤分離工程において硫黄含有溶剤と炭化水素油との分離とを両立させることができ、いずれの作業性も高めることができるからである。
ここで、溶剤の炭化水素油に対する相互溶解度が0.1%より小さくなるにつれ臨界処理工程において炭化水素油からの有機硫黄化合物の抽出効率が低下する傾向がみられ、相互溶解度が5%より多くなるにつれ溶剤分離工程において硫黄含有溶剤と炭化水素油との分離効率が低下する傾向がみられるため、いずれも好ましくない。
このような溶剤として、例えば、メタノール等のアルコール類が好適に用いられる。炭化水素油との分離性に優れ、また強い腐食性を示さないため取扱性に優れ、さらに有機硫黄化合物や有機硫黄酸化物の溶解度が高いからである。
As the solvent, it is preferable to use a solvent having a mutual solubility in the range of 0.1 to 5% with respect to the hydrocarbon oil. This is because the extraction of the organic sulfur compound from the hydrocarbon oil in the critical treatment step and the separation of the sulfur-containing solvent and the hydrocarbon oil in the solvent separation step can be made compatible, and both workability can be improved. .
Here, as the mutual solubility of the solvent in the hydrocarbon oil becomes smaller than 0.1%, the extraction efficiency of the organic sulfur compound from the hydrocarbon oil tends to decrease in the critical treatment step, and the mutual solubility is more than 5%. Accordingly, since the separation efficiency of the sulfur-containing solvent and the hydrocarbon oil tends to decrease in the solvent separation step, neither is preferable.
As such a solvent, for example, alcohols such as methanol are preferably used. This is because it is excellent in separability from hydrocarbon oil, and does not exhibit strong corrosivity, so that it is easy to handle, and the solubility of organic sulfur compounds and organic sulfur oxides is high.

炭化水素油と溶剤と酸化剤とを含有する混合液において、溶剤に対する炭化水素油の量としては、炭化水素油の量に対し0.1〜2.5倍好ましくは0.3〜2倍より好ましくは0.5〜1.5倍が好適に用いられる。溶剤に対する炭化水素油の量が0.5倍より少なくなるにつれ、溶剤中への硫黄成分の移行率は増加するが、溶剤の量が増えるため硫黄酸化物回収工程において濃縮操作に工数を要し生産性が低下する傾向がみられ、1.5倍より多くなるにつれ、溶剤の量が少なくなるため硫黄含有溶剤の硫黄濃度を高めることができ、硫黄酸化物回収工程における工数を削減できるが、溶剤中への硫黄成分の移行率が低下し回収効率が低下する傾向がみられる。また、溶剤に対する炭化水素油の量が0.3倍より少なくなるにつれこの傾向が著しくなり、2倍より多くなるにつれ、有機EL材料として有益な4−メチルジベンゾチオフェンスルホン(以下、4−メチルDBTSという。)や4,6−ジメチルジベンゾチオフェンスルホン(以下、4,6−ジメチルDBTSという。)等の有機硫黄酸化物以外の他のアルキル基置換有機硫黄酸化物の移行率が増加したり未酸化の有機硫黄化合物が増加する傾向がみられる。特に、0.1倍より少なくなるか2.5倍より多くなると、これらの傾向が著しくなるので好ましくない。   In the mixed liquid containing the hydrocarbon oil, the solvent and the oxidizing agent, the amount of the hydrocarbon oil relative to the solvent is 0.1 to 2.5 times, preferably 0.3 to 2 times the amount of the hydrocarbon oil. 0.5 to 1.5 times is preferably used. As the amount of hydrocarbon oil with respect to the solvent becomes less than 0.5 times, the migration rate of the sulfur component into the solvent increases. However, the amount of solvent increases, so the man-hours are required for the concentration operation in the sulfur oxide recovery process. There is a tendency for productivity to decrease, and as the amount increases more than 1.5 times, the amount of solvent decreases, so the sulfur concentration of the sulfur-containing solvent can be increased, and the number of steps in the sulfur oxide recovery process can be reduced. There is a tendency that the transfer rate of the sulfur component into the solvent decreases and the recovery efficiency decreases. In addition, this tendency becomes remarkable as the amount of hydrocarbon oil with respect to the solvent is less than 0.3 times, and as it becomes more than twice, 4-methyldibenzothiophene sulfone (hereinafter referred to as 4-methyl DBTS) useful as an organic EL material. ) And 4,6-dimethyldibenzothiophene sulfone (hereinafter referred to as 4,6-dimethyl DBTS) and the like, the migration rate of other organic sulfur-substituted organic sulfur oxides increases or is not oxidized. There is a tendency for the organic sulfur compounds to increase. In particular, if it is less than 0.1 times or more than 2.5 times, these tendencies become remarkable, which is not preferable.

酸化剤としては、酸素ガス、空気、二酸化窒素、オゾンガス、硝酸、t−ブチルヒドロペルオキシド等の有機ヒドロペルオキシド、メタ過ヨウ素酸ナトリウム、重クロム酸カリウム、過マンガン酸カリウム、無水クロム酸、次亜塩素酸、過酸化水素、過酢酸、過酸化水素水と酢酸の混合物、過蟻酸、過酸化水素水と蟻酸の混合物、メタクロロ過安息香酸、過酸化水素水とメタクロロ安息香酸の混合物、過クロロ酢酸、過酸化水素水とクロロ酢酸の混合物、過ジクロロ酢酸、過酸化水素水とジクロロ酢酸の混合物、過トリクロロ酢酸、過酸化水素水とトリクロロ酢酸の混合物、過トリフロロ酢酸、過酸化水素水とトリフロロ酢酸の混合物、過メタンスルホン酸、過酸化水素水とメタンスルホン酸の混合物、過硫酸、過酸化水素水と硫酸の混合物等の内の1種又は2種以上が用いられる。なかでも、過酸化水素水が好適に用いられる。入手が容易であるとともに腐食性や刺激性等が少なくさらに分解しても水と酸素しか残らず取扱いが容易だからである。   Oxidizing agents include oxygen gas, air, nitrogen dioxide, ozone gas, nitric acid, organic hydroperoxides such as t-butyl hydroperoxide, sodium metaperiodate, potassium dichromate, potassium permanganate, anhydrous chromic acid, hypochlorous acid. Chloric acid, hydrogen peroxide, peracetic acid, a mixture of hydrogen peroxide and acetic acid, formic acid, a mixture of hydrogen peroxide and formic acid, metachloroperbenzoic acid, a mixture of hydrogen peroxide and metachlorobenzoic acid, perchloroacetic acid , Hydrogen peroxide water and chloroacetic acid mixture, perdichloroacetic acid, hydrogen peroxide water and dichloroacetic acid mixture, pertrichloroacetic acid, hydrogen peroxide water and trichloroacetic acid mixture, pertrifluoroacetic acid, hydrogen peroxide water and trifluoroacetic acid Mixtures of permethanesulfonic acid, hydrogen peroxide water and methanesulfonic acid, persulfuric acid, hydrogen peroxide water and sulfuric acid mixture One or more of is used. Of these, hydrogen peroxide is preferably used. This is because it is easy to obtain and has little corrosiveness, irritation and the like, and even if it is further decomposed, only water and oxygen remain, and it is easy to handle.

酸化剤の添加量としては、炭化水素油に含まれる硫黄分に対して3〜100倍モル好ましくは10〜100倍モルが好適である。酸化剤の添加量が硫黄分に対して10倍モルより少なくなるにつれ酸化剤の量が少なく衝突確率が減り未酸化の有機硫黄化合物が炭化水素油中に残留し易くなる傾向がみられ、3倍モルより少なくなると、この傾向が著しくなるため好ましくない。100倍モルより多くなるにつれ、酸化剤の量が増えランニングコストが増加するともに臨界処理工程で用いる反応器内の内圧が高まり反応器に過度の負荷がかかる傾向がみられるため、好ましくない。   The addition amount of the oxidizing agent is 3 to 100 times mol, preferably 10 to 100 times mol, with respect to the sulfur content contained in the hydrocarbon oil. As the amount of oxidant added is less than 10 times the mole of sulfur, the amount of oxidant is small and the collision probability is reduced, and there is a tendency that unoxidized organic sulfur compounds tend to remain in the hydrocarbon oil. If the amount is less than double moles, this tendency becomes remarkable, which is not preferable. As the amount exceeds 100 times the molar amount, the amount of oxidizing agent increases and the running cost increases, and the internal pressure in the reactor used in the critical treatment step tends to increase and an excessive load tends to be applied to the reactor.

なお、酸化剤は、反応器内の温度及び圧力が安定し、安定した超臨界状態又は亜臨界状態になった混合雰囲気中に添加するのが望ましい。酸化剤が有機硫黄化合物の酸化反応に寄与する前に分解されてしまうのを防止するためである。   The oxidizing agent is preferably added to the mixed atmosphere in which the temperature and pressure in the reactor are stable and the stable supercritical state or subcritical state is obtained. This is to prevent the oxidizing agent from being decomposed before contributing to the oxidation reaction of the organic sulfur compound.

臨界処理工程における超臨界状態とは、反応系内の温度が溶剤の臨界温度以上で、かつ、圧力が溶剤の臨界圧力以上の状態をいう。亜臨界状態とは、反応系内の温度が溶剤の沸点以上で、かつ、圧力が溶剤の蒸気圧以上の状態(但し、溶剤の臨界温度以上かつ臨界圧力以上の臨界状態を除く。)をいう。よって、反応系内の温度を150〜500℃かつ圧力を1〜30MPaの範囲、好ましくは温度を180〜300℃かつ圧力を1〜30MPaの範囲、より好ましくは温度を180〜230℃かつ圧力を2〜10Paの範囲で、溶剤に応じて適宜選択することができる。これにより、ジベンゾチオフェン類に置換したアルキル基等の置換基を解離し易くして分解を促進するとともに、炭化水素油から溶剤への溶出速度を高め臨界処理の反応時間を短縮させることができ生産性を高めることができる。
ここで、圧力が2MPaより低くなるか、温度が180℃より低くなるにつれ、溶剤への有機硫黄化合物の移行率が低下する傾向がみられ、圧力が30MPaより高くなるか、温度が230℃より高くなるにつれ、溶剤への有機硫黄化合物の移行率が低下する傾向、ランニングコストが増加するとともに高圧化するため多大な安全対策が必要となる傾向がみられる。圧力が30MPaより高くなるか、温度が300℃より高くなるにつれ、臨界処理後の溶剤や炭化水素油が褐色化し炭化水素油や溶剤が変質し易くなる傾向、酸化剤が反応前に分解し易くなる傾向がみられる。特に、圧力が1MPaより低くなるか温度が500℃より高くなると、これらの傾向が著しくなるため、いずれも好ましくない。
なお、臨界処理工程においては、混合液を亜臨界状態で処理するものが好適に用いられる。超臨界状態に比較して温度や圧力が低いので省エネルギー性に優れるとともに、加熱温度が低いので、4,6−ジメチルジベンゾチオフェン類等の有機硫黄化合物の酸化を選択的に促進し、4,6−ジメチルDBTS類等の生成を促進するからである。
The supercritical state in the critical treatment step refers to a state where the temperature in the reaction system is higher than the critical temperature of the solvent and the pressure is higher than the critical pressure of the solvent. The subcritical state refers to a state where the temperature in the reaction system is equal to or higher than the boiling point of the solvent and the pressure is equal to or higher than the vapor pressure of the solvent (excluding a critical state higher than the critical temperature of the solvent and higher than the critical pressure). . Therefore, the temperature in the reaction system is 150 to 500 ° C. and the pressure is in the range of 1 to 30 MPa, preferably the temperature is 180 to 300 ° C. and the pressure is in the range of 1 to 30 MPa, more preferably the temperature is 180 to 230 ° C. and the pressure is In the range of 2-10 Pa, it can select suitably according to a solvent. This facilitates dissociation of substituents such as alkyl groups substituted with dibenzothiophenes to promote decomposition, and also increases the elution rate from hydrocarbon oil to the solvent and shortens the reaction time for critical processing. Can increase the sex.
Here, as the pressure becomes lower than 2 MPa or the temperature becomes lower than 180 ° C., the rate of migration of the organic sulfur compound to the solvent tends to decrease, and the pressure becomes higher than 30 MPa or the temperature becomes lower than 230 ° C. As it becomes higher, the migration rate of the organic sulfur compound to the solvent tends to decrease, the running cost increases, and the pressure increases, so that a lot of safety measures are required. As the pressure rises above 30 MPa or the temperature rises above 300 ° C., the solvent or hydrocarbon oil after the critical treatment tends to become brown and the hydrocarbon oil or solvent tends to be altered, and the oxidant is easily decomposed before the reaction. There is a tendency to become. In particular, when the pressure is lower than 1 MPa or the temperature is higher than 500 ° C., these tendencies tend to become remarkable, so that neither is preferable.
In the critical treatment step, those that treat the mixed solution in a subcritical state are preferably used. Since the temperature and pressure are lower than in the supercritical state, the energy saving property is excellent, and the heating temperature is low, so that the oxidation of organic sulfur compounds such as 4,6-dimethyldibenzothiophene is selectively promoted. This is because the production of dimethyl DBTS and the like is accelerated.

臨界処理の反応時間としては、反応条件に応じて、1秒〜2時間好ましくは1分〜30分の範囲で適宜選択することができる。反応時間が1分より短くなるにつれ未反応の有機硫黄化合物が多く回収率が低下する傾向がみられ、30分より長くなるにつれ混合液を反応系内で高温高圧にするランニングコストが増加するとともに、反応時間が長くなるため生産性が低下する傾向がみられる。特に、1秒より短くなるか2時間より長くなるにつれ、これらの傾向が著しくなるため、いずれも好ましくない。   The reaction time for the critical treatment can be appropriately selected within the range of 1 second to 2 hours, preferably 1 minute to 30 minutes, depending on the reaction conditions. As the reaction time becomes shorter than 1 minute, the unreacted organic sulfur compound tends to decrease and the recovery rate tends to decrease, and as the reaction time becomes longer than 30 minutes, the running cost of making the mixed solution at a high temperature and high pressure in the reaction system increases. The reaction time tends to be long, so that the productivity tends to decrease. In particular, as the time becomes shorter than 1 second or longer than 2 hours, these tendencies become remarkable, so that neither is preferable.

混合液を臨界処理する反応器の形式は特に規定しないが、例えば、回分式反応器、連続式槽型反応器、ピストンフロー型流通式反応器、塔型流通式反応器等、種々の形式の反応器を用いることができる。   The type of the reactor for critically processing the mixed liquid is not particularly defined, but various types of reactors such as a batch reactor, a continuous tank reactor, a piston flow reactor, a tower reactor, etc. A reactor can be used.

臨界処理する混合液に、リンタングステン酸,酸化タングステン,タングステン塩化物等のタングステン化合物、酸化バナジウム,酸化バナジウムアセチルアセトン錯体,バナジウム塩化物等のバナジウム化合物、酸化モリブデン,酸化モリブデンアセチルアセトン錯体,リンモリブデン酸等のモリブデン化合物等の遷移金属触媒を添加することもできる。遷移金属触媒は、溶剤に作用して有機硫黄化合物の酸化を促進するからである。なかでも、リンタングステン酸が好適に用いられる。実験の結果、4−メチルDBTSや4,6−ジメチルDBTSの回収率が極めて高いことがわかったからである。
混合液に添加した遷移金属触媒は、例えば、リンタングステン酸等の場合は減圧下又は常圧下で蒸留等の手段を用い残渣中に残留させて、酸化バナジウム等の場合は沈降分離又は濾過分離等の手段を用いて分離させることができる。
In the liquid mixture for critical treatment, tungsten compounds such as phosphotungstic acid, tungsten oxide, tungsten chloride, vanadium oxide, vanadium oxide acetylacetone complex, vanadium compounds such as vanadium chloride, molybdenum oxide, molybdenum oxide acetylacetone complex, phosphomolybdic acid, etc. It is also possible to add a transition metal catalyst such as a molybdenum compound. This is because the transition metal catalyst acts on the solvent to promote the oxidation of the organic sulfur compound. Of these, phosphotungstic acid is preferably used. This is because, as a result of experiments, it was found that the recovery rate of 4-methyl DBTS and 4,6-dimethyl DBTS was extremely high.
The transition metal catalyst added to the mixed solution is left in the residue using a means such as distillation under reduced pressure or normal pressure in the case of phosphotungstic acid or the like, and in the case of vanadium oxide or the like, sedimentation separation or filtration separation, etc. It is possible to separate them using the following means.

溶剤分離工程において、硫黄含有溶剤と炭化水素油とを分離する手段としては、遠心分離,沈降等の分液操作、濾過操作等が用いられる。溶剤としてアセトニトリル等の極性溶媒を使用するので、炭化水素油への溶解度が小さく分液や濾過等により容易に分離できるからである。
また、硫黄含有溶剤と炭化水素油の混合液を冷却することにより、炭化水素油を凝集させ硫黄含有溶剤を分離することもできる。
In the solvent separation step, as a means for separating the sulfur-containing solvent and the hydrocarbon oil, liquid separation operations such as centrifugation and sedimentation, filtration operations, and the like are used. This is because, since a polar solvent such as acetonitrile is used as the solvent, the solubility in the hydrocarbon oil is small and the solvent can be easily separated by liquid separation or filtration.
Moreover, by cooling the liquid mixture of a sulfur containing solvent and hydrocarbon oil, hydrocarbon oil can be aggregated and a sulfur containing solvent can also be isolate | separated.

硫黄酸化物回収工程において、硫黄含有溶剤に溶出した有機硫黄酸化物は、吸着操作を用いて精製することができる。吸着剤としては、ゼオライト、粘土鉱物、活性白土、シリカゲル、アルミナ、マグネシア、チタニア、カーボン、活性炭等の無機質吸着剤、ポリマー等の有機質吸着剤等の1種又は2種以上を用いることができる。
これらの吸着剤に吸着した有機硫黄酸化物は、アセトニトリル、メタノール、エタノール、プロパノール、ブタノール、アセトン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ジメチルスルホキシド、ジメチルホルムアミド、スルホラン等の抽出剤を用いて抽出し回収することができる。これらの抽出剤に水を混合したものを用いることもできる。
In the sulfur oxide recovery step, the organic sulfur oxide eluted in the sulfur-containing solvent can be purified using an adsorption operation. As the adsorbent, one or more kinds of inorganic adsorbents such as zeolite, clay mineral, activated clay, silica gel, alumina, magnesia, titania, carbon and activated carbon, and organic adsorbents such as polymers can be used.
Organic sulfur oxides adsorbed on these adsorbents are extracted using extractants such as acetonitrile, methanol, ethanol, propanol, butanol, acetone, hexane, heptane, octane, nonane, decane, dimethyl sulfoxide, dimethylformamide, sulfolane, etc. Can be recovered. A mixture of these extractants with water can also be used.

本発明の請求項2に記載の発明は、請求項1に記載の有機硫黄酸化物の製造方法であって、前記溶剤分離工程において前記硫黄含有溶剤が分離された前記炭化水素油を溶剤と混合した後、前記炭化水素油に残留する残留有機硫黄酸化物を前記溶剤に溶出させる溶出処理工程と、前記残留有機硫黄酸化物が溶出した残留硫黄含有溶剤を前記炭化水素油から分離する第2溶剤分離工程と、前記残留硫黄含有溶剤に溶出した前記残留有機硫黄酸化物を精製・回収する第2硫黄酸化物回収工程と、を備えた構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)炭化水素油に残留する残留有機硫黄酸化物を溶剤に溶出させる溶出処理工程と、残留硫黄含有溶剤を炭化水素油から分離する第2溶剤分離工程と、残留硫黄含有溶剤に溶出した残留有機硫黄酸化物を精製・回収する第2硫黄酸化物回収工程と、を備えているので、臨界処理工程で酸化され炭化水素油中に残留する残留有機硫黄酸化物も回収することができ、90%以上の高い回収率を得ることができる。
Invention of Claim 2 of this invention is a manufacturing method of the organic sulfur oxide of Claim 1, Comprising: The said hydrocarbon oil from which the said sulfur containing solvent was isolate | separated in the said solvent separation process is mixed with a solvent. Then, an elution treatment step for eluting the residual organic sulfur oxide remaining in the hydrocarbon oil into the solvent, and a second solvent for separating the residual sulfur-containing solvent from which the residual organic sulfur oxide eluted from the hydrocarbon oil A separation step and a second sulfur oxide recovery step for purifying and recovering the residual organic sulfur oxide eluted in the residual sulfur-containing solvent.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) An elution treatment step for eluting residual organic sulfur oxide remaining in hydrocarbon oil into a solvent, a second solvent separation step for separating residual sulfur-containing solvent from hydrocarbon oil, and a residue eluted in residual sulfur-containing solvent A second sulfur oxide recovery step for refining and recovering the organic sulfur oxide, so that residual organic sulfur oxide oxidized in the critical treatment step and remaining in the hydrocarbon oil can also be recovered. % Or higher recovery rate can be obtained.

ここで、溶出処理工程において、溶剤と炭化水素油は、加温、撹拌、振動、拡散、流路混合、遠心力の付加等の操作により溶剤と炭化水素油と接触する界面の面積を広くし溶出効率を高めることができる。具体的には、スプレー塔、充填塔、バッフル塔、多孔板抽出塔、オリフィス塔,インジェクター,スタティックミキサー等のフローミキサー等の非動力式抽出装置、ミキサーセトラー抽出装置,シャイベル塔,回転円板抽出塔,ミクスコ塔,グラエッサー塔,ルーワ抽出機,クーニ塔等の撹拌式抽出装置、脈動充填塔,脈動多孔板塔,振動板塔等の脈動式・振動式抽出装置、ポドビルニアク抽出機,ルウェスタ抽出機等の遠心式抽出装置等の動力式抽出装置を用いることができる。   Here, in the elution treatment process, the solvent and hydrocarbon oil increase the area of the interface between the solvent and hydrocarbon oil by operations such as heating, stirring, vibration, diffusion, flow channel mixing, and centrifugal force application. Elution efficiency can be increased. Specific examples include spray towers, packed towers, baffle towers, perforated plate extraction towers, orifice towers, injectors, non-powered extraction devices such as flow mixers such as static mixers, mixer-settler extraction devices, Seibel towers, rotating disk extractions Stirring extraction devices such as towers, Mixco towers, Graesser towers, louver extractors, Kuni towers, pulsating / vibrating extraction devices such as pulsation packed towers, pulsating perforated plate towers, diaphragm towers, Podovirniak extractors, luwesta extractors A power extraction device such as a centrifugal extraction device can be used.

溶出処理工程における溶剤と炭化水素油の温度及び圧力としては、温度を溶剤の沸点未満で、かつ、圧力を溶剤の蒸気圧未満の状態にするのが好ましい。具体的には、温度を0〜50℃かつ圧力を0.1〜1MPaの範囲にするのが好適である。溶出処理工程は、臨界処理工程のような酸化(スルホン化)を目的とした処理ではなく、臨界処理工程で既に酸化された有機硫黄酸化物を溶剤に溶出させて回収することが目的なので、略常温・常圧の条件下で炭化水素油と溶剤とを接触・混合させることで、有機硫黄酸化物を溶剤に溶出させることができるからである。   As the temperature and pressure of the solvent and hydrocarbon oil in the elution treatment step, it is preferable that the temperature is lower than the boiling point of the solvent and the pressure is lower than the vapor pressure of the solvent. Specifically, it is preferable that the temperature is 0 to 50 ° C. and the pressure is 0.1 to 1 MPa. The elution treatment step is not a treatment aimed at oxidation (sulfonation) as in the critical treatment step, but is intended to elute and recover the organic sulfur oxides already oxidized in the critical treatment step. This is because the organic sulfur oxide can be eluted into the solvent by contacting and mixing the hydrocarbon oil and the solvent under normal temperature and normal pressure conditions.

溶出処理工程における溶剤に対する炭化水素油の量としては、炭化水素油の量に対し0.1〜2.5倍が好適に用いられる。溶剤に対する炭化水素油の量が0.1倍より少なくなるにつれ、溶剤の量が増えるため第2硫黄酸化物回収工程において濃縮操作に工数を要し生産性が低下する傾向がみられ、2.5倍より多くなるにつれ、溶剤中への硫黄酸化物の移行率が低下し回収効率が低下する傾向がみられるため、いずれも好ましくない。   The amount of the hydrocarbon oil relative to the solvent in the elution treatment step is preferably 0.1 to 2.5 times the amount of the hydrocarbon oil. As the amount of the hydrocarbon oil with respect to the solvent becomes less than 0.1 times, the amount of the solvent increases, so that a man-hour is required for the concentration operation in the second sulfur oxide recovery step, and the productivity tends to decrease. Since the migration rate of sulfur oxides into the solvent decreases and the recovery efficiency tends to decrease as the number increases more than 5 times, neither is preferable.

本発明の請求項3に記載の発明は、請求項1又は2に記載の有機硫黄酸化物の製造方法であって、前記溶剤が、メタノール,エタノール等のアルコール類から選択される1種又は2種以上である構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)メタノール,エタノール等のアルコール類は、炭化水素油との分離性に優れ、また強い腐食性を示さないため取扱性に優れ、さらに有機硫黄化合物や有機硫黄酸化物の溶解度が高く、高い回収効率を得ることができる。
Invention of Claim 3 of this invention is a manufacturing method of the organic sulfur oxide of Claim 1 or 2, Comprising: The said solvent is 1 type or 2 selected from alcohol, such as methanol and ethanol It has a configuration that is more than seeds.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Alcohols such as methanol and ethanol are excellent in separability from hydrocarbon oils, have excellent handling properties because they do not exhibit strong corrosiveness, and have high solubility of organic sulfur compounds and organic sulfur oxides. Recovery efficiency can be obtained.

ここで、アルコール類としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、イソブチルアルコール、2−ブタノール、t−ブタノール、アリルアルコール等が用いられる。なかでも脂肪族基の炭素数が1〜24の一価アルコール類が、高温高圧の臨界処理状態においても分解され難いため好適に用いられる。炭素数が高くなるにつれ臨界温度が高くなり、溶剤への有機硫黄化合物の移行率が低下する傾向がみられるとともに、臨界処理後の溶剤や炭化水素油が褐色化し炭化水素油や溶剤が変質し易くなる傾向がみられるからである。これらのアルコール類は、単独で又は2種以上の混合物として用いることができる。   Here, as alcohols, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, 2-butanol, t-butanol, allyl alcohol and the like are used. Among these, monohydric alcohols having 1 to 24 carbon atoms in the aliphatic group are preferably used because they are not easily decomposed even in a high-temperature and high-pressure critical processing state. As the carbon number increases, the critical temperature rises, and the rate of migration of organic sulfur compounds to the solvent tends to decrease, and the solvent and hydrocarbon oil after the critical treatment turn brown and the hydrocarbon oil and solvent change. This is because it tends to be easier. These alcohols can be used alone or as a mixture of two or more.

以上のように、本発明の有機硫黄酸化物の製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)ジベンゾチオフェン類等の有機硫黄化合物をスルホキシドやスルホン誘導体のような極性化合物の有機硫黄酸化物に短時間で酸化させ、炭化水素油から溶剤へ移行させることができ、この結果、有機硫黄化合物を炭化水素油から効率的に分離させ、ジベンゾチオフェンスルホン等の有機硫黄酸化物の回収率を高めることができ生産性に優れた有機硫黄酸化物の製造方法を提供することができる。
(2)酸化された有機硫黄化合物は溶剤中に容易に溶出させることができるので、溶剤分離工程で硫黄含有溶剤を分離した後、硫黄含有溶剤を精製することにより、効率よく有機硫黄酸化物を回収し製造することができる操作性に優れた有機硫黄酸化物の製造方法を提供することができる。
(3)溶剤分離工程において硫黄含有溶剤と分離された炭化水素油は、有機硫黄化合物が除去されて硫黄濃度が低く、特に水素化脱硫が困難なジベンゾチオフェン類が除去されているので、この炭化水素油を水素化脱硫すれば容易に硫黄分が10ppm程度以下の低硫黄濃度油乃至は硫黄フリー油を副産物として得ることができる有機硫黄酸化物の製造方法を提供することができる。
(4)臨界処理工程において混合液を溶剤の亜臨界状態又は超臨界状態の高温高圧下で処理するので、酸化が著しく促進され芳香環にアルキル基等が置換したジベンゾチオフェンスルホン等の芳香環を酸化し、硫黄酸化物回収工程において回収された有機硫黄酸化物を精製し易くすることができる有機硫黄酸化物の製造方法を提供することができる。
As described above, according to the method for producing an organic sulfur oxide of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Organic sulfur compounds such as dibenzothiophenes can be oxidized to polar organic sulfur oxides such as sulfoxides and sulfone derivatives in a short time and transferred from hydrocarbon oil to solvent. As a result, organic sulfur The compound can be efficiently separated from the hydrocarbon oil, and the recovery rate of organic sulfur oxides such as dibenzothiophene sulfone can be increased, and a method for producing organic sulfur oxides excellent in productivity can be provided.
(2) Since the oxidized organic sulfur compound can be easily eluted in the solvent, after separating the sulfur-containing solvent in the solvent separation step, the organic sulfur oxide is efficiently obtained by purifying the sulfur-containing solvent. The manufacturing method of the organic sulfur oxide excellent in the operativity which can be collect | recovered and manufactured can be provided.
(3) The hydrocarbon oil separated from the sulfur-containing solvent in the solvent separation step has a low sulfur concentration by removing organic sulfur compounds, and dibenzothiophenes that are particularly difficult to hydrodesulfurize are removed. By hydrodesulfurizing hydrogen oil, it is possible to provide a method for producing an organic sulfur oxide that can easily obtain a low sulfur concentration oil or sulfur-free oil having a sulfur content of about 10 ppm or less as a by-product.
(4) Since the mixed solution is processed under high temperature and high pressure in the subcritical or supercritical state of the solvent in the critical treatment step, the aromatic ring such as dibenzothiophene sulfone whose alkyl group is substituted on the aromatic ring is promoted significantly. The manufacturing method of the organic sulfur oxide which can oxidize and can make it easy to refine | purify the organic sulfur oxide collect | recovered in the sulfur oxide collection | recovery process can be provided.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)臨界処理工程で酸化され炭化水素油中に残留する残留有機硫黄酸化物も回収することができ、90%以上の高い回収率を得ることができる有機硫黄酸化物の製造方法を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Provided is a method for producing an organic sulfur oxide capable of recovering a residual organic sulfur oxide which is oxidized in a critical treatment step and remains in a hydrocarbon oil, and can obtain a high recovery rate of 90% or more. be able to.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)メタノール,エタノール等のアルコール類は、炭化水素油との分離性に優れ、また強い腐食性を示さないため取扱性に優れ、さらに有機硫黄化合物や有機硫黄酸化物の溶解度が高く、高い回収効率を得ることができる有機硫黄酸化物の製造方法を提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Alcohols such as methanol and ethanol are excellent in separability from hydrocarbon oils, have excellent handling properties because they do not exhibit strong corrosiveness, and have high solubility of organic sulfur compounds and organic sulfur oxides. The manufacturing method of the organic sulfur oxide which can acquire collection | recovery efficiency can be provided.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は実施の形態1における有機硫黄酸化物の製造方法を示すフローチャートである。
以下、図面を参照しながら、有機硫黄酸化物の製造方法を説明する。
臨界処理工程において、ジベンゾチオフェン類等の有機硫黄化合物を含有した軽質軽油,重質軽油等の炭化水素油と所定量のメタノール,エタノール等の溶剤とを混合した混合液に、所定量のリンタングステン酸等の遷移金属触媒を添加し、回分式反応器等の反応器内に導入するとともに、反応器内を高温高圧にして溶剤の超臨界状態又は亜臨界状態にする。反応器内の温度及び圧力が安定したところで、所定量の過酸化水素水等の酸化剤を反応器内に注入し、1秒〜2時間好ましくは1〜30分の反応時間の臨界処理を行い、炭化水素油に含まれる有機硫黄化合物を酸化させて得られた有機硫黄酸化物を溶剤に溶出させる(S1)。
次に、溶剤分離工程において、遠心分離,沈降等の分液操作を用い、有機硫黄酸化物が溶出した硫黄含有溶剤を炭化水素油から分離する(S2)。
炭化水素油が分離された硫黄含有溶剤を、硫黄酸化物回収工程において、ゼオライト、粘土鉱物、活性白土、シリカゲル、アルミナ、マグネシア、チタニア、カーボン、活性炭等の無機質吸着剤、ポリマー等の有機質吸着剤等の1種又は2種以上を用いて有機硫黄酸化物を吸着させ精製し、これらの吸着剤に吸着したスルホキシドやスルホン誘導体等の有機硫黄酸化物を、メタノール、エタノール等の抽出剤を用いて抽出し回収し(S3)、有機硫黄酸化物を得る。
一方、硫黄含有溶剤から分離された炭化水素油は、溶出処理工程において、メタノール、エタノール等の溶剤と混合され、加温、撹拌、振動、拡散、流路混合、遠心力の付加等の操作により、炭化水素油に残留する残留有機硫黄酸化物を溶剤に溶出させる(S4)。
次いで、第2溶剤分離工程において、残留有機硫黄酸化物が溶出した残留硫黄含有溶剤を遠心分離,沈降等の分液操作を用い、炭化水素油から分離する(S5)。
次に、第2硫黄酸化物回収工程において、残留硫黄含有溶剤に溶出した残留有機硫黄酸化物を無機質吸着剤,有機質吸着剤等の1種又は2種以上を用いて吸着させ精製し、これらの吸着剤に吸着したスルホキシドやスルホン誘導体等の有機硫黄酸化物を、メタノール、エタノール等の抽出剤を用いて抽出し回収し(S6)、有機硫黄酸化物を得る。
なお、残留硫黄含有溶剤と分離された炭化水素油は、燃料油や潤滑油等の原料として用いることができる。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a flowchart showing a method for producing an organic sulfur oxide in the first embodiment.
Hereinafter, a method for producing an organic sulfur oxide will be described with reference to the drawings.
In a critical treatment process, a predetermined amount of phosphotungsten is added to a mixture of a light gas oil containing an organic sulfur compound such as dibenzothiophene or a hydrocarbon oil such as heavy gas oil and a predetermined amount of a solvent such as methanol or ethanol. A transition metal catalyst such as an acid is added and introduced into a reactor such as a batch reactor, and the reactor is heated to a high temperature and a high pressure to bring the solvent into a supercritical or subcritical state. When the temperature and pressure in the reactor are stabilized, a predetermined amount of an oxidizing agent such as aqueous hydrogen peroxide is injected into the reactor and a critical treatment is performed for a reaction time of 1 second to 2 hours, preferably 1 to 30 minutes. The organic sulfur oxide obtained by oxidizing the organic sulfur compound contained in the hydrocarbon oil is eluted in the solvent (S1).
Next, in the solvent separation step, the sulfur-containing solvent from which the organic sulfur oxide is eluted is separated from the hydrocarbon oil by using a liquid separation operation such as centrifugation or sedimentation (S2).
In the sulfur oxide recovery process, the sulfur-containing solvent from which hydrocarbon oil has been separated is used as an inorganic adsorbent such as zeolite, clay mineral, activated clay, silica gel, alumina, magnesia, titania, carbon, activated carbon, and organic adsorbent such as polymer. Organic sulfur oxides such as sulfoxides and sulfone derivatives adsorbed on these adsorbents are adsorbed and purified using one or more of these, etc., using an extractant such as methanol or ethanol. Extract and collect (S3) to obtain an organic sulfur oxide.
On the other hand, the hydrocarbon oil separated from the sulfur-containing solvent is mixed with a solvent such as methanol or ethanol in the elution process, and is subjected to operations such as heating, stirring, vibration, diffusion, flow channel mixing, and addition of centrifugal force. The residual organic sulfur oxide remaining in the hydrocarbon oil is eluted in the solvent (S4).
Next, in the second solvent separation step, the residual sulfur-containing solvent from which the residual organic sulfur oxide is eluted is separated from the hydrocarbon oil by using a liquid separation operation such as centrifugation or sedimentation (S5).
Next, in the second sulfur oxide recovery step, the residual organic sulfur oxide eluted in the residual sulfur-containing solvent is adsorbed and purified using one or more of inorganic adsorbents, organic adsorbents, etc. Organic sulfur oxides such as sulfoxide and sulfone derivatives adsorbed on the adsorbent are extracted and recovered using an extractant such as methanol and ethanol (S6) to obtain organic sulfur oxides.
The hydrocarbon oil separated from the residual sulfur-containing solvent can be used as a raw material for fuel oil, lubricating oil, and the like.

以上のような実施の形態1における有機硫黄酸化物の製造方法によれば、以下のような作用が得られる。
(1)炭化水素油と溶剤と酸化剤とを含有する混合液を溶剤の超臨界状態又は亜臨界状態のもと、沸点以上の高温の溶剤で処理するので、水素化反応の場合とは逆にジベンゾチオフェン類の相対反応性が増加し、ジベンゾチオフェン類をスルホキシドやスルホン誘導体のような極性化合物の有機硫黄酸化物に短時間で酸化させ、炭化水素油から溶剤へ移行させることができ、この結果、有機硫黄化合物を炭化水素油から効率的に分離させ、有機硫黄酸化物の回収率を高めることができる。
(2)酸化された有機硫黄化合物は溶剤中に容易に溶出させることができるので、溶剤分離工程で硫黄含有溶剤を分離した後、硫黄含有溶剤を精製することにより、効率よく有機硫黄酸化物を回収し製造することができる。
(3)臨界処理工程において混合液を溶剤の亜臨界状態又は超臨界状態の高温高圧下で処理するので、酸化が著しく促進され芳香環にアルキル基等が置換したジベンゾチオフェンスルホン等の芳香環を酸化し、硫黄酸化物回収工程において回収された有機硫黄酸化物を精製し易くすることができる。
(4)混合液に酸化剤が添加されているので、炭化水素油に含まれるジベンゾチオフェン類等の有機硫黄化合物を選択的に酸化して、スルホキシドやスルホン誘導体のような極性化合物に酸化させ、炭化水素油からのジベンゾチオフェンスルホン等の有機硫黄酸化物の回収効率を高めることができる。
(5)炭化水素油に残留する残留有機硫黄酸化物を溶剤に溶出させる溶出処理工程と、残留硫黄含有溶剤を炭化水素油から分離する第2溶剤分離工程と、残留硫黄含有溶剤に溶出した残留有機硫黄酸化物を精製・回収する第2硫黄酸化物回収工程と、を備えているので、臨界処理工程で酸化され炭化水素油中に残留する残留有機硫黄酸化物も回収することができ、90%以上の高い回収率を得ることができる。
(6)第2溶剤分離工程において硫黄含有溶剤と分離された炭化水素油は、有機硫黄化合物が除去されて硫黄濃度が低く、特に水素化脱硫が困難なジベンゾチオフェン類が除去されているので、この炭化水素油を水素化脱硫すれば低硫黄濃度油乃至は硫黄フリー油を得ることができる。
According to the method for producing an organic sulfur oxide in the first embodiment as described above, the following operation is obtained.
(1) Since the liquid mixture containing hydrocarbon oil, solvent and oxidant is treated with a solvent having a boiling point or higher in the supercritical state or subcritical state of the solvent, this is contrary to the hydrogenation reaction. The relative reactivity of dibenzothiophenes increases, and dibenzothiophenes can be oxidized to organic sulfur oxides of polar compounds such as sulfoxides and sulfone derivatives in a short time and transferred from hydrocarbon oil to solvent. As a result, the organic sulfur compound can be efficiently separated from the hydrocarbon oil, and the recovery rate of the organic sulfur oxide can be increased.
(2) Since the oxidized organic sulfur compound can be easily eluted in the solvent, after separating the sulfur-containing solvent in the solvent separation step, the organic sulfur oxide is efficiently obtained by purifying the sulfur-containing solvent. It can be recovered and manufactured.
(3) Since the mixed solution is treated under high temperature and high pressure in a subcritical or supercritical state of the solvent in the critical treatment step, an aromatic ring such as dibenzothiophene sulfone whose alkyl ring is substituted on the aromatic ring is significantly accelerated. It can be oxidized and the organic sulfur oxide recovered in the sulfur oxide recovery step can be easily purified.
(4) Since an oxidizing agent is added to the liquid mixture, an organic sulfur compound such as dibenzothiophenes contained in the hydrocarbon oil is selectively oxidized to be oxidized into a polar compound such as a sulfoxide or a sulfone derivative, The recovery efficiency of organic sulfur oxides such as dibenzothiophene sulfone from hydrocarbon oil can be increased.
(5) An elution treatment step for eluting residual organic sulfur oxide remaining in hydrocarbon oil into the solvent, a second solvent separation step for separating the residual sulfur-containing solvent from the hydrocarbon oil, and a residue eluted in the residual sulfur-containing solvent A second sulfur oxide recovery step for refining and recovering the organic sulfur oxide, so that residual organic sulfur oxide oxidized in the critical treatment step and remaining in the hydrocarbon oil can also be recovered. % Or higher recovery rate can be obtained.
(6) Since the hydrocarbon oil separated from the sulfur-containing solvent in the second solvent separation step has organic sulfur compounds removed, the sulfur concentration is low, and dibenzothiophenes that are particularly difficult to hydrodesulfurize are removed. If this hydrocarbon oil is hydrodesulfurized, low sulfur concentration oil or sulfur-free oil can be obtained.

以下、本発明を実験例により具体的に説明する。なお、本発明はこれらの実験例に限定されるものではない。
(実験例1)
回分式反応器を開放して、反応器内に炭化水素油として軽油(出光製)150mL、溶剤としてメタノール(和光純薬製、一級)150mLを導入し、この混合液に触媒としてリンタングステン酸(和光純薬製、特級)30mgを加えた。この後、反応器を閉じて密封し、反応器内の温度を200℃まで上昇させ、温度及び圧力が安定したところで、酸化剤として30%過酸化水素水(和光純薬製、試薬特級)を、炭化水素油の硫黄分のモル比の50倍量注入し臨界処理した(臨界処理工程)。なお、臨界処理時の反応器内の圧力は、200℃におけるメタノールの飽和蒸気圧の3.4MPaであった。
酸化剤注入後10分、20分、30分、60分、120分、180分、240分毎に、臨界処理された混合液をサンプリングした。サンプリングされた混合液は、溶剤分離工程において自然冷却し、分液漏斗により硫黄含有溶剤と炭化水素油とに分離した。
実験に用いた臨界処理前の炭化水素油中の硫黄分の濃度は蛍光X線分析装置(リガク製、RIX2000)で分析した結果、336ppmであった。
次に、実験に用いた臨界処理前の炭化水素油、10分後及び20分後にサンプリングし炭化水素油と分離した硫黄含有溶剤を炎光光度検出器(FPD)を備えたガスクロマトグラフィー(島津製作所製、GC−2010、以下GC−FPDという。)で分析した。
図2は臨界処理前の炭化水素油(軽油)、臨界処理10分の硫黄含有溶剤、臨界処理20分の硫黄含有溶剤を、GC−FPDを用いて分析したチャートである。
図2に示すように、臨界処理前の炭化水素油(軽油)で観察された4−メチルDBT、4,6−ジメチルDBTのピークは、臨界処理後の硫黄含有溶剤では観察されず、それらが酸化された4−メチルDBTS、4,6−ジメチルDBTSのピークが観察された。
なお、4−メチルDBT、4,6−ジメチルDBTは、特開平7−252249号公報に記載の方法で市販のジベンゾチオフェン(DBT)から製造し、GC−FPDを用いて基準のチャートを作成し、これを基に同定した。また、4−メチルDBTS、4,6−ジメチルDBTSは、上述のDBTから製造した4−メチルDBT、4,6−ジメチルDBTを、実験例1と同様の20分間の臨界処理を行って酸化させて製造し、GC−FPDを用いて基準のチャートを作成し、これを基に同定した。
図3は上述の方法で作成したDBT、4−メチルDBT、4,6−ジメチルDBT、4−メチルDBTS、4,6−ジメチルDBTSのGC−FPDのチャートである。以下の実験例では、このチャートをもとに同定した。
Hereinafter, the present invention will be specifically described by experimental examples. The present invention is not limited to these experimental examples.
(Experimental example 1)
The batch reactor was opened, 150 mL of light oil (made by Idemitsu) as hydrocarbon oil and 150 mL of methanol (made by Wako Pure Chemicals, first grade) as solvent were introduced into the reactor, and phosphotungstic acid ( 30 mg of Wako Pure Chemicals, special grade) was added. Thereafter, the reactor is closed and sealed, and the temperature in the reactor is increased to 200 ° C. When the temperature and pressure are stabilized, 30% hydrogen peroxide water (made by Wako Pure Chemicals, reagent special grade) is used as the oxidizing agent. Then, 50 times the molar ratio of the sulfur content of the hydrocarbon oil was injected for critical processing (critical processing step). The pressure in the reactor during the critical treatment was 3.4 MPa, which is the saturated vapor pressure of methanol at 200 ° C.
The critically treated mixture was sampled every 10 minutes, 20 minutes, 30 minutes, 60 minutes, 120 minutes, 180 minutes, and 240 minutes after the oxidant injection. The sampled mixed liquid was naturally cooled in a solvent separation step and separated into a sulfur-containing solvent and a hydrocarbon oil by a separatory funnel.
The concentration of sulfur in the hydrocarbon oil before the critical treatment used in the experiment was 336 ppm as a result of analysis with a fluorescent X-ray analyzer (RIX2000, manufactured by Rigaku).
Next, the hydrocarbon oil before critical treatment used in the experiment was sampled after 10 minutes and 20 minutes, and the sulfur-containing solvent separated from the hydrocarbon oil was gas chromatographed with a flame photometric detector (FPD) (Shimadzu). (Manufactured by Seisakusho, GC-2010, hereinafter referred to as GC-FPD).
FIG. 2 is a chart obtained by analyzing a hydrocarbon oil (light oil) before critical treatment, a sulfur-containing solvent for 10 minutes of critical treatment, and a sulfur-containing solvent for 20 minutes of critical treatment using GC-FPD.
As shown in FIG. 2, the peaks of 4-methyl DBT and 4,6-dimethyl DBT observed in the hydrocarbon oil (light oil) before the critical treatment are not observed in the sulfur-containing solvent after the critical treatment. Oxidized 4-methyl DBTS and 4,6-dimethyl DBTS peaks were observed.
4-Methyl DBT and 4,6-dimethyl DBT are produced from commercially available dibenzothiophene (DBT) by the method described in JP-A-7-252249, and a standard chart is prepared using GC-FPD. Based on this, identification was made. Further, 4-methyl DBTS and 4,6-dimethyl DBTS are oxidized by subjecting 4-methyl DBT and 4,6-dimethyl DBT produced from the above-mentioned DBT to the critical treatment for 20 minutes as in Experimental Example 1. A reference chart was prepared using GC-FPD and identified based on this.
FIG. 3 is a GC-FPD chart of DBT, 4-methyl DBT, 4,6-dimethyl DBT, 4-methyl DBTS, and 4,6-dimethyl DBTS prepared by the method described above. In the following experimental examples, identification was made based on this chart.

次に、臨界処理の反応時間と、硫黄含有溶剤中の4−メチルDBTS、4,6−ジメチルDBTSのGC−FPDで検出される各ピークの面積との関係を計算した。各成分の濃度は各ピークの面積に依存するため、反応状態の経時変化を調べることができる。
図4は臨界処理の反応時間と4−メチルDBTS、4,6−ジメチルDBTSのGC−FPDで検出される各ピークの面積との関係を示す図である。
図4に示すように、本実験例の条件では、20分程度の短時間の反応時間で4−メチルDBT、4,6−ジメチルDBTが酸化されていることが明らかである。
なお、反応時間240分の臨界処理後、炭化水素油の硫黄分の濃度は蛍光X線分析の結果、135ppmまで減少していた。これにより、臨界処理後の炭化水素油を水素化脱硫すれば、水素化脱硫が困難なDBT類が除去されているため、容易に低硫黄濃度油乃至は硫黄フリー油を得ることができると推察される。
Next, the relationship between the reaction time of the critical treatment and the area of each peak detected by GC-FPD of 4-methyl DBTS and 4,6-dimethyl DBTS in the sulfur-containing solvent was calculated. Since the concentration of each component depends on the area of each peak, the change in the reaction state with time can be examined.
FIG. 4 is a diagram showing the relationship between the reaction time of critical processing and the area of each peak detected by GC-FPD of 4-methyl DBTS and 4,6-dimethyl DBTS.
As shown in FIG. 4, it is clear that 4-methyl DBT and 4,6-dimethyl DBT are oxidized in a short reaction time of about 20 minutes under the conditions of this experimental example.
After the critical treatment for 240 minutes, the sulfur concentration of the hydrocarbon oil was reduced to 135 ppm as a result of X-ray fluorescence analysis. As a result, if the hydrocarbon oil after critical treatment is hydrodesulfurized, it is presumed that low sulfur concentration oil or sulfur-free oil can be easily obtained because DBTs that are difficult to hydrodesulfurize are removed. Is done.

(実験例2)
実験例2では、臨界処理工程における炭化水素油と溶剤との比率について検討した。
実験例1と同様の軽油、メタノールを用い、軽油とメタノールの比率を変えた種々の混合液を、実験例1と同様の条件で反応時間20分の臨界処理を行った。臨界処理後の炭化水素油(軽油)、硫黄含有溶剤(メタノール)を、GC−FPDを用いて分析し、メタノール中へ移行した硫黄分の割合、4−メチルDBTSの酸化率、4,6−ジメチルDBTSの酸化率を求めた。なお、4−メチルDBTSの酸化率、4,6−ジメチルDBTSの酸化率は、臨界処理前の炭化水素油中に存在した4−メチルDBT、4,6−ジメチルDBTの量を基準にして、臨界処理後の硫黄含有溶剤(メタノール)中に存在する4−メチルDBTS、4,6−ジメチルDBTSの量から換算した。
図5はメタノール(溶剤)に対する軽油(炭化水素油)の比率と、メタノール中へ移行した硫黄分の割合、4−メチルDBTSの酸化率、4,6−ジメチルDBTSの酸化率との関係を示す図である。
図5から、溶剤に対する炭化水素油の量が少なくなるにつれ、溶剤中に移行する硫黄分の割合が増える傾向のあることが確認された。しかしながら、溶剤に対する炭化水素油の比率が1.0倍よりも少なくなるか多くなるにつれ、4−メチルDBTS及び4,6−ジメチルDBTSの酸化率が低下することがわかった。なお、4−メチルDBTSの酸化率が100%を超えているのは、4,6−ジメチルDBTSの一部が4−メチルDBTSに分解したのではないかと推察している。
以上の結果から、溶剤に対する炭化水素油の量が0.1〜2.5倍好ましくは0.3〜2倍より好ましくは0.5〜1.5倍が好適であることが確認された。
(Experimental example 2)
In Experimental Example 2, the ratio between the hydrocarbon oil and the solvent in the critical treatment process was examined.
Various liquid mixtures using light oil and methanol similar to Experimental Example 1 and changing the ratio of light oil and methanol were subjected to critical treatment under the same conditions as in Experimental Example 1 with a reaction time of 20 minutes. The hydrocarbon oil (light oil) and sulfur-containing solvent (methanol) after the critical treatment were analyzed using GC-FPD, the proportion of sulfur transferred into methanol, the oxidation rate of 4-methyl DBTS, 4,6- The oxidation rate of dimethyl DBTS was determined. The oxidation rate of 4-methyl DBTS and the oxidation rate of 4,6-dimethyl DBTS are based on the amounts of 4-methyl DBT and 4,6-dimethyl DBT present in the hydrocarbon oil before the critical treatment. Conversion was made from the amount of 4-methyl DBTS and 4,6-dimethyl DBTS present in the sulfur-containing solvent (methanol) after the critical treatment.
FIG. 5 shows the relationship between the ratio of light oil (hydrocarbon oil) to methanol (solvent), the ratio of sulfur transferred into methanol, the oxidation rate of 4-methyl DBTS, and the oxidation rate of 4,6-dimethyl DBTS. FIG.
From FIG. 5, it was confirmed that as the amount of hydrocarbon oil relative to the solvent decreases, the proportion of the sulfur content that migrates into the solvent tends to increase. However, it has been found that the oxidation rate of 4-methyl DBTS and 4,6-dimethyl DBTS decreases as the ratio of hydrocarbon oil to solvent is less or greater than 1.0. The reason why the oxidation rate of 4-methyl DBTS exceeds 100% is presumed that a part of 4,6-dimethyl DBTS was decomposed into 4-methyl DBTS.
From the above results, it was confirmed that the amount of the hydrocarbon oil relative to the solvent was 0.1 to 2.5 times, preferably 0.3 to 2 times, more preferably 0.5 to 1.5 times.

(実験例3)
実験例3では、臨界処理工程における反応温度について検討した。
回分式反応器を開放して、反応器内に炭化水素油として軽油100mL、溶剤としてメタノール(和光純薬製、一級)100mLを導入し、この混合液に触媒としてリンタングステン酸(和光純薬製、特級)20mgを加えた。この後、反応器を閉じて密封し、反応器内を所定の温度まで上昇させ、温度及び圧力が安定したところで、酸化剤として30%過酸化水素水(和光純薬製、試薬特級)6mgを注入し臨界処理した(臨界処理工程)。なお、臨界処理時の反応器内の圧力は、各反応温度におけるメタノールの飽和蒸気圧である。
酸化剤を注入してから20分後に、臨界処理された混合液をサンプリングした。サンプリングされた混合液は、溶剤分離工程において自然冷却し、分液漏斗を用いて硫黄含有溶剤と炭化水素油とに分離した。
分離した硫黄含有溶剤と炭化水素油をGC−FPDで分析して、硫黄含有溶剤と炭化水素油の硫黄分の濃度、硫黄含有溶剤中の4−メチルDBTS及び4,6−ジメチルDBTSの移行率を求めた。なお、実験に用いた臨界処理前の炭化水素油中の硫黄分の濃度は、蛍光X線分析の結果、1639ppmであった。
図6は反応温度と硫黄含有溶剤及び炭化水素油の硫黄濃度との関係を示す図であり、図7は反応温度と硫黄含有溶剤(メタノール)中の4−メチルDBTS及び4,6−ジメチルDBTSの移行率との関係を示す図である。
図から、反応温度が180〜220℃のとき、硫黄含有溶剤の硫黄濃度が高く、硫黄含有溶剤中の4−メチルDBTS及び4,6−ジメチルDBTSの移行率も高く、有機硫黄酸化物の回収効率を高くできることが明らかになった。
(Experimental example 3)
In Experimental Example 3, the reaction temperature in the critical treatment process was examined.
The batch reactor was opened, and 100 mL of light oil as hydrocarbon oil and 100 mL of methanol (manufactured by Wako Pure Chemical, first grade) as a solvent were introduced into the reactor. , Special grade) 20 mg was added. Thereafter, the reactor was closed and sealed, and the inside of the reactor was raised to a predetermined temperature. When the temperature and pressure were stabilized, 30 mg of hydrogen peroxide (manufactured by Wako Pure Chemicals, reagent special grade) 6 mg was added as an oxidizing agent. Injection and critical processing (critical processing step). The pressure in the reactor during the critical treatment is the saturated vapor pressure of methanol at each reaction temperature.
Twenty minutes after injecting the oxidizing agent, the critically treated mixture was sampled. The sampled mixed liquid was naturally cooled in a solvent separation step and separated into a sulfur-containing solvent and a hydrocarbon oil using a separatory funnel.
The separated sulfur-containing solvent and hydrocarbon oil are analyzed by GC-FPD, the sulfur content of the sulfur-containing solvent and hydrocarbon oil, the migration rate of 4-methyl DBTS and 4,6-dimethyl DBTS in the sulfur-containing solvent. Asked. In addition, the density | concentration of the sulfur content in the hydrocarbon oil before the critical process used for experiment was 1639 ppm as a result of the fluorescent X ray analysis.
FIG. 6 is a graph showing the relationship between the reaction temperature and the sulfur concentration of the sulfur-containing solvent and hydrocarbon oil. FIG. 7 shows the reaction temperature and 4-methyl DBTS and 4,6-dimethyl DBTS in the sulfur-containing solvent (methanol). It is a figure which shows the relationship with the transfer rate.
From the figure, when the reaction temperature is 180 to 220 ° C., the sulfur concentration of the sulfur-containing solvent is high, the migration rate of 4-methyl DBTS and 4,6-dimethyl DBTS in the sulfur-containing solvent is also high, and the organic sulfur oxide is recovered. It became clear that efficiency could be increased.

実験例2で得られた反応温度200℃の硫黄含有溶剤について、液体クロマトグラフィー(GL Sciences社製、型名PLC−561、カラム型名ODS−3)を用いて分離・精製し、メタノールと水を混合した抽出剤を用いて4−メチルDBTS、4,6−ジメチルDBTSを抽出した。抽出剤を乾燥して、4−メチルDBTS、4,6−ジメチルDBTSの結晶を得た。なお、GC−FPDを用いて分析した純度は、4−メチルDBTSが97.6%、4,6−ジメチルDBTSが99%の高純度であった。
得られた粉末状の4−メチルDBTS、4,6−ジメチルDBTSの蛍光値を、キセノンランプを光源とする励起波長270nmにおいて、蛍光分光測定装置(型名FL3−22)を用いて測定した。その結果、4−メチルDBTSはピーク波長392.5nm、4,6−ジメチルDBTSはピーク波長387.6nmで強い蛍光が観測された。
以上のことから、本実験例において炭化水素油から製造された4−メチルDBTS、4,6−ジメチルDBTSは、有機EL素子等の電子製品の原料として極めて有益であることが示唆された。
The sulfur-containing solvent having a reaction temperature of 200 ° C. obtained in Experimental Example 2 was separated and purified using liquid chromatography (manufactured by GL Sciences, model name PLC-561, column model name ODS-3), and methanol and water. 4-Methyl DBTS and 4,6-dimethyl DBTS were extracted using an extractant mixed with. The extractant was dried to obtain crystals of 4-methyl DBTS and 4,6-dimethyl DBTS. The purity analyzed using GC-FPD was as high as 97.6% for 4-methyl DBTS and 99% for 4,6-dimethyl DBTS.
The fluorescence values of the obtained powdery 4-methyl DBTS and 4,6-dimethyl DBTS were measured using a fluorescence spectrometer (model name FL3-22) at an excitation wavelength of 270 nm using a xenon lamp as a light source. As a result, strong fluorescence was observed with 4-methyl DBTS having a peak wavelength of 392.5 nm and 4,6-dimethyl DBTS with a peak wavelength of 387.6 nm.
From the above, it was suggested that 4-methyl DBTS and 4,6-dimethyl DBTS produced from hydrocarbon oil in this experimental example are extremely useful as raw materials for electronic products such as organic EL elements.

(比較例1)
反応器内に炭化水素油として軽油(出光製、蛍光X線分析した硫黄分の濃度は336ppm)150mL、溶剤としてメタノール(和光純薬製、一級)150mLを入れ、この混合液に触媒としてリンタングステン酸(和光純薬製、特級)30mgを加えた。反応器に還流冷却器を接続した後、常圧下で反応器を外部から120℃に加熱し、温度が安定したところで、酸化剤として30%過酸化水素水(和光純薬製、試薬特級)を、炭化水素油の硫黄分のモル比の50倍量注入した。
酸化剤注入後4時間、8時間、24時間毎に混合液をサンプリングした。サンプリングした混合液は、自然冷却後、有機溶剤系メンブレンフィルタ(0.2μm)を用いて溶剤と炭化水素油とに分離し、溶剤をGC−FPDで分析した。
図8は処理前の炭化水素油(軽油)、常圧下で4時間、8時間、24時間反応させた溶剤を、GC−FPDを用いて分析したチャートである。
図8に示すように、本比較例によれば、常圧下では8時間以上の長時間の反応が必要で、生産性に著しく欠けることが明らかである。
(Comparative Example 1)
In the reactor, 150 mL of light oil as hydrocarbon oil (manufactured by Idemitsu, the concentration of sulfur content analyzed by fluorescent X-ray analysis was 336 ppm) and 150 mL of methanol (manufactured by Wako Pure Chemicals, first grade) as solvent were added. 30 mg of acid (made by Wako Pure Chemicals, special grade) was added. After connecting the reflux condenser to the reactor, the reactor was heated to 120 ° C. from the outside under normal pressure, and when the temperature was stabilized, 30% hydrogen peroxide solution (made by Wako Pure Chemicals, reagent grade) was used as the oxidizing agent. An amount 50 times the molar ratio of the sulfur content of the hydrocarbon oil was injected.
The mixed solution was sampled every 4 hours, 8 hours, and 24 hours after the oxidant injection. The sampled liquid mixture was naturally cooled, separated into a solvent and a hydrocarbon oil using an organic solvent membrane filter (0.2 μm), and the solvent was analyzed by GC-FPD.
FIG. 8 is a chart in which a GC-FPD is used to analyze a hydrocarbon oil (light oil) before treatment and a solvent reacted for 4 hours, 8 hours, and 24 hours under normal pressure.
As shown in FIG. 8, according to this comparative example, it is clear that a long-time reaction of 8 hours or more is required under normal pressure, and the productivity is remarkably lacking.

以上のように本実施例によれば、短時間では回収が困難であったジベンゾチオフェン類等の有機硫黄化合物を選択的にスルホキシドやスルホン誘導体のような極性化合物の有機硫黄酸化物に短時間で酸化させるとともに有機硫黄化合物を炭化水素油から効率的に分離させ、有機EL素子等の原料としても有用な有機硫黄酸化物を高純度で高い回収率で製造でき、作業性と操作性に優れ低原価で量産性、生産性に優れる有機硫黄酸化物を製造できることが明らかになった。   As described above, according to this example, organic sulfur compounds such as dibenzothiophenes that were difficult to recover in a short time were selectively converted into organic sulfur oxides of polar compounds such as sulfoxides and sulfone derivatives in a short time. Oxidation and organic sulfur compounds can be efficiently separated from hydrocarbon oils, and organic sulfur oxides that are useful as raw materials for organic EL devices can be produced with high purity and high recovery rate. It has become clear that organic sulfur oxides with excellent mass productivity and productivity can be produced at low cost.

本発明は、有機硫黄化合物を含有する炭化水素油から医薬品,農薬,合成樹脂製品,電子製品等の原料として有用なジベンゾチオフェンスルホン等の有機硫黄酸化物を製造する有機硫黄酸化物の製造方法に関し、短時間では回収が困難であったジベンゾチオフェン類等の有機硫黄化合物を選択的にスルホキシドやスルホン誘導体のような極性化合物の有機硫黄酸化物に短時間で酸化させるとともに有機硫黄化合物を炭化水素油から効率的に分離させ、所望する有用な有機硫黄酸化物を高純度で高い回収率で製造でき、作業性と操作性に優れ低原価で量産性、生産性に優れ、さらに炭化水素油の脱硫工程の負荷を軽減することにもなる有機硫黄酸化物の製造方法を提供できる。   The present invention relates to a method for producing an organic sulfur oxide, which produces an organic sulfur oxide such as dibenzothiophene sulfone, which is useful as a raw material for pharmaceuticals, agricultural chemicals, synthetic resin products, electronic products, etc., from a hydrocarbon oil containing an organic sulfur compound. In addition, organic sulfur compounds such as dibenzothiophenes, which were difficult to recover in a short time, are selectively oxidized to polar organic sulfur oxides such as sulfoxides and sulfone derivatives in a short time and the organic sulfur compounds are converted into hydrocarbon oils. The desired useful organic sulfur oxides can be produced efficiently with high purity and high recovery rate, excellent workability and operability, low cost, excellent mass production and productivity, and hydrocarbon oil desulfurization The manufacturing method of the organic sulfur oxide which also reduces the load of a process can be provided.

実施の形態1における有機硫黄酸化物の製造方法を示すフローチャートThe flowchart which shows the manufacturing method of the organic sulfur oxide in Embodiment 1 臨界処理前の炭化水素油(軽油)、臨界処理10分の硫黄含有溶剤、臨界処理20分の硫黄含有溶剤を、GC−FPDを用いて分析したチャートChart of analysis of hydrocarbon oil (light oil) before critical treatment, sulfur-containing solvent for 10 minutes of critical treatment, and sulfur-containing solvent for 20 minutes of critical treatment using GC-FPD DBT、4−メチルDBT、4,6−ジメチルDBT、4−メチルDBTS、4,6−ジメチルDBTSのGC−FPDのチャートGC-FPD chart of DBT, 4-methyl DBT, 4,6-dimethyl DBT, 4-methyl DBTS, 4,6-dimethyl DBTS 臨界処理の反応時間と4−メチルDBTS、4,6−ジメチルDBTSのGC−FPDで検出される各ピークの面積との関係を示す図The figure which shows the relationship between the reaction time of a critical process, and the area of each peak detected by GC-FPD of 4-methyl DBTS and 4, 6- dimethyl DBTS. メタノール(溶剤)に対する軽油(炭化水素油)の比率と、メタノール中へ移行した硫黄分の割合、4−メチルDBTSの酸化率、4,6−ジメチルDBTSの酸化率との関係を示す図The figure which shows the relationship between the ratio of the light oil (hydrocarbon oil) with respect to methanol (solvent), the ratio of the sulfur content which moved into methanol, the oxidation rate of 4-methyl DBTS, and the oxidation rate of 4, 6- dimethyl DBTS. 反応温度と硫黄含有溶剤及び炭化水素油の硫黄濃度との関係を示す図Diagram showing the relationship between reaction temperature and sulfur concentration of sulfur-containing solvents and hydrocarbon oils 反応温度と硫黄含有溶剤(メタノール)中の4−メチルDBTS及び4,6−ジメチルDBTSの移行率との関係を示す図The figure which shows the relationship between reaction temperature and the transfer rate of 4-methyl DBTS and 4, 6- dimethyl DBTS in a sulfur containing solvent (methanol). 処理前の炭化水素油(軽油)、常圧下で4時間、8時間、24時間反応させた溶剤を、GC−FPDを用いて分析したチャートChart of analysis of hydrocarbon oil (light oil) before treatment and solvent reacted at normal pressure for 4 hours, 8 hours and 24 hours using GC-FPD

Claims (3)

炭化水素油と溶剤と酸化剤とを含有する混合液を前記溶剤の超臨界状態又は亜臨界状態の高温高圧下で処理し前記炭化水素油に含まれる有機硫黄化合物を酸化させ得られる有機硫黄酸化物を前記溶剤に溶出させる臨界処理工程と、
前記有機硫黄酸化物が溶出した硫黄含有溶剤を前記炭化水素油から分離する溶剤分離工程と、
前記硫黄含有溶剤に溶出した前記有機硫黄酸化物を精製・回収する硫黄酸化物回収工程と、
を備えていることを特徴とする有機硫黄酸化物の製造方法。
Organic sulfur oxidation obtained by treating a mixed liquid containing hydrocarbon oil, a solvent and an oxidizing agent under high temperature and high pressure in a supercritical state or subcritical state of the solvent to oxidize an organic sulfur compound contained in the hydrocarbon oil A critical treatment step for eluting a substance into the solvent;
A solvent separation step of separating the sulfur-containing solvent from which the organic sulfur oxide is eluted from the hydrocarbon oil;
A sulfur oxide recovery step for purifying and recovering the organic sulfur oxide eluted in the sulfur-containing solvent;
A method for producing an organic sulfur oxide, comprising:
前記溶剤分離工程において前記硫黄含有溶剤が分離された前記炭化水素油を溶剤と混合した後、前記炭化水素油に残留する残留有機硫黄酸化物を前記溶剤に溶出させる溶出処理工程と、
前記残留有機硫黄酸化物が溶出した残留硫黄含有溶剤を前記炭化水素油から分離する第2溶剤分離工程と、
前記残留硫黄含有溶剤に溶出した前記残留有機硫黄酸化物を精製・回収する第2硫黄酸化物回収工程と、
を備えていることを特徴とする請求項1に記載の有機硫黄酸化物の製造方法。
An elution treatment step of eluting residual organic sulfur oxide remaining in the hydrocarbon oil into the solvent after mixing the hydrocarbon oil from which the sulfur-containing solvent has been separated in the solvent separation step with a solvent;
A second solvent separation step of separating the residual sulfur-containing solvent from which the residual organic sulfur oxide is eluted from the hydrocarbon oil;
A second sulfur oxide recovery step for purifying and recovering the residual organic sulfur oxide eluted in the residual sulfur-containing solvent;
The method for producing an organic sulfur oxide according to claim 1, comprising:
前記溶剤が、メタノール,エタノール等のアルコール類から選択される1種又は2種以上であることを特徴とする請求項1又は2に記載の有機硫黄酸化物の製造方法。   The method for producing an organic sulfur oxide according to claim 1 or 2, wherein the solvent is one or more selected from alcohols such as methanol and ethanol.
JP2004290649A 2004-10-01 2004-10-01 Method for producing organic sulfur oxide Expired - Fee Related JP4520808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290649A JP4520808B2 (en) 2004-10-01 2004-10-01 Method for producing organic sulfur oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290649A JP4520808B2 (en) 2004-10-01 2004-10-01 Method for producing organic sulfur oxide

Publications (2)

Publication Number Publication Date
JP2006104270A true JP2006104270A (en) 2006-04-20
JP4520808B2 JP4520808B2 (en) 2010-08-11

Family

ID=36374380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290649A Expired - Fee Related JP4520808B2 (en) 2004-10-01 2004-10-01 Method for producing organic sulfur oxide

Country Status (1)

Country Link
JP (1) JP4520808B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286869A (en) * 1992-04-06 1993-11-02 Funakoshi Izumi Method for recovering organosulfur compound from liquid oil
JP2003518548A (en) * 1999-12-28 2003-06-10 エルフ、アンタール、フランス Method for desulfurizing thiophene derivatives contained in fuel
JP2003193066A (en) * 2001-12-26 2003-07-09 Mitsui Eng & Shipbuild Co Ltd Method for oxidative desulfurization of liquid petroleum product and oxidative desulfurization plant
JP2003277774A (en) * 2002-03-27 2003-10-02 Hitachi Ltd Reformed fuel obtained by reforming heavy oil
JP2005194336A (en) * 2003-12-26 2005-07-21 Electric Power Dev Co Ltd Desulfurization process of hydrocarbon oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286869A (en) * 1992-04-06 1993-11-02 Funakoshi Izumi Method for recovering organosulfur compound from liquid oil
JP2003518548A (en) * 1999-12-28 2003-06-10 エルフ、アンタール、フランス Method for desulfurizing thiophene derivatives contained in fuel
JP2003193066A (en) * 2001-12-26 2003-07-09 Mitsui Eng & Shipbuild Co Ltd Method for oxidative desulfurization of liquid petroleum product and oxidative desulfurization plant
JP2003277774A (en) * 2002-03-27 2003-10-02 Hitachi Ltd Reformed fuel obtained by reforming heavy oil
JP2005194336A (en) * 2003-12-26 2005-07-21 Electric Power Dev Co Ltd Desulfurization process of hydrocarbon oil

Also Published As

Publication number Publication date
JP4520808B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
Kulkarni et al. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges
Tahir et al. Deep eutectic solvents as alternative green solvents for the efficient desulfurization of liquid fuel: A comprehensive review
Campos-Martin et al. Highly efficient deep desulfurization of fuels by chemical oxidation
JP6026428B2 (en) Process for desulfurization of hydrocarbon feedstocks using gaseous oxidants
Caero et al. Oxidative desulfurization of synthetic diesel using supported catalysts: Part I. Study of the operation conditions with a vanadium oxide based catalyst
Long et al. Catalytic oxidative desulfurization of dibenzothiophene using catalyst of tungsten supported on resin D152
Bokare et al. Bicarbonate-induced activation of H2O2 for metal-free oxidative desulfurization
Wang et al. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid
US7276152B2 (en) Oxidative desulfurization and denitrogenation of petroleum oils
Dehkordi et al. Oxidative desulfurization of non-hydrotreated kerosene using hydrogen peroxide and acetic acid
US20020148756A1 (en) Preparation of components for transportation fuels
EP0565324A1 (en) Method of recovering organic sulfur compound from liquid oil
JP2014522900A (en) Process of sulfone conversion with superelectron donors
EP2595747B1 (en) Oxidative desulfurization using a titanium(iv) catalyst and organhoydroperoxides
EP1373436A2 (en) Process for oxygenation of components for refinery blending of transportation fuels
AU2002321984A1 (en) Process for oxygenation of components for refinery blending of transportation fuels
CN1952050B (en) Oxidation sweetening method of hydrogenated diesel oil
Mirshafiee et al. Current status and future prospects of oxidative desulfurization of naphtha: a review
Zhang et al. Polyoxometalate catalyzed oxidative desulfurization of diesel range distillates from waste tire pyrolysis oil
CA2404902A1 (en) Mercaptan removal from petroleum streams
CN105419853B (en) A kind of method of ionic liquid intermediate fuel oil bionic oxidation desulfurization
CN100347275C (en) Method for desulfurizing oil by catalytic oxidation and extracting and separating
CN116444531A (en) Method for catalyzing and desulfurizing amphiphilic cobalt phthalocyanine and application
JP4520808B2 (en) Method for producing organic sulfur oxide
JP2005194336A (en) Desulfurization process of hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees