JP2006102189A - Blood pressure measuring device - Google Patents

Blood pressure measuring device Download PDF

Info

Publication number
JP2006102189A
JP2006102189A JP2004293419A JP2004293419A JP2006102189A JP 2006102189 A JP2006102189 A JP 2006102189A JP 2004293419 A JP2004293419 A JP 2004293419A JP 2004293419 A JP2004293419 A JP 2004293419A JP 2006102189 A JP2006102189 A JP 2006102189A
Authority
JP
Japan
Prior art keywords
pulse wave
subject
detection unit
unit
pressing force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004293419A
Other languages
Japanese (ja)
Other versions
JP4412659B2 (en
Inventor
Kimihisa Aihara
公久 相原
Shoichi Hayashida
尚一 林田
Shinji Mino
真司 美野
Hiroshi Koizumi
弘 小泉
Naoyoshi Tatara
尚愛 多々良
Taisuke Oguchi
泰介 小口
Junichi Shimada
純一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004293419A priority Critical patent/JP4412659B2/en
Publication of JP2006102189A publication Critical patent/JP2006102189A/en
Application granted granted Critical
Publication of JP4412659B2 publication Critical patent/JP4412659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood pressure measuring device and its controlling method by which highly precise blood pressure measurement can be done while utilizing the respective characteristics of Korotkoff method, a pressure pulse wave method, and a photoelectric pulse wave method, and covering its drawbacks. <P>SOLUTION: The blood pressure measuring device has a pressurizing section capable of increasing and decreasing a pressurizing force against a subject, a photoelectric pulse wave detecting section, a cuff detecting section detecting the pressure pulse wave, a microphone detecting Korotkoff sounds, and a controlling section increasing and decreasing the pressurizing force of the pressurizing section and commanding the operation of the photoelectric pulse wave detecting section, the cuff detecting section, and the microphone. The controlling section makes at least the two of the photoelectric pulse wave detecting section, the cuff detecting section, and microphone detect objects to be detected in the process where the controlling section make the photoelectric pulse wave detecting section detect the pulse wave, calculates a pressure reducing quantity per unit time base on the detected pulse wave, reduces the pressure according to the pressure reducing quantity per unit time from the predetermined pressurizing force in the pressurizing section, and makes the pressurizing section reduce the pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検体を圧迫して、脈波の変化により血圧を測定する血圧測定装置に関する。   The present invention relates to a blood pressure measurement apparatus that measures a blood pressure by changing a pulse wave by compressing a subject.

高齢化が進み、成人の生活習慣病への対応が社会的に大きな課題となっている。特に高血圧に関連する疾患の場合、長期の血圧データの収集が非常に重要である点が認識されている。このような観点から、血圧をはじめとした各種の生体情報の測定装置が開発されている。   With the aging of society, dealing with adult lifestyle-related diseases has become a major social issue. It is recognized that long-term blood pressure data collection is very important, especially for diseases related to high blood pressure. From this point of view, various biological information measuring devices including blood pressure have been developed.

従来、外耳部で生体情報を測定する装置については、外耳道に挿入され、常時装着する患者モニタ装置がある(例えば、特許文献1参照。)。これは、脈拍、脈波、心電、体温、動脈血酸素飽和度、及び血圧などを生体内へ放射した赤外光、可視光の散乱光の受光量から計算できるとしている。   2. Description of the Related Art Conventionally, there is a patient monitor device that is inserted into the ear canal and is always worn as a device that measures biological information at the outer ear portion (see, for example, Patent Document 1). This can be calculated from the amount of received light of the scattered light of infrared light and visible light that radiates the pulse, pulse wave, electrocardiogram, body temperature, arterial blood oxygen saturation, blood pressure, etc. into the living body.

また、外耳道に装着する装置としては、無線通信手段を有し、動脈血酸素飽和濃度センサ、体温センサ、心電センサ、脈波センサを備えている緊急情報装置がある(例えば、特許文献2参照。)。   Moreover, as an apparatus to be mounted on the ear canal, there is an emergency information apparatus that includes wireless communication means and includes an arterial blood oxygen saturation sensor, a body temperature sensor, an electrocardiogram sensor, and a pulse wave sensor (see, for example, Patent Document 2). ).

一方、血圧の測定に関しては、光による血管の脈動波形による血圧測定装置は、他の方式であるカフ振動法や容積補償法などによる血圧測定装置(例えば、非特許文献1及び2参照。)と並んで、有力な血圧の測定方法として認められている。   On the other hand, with regard to blood pressure measurement, a blood pressure measurement device based on a blood vessel pulsation waveform by light is a blood pressure measurement device using other methods such as a cuff vibration method or a volume compensation method (for example, see Non-Patent Documents 1 and 2). In parallel, it is recognized as a powerful blood pressure measurement method.

さらに、近年では、血液の粘性が生体の健康状態と深く関係があることに注目が集まっており、種々の研究が進められている(例えば、非特許文献3参照。)。   Furthermore, in recent years, attention has been focused on the fact that the viscosity of blood is closely related to the health state of a living body, and various studies have been carried out (for example, see Non-Patent Document 3).

なお、本明細書において、外耳の名称は非特許文献4、5による。   In the present specification, the names of the outer ears are based on Non-Patent Documents 4 and 5.

特開平9−122083号公報JP-A-9-128203 特開平11−128174号公報JP-A-11-128174 山越 憲一、戸川 達男著、「生体センサと計測装置」、日本エム・イー学会編/ME教科書シリーズ A−1、39頁〜52頁Kenichi Yamakoshi, Tatsuo Togawa, “Biosensor and Measuring Device”, MM Japan Society / ME textbook series A-1, pages 39-52 栃久保 修著、「血圧の測定法と臨床評価」、株式会社メディカルトリビューン社、1989年3月30日第2版第1刷発行Osamu Tochikubo, “Measurement method and clinical evaluation of blood pressure”, Medical Tribune Co., Ltd. 菅原 基晃、前田 信治著、「血液のレオロジーと血流」、日本エム・イー学会編/ME教科書シリーズ B−7、72頁〜75頁Motohara Sugawara, Shinji Maeda, “Rheology and Blood Flow of Blood”, MM Society of Japan / ME Textbook Series B-7, pp. 72-75 Sobotta 図説人体解剖学第1巻(監訳者:岡本道雄)、p.126、(株)医学書院、1996年10月1日発行Sobotta Illustrated Human Anatomy Volume 1 (Translation by Michio Okamoto), p. 126, Medical School, issued October 1, 1996 からだの地図帳(The Atlas of Human Body)、p.20、(株)講談社、2004年1月29日第35刷発行The Atlas of Human Body, p. 20, Kodansha Co., Ltd., published on January 29, 2004, 35th edition

血圧を測定する方法として、主に3つの方法が存在している。第1に、血液が心臓の拍動に合わせて断続的に流れ始めたときに発生するコロトコフ音をマイクロフォン等の電子部品によって検出して血圧を測定する方法(コロトコフ法)、第2に、心臓の拍動に同調した血管壁の振動による圧脈波を圧力計等によって検出して血圧を測定する方法(圧脈波法)、第3に、心臓の拍動に同調した血管壁の膨張・伸縮を発光素子と受光素子とで検出して血圧を測定する方法(光電脈波法)である。そして、上記3つの測定法のうち、現在ではコロトコフ法が血圧測定の標準測定法となっている。   There are mainly three methods for measuring blood pressure. First, a method of measuring blood pressure by detecting a Korotkoff sound generated when blood begins to flow intermittently in accordance with the heartbeat by using an electronic component such as a microphone (Korotkoff method), and second, a heart A method of measuring the blood pressure by detecting the pressure pulse wave due to the vibration of the blood vessel wall synchronized with the heartbeat (pressure pulse wave method), and third, the expansion of the blood vessel wall synchronized with the heartbeat This is a method (photoelectric pulse wave method) for measuring blood pressure by detecting expansion and contraction with a light emitting element and a light receiving element. Of the above three measurement methods, the Korotkoff method is now the standard measurement method for blood pressure measurement.

しかし、コロトコフ法では、マイクロフォンを用いるため周囲の音による雑音に弱い。また、例えば外耳の耳珠等の比較的小さい生体の部位で血圧を測定する場合、当該部位での血管は細いため、得られる音波信号が弱く、信号増幅時に雑音が混入し易い。さらに、生体を押圧しなければ音波信号を得ることができないため、生体の押圧状態によって測定結果が左右される場合がある。   However, the Korotkoff method uses a microphone and is vulnerable to noise from surrounding sounds. For example, when blood pressure is measured at a relatively small living body part such as the tragus of the outer ear, the blood wave at the part is thin, so that the obtained sound wave signal is weak and noise is likely to be mixed during signal amplification. Furthermore, since a sound wave signal cannot be obtained unless the living body is pressed, the measurement result may be influenced by the pressing state of the living body.

また、圧脈波法では、カフ内の圧力を検出するため、周囲の光や音等による雑音には強い。しかし、血管の広い範囲での脈波を検出してしまうため、狭い部位の脈波を対象とする場合には脈波の検出精度が悪くなる場合がある。また、コロトコフ法と同様に、生体を押圧しなければカフ圧が変化しないため、生体の押圧状態によって測定結果が左右される場合がある。   In addition, the pressure pulse wave method detects the pressure in the cuff, and thus is resistant to noise caused by ambient light and sound. However, since a pulse wave in a wide range of blood vessels is detected, the pulse wave detection accuracy may deteriorate when a pulse wave in a narrow part is targeted. Similarly to the Korotkoff method, the cuff pressure does not change unless the living body is pressed, and therefore the measurement result may be influenced by the pressing state of the living body.

一方、光電脈波法は、周囲の光による雑音には弱いものの、周囲の音による雑音には強い。また、生体を押圧しなくても脈波の検出が可能である。さらに、限定された微小部分での脈波の測定が可能であるという利点がある。   On the other hand, the photoelectric pulse wave method is strong against noise caused by ambient sound, although it is weak against noise caused by ambient light. Further, the pulse wave can be detected without pressing the living body. Furthermore, there is an advantage that the pulse wave can be measured in a limited minute portion.

また、上記3つの方法は検出方法が異なることから、測定結果に差が生じる。   Further, since the above three methods are different in detection method, a difference occurs in measurement results.

そこで、本発明では、上記コロトコフ法、圧脈波法及び光電脈波法のそれぞれの欠点を補いつつ、より精度の高い血圧測定を可能とする血圧測定装置及びその制御方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a blood pressure measuring device and a control method thereof capable of measuring blood pressure with higher accuracy while compensating for the respective drawbacks of the Korotkoff method, pressure pulse wave method, and photoelectric pulse wave method. And

上記課題を解決するために、本発明者らは、コロトコフ法、圧脈波法及び光電脈波法のうち少なくとも2つの方法を組み合わせることとした。   In order to solve the above problems, the present inventors decided to combine at least two methods among the Korotkoff method, the pressure pulse wave method, and the photoelectric pulse wave method.

具体的には、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記圧脈波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記光電脈波検出部に脈波を検出させ、検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定し、前記押圧部に所定の押圧力から前記単位時間当たりの減圧量に従って減圧させ、前記押圧部に減圧させる過程において、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させることを特徴とする。   Specifically, the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and the subject out of the light from the light emitting element. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject, and a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject; A blood pressure measuring device comprising: a control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit and the pressure pulse wave detection unit; A pulse detecting unit that detects a pulse wave, calculates a reduced pressure amount per unit time from a product of a pulse rate per unit time obtained from the detected pulse wave and a predetermined reduced pressure amount per beat, and the pressing unit In accordance with the amount of pressure reduction per unit time from a predetermined pressing force, In the process for decompressing the serial pressing portion, characterized in that to detect the pulse wave in the photoelectric pulse wave detector and the pressure pulse wave detecting unit.

光電脈波により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。さらに、圧脈波法及び光電脈波法により2種類の血圧結果を得ることもでき、測定結果の妥当性の判断も可能である。従って、精度の高い血圧測定を可能とする。   By determining the depressurization rate based on the photoelectric pulse wave, the blood pressure can be measured at an appropriate depressurization rate according to the pulse rate of the subject, so that the blood pressure can be accurately measured in a short time. Furthermore, two types of blood pressure results can be obtained by the pressure pulse wave method and the photoelectric pulse wave method, and the validity of the measurement results can be judged. Therefore, blood pressure can be measured with high accuracy.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記音波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記光電脈波検出部に脈波を検出させ、検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定し、前記押圧部に所定の押圧力から前記単位時間当たりの減圧量に従って減圧させ、前記押圧部に減圧させる過程において、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させることを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and light that has passed through the subject out of the light from the light emitting element. Alternatively, a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered inside the subject, a sound wave detection unit that detects Korotkoff sound from the subject, and a pressing force of the pressing unit A blood pressure measuring device that increases and decreases and controls the operation of the photoelectric pulse wave detection unit and the sound wave detection unit, wherein the control unit causes the photoelectric pulse wave detection unit to detect a pulse wave, The amount of pressure reduction per unit time is calculated from the product of the pulse rate per unit time obtained from the detected pulse wave and a predetermined amount of pressure reduction per beat, and a predetermined pressing force is applied to the pressing portion per unit time. The pressure is reduced according to the pressure reduction amount of In process of pressure, characterized in that to detect the Korotkoff sounds pulse wave and the acoustic wave detection unit from detecting the photoelectric pulse wave detector.

光電脈波により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。さらに、光電脈波法及びコロトコフ法により2種類の血圧結果を得ることもでき、測定結果の妥当性の判断も可能である。従って、精度の高い血圧測定を可能とする。   By determining the depressurization rate based on the photoelectric pulse wave, the blood pressure can be measured at an appropriate depressurization rate according to the pulse rate of the subject, so that the blood pressure can be accurately measured in a short time. Furthermore, two types of blood pressure results can be obtained by the photoelectric pulse wave method and the Korotkoff method, and the validity of the measurement results can be judged. Therefore, blood pressure can be measured with high accuracy.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記光電脈波検出部に脈波を検出させ、検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定し、前記押圧部に所定の押圧力から前記単位時間当たりの減圧量に従って減圧させ、前記押圧部に減圧させる過程において、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させることを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and light that has passed through the subject out of the light from the light emitting element. Alternatively, a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered inside the subject, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and the subject A sound wave detection unit that detects Korotkoff sounds from the specimen, a control unit that increases or decreases the pressing force of the pressing unit, and instructs the operation of the photoelectric pulse wave detection unit, the pressure pulse wave detection unit, and the sound wave detection unit; The control unit causes the photoelectric pulse wave detection unit to detect a pulse wave, the pulse rate per unit time obtained from the detected pulse wave, and a predetermined amount of decompression per beat The amount of pressure reduction per unit time is calculated from the product of In the process of depressurizing according to the depressurization amount per unit time from a predetermined pressing force and depressurizing the pressing unit, the photoelectric pulse wave detecting unit and the pressure pulse wave detecting unit detect a pulse wave and the sound wave detecting unit It is characterized by detecting Korotkoff sounds.

光電脈波により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。さらに、光電脈波法、圧脈波法及びコロトコフ法により3種類の血圧結果を得ることもでき、測定結果の妥当性の判断も可能である。従って、精度の高い血圧測定を可能とする。   By determining the depressurization rate based on the photoelectric pulse wave, the blood pressure can be measured at an appropriate depressurization rate according to the pulse rate of the subject, so that the blood pressure can be accurately measured in a short time. Furthermore, three types of blood pressure results can be obtained by the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method, and the validity of the measurement results can be judged. Therefore, blood pressure can be measured with high accuracy.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、前記押圧部の押圧力を増減させ且つ前記脈波情報検出手段の検出を指示する制御部と、を備える血圧測定装置であって、前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、のうち少なくとも2つの検出部を有し、前記制御部は、前記少なくとも2つの検出部に検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の差の絶対値が所定値よりも大きいときにエラー信号を出力することを特徴とする。   In addition, the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a pulse wave information detection unit that detects information related to the pulse wave of the subject from the outside of the subject, and the pressing A blood pressure measuring apparatus comprising: a control unit that increases or decreases a pressing force of the unit and instructs the detection of the pulse wave information detection unit, wherein the pulse wave information detection unit emits light to the subject And a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element, and a surface of the subject It has at least two detection units among a pressure pulse wave detection unit that detects a pulse wave from vibration and a sound wave detection unit that detects a Korotkoff sound from the subject, and the control unit has the at least two detections Based on each detected value Absolute value of the difference between the systolic blood pressure value or the lowest blood pressure value determined Te is and outputs an error signal when greater than a predetermined value.

光電脈波法、圧脈波法又はコロトコフ法のうち少なくとも2つの方法によって得られた結果の差が所定値よりも大きいときにエラー信号を出力することにより、各方法による血圧の測定時に雑音が混入した可能性等、測定結果の妥当性の判断を可能とする。そのため、再測定をする等の判断を可能とする。   By outputting an error signal when the difference between the results obtained by at least two methods of the photoelectric pulse wave method, the pressure pulse wave method, or the Korotkoff method is larger than a predetermined value, noise is measured during blood pressure measurement by each method. It is possible to judge the validity of measurement results, such as the possibility of contamination. Therefore, it is possible to make a judgment such as re-measurement.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、前記押圧部の押圧力を増減させ且つ前記脈波情報検出手段の検出を指示する制御部と、を備える血圧測定装置であって、前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、のうち少なくとも2つの検出部を有し、前記制御部は、前記少なくとも2つの検出部に検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の平均値を算出することを特徴とする。   In addition, the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a pulse wave information detection unit that detects information related to the pulse wave of the subject from the outside of the subject, and the pressing A blood pressure measuring apparatus comprising: a control unit that increases or decreases a pressing force of the unit and instructs the detection of the pulse wave information detection unit, wherein the pulse wave information detection unit emits light to the subject And a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element, and a surface of the subject It has at least two detection units among a pressure pulse wave detection unit that detects a pulse wave from vibration and a sound wave detection unit that detects a Korotkoff sound from the subject, and the control unit has the at least two detections Based on each detected value And calculates an average value of the systolic blood pressure value or diastolic blood pressure is determined Te.

光電脈波法、圧脈波法又はコロトコフ法のうち少なくとも2つの方法によって得られた測定結果の平均値を取ることにより、各方法による測定結果の誤差を補い、より妥当性のある血圧値を得ることができる。   By taking the average value of the measurement results obtained by at least two methods of the photoelectric pulse wave method, the pressure pulse wave method, or the Korotkoff method, the error in the measurement results by each method is compensated, and a more appropriate blood pressure value is obtained. Obtainable.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、前記押圧部の押圧力を増減させ且つ前記脈波情報検出手段の検出を指示する制御部と、を備える血圧測定装置であって、前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を有し、前記制御部は、前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部に検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の中間値を選択することを特徴とする。   In addition, the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a pulse wave information detection unit that detects information related to the pulse wave of the subject from the outside of the subject, and the pressing A blood pressure measuring apparatus comprising: a control unit that increases or decreases a pressing force of the unit and instructs the detection of the pulse wave information detection unit, wherein the pulse wave information detection unit emits light to the subject And a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element, and a surface of the subject A pressure pulse wave detection unit that detects a pulse wave from vibration; and a sound wave detection unit that detects a Korotkoff sound from the subject; the control unit includes the photoelectric pulse wave detection unit and the pressure pulse wave detection And the detected values detected by the sound wave detection unit. And selects a median value of the systolic blood pressure value or diastolic blood pressure is determined Te.

光電脈波法、圧脈波法及びコロトコフ法の3つの方法によって得られた測定結果の中間値を取ることにより、各方法による測定結果の誤差を補い、より妥当性のある血圧値を得ることができる。なお、ここで「中間値」とは、3つの値のうち中間にある値をいう。   By taking an intermediate value of the measurement results obtained by the three methods of the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method, the error of the measurement result by each method is compensated, and a more appropriate blood pressure value is obtained. Can do. Here, the “intermediate value” refers to a value in the middle of the three values.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記圧脈波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記押圧部による押圧力の減圧過程での前記圧脈波検出部の検出脈波の振幅強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力することを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and light that has passed through the subject out of the light from the light emitting element. Alternatively, a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered inside the subject, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and the press A blood pressure measuring device comprising: a control unit that increases or decreases the pressing force of the unit and instructs the operation of the photoelectric pulse wave detection unit and the pressure pulse wave detection unit, wherein the control unit is a pressing force by the pressing unit The maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit during the decompression process is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before being pressed by the pressing unit Sometimes, a warning is output.

圧脈波検出部の検出脈波の振幅強度の最大値が所定値よりも小さいときには、圧脈波検出部の検出感度が低いか或いは被検体の圧迫が不十分である可能性があるため、警告により、圧脈波検出部の検出感度を上げたり、血圧測定装置の再装着を促したりする等の措置を行うことができる。また、警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被検者にして再測定が必要であるか否かを判断することもできる。   When the maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit is smaller than a predetermined value, the detection sensitivity of the pressure pulse wave detection unit may be low or the subject may be insufficiently compressed, By the warning, measures such as increasing the detection sensitivity of the pressure pulse wave detection unit or prompting the user to reattach the blood pressure measurement device can be taken. In addition, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary by a warning. It is also possible to determine whether or not the subject needs to be remeasured based on the measurement result after the warning.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体でのコロトコフ音を検出する音波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記音波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記押圧部による押圧力の減圧過程での前記音波検出部の検出信号強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力することを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and light that has passed through the subject out of the light from the light emitting element. Alternatively, a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered inside the subject, a sound wave detection unit that detects Korotkoff sound in the subject, and a pressing force of the pressing unit A blood pressure measuring device that increases and decreases and instructs the operation of the photoelectric pulse wave detection unit and the sound wave detection unit, wherein the control unit is configured to reduce the sound wave in the process of reducing the pressing force by the pressing unit. A warning is output when the maximum value of the detection signal intensity of the detection unit is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before being pressed by the pressing unit. .

音波検出部の検出信号強度が所定値よりも小さいときには、音波検出部の検出感度が低いか或いは被検体の圧迫が不十分である可能性があるため、警告により、音波検出部の検出感度を上げたり、血圧測定装置の再装着を促したりする等の措置を行うことができる。また、警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被検者にして再測定が必要であるか否かを判断することもできる。   When the detection signal intensity of the sound wave detection unit is smaller than a predetermined value, the detection sensitivity of the sound wave detection unit may be low or the compression of the subject may be insufficient. It is possible to take measures such as raising the blood pressure or prompting the user to reattach the blood pressure measuring device. In addition, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary by a warning. It is also possible to determine whether or not the subject needs to be remeasured based on the measurement result after the warning.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記押圧部による押圧力の減圧過程での前記圧脈波検出部の検出脈波の振幅強度の最大値及び前記押圧部による押圧力の減圧過程での前記音波検出部の検出信号強度の最大値が前記押圧部による押圧前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力することを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and light that has passed through the subject out of the light from the light emitting element. Alternatively, a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered inside the subject, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and the subject A sound wave detection unit that detects Korotkoff sounds from the specimen, a control unit that increases or decreases the pressing force of the pressing unit, and instructs the operation of the photoelectric pulse wave detection unit, the pressure pulse wave detection unit, and the sound wave detection unit; The control unit includes: a maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit in the process of reducing the pressing force by the pressing unit; and a reduction of the pressing force by the pressing unit. In the process, the maximum value of the detection signal intensity of the sound wave detection unit is the pressing value. When less than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detector of the front press by part, and outputs a warning.

圧脈波検出部の検出脈波の振幅強度の最大値が所定値よりも小さいか或いは音波検出部の検出信号強度の最大値が所定値よりも小さいときには、圧脈波検出部及び音波検出部の検出感度が低いか或いは被検体の圧迫が不十分である可能性があるため、警告により、圧脈波検出部及び音波検出部の検出感度を上げたり、血圧測定装置の再装着を促したりする等の措置を行うことができる。また、警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被検者にして再測定が必要であるか否かを判断することもできる。   When the maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit is smaller than a predetermined value or when the maximum value of the detection signal intensity of the sound wave detection unit is smaller than a predetermined value, the pressure pulse wave detection unit and the sound wave detection unit The detection sensitivity of the pressure pulse wave detection unit and the sound wave detection unit may be increased by warning, or the blood pressure measurement device may be reattached. Measures can be taken. In addition, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary by a warning. It is also possible to determine whether or not the subject needs to be remeasured based on the measurement result after the warning.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記音波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記押圧部による所定の押圧力からの減圧過程で前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させ、前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部で前記コロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出する前記コロトコフ音が消失する押圧力と前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断することを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and light that has passed through the subject out of the light from the light emitting element. Alternatively, a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered inside the subject, a sound wave detection unit that detects Korotkoff sound from the subject, and a pressing force of the pressing unit A blood pressure measuring device that increases and decreases and instructs the operation of the photoelectric pulse wave detection unit and the sound wave detection unit, wherein the control unit is in a process of reducing pressure from a predetermined pressing force by the pressing unit. A pressing force that causes the photoelectric pulse wave detection unit to detect a pulse wave and the sound wave detection unit to detect a Korotkoff sound, and starts detecting a rising point of an envelope of a pulse wave waveform detected by the photoelectric pulse wave detection unit; The Korotkoff sound is generated by the sound wave detection unit. Whether the absolute value of the difference between the pressing force to start extraction is greater than a predetermined value or the pressing force at which the Korotkoff sound detected by the sound wave detection unit disappears and the pulse wave waveform detected by the photoelectric pulse wave detection unit It is characterized in that it is determined whether or not the absolute value of the difference from the pressing force that is an inflection point of the envelope curve is greater than a predetermined value when the slope of the envelope curve is negative.

光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか又は音波検出部で検出するコロトコフ音が消失する押圧力と光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きい場合には、血液の粘性が高いためと推定される。そのため、この場合には、血液の粘性が高いことを通知することができる。これにより、被検体の健康状態を知ることが可能である。   Whether the absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the photoelectric pulse wave detection unit starts to be detected and the pressing force at which the sound wave detection unit starts to detect the Korotkoff sound is greater than a predetermined value Or, the difference between the pressing force at which the Korotkoff sound detected by the sound wave detection unit disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the photoelectric pulse wave detection unit is negative and becomes the inflection point of the envelope If the absolute value is larger than the predetermined value, it is estimated that the viscosity of the blood is high. Therefore, in this case, it can be notified that the viscosity of blood is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値又は音波検出部で検出するコロトコフ音が消失する押圧力と光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、再測定を行う等の処理を行うことができる。   On the other hand, the absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse waveform detected by the photoelectric pulse wave detection unit starts to be detected and the pressing force at which the Korotkoff sound starts to be detected by the sound wave detection unit or the sound wave The absolute value of the difference between the pressing force at which the Korotkoff sound detected by the detector disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the photoelectric pulse detector is negative and becomes the inflection point of the envelope If is larger than the predetermined value, the measurement result may not be valid. In this case, processing such as remeasurement can be performed.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、前記押圧部の押圧力を増減させ且つ前記圧脈波検出部及び前記音波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記押圧部による所定の押圧力からの減圧過程で前記圧脈波検出部及び前記音波検出部を作動させ、前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出するコロトコフ音が消失する押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断することを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and a Korotkoff from the subject. A blood pressure measurement apparatus comprising: a sound wave detection unit that detects a sound; and a control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the pressure pulse wave detection unit and the sound wave detection unit. The unit operates the pressure pulse wave detection unit and the sound wave detection unit in the process of depressurization from a predetermined pressing force by the pressing unit, and the rising point of the envelope of the pulse wave waveform detected by the pressure pulse wave detection unit Whether the absolute value of the difference between the pressing force at which the sound wave detection unit starts to detect and the pressing force at which the sound wave detection unit starts to detect the Korotkoff sound is larger than a predetermined value, or the pressing force at which the Korotkoff sound detected by the sound wave detection unit disappears And the pulse wave detected by the pressure pulse wave detector The inclination of the envelope absolute value of the difference between the pressing force becomes an inflection point of the negatively and the envelope, characterized in that determining whether greater than a predetermined value.

圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか又は音波検出部で検出するコロトコフ音が消失する押圧力と圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きい場合には、血液の粘性が高いためと推定される。そのため、この場合には、血液の粘性が高いことを通知することができる。これにより、被検体の健康状態を知ることが可能である。   Whether the absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the pressure pulse wave detection unit starts to be detected and the pressing force at which the Kotokoff sound starts to be detected by the sound wave detection unit is greater than a predetermined value Or, the difference between the pressing force at which the Korotkoff sound detected by the sound wave detecting unit disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the pressure pulse wave detecting unit is negative and becomes the inflection point of the envelope If the absolute value is larger than the predetermined value, it is estimated that the viscosity of the blood is high. Therefore, in this case, it can be notified that the viscosity of blood is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値又は音波検出部で検出するコロトコフ音が消失する押圧力と圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、再測定を行う等の処理を行うことができる。   On the other hand, the absolute value or sound wave of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the pressure pulse wave detector starts to be detected and the pressing force at which the sound wave detector starts to detect the Korotkoff sound Absolute value of the difference between the pressing force at which the Korotkoff sound detected by the detector disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the pressure pulse wave detector is negative and becomes the inflection point of the envelope If is larger than the predetermined value, the measurement result may not be valid. In this case, processing such as remeasurement can be performed.

また、本発明に係る血圧測定装置は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記圧脈波検出部の作動を指示する制御部と、を備える血圧測定装置であって、前記制御部は、前記押圧部による所定の押圧力からの減圧過程で前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ、前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断することを特徴とする。   The blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates the subject with light, and light that has passed through the subject out of the light from the light emitting element. Alternatively, a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered inside the subject, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and the press A control unit that increases or decreases the pressing force of the unit and instructs the operation of the photoelectric pulse wave detection unit and the pressure pulse wave detection unit, wherein the control unit is a predetermined unit by the pressing unit. In the depressurization process from the pressing force, the photoelectric pulse wave detection unit and the pressure pulse wave detection unit detect the pulse wave, and start detecting the rising point of the envelope of the pulse wave waveform detected by the photoelectric pulse wave detection unit The rise of the envelope of the pressure wave and the pulse wave waveform detected by the pressure pulse wave detector Whether the absolute value of the difference from the pressing force at which to start detecting a point is greater than a predetermined value, or the slope of the envelope of the pulse waveform detected by the photoelectric pulse wave detector is negative and the envelope The absolute value of the difference between the pressing force that becomes the inflection point and the pressing force that becomes the inflection point of the envelope is negative when the slope of the envelope of the pulse wave detected by the pressure pulse wave detector is negative It is characterized by judging whether it is larger than.

光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力との差の絶対値又は光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力と圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がないことが考えられる。この場合には、再測定を行う等の処理を行うことができる。   A pressing force that starts to detect the rising point of the envelope of the pulse waveform detected by the photoelectric pulse wave detector, and a pressing force that starts to detect the rising point of the envelope of the pulse waveform detected by the pressure pulse wave detector; Waveform of the pulse wave detected by the pressure and pressure pulse wave detectors with the absolute value of the difference between them or the inclination of the envelope of the pulse wave detected by the photoelectric pulse wave detector being negative and the inflection point of the envelope If the slope of the envelope is negative and the absolute value of the difference from the pressing force that is the inflection point of the envelope is larger than the predetermined value, the measurement result may be invalid. In this case, processing such as remeasurement can be performed.

上記血圧測定装置において、前記被検体は、生体の外耳及び/又はその周辺であることが望ましい。より望ましくは、前記被検体は、生体の外耳道及び/又は耳介である。さらに望ましくは、前記被検体は、生体の耳珠及び/又はその周辺である。   In the blood pressure measurement device, it is desirable that the subject is an outer ear of a living body and / or its surroundings. More preferably, the subject is the external ear canal and / or pinna of the living body. More preferably, the subject is a living tragus and / or its periphery.

血圧測定装置を小型で外耳に装着することにより、日常生活において連続的に、かつ人体の移動などによる雑音の影響を受けることなく血圧を測定できる。   By mounting the blood pressure measuring device in a small size on the outer ear, blood pressure can be measured continuously in daily life and without being affected by noise due to movement of the human body.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部による押圧の前に前記光電脈波検出部に脈波を検出させる光電脈波検出手順と、前記光電脈波検出手順で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定する減圧量算定手順と、前記減圧量算定手順において算定した前記単位時間当たりの減圧量に従って、前記押圧部に所定の押圧力から減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させる検出手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject, and a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject; A method for controlling a blood pressure measurement device comprising: a photoelectric pulse wave detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave before pressing by the pressing unit; and a pulse detected by the photoelectric pulse wave detection procedure A decompression amount calculation procedure for calculating a decompression amount per unit time from a product of a pulse rate per unit time obtained from the wave and a predetermined decompression amount per beat, and the unit time calculated in the decompression amount calculation procedure According to the pressure reduction amount per hit, While vacuum from the constant pressing force, characterized in that it comprises a detection procedure for detecting a pulse wave in the photoelectric pulse wave detector and the pressure pulse wave detecting unit.

減圧量算定手順により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。さらに、検出手順により圧脈波法及び光電脈波法により2種類の血圧の測定結果を得ることもでき、測定結果の妥当性の判断も可能である。従って、精度の高い血圧測定を可能とする。   By determining the decompression speed by the decompression amount calculation procedure, the blood pressure can be measured at an appropriate decompression speed according to the pulse rate of the subject, so that the blood pressure can be accurately measured in a short time. Furthermore, two types of blood pressure measurement results can be obtained by the pressure pulse wave method and the photoelectric pulse wave method according to the detection procedure, and the validity of the measurement results can be determined. Therefore, blood pressure can be measured with high accuracy.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部による押圧の前に前記光電脈波検出部に脈波を検出させる光電脈波検出手順と、前記光電脈波検出手順で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から時間当たりの減圧量を算定する減圧量算定手順と、前記減圧量算定手順において算定した前記単位時間当たりの減圧量に従って、前記押圧部に所定の押圧力から減圧させながら、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. Blood pressure measurement comprising: a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject; and a sound wave detection unit that detects Korotkoff sound from the subject A method for controlling an apparatus, comprising: a photoelectric pulse wave detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave before being pressed by the pressing unit; and a unit obtained from the pulse wave detected by the photoelectric pulse wave detection procedure According to the decompression amount calculation procedure for calculating the decompression amount per time from the product of the pulse rate per time and the predetermined decompression amount per beat, and the decompression amount per unit time calculated in the decompression amount calculation procedure, A predetermined push on the pressing portion While reduced pressure force, characterized in that it comprises a detection procedure for detecting the Korotkoff sound and the acoustic wave detection unit to detect a pulse wave in the photoelectric pulse wave detector.

減圧量算定手順により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。さらに、検出手順により光電脈波法及びコロトコフ法により2種類の血圧の測定結果を得ることもでき、測定結果の妥当性の判断も可能である。従って、精度の高い血圧測定を可能とする。   By determining the decompression speed by the decompression amount calculation procedure, the blood pressure can be measured at an appropriate decompression speed according to the pulse rate of the subject, so that the blood pressure can be accurately measured in a short time. Furthermore, two types of blood pressure measurement results can be obtained by the photoelectric pulse wave method and the Korotkoff method according to the detection procedure, and the validity of the measurement results can be determined. Therefore, blood pressure can be measured with high accuracy.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を測定圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を備える血圧測定装置であって、前記押圧部による押圧の前に前記光電脈波検出部に脈波を検出させる光電脈波検出手順と、前記光電脈波検出手順で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から時間当たりの減圧量を算定する減圧量算定手順と、前記減圧量算定手順において算定した前記単位時間当たりの減圧量に従って、前記押圧部に所定の押圧力から減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the object, and a pressure pulse wave detection unit that measures a pulse wave from vibration of the surface of the object; A blood pressure measurement device comprising: a sound wave detection unit that detects Korotkoff sounds from the subject; a photoelectric pulse wave detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave before being pressed by the pressing unit; A decompression amount calculating procedure for calculating a decompression amount per time from a product of a pulse rate per unit time obtained from the pulse wave detected by the photoelectric pulse wave detection procedure and a predetermined decompression amount per beat, and The unit time calculated in the decompression amount calculation procedure Detection that causes the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect a pulse wave and causes the sound wave detection unit to detect Korotkoff sound while reducing the pressure from a predetermined pressing force to the pressing unit according to the amount of pressure reduction And a procedure.

減圧量算定手順により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。また、血圧の測定時間も測定の度に変更されるため、効率よく血圧を測定することができる。さらに、検出手順により光電脈波法、圧脈波法及びコロトコフ法により3種類の血圧の測定結果を得ることもでき、測定結果の妥当性の判断も可能である。従って、より精度の高い血圧測定を可能とする。   By determining the decompression speed by the decompression amount calculation procedure, the blood pressure can be measured at an appropriate decompression speed according to the pulse rate of the subject, so that the blood pressure can be accurately measured in a short time. Moreover, since the blood pressure measurement time is also changed every measurement, the blood pressure can be measured efficiently. Furthermore, three types of blood pressure measurement results can be obtained by the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method according to the detection procedure, and the validity of the measurement results can be determined. Therefore, blood pressure can be measured with higher accuracy.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、を備える血圧測定装置であって、前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、のうち少なくとも2つの検出部を有し、前記押圧部に所定の押圧力から減圧させながら、前記少なくとも2つの検出部にそれぞれの検出対象を検出させる検出手順と、前記検出手順の後に、前記少なくとも2つの検出部から得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の差の絶対値が所定値よりも大きいときにエラー信号を出力するエラー出力手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, and a pulse wave information detection unit that detects information related to the pulse wave of the subject from the outside of the subject. The pulse wave information detecting means includes: a light emitting element that irradiates light to the subject; and light transmitted through the subject out of light from the light emitting element or inside the subject. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered by the light source, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and a Korotkoff sound from the subject. A detection procedure that includes at least two detection units among the sound wave detection units to detect, and causes the at least two detection units to detect respective detection targets while reducing the pressure from a predetermined pressing force to the pressing units, After the detection procedure, And an error output procedure for outputting an error signal when the absolute value of the difference between the systolic blood pressure value or the diastolic blood pressure value determined based on the respective detection values obtained from the two detection units is larger than a predetermined value. It is characterized by that.

検出手順の後において、光電脈波法、圧脈波法又はコロトコフ法のうち少なくとも2つの方法によって得られた結果の差の絶対値が所定値よりも大きいときにエラー信号を出力することにより、各方法による血圧の測定時に雑音が混入した可能性等、測定結果の妥当性の判断が可能となる。そのため、再測定をする等の判断を可能とする。   After the detection procedure, by outputting an error signal when the absolute value of the difference between the results obtained by at least two methods of the photoelectric pulse wave method, the pressure pulse wave method or the Korotkoff method is larger than a predetermined value, It is possible to determine the validity of the measurement result, such as the possibility of noise being mixed during blood pressure measurement by each method. Therefore, it is possible to make a judgment such as re-measurement.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、を備える血圧測定装置であって、前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、のうち少なくとも2つの検出部を有し、前記押圧部に所定の押圧力から減圧させながら、前記少なくとも2つの検出部にそれぞれの検出対象を検出させる検出手順と、前記検出手順の後に、前記少なくとも2つの検出部から得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の平均値を算出する平均値算出手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, and a pulse wave information detection unit that detects information related to the pulse wave of the subject from the outside of the subject. The pulse wave information detecting means includes: a light emitting element that irradiates light to the subject; and light transmitted through the subject out of light from the light emitting element or inside the subject. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered by the light source, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and a Korotkoff sound from the subject. A detection procedure that includes at least two detection units among the sound wave detection units to detect, and causes the at least two detection units to detect respective detection targets while reducing the pressure from a predetermined pressing force to the pressing units, After the detection procedure, Both characterized in that it comprises a, an average value calculation step of calculating an average value of the systolic blood pressure value or diastolic blood pressure is determined based on the respective detection values obtained from the two detector.

検出手順の後において、光電脈波法、圧脈波法又はコロトコフ法のうち少なくとも2つの方法によって得られた結果の平均値を取ることにより、各方法による測定結果の誤差を補い、妥当性のある血圧値を得ることができる。   After the detection procedure, by taking the average value of the results obtained by at least two methods of photoelectric pulse wave method, pressure pulse wave method or Korotkoff method, the error of the measurement result by each method is compensated, and the validity A certain blood pressure value can be obtained.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、を備える血圧測定装置であって、前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を有し、前記押圧部に所定の押圧力から減圧させながら、前記少なくとも2つの検出部にそれぞれの検出対象を検出させる検出手順と、前記検出手順の後に、前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部から得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の中間値を選択する中間値選択手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, and a pulse wave information detection unit that detects information related to the pulse wave of the subject from the outside of the subject. The pulse wave information detecting means includes: a light emitting element that irradiates light to the subject; and light transmitted through the subject out of light from the light emitting element or inside the subject. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives light scattered by the light source, a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject, and a Korotkoff sound from the subject. A detection procedure for detecting at least two detection units to detect each detection target while reducing the pressure from a predetermined pressing force to the pressing unit, and after the detection procedure, Pulse wave detector, pressure pulse wave detector , An intermediate value selection procedure for selecting an intermediate value of the fine the systolic blood is determined based on the respective detection values obtained from the acoustic wave detection unit or the minimum blood pressure value, characterized in that it comprises a.

検出手順の後において、光電脈波法、圧脈波法及びコロトコフ法の3つの方法によって得られた結果の中間値を取ることにより、各方法による測定結果の誤差を補い、より妥当性のある血圧値を得ることができる。   After the detection procedure, by taking an intermediate value of the results obtained by the three methods of the photoelectric pulse wave method, the pressure pulse wave method and the Korotkoff method, the error in the measurement results by each method is compensated and more appropriate. Blood pressure values can be obtained.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部により押圧力を減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させる検出手順と、前記検出手順での前記圧脈波検出部の検出脈波の振幅強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject, and a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject; A detection procedure for causing the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect a pulse wave while reducing the pressing force by the pressing unit, and the detection procedure When the maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before being pressed by the pressing unit, A warning output procedure for outputting a warning.

警告出力手順において、圧脈波検出部の検出脈波の振幅強度の最大値が所定値よりも小さいときには、圧脈波検出部の検出感度が低いか或いは被検体の圧迫が不十分である可能性がある。そのため、警告を出力して圧脈波検出部の検出感度を上げたり、血圧測定装置の再装着を促したりする等の措置を行うことができる。また、警告出力手順においてなされた警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被験者において再測定が必要であると判断することもできる。   In the warning output procedure, when the maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit is smaller than a predetermined value, the detection sensitivity of the pressure pulse wave detection unit may be low, or the subject may be insufficiently compressed There is sex. Therefore, it is possible to take measures such as outputting a warning to increase the detection sensitivity of the pressure pulse wave detection unit or prompting the user to reattach the blood pressure measurement device. Further, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary based on a warning made in the warning output procedure. Moreover, it can also be judged from the measurement result after warning that a remeasurement is necessary in the subject.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部により押圧力を減圧させながら、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、前記検出手順での前記音波検出部の検出信号強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. Blood pressure measurement comprising: a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject; and a sound wave detection unit that detects Korotkoff sound from the subject A method for controlling the apparatus, comprising: a detection procedure in which the photoelectric pulse wave detection unit detects a pulse wave and the sound wave detection unit detects a Korotkoff sound while reducing the pressing force by the pressing unit; and A warning output that outputs a warning when the maximum value of the detection signal intensity of the sound wave detection unit is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before being pressed by the pressing unit Procedures, and To.

警告出力手順において、音波検出部の検出信号強度の最大値が所定値よりも小さいときには、音波検出部の検出感度が低いか或いは被検体の圧迫が不十分である可能性がある。そのため、警告を出力して音波検出部の検出感度を上げたり、血圧測定装置の再装着を促したりする等の措置を行うことができる。また、警告出力手順においてなされた警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、被験者において警告後の測定結果により、再測定が必要であると判断することもできる。   In the warning output procedure, when the maximum value of the detection signal intensity of the sound wave detection unit is smaller than a predetermined value, the detection sensitivity of the sound wave detection unit may be low, or the subject may be insufficiently compressed. Therefore, it is possible to take measures such as outputting a warning to increase the detection sensitivity of the sound wave detection unit or prompting the user to reattach the blood pressure measurement device. Further, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary based on a warning given in the warning output procedure. Moreover, it can also be judged that a remeasurement is required from the measurement result after warning in the subject.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部により押圧力を減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、前記検出手順での前記圧脈波検出部の検出脈波の振幅強度の最大値又は前記音波検出部の検出信号強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject, and a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject; And a sound wave detecting unit for detecting a Korotkoff sound from the subject, the photoelectric pulse wave detecting unit and the pressure pulse wave while reducing the pressing force by the pressing unit A detection procedure for causing the detection unit to detect a pulse wave and for the sound wave detection unit to detect a Korotkoff sound; and a maximum amplitude intensity of a detected pulse wave of the pressure pulse wave detection unit in the detection procedure or The maximum value of the detected signal intensity is When prior to the smaller than the predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detector of, characterized in that it comprises a and a warning output procedure to output a warning.

警告出力手順において、圧脈波検出部の検出脈波の振幅強度の最大値が所定値よりも小さいか或いは音波検出部の検出信号強度の最大値が所定値よりも小さいときには、圧脈波検出部又は音波検出部の検出感度が低いか或いは被検体の圧迫が不十分である可能性がある。そのため、警告を出力して圧脈波検出部又は音波検出部の検出感度を上げたり、血圧測定装置の再装着を促したりする等の措置を行うことができる。また、警告出力手順においてなされた警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被験者において再測定が必要であると判断することもできる。   In the warning output procedure, when the maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit is smaller than a predetermined value or the maximum value of the detection signal intensity of the sound wave detection unit is smaller than a predetermined value, the pressure pulse wave detection There is a possibility that the detection sensitivity of the part or the sound wave detection part is low, or the compression of the subject is insufficient. Therefore, it is possible to take measures such as outputting a warning to increase the detection sensitivity of the pressure pulse wave detection unit or the sound wave detection unit, or prompting the user to reattach the blood pressure measurement device. Further, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary based on a warning made in the warning output procedure. Moreover, it can also be judged from the measurement result after warning that a remeasurement is necessary in the subject.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部により押圧力を減圧させながら、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、前記検出手順において前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部で前記コロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出する前記コロトコフ音が消失する押圧力と前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. Blood pressure measurement comprising: a photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject; and a sound wave detection unit that detects Korotkoff sound from the subject In the control method of the apparatus, in the detection procedure, the photoelectric pulse wave detection unit detects a pulse wave and the sound wave detection unit detects a Korotkoff sound while reducing the pressing force by the pressing unit. The absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the photoelectric pulse wave detection unit starts to be detected and the pressing force at which the sound wave detection unit starts to detect the Korotkoff sound is greater than a predetermined value. Whether it is too big or not A pressing force at which the Korotkoff sound detected by the sound wave detection unit disappears, and a pressing force at which the slope of the envelope of the pulse waveform detected by the photoelectric pulse wave detection unit is negative and becomes an inflection point of the envelope And a determination procedure for determining whether or not the absolute value of the difference is greater than a predetermined value.

光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか又は音波検出部で検出するコロトコフ音が消失する押圧力と光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きい場合には、血液の粘性が高いためと推定される。そのため、判断手順において、光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値又は音波検出部で検出するコロトコフ音が消失する押圧力と光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、血液の粘性が高いことを通知することができる。これにより、被検者の健康状態を知ることが可能である。   Whether the absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the photoelectric pulse wave detection unit starts to be detected and the pressing force at which the sound wave detection unit starts to detect the Korotkoff sound is greater than a predetermined value Or, the difference between the pressing force at which the Korotkoff sound detected by the sound wave detection unit disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the photoelectric pulse wave detection unit is negative and becomes the inflection point of the envelope If the absolute value is larger than the predetermined value, it is estimated that the viscosity of the blood is high. Therefore, in the determination procedure, the absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the photoelectric pulse wave detection unit starts to be detected and the pressing force at which the sound wave detection unit starts to detect the Korotkoff sound or Absolute difference between the pressing force at which the Korotkoff sound detected by the sound wave detector disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the photoelectric pulse detector is negative and becomes the inflection point of the envelope When the value is larger than the predetermined value, it can be notified that the viscosity of the blood is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値又は音波検出部で検出するコロトコフ音が消失する押圧力と光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、判断手順の後に再測定を行う等の処理を行うことができる。   On the other hand, the absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse waveform detected by the photoelectric pulse wave detection unit starts to be detected and the pressing force at which the Korotkoff sound starts to be detected by the sound wave detection unit or the sound wave The absolute value of the difference between the pressing force at which the Korotkoff sound detected by the detector disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the photoelectric pulse detector is negative and becomes the inflection point of the envelope If is larger than the predetermined value, the measurement result may not be valid. In this case, it is possible to perform processing such as performing remeasurement after the determination procedure.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、前記被検体からのコロトコフ音を検出する音波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部により押圧力を減圧させながら、前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、前記検出手順において前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させ、前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部で前記コロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出する前記コロトコフ音が消失する押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含むことを特徴とする。   Further, the control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a pressure pulse wave detecting unit that detects a pulse wave from vibration of the surface of the subject, and the subject A blood pressure measurement device comprising: a sound wave detection unit for detecting a Korotkoff sound from the pressure pulse wave by causing the pressure pulse wave detection unit to detect a pulse wave and reducing the pressure force by the pressure unit. A detection procedure for detecting a Korotkoff sound by the detection unit; and a pulse detected by the pressure pulse wave detection unit by causing the pressure pulse wave detection unit to detect a pulse wave and causing the sound wave detection unit to detect a Korotkoff sound in the detection procedure. Whether the absolute value of the difference between the pressing force at which the rising point of the envelope of the wave waveform starts to be detected and the pressing force at which the Korotkoff sound starts to be detected by the sound wave detection unit is greater than a predetermined value, or the sound wave detection unit Detecting the Korotoko The absolute value of the difference between the pressing force at which the sound disappears and the pressing force that becomes the inflection point of the envelope is negative and the slope of the envelope of the pulse waveform detected by the pressure pulse wave detection unit is negative And a determination procedure for determining whether or not is larger.

圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか又は音波検出部で検出するコロトコフ音が消失する押圧力と圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きい場合には、血液の粘性が高いためと推定される。そのため、判断手順において、圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値又は音波検出部で検出するコロトコフ音が消失する押圧力と圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、血液の粘性が高いことを通知することができる。これにより、被検体の健康状態を知ることが可能である。   Whether the absolute value of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the pressure pulse wave detection unit starts to be detected and the pressing force at which the Kotokoff sound starts to be detected by the sound wave detection unit is greater than a predetermined value Or, the difference between the pressing force at which the Korotkoff sound detected by the sound wave detecting unit disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the pressure pulse wave detecting unit is negative and becomes the inflection point of the envelope If the absolute value is larger than the predetermined value, it is estimated that the viscosity of the blood is high. Therefore, in the determination procedure, the absolute value of the difference between the pressing force at which the rising point of the envelope of the pulse wave waveform detected by the pressure pulse wave detecting unit starts to be detected and the pressing force at which the sound wave detecting unit starts to detect the Korotkoff sound or Absolute difference between the pressing force at which the Korotkoff sound detected by the sound wave detection unit disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the pressure pulse wave detection unit is negative and becomes the inflection point of the envelope When the value is larger than the predetermined value, it can be notified that the viscosity of the blood is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値又は音波検出部で検出するコロトコフ音が消失する押圧力と圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、判断手順の後に再測定を行う等の処理を行うことができる。   On the other hand, the absolute value or sound wave of the difference between the pressing force at which the rising edge of the envelope of the pulse wave waveform detected by the pressure pulse wave detector starts to be detected and the pressing force at which the sound wave detector starts to detect the Korotkoff sound Absolute value of the difference between the pressing force at which the Korotkoff sound detected by the detector disappears and the pressing force at which the slope of the envelope of the pulse wave detected by the pressure pulse wave detector is negative and becomes the inflection point of the envelope If is larger than the predetermined value, the measurement result may not be valid. In this case, it is possible to perform processing such as performing remeasurement after the determination procedure.

また、本発明に係る血圧測定装置の制御方法は、被検体への押圧力を増減できる押圧部と、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、前記被検体の表面の振動から脈波を検出する圧脈波検出部と、を備える血圧測定装置の制御方法であって、前記押圧部により押圧力を減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させる検出手順と、前記検出手順において前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ、前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含むことを特徴とする。   The control method of the blood pressure measurement device according to the present invention includes a pressing unit that can increase or decrease the pressing force on the subject, a light emitting element that irradiates light to the subject, and the subject out of the light from the light emitting element. A photoelectric pulse wave detection unit that detects a pulse wave with a light receiving element that receives transmitted light or light scattered inside the subject, and a pressure pulse wave detection unit that detects a pulse wave from vibration of the surface of the subject; A detection procedure for causing the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect a pulse wave while reducing the pressing force by the pressing unit, and the detection procedure The pressure pulse and the pressure pulse wave detection unit and the pressure pulse wave detection unit detect the pulse wave and start detecting the rising point of the envelope of the pulse wave waveform detected by the photoelectric pulse wave detection unit Rise of the envelope of the pulse waveform detected by the wave detector Whether the absolute value of the difference from the pressing force at which the detection starts is greater than a predetermined value, or the slope of the envelope of the pulse waveform detected by the photoelectric pulse wave detector is negative and the inflection of the envelope The absolute value of the difference between the pressing force that becomes the point and the inclination of the envelope of the pulse wave waveform detected by the pressure pulse wave detection unit is negative and the pressing force that becomes the inflection point of the envelope is larger than a predetermined value Including a determination procedure for determining whether or not.

光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力との差の絶対値又は光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力と圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がないことが考えられる。この場合に、判断手順の後に再測定を行う等の処理を行うことができる。   A pressing force that starts to detect the rising point of the envelope of the pulse waveform detected by the photoelectric pulse wave detector, and a pressing force that starts to detect the rising point of the envelope of the pulse waveform detected by the pressure pulse wave detector; The absolute value of the difference between the pulse waves detected by the photoelectric pulse wave detection unit and the pulse wave waveform detected by the pressure pulse wave detection unit and the pressing force serving as the inflection point of the envelope are negative. If the slope of the envelope of the waveform is negative and the absolute value of the difference from the pressing force that becomes the inflection point of the envelope is larger than the predetermined value, the measurement result may not be valid. . In this case, it is possible to perform processing such as performing remeasurement after the determination procedure.

上記血圧測定装置の制御方法において、前記被検体は、生体の外耳の一部であることが望ましい。より望ましくは、前記被検体は、生体の外耳道及び/又は耳介である。さらに望ましくは、前記被検体は、生体の耳珠及び/又はその周辺である。   In the control method of the blood pressure measurement device, it is preferable that the subject is a part of the outer ear of a living body. More preferably, the subject is the external ear canal and / or pinna of the living body. More preferably, the subject is a living tragus and / or its periphery.

血圧測定装置を小型で外耳に装着することにより、日常生活において連続的に、かつ人体の移動などによる雑音の影響を受けることなく血圧を測定できる。   By mounting the blood pressure measuring device in a small size on the outer ear, blood pressure can be measured continuously in daily life and without being affected by noise due to movement of the human body.

本発明の血圧測定装置及びその制御方法では、上記コロトコフ法、圧脈波法及び光電脈波法のそれぞれの特長を生かしつつ欠点を補って、より精度の高い血圧測定を可能とする。   The blood pressure measurement device and the control method thereof according to the present invention make it possible to measure blood pressure with higher accuracy by making use of the features of the Korotkoff method, the pressure pulse wave method, and the photoelectric pulse wave method while compensating for the drawbacks.

以下、本発明について、実施形態を示して詳細に説明するが、本発明は、以下の実施形態に制限されるものではない。   Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited to the following embodiments.

図1は本実施形態に係る血圧測定装置を被検体としての生体の外耳の耳珠に装着した場合の概略図を示す。   FIG. 1 shows a schematic view when the blood pressure measurement device according to the present embodiment is attached to a tragus of a living body outer ear as a subject.

本実施形態に係る血圧測定装置60は、被検体としての耳珠5への押圧力53を増減できる押圧部としての空気式カフ20と、耳珠5に光を照射する発光素子25b、及び発光素子25bからの光のうち耳珠5を透過した光を受光する受光素子25aで脈波を検出する光電脈波検出部25と、耳珠5の表面の振動から脈波を検出する圧脈波検出部としてのカフ圧検出器51と、耳珠5でのコロトコフ音を検出する音波検出部としてのマイクロフォン21と、空気式カフ20の押圧力53を増減させ且つ光電脈波検出部25、カフ圧検出器51及びマイクロフォン21の作動を指示する制御部46と、を備える。そして、空気式カフ20、光電脈波検出部25及びマイクロフォン21がU字体31に配置されている。また、本実施形態では、上記の他に、空気式カフ20の内部のカフ圧を増減させるための空気ポンプ52と、受光素子25a、マイクロフォン21及びカフ圧検出器51の検出結果を記憶するメモリ45を備えている。   The blood pressure measurement device 60 according to the present embodiment includes a pneumatic cuff 20 as a pressing unit that can increase or decrease the pressing force 53 to the tragus 5 as a subject, a light emitting element 25b that irradiates the tragus 5 with light, and light emission. A photoelectric pulse wave detection unit 25 that detects a pulse wave with a light receiving element 25a that receives light transmitted through the tragus 5 among light from the element 25b, and a pressure pulse wave that detects a pulse wave from vibration of the surface of the tragus 5 A cuff pressure detector 51 as a detection unit, a microphone 21 as a sound wave detection unit for detecting a Korotkoff sound in the tragus 5, a pressing force 53 of a pneumatic cuff 20, and a photoelectric pulse wave detection unit 25, a cuff And a control unit 46 that instructs the operation of the pressure detector 51 and the microphone 21. A pneumatic cuff 20, a photoelectric pulse wave detection unit 25, and a microphone 21 are arranged on the U-shaped body 31. In the present embodiment, in addition to the above, an air pump 52 for increasing or decreasing the cuff pressure inside the pneumatic cuff 20, and a memory that stores detection results of the light receiving element 25 a, the microphone 21, and the cuff pressure detector 51. 45.

なお、本実施形態では、光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51及び音波検出部としてのマイクロフォン21を備えているが、本実施形態は、光電脈波検出部25及びカフ圧検出器51のみを備えた形態、光電脈波検出部25及びマイクロフォン21のみを備えた形態、カフ圧検出器51及びマイクロフォン21のみを備えた形態をそれぞれ含んでいる。   In this embodiment, the photoelectric pulse wave detection unit 25, the cuff pressure detector 51 as a pressure pulse wave detection unit, and the microphone 21 as a sound wave detection unit are provided. However, in the present embodiment, the photoelectric pulse wave detection unit 25, only the photoelectric pulse wave detector 25 and the microphone 21 are included, and only the cuff pressure detector 51 and the microphone 21 are included.

U字体31は、例えば弾性体からなるクリップ構造となっており、被検体としての耳珠5を挟持することができる。U字体31は、耳珠5を挟持することができればよい。例えば、2枚の部材をコイルばねを介して結合して耳珠5を挟持するものであってもよい。   The U-shaped body 31 has a clip structure made of an elastic body, for example, and can hold the tragus 5 as a subject. The U-shaped body 31 only needs to hold the tragus 5. For example, two members may be coupled via a coil spring to sandwich the tragus 5.

本実施形態では、押圧部として空気式カフ20を適用している。空気式カフ20は、1の面が開放された筺体29と、筺体29の開放された1の面の側に押圧面32を形成した伸縮部材からなる袋体30と、袋体30内部に空気を供給する空気供給パイプ23とを有している。そして、空気供給パイプ23からの空気供給により、袋体30の内部の圧力であるカフ圧が上昇すると共に、押圧面32がせり出すために、被検体としての耳珠5を押圧することができる。   In this embodiment, the pneumatic cuff 20 is applied as the pressing portion. The pneumatic cuff 20 includes a casing 29 having one surface opened, a bag body 30 formed of an elastic member having a pressing surface 32 formed on the side of the one surface having the casing 29 opened, and air inside the bag body 30. And an air supply pipe 23 for supplying the air. And by supplying air from the air supply pipe 23, the cuff pressure, which is the pressure inside the bag body 30, rises and the pressing surface 32 protrudes, so that the tragus 5 as the subject can be pressed.

ここで、筺体29は、カフ圧の上昇による変形がないように非伸縮部材を適用する。例えば、プラスチックや金属等の非伸縮部材を適用することができる。また、袋体30となる伸縮部材は、ゴム、ポリエチレンフィルム等の伸縮部材を適用することができる。これらの部材は、被検体としての耳珠5との密着性がよく、耳珠5を傷つけることがない。なお、本実施形態では、押圧部として空気式カフ20を適用しているが、被検体としての耳珠5を押圧することができれば、例えば、水圧、油圧、空気圧等の圧力によりピストンを上下させて耳珠5を押圧するものであってもよいし、電圧をかけると伸縮する圧電素子等の電子部品によって耳珠5を押圧してもよい。   Here, the non-expandable member is applied to the housing 29 so as not to be deformed due to an increase in the cuff pressure. For example, a non-stretchable member such as plastic or metal can be applied. Moreover, elastic members, such as rubber | gum and a polyethylene film, can be applied to the elastic member used as the bag body 30. FIG. These members have good adhesion to the tragus 5 as the subject and do not damage the tragus 5. In the present embodiment, the pneumatic cuff 20 is applied as the pressing portion. However, if the tragus 5 as the subject can be pressed, for example, the piston is moved up and down by pressure such as water pressure, hydraulic pressure, or air pressure. The tragus 5 may be pressed, or the tragus 5 may be pressed by an electronic component such as a piezoelectric element that expands and contracts when a voltage is applied.

光電脈波検出部25は、袋体30の内部に配置した発光素子25bと、空気式カフ20と反対側のU字体31の面上に配置した受光素子25aと、を有している。発光素子25bは、被検体としての耳珠5に照射光49を照射し、受光素子25aは、耳珠5を透過した透過光47を受光する。ここで、受光素子25aは、押圧面32の中央から押圧面32に垂直な位置に配置することがよい。この位置に受光素子25aを配置すると、耳珠5の加圧部分が等圧となる領域の脈波を検出することが可能となるため高精度な血圧測定を可能とする。一方、発光素子25bは、耳珠5を透過する透過光47が受光素子25aに受光される位置であれば、いずれの位置に配置してもよい。なお、光電脈波の検出原理については後に説明する。   The photoelectric pulse wave detection unit 25 includes a light emitting element 25 b disposed inside the bag body 30 and a light receiving element 25 a disposed on the surface of the U-shaped body 31 on the side opposite to the pneumatic cuff 20. The light emitting element 25b irradiates the tragus 5 as the subject with the irradiation light 49, and the light receiving element 25a receives the transmitted light 47 transmitted through the tragus 5. Here, the light receiving element 25 a is preferably arranged at a position perpendicular to the pressing surface 32 from the center of the pressing surface 32. When the light receiving element 25a is arranged at this position, it is possible to detect a pulse wave in a region where the pressure portion of the tragus 5 is equal pressure, thereby enabling highly accurate blood pressure measurement. On the other hand, the light emitting element 25b may be disposed at any position as long as the transmitted light 47 transmitted through the tragus 5 is received by the light receiving element 25a. The principle of photoelectric pulse wave detection will be described later.

また、本実施形態では、圧脈波検出部としてカフ圧検出器51を適用している。カフ圧検出器51は、袋体30に接続された圧力伝達パイプ19により伝達された圧力により、袋体30の内部の圧力であるカフ圧を検出することができる。なお、圧脈波検出原理については後に説明する。   In the present embodiment, the cuff pressure detector 51 is applied as the pressure pulse wave detector. The cuff pressure detector 51 can detect the cuff pressure that is the pressure inside the bag body 30 based on the pressure transmitted by the pressure transmission pipe 19 connected to the bag body 30. The pressure pulse wave detection principle will be described later.

また、本実施形態では、音波検出部としてマイクロフォン21を適用している。マイクロフォン21は、その変換方式の違いによる動電型、静電型、圧電型のマイクロフォンを適用することができる。マイクロフォン21は、押圧部としての空気式カフ20による、被検体としての耳珠5の押圧時又は減圧時に耳珠5から発生するコロトコフ音を検出する。なお、コロトコフ音の発生原理については後に説明する。   In the present embodiment, the microphone 21 is applied as the sound wave detection unit. As the microphone 21, an electrodynamic type, an electrostatic type, and a piezoelectric type microphone can be applied depending on the conversion method. The microphone 21 detects the Korotkoff sound generated from the tragus 5 when the tragus 5 as the subject is pressed or decompressed by the pneumatic cuff 20 as the pressing portion. The principle of Korotkoff sound generation will be described later.

そして、制御部46により、押圧部としての空気式カフ20、光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51及び音波検出部としてのマイクロフォン21の作動を制御する。具体的には、空気ポンプ52に、指示配線41fを介して空気供給を指示すると共に、カフ圧検出器51により袋体30の内部の圧力であるカフ圧の検出を指示配線41eを介して指示することによって、カフ圧を所定の圧力へと調整する。また、カフ圧検出器51により検出したカフ圧をメモリ45に記憶させることもできる。また、所定の時間にマイクロフォン21に指示配線41cを介して作動を指示して被検体としての耳珠5からのコロトコフ音を検出させ、検出結果をメモリ45に記憶させる。また、所定の時間に、光電脈波検出部25の発光素子25bに指示配線41dを介して発光を指示し、受光素子25aに指示配線41bを介して受光を指示する。そして、受光素子25aが受光した光電信号をメモリ45に記憶させることができる。   The control unit 46 controls the operation of the pneumatic cuff 20 as the pressing unit, the photoelectric pulse wave detection unit 25, the cuff pressure detector 51 as the pressure pulse wave detection unit, and the microphone 21 as the sound wave detection unit. Specifically, the air pump 52 is instructed to supply air via the instruction wiring 41f, and the cuff pressure detector 51 instructs the detection of the cuff pressure, which is the pressure inside the bag 30, via the instruction wiring 41e. By doing so, the cuff pressure is adjusted to a predetermined pressure. Further, the cuff pressure detected by the cuff pressure detector 51 can be stored in the memory 45. In addition, an operation is instructed to the microphone 21 via the instruction wiring 41 c at a predetermined time to detect the Korotkoff sound from the tragus 5 as the subject, and the detection result is stored in the memory 45. Further, at a predetermined time, the light emitting element 25b of the photoelectric pulse wave detector 25 is instructed to emit light through the instruction wiring 41d, and the light receiving element 25a is instructed to receive light through the instruction wiring 41b. Then, the photoelectric signal received by the light receiving element 25 a can be stored in the memory 45.

ここで、図2に、血圧測定装置60の別の形態の概略構成図を示す。図1と同様のものについては、符号を一致させ、説明は省略する。本実施形態では、発光素子25b及び受光素子25aの配置位置及び圧脈波検出部の構成が図1に示す形態と異なる。   Here, FIG. 2 shows a schematic configuration diagram of another embodiment of the blood pressure measurement device 60. The same reference numerals as in FIG. 1 are used to omit the description. In the present embodiment, the arrangement positions of the light emitting element 25b and the light receiving element 25a and the configuration of the pressure pulse wave detection unit are different from those shown in FIG.

本実施形態では、発光素子25b及び受光素子25aを共に袋体30の内部に配置している。発光素子25bは、被検体としての耳珠5に照射光49を照射し、受光素子25aは、耳珠5の内部で散乱した散乱光48を受光する。ここで、受光素子25aは、押圧面32の中央に配置することがよい。この位置に受光素子25aを配置すると、耳珠5の加圧部分が等圧となる領域の脈波を検出することが可能となるため高精度な血圧測定を可能とする。一方、発光素子25bは、耳珠5の内部で散乱する散乱光48が受光素子25aに受光される位置であれば、いずれの位置に配置してもよい。なお、光電脈波の検出原理については後に説明する。   In the present embodiment, both the light emitting element 25 b and the light receiving element 25 a are disposed inside the bag body 30. The light emitting element 25b irradiates the tragus 5 as the subject with the irradiation light 49, and the light receiving element 25a receives the scattered light 48 scattered inside the tragus 5. Here, the light receiving element 25 a is preferably arranged at the center of the pressing surface 32. When the light receiving element 25a is arranged at this position, it is possible to detect a pulse wave in a region where the pressure portion of the tragus 5 is equal pressure, thereby enabling highly accurate blood pressure measurement. On the other hand, the light emitting element 25b may be arranged at any position as long as the scattered light 48 scattered inside the tragus 5 is received by the light receiving element 25a. The principle of photoelectric pulse wave detection will be described later.

また、本実施形態では、圧脈波検出部として圧電素子22を適用している。圧電素子22は、圧力に応じた電圧を生じさせる素子である。そのため、被検体としての耳珠5からの圧力が圧電素子22にかかれば、その圧力に応じた電圧により圧力を検出することができるため、耳珠5の表面の振動状態を検出することができる。この場合、カフ圧検出器51は、カフ圧の変化によって圧脈を検出する必要はないが、カフ圧検出器51によっても圧脈を検出し、圧電素子22との検出値を比較して精度を高めるようにしてもよい。   In the present embodiment, the piezoelectric element 22 is applied as the pressure pulse wave detection unit. The piezoelectric element 22 is an element that generates a voltage according to pressure. Therefore, if the pressure from the tragus 5 as the subject is applied to the piezoelectric element 22, the pressure can be detected by a voltage corresponding to the pressure, so that the vibration state of the surface of the tragus 5 can be detected. . In this case, the cuff pressure detector 51 does not need to detect a pressure pulse due to a change in the cuff pressure, but the cuff pressure detector 51 also detects the pressure pulse and compares the detection value with the piezoelectric element 22 for accuracy. You may make it raise.

なお、上記発光素子25b、受光素子25a及び圧電素子22は、制御部46と指示配線41d、41c、41aを介してそれぞれ接続されている。そして、制御部46からの指示配線41dを介した作動指示により、発光素子25bは発光を開始し、制御部46からの指示配線41cを介した作動指示により、受光素子25aは受光を開始する。また、制御部46からの指示配線41aを介した作動指示により、圧電素子22は圧力の検出を開始する。また、制御部46は、受光素子25aの受光する光電信号及び圧電素子22の検出する検出信号をメモリ45に記憶させることもできる。   The light emitting element 25b, the light receiving element 25a, and the piezoelectric element 22 are connected to the control unit 46 via the instruction wires 41d, 41c, and 41a, respectively. The light emitting element 25b starts to emit light according to an operation instruction from the control unit 46 via the instruction wiring 41d, and the light receiving element 25a starts to receive light according to an operation instruction from the control unit 46 via the instruction wiring 41c. Further, the piezoelectric element 22 starts detecting pressure in response to an operation instruction from the control unit 46 via the instruction wiring 41a. The control unit 46 can also store the photoelectric signal received by the light receiving element 25 a and the detection signal detected by the piezoelectric element 22 in the memory 45.

ここで、光電脈波の検出原理、圧脈波の検出原理及びコロトコフ音の発生原理のそれぞれの原理について図1〜図3を参照して説明する。図3は、光電脈波、圧脈波及びコロトコフ音を、図1に示す被検体としての耳珠5を押圧して、減圧過程において測定したそれぞれの結果を示している。図3中、一点差線は押圧力としてのカフ圧力38を示し、各グラフは上から光電脈波形35、圧脈波形36及びコロトコフ音波形37の検出結果を示している。また、光電脈波形35及び圧脈波形36上の点線は、それぞれ光電脈波形35及び圧脈波形36の包絡線54、55を示している。また、左側の横軸は、カフ圧力(mmhg)を示し、右側の縦軸は、光電脈波、圧脈波の検出結果のそれぞれに対応した信号振幅を示している。なお、コロトコフ音は、その発生又は消失のみを検出する。   Here, the respective principles of the detection principle of the photoelectric pulse wave, the detection principle of the pressure pulse wave, and the generation principle of the Korotkoff sound will be described with reference to FIGS. FIG. 3 shows respective results obtained by measuring photoelectric pulse waves, pressure pulse waves, and Korotkoff sounds in the depressurization process by pressing the tragus 5 as the subject shown in FIG. In FIG. 3, the one-point difference line shows the cuff pressure 38 as the pressing force, and each graph shows the detection result of the photoelectric pulse waveform 35, the pressure pulse waveform 36 and the Korotkoff sound waveform 37 from the top. The dotted lines on the photoelectric pulse waveform 35 and the pressure pulse waveform 36 indicate envelopes 54 and 55 of the photoelectric pulse waveform 35 and the pressure pulse waveform 36, respectively. The horizontal axis on the left side indicates the cuff pressure (mmhg), and the vertical axis on the right side indicates the signal amplitude corresponding to the detection result of the photoelectric pulse wave and the pressure pulse wave. Note that only the occurrence or disappearance of the Korotkoff sound is detected.

まず、光電脈波の検出原理について説明する。まず、図1に示す発光素子25bの耳珠5に照射する照射光49は、血管2を矢印の示す耳珠5の抹消側へ流れる血球3により散乱される。そして血球3により散乱した光のうち、耳珠5を透過した透過光47を受光素子25aは受光する。ここで、血球3の速度は心臓の鼓動に応じた速度変化を伴うため、透過光47の透過量が変化する。そのため、受光素子25aにより透過光47を受光し、制御部46で透過光47の透過量変化を算出することにより、血球3の流速としての光電脈波を検出することができる。なお、受光素子25aが透過光47を受光して脈波を検出することから、上記脈波検出方法を、透過型光電脈波法ということとする。   First, the principle of photoelectric pulse wave detection will be described. First, the irradiation light 49 applied to the tragus 5 of the light emitting element 25b shown in FIG. 1 is scattered by the blood cell 3 flowing through the blood vessel 2 to the peripheral side of the tragus 5 indicated by an arrow. The light receiving element 25 a receives the transmitted light 47 transmitted through the tragus 5 among the light scattered by the blood cell 3. Here, since the speed of the blood cell 3 is accompanied by a speed change according to the heartbeat, the transmission amount of the transmitted light 47 changes. Therefore, the photoelectric pulse wave as the flow velocity of the blood cell 3 can be detected by receiving the transmitted light 47 by the light receiving element 25 a and calculating the transmission amount change of the transmitted light 47 by the control unit 46. Since the light receiving element 25a receives the transmitted light 47 and detects the pulse wave, the pulse wave detection method is referred to as a transmission photoelectric pulse wave method.

また、図2に示す形態では、図2に示す発光素子25bの耳珠5に照射する照射光49は、血管2を矢印の示す耳珠5の抹消側へ流れる血球3により散乱される。そして血球3により散乱した光のうち、耳珠5で反射した散乱光48を受光素子25aは受光する。ここで、血球3の速度は心臓の鼓動に応じた速度変化を伴うため、受光素子25aによる散乱光48の受光量が変化する。そのため、受光素子25aにより散乱光48を受光し、制御部46で散乱光48の受光量変化を算出することにより、血球3の流速としての光電脈波を検出することができる。なお、受光素子25aが耳珠5の血球3で反射した散乱光48を受光して脈波を検出することから、上記脈波検出方法を、反射型光電脈波法ということとする。   In the form shown in FIG. 2, the irradiation light 49 irradiating the tragus 5 of the light emitting element 25b shown in FIG. 2 is scattered by the blood cell 3 flowing through the blood vessel 2 to the peripheral side of the tragus 5 indicated by the arrow. Of the light scattered by the blood cell 3, the light receiving element 25a receives the scattered light 48 reflected by the tragus 5. Here, since the speed of the blood cell 3 is accompanied by a speed change according to the heartbeat, the amount of the scattered light 48 received by the light receiving element 25a changes. Therefore, the photoelectric pulse wave as the flow velocity of the blood cell 3 can be detected by receiving the scattered light 48 by the light receiving element 25a and calculating the amount of received light of the scattered light 48 by the control unit 46. In addition, since the light receiving element 25a receives the scattered light 48 reflected by the blood cell 3 of the tragus 5 and detects a pulse wave, the pulse wave detection method is referred to as a reflective photoelectric pulse wave method.

ここで、図1に示す空気式カフ20により被検体としての耳珠5を血流が停止するまで押圧し、その後、袋体30の内部の圧力であるカフ圧を減圧する。すると、図3に示すように、ある一定のカフ圧以下となると、光電脈波形35が発生する。この時刻をT11とし、そのときのカフ圧38をP11とする。そして、さらに減圧すると、血流の流速が変化するために、それと共に、受光素子25aの受光量も変化する。本実施形態の場合、血流の流速の変化の増加と共に検出される脈波の強度も増加する。そして、ある一定のカフ圧となると、脈波の値は最大となる。さらにカフ圧38を減少させると、光電脈波形35が減少に転じる。その後、光電脈波形35の包絡線54が変曲し光電脈波形35が略急に減少する。この時刻をT21とし、そのときのカフ圧38をP21とする。そして、P11を最高血圧に対応する値、P21を最低血圧に対応する値として血圧値を算出することができる。   Here, the tragus 5 as the subject is pressed by the pneumatic cuff 20 shown in FIG. 1 until the blood flow stops, and then the cuff pressure, which is the pressure inside the bag body 30, is reduced. Then, as shown in FIG. 3, when the pressure is below a certain cuff pressure, a photoelectric pulse waveform 35 is generated. This time is T11, and the cuff pressure 38 at that time is P11. When the pressure is further reduced, the flow rate of the blood flow changes, and accordingly, the amount of light received by the light receiving element 25a also changes. In the case of this embodiment, the intensity of the detected pulse wave increases as the change in the blood flow velocity increases. When a certain cuff pressure is reached, the pulse wave value is maximized. When the cuff pressure 38 is further decreased, the photoelectric pulse waveform 35 starts to decrease. After that, the envelope 54 of the photoelectric pulse waveform 35 is inflected, and the photoelectric pulse waveform 35 decreases substantially abruptly. This time is T21, and the cuff pressure 38 at that time is P21. The blood pressure value can be calculated with P11 as a value corresponding to the highest blood pressure and P21 as a value corresponding to the lowest blood pressure.

次に、圧脈波の検出の原理について説明する。まず、図1に示す空気式カフ20により耳珠5を血流が停止するまで押圧し、その後、袋体30内部の圧力であるカフ圧を減圧する。すると、ある一定値以下となると、血液が流れ始める。血管2は押圧されているため血液は押圧された狭い領域を流れる。そのため、血流の圧力が一時的に高まり、耳珠5の表面を押し上げ、さらに耳珠5の表面は押圧面32の表面を押し下げる。この押し下げ量は、カフ圧に影響しカフ圧を一時的に昇圧させる。この昇圧量をカフ圧検出器51によって検出することによりカフ圧としての圧脈波を検出することができる。なお、この脈波検出方法を圧脈波法ということとする。   Next, the principle of detection of the pressure pulse wave will be described. First, the tragus 5 is pressed by the pneumatic cuff 20 shown in FIG. 1 until the blood flow stops, and then the cuff pressure, which is the pressure inside the bag body 30, is reduced. Then, when it becomes below a certain value, blood begins to flow. Since the blood vessel 2 is pressed, the blood flows in the pressed narrow area. Therefore, the pressure of blood flow temporarily increases to push up the surface of the tragus 5, and the surface of the tragus 5 pushes down the surface of the pressing surface 32. This amount of depression affects the cuff pressure and temporarily increases the cuff pressure. By detecting the amount of pressure increase by the cuff pressure detector 51, the pressure pulse wave as the cuff pressure can be detected. This pulse wave detection method is referred to as a pressure pulse wave method.

また、圧脈波の検出に図2に示す圧電素子22を適用した場合は、まず、図1に示す空気式カフ20により被検体としての耳珠5を血流が停止するまで押圧し、その後、袋体30の内部の圧力であるカフ圧を減圧する。すると、ある一定値以下となると、血液が流れ始める。血管2は押圧されているため血液は押圧された狭い領域を流れる。そのため、血流の圧力が一時的に高まり、耳珠5の表面を押し上げる。この押し上げによる圧力を圧電素子22により検出することにより、耳珠5の表面の圧力としての圧脈波を検出することができる。なお、この脈波検出方法についても圧脈波法ということとする。   When the piezoelectric element 22 shown in FIG. 2 is applied to the detection of the pressure pulse wave, first, the tragus 5 as the subject is pressed by the pneumatic cuff 20 shown in FIG. 1 until the blood flow stops, and then The cuff pressure that is the pressure inside the bag body 30 is reduced. Then, when it becomes below a certain value, blood begins to flow. Since the blood vessel 2 is pressed, the blood flows in the pressed narrow area. Therefore, the blood pressure increases temporarily and pushes up the surface of the tragus 5. By detecting the pressure due to the pushing up by the piezoelectric element 22, it is possible to detect the pressure pulse wave as the pressure on the surface of the tragus 5. This pulse wave detection method is also referred to as a pressure pulse wave method.

ここで、図1に示す空気式カフ20により耳珠5を血流が停止するまで押圧し、その後、カフ圧を減圧する。すると、図3に示すように、カフ圧38がある一定の圧力以下となると、圧脈波形36が発生する。この時刻をT12とし、そのときのカフ圧38をP12とする。そして、さらに減圧すると、血流の流速が次第に増加するために、それと共に、図1に示す血管2の表面の押し上げ量も増加する。そのため、押し上げ量の増加と共に検出される圧脈波も増加する。そして、ある一定のカフ圧となると、脈波の検出値は最大となる。その後、さらに減圧すると、血管2が広がり同時に血管2の弾性率が増加するため、圧脈波形36の検出値は減少に転じる。その後、圧脈波形36の包絡線55が変曲し圧脈波形36が略急に減少する。そして、カフ圧38が最低血圧値を下回ると血管2の弾性率はさらに増加し脈波は消失する。このときの時刻をT22とし、そのときのカフ圧38をP22とする。P12を最高血圧に対応する値、P22を最低血圧に対応する値として血圧値を算出することができる。   Here, the tragus 5 is pressed by the pneumatic cuff 20 shown in FIG. 1 until the blood flow stops, and then the cuff pressure is reduced. Then, as shown in FIG. 3, when the cuff pressure 38 falls below a certain pressure, a pressure pulse waveform 36 is generated. This time is T12, and the cuff pressure 38 at that time is P12. Further, when the pressure is further reduced, the flow rate of the blood flow gradually increases, and the push-up amount on the surface of the blood vessel 2 shown in FIG. 1 also increases. For this reason, the pressure pulse wave detected as the push-up amount increases. When a certain cuff pressure is reached, the detected pulse wave value is maximized. Thereafter, when the pressure is further reduced, the blood vessel 2 expands and at the same time the elasticity of the blood vessel 2 increases, so that the detected value of the pressure pulse waveform 36 starts to decrease. Thereafter, the envelope 55 of the pressure pulse waveform 36 is inflected, and the pressure pulse waveform 36 decreases substantially suddenly. When the cuff pressure 38 falls below the minimum blood pressure value, the elastic modulus of the blood vessel 2 further increases and the pulse wave disappears. The time at this time is T22, and the cuff pressure 38 at that time is P22. The blood pressure value can be calculated with P12 as a value corresponding to the maximum blood pressure and P22 as a value corresponding to the minimum blood pressure.

次に、コロトコフ音の発生の原理について説明する。まず、図1に示す空気式カフ20により被検体としての耳珠5を血流が停止するまで押圧し、その後、袋体30の内部の圧力であるカフ圧を減圧する。すると、カフ圧がある一定値以下となると、血液が流れ始める。血管2は押圧されているため血液は押圧された狭い領域を流れる。そのため、血流の圧力が一時的に高まり、耳珠5の血管壁と血球3が衝突する。この血球3の衝突音がコロトコフ音である。   Next, the principle of generating Korotkoff sounds will be described. First, the tragus 5 as the subject is pressed by the pneumatic cuff 20 shown in FIG. 1 until the blood flow stops, and then the cuff pressure, which is the pressure inside the bag body 30, is reduced. Then, when the cuff pressure falls below a certain value, blood begins to flow. Since the blood vessel 2 is pressed, the blood flows in the pressed narrow area. Therefore, the blood pressure increases temporarily, and the blood vessel wall of the tragus 5 collides with the blood cell 3. The collision sound of the blood cell 3 is a Korotkoff sound.

ここで、図1に示す空気式カフ20により耳珠5を血流が停止するまで押圧し、その後、袋体30の内部の圧力であるカフ圧を減圧する。すると、図3に示すように、カフ圧38がある一定の圧力以下となると、コロトコフ音波形37が発生する。この時刻をT13とし、そのときのカフ圧38をP13とする。その後、減圧すると血管2が広がり、血管2の弾性率の増加により血管壁と血球3との衝突音は弾性力により吸収される。そのため、コロトコフ音は消失する。このときの時刻をT23とし、そのときのカフ圧をP23とする。P13を最高血圧に対応する値、P23を最低血圧に対応する値として血圧値を算出することができる。なお、コロトコフ音により血圧を算出する方法をコロトコフ法ということとする。   Here, the tragus 5 is pressed by the pneumatic cuff 20 shown in FIG. 1 until the blood flow stops, and then the cuff pressure, which is the pressure inside the bag 30, is reduced. Then, as shown in FIG. 3, when the cuff pressure 38 becomes a certain pressure or lower, a Korotkoff sound waveform 37 is generated. This time is T13, and the cuff pressure 38 at that time is P13. Thereafter, when the pressure is reduced, the blood vessel 2 expands, and the collision sound between the blood vessel wall 3 and the blood cell 3 is absorbed by the elastic force due to an increase in the elasticity of the blood vessel 2. Therefore, the Korotkoff sound disappears. The time at this time is T23, and the cuff pressure at that time is P23. The blood pressure value can be calculated with P13 as a value corresponding to the highest blood pressure and P23 as a value corresponding to the lowest blood pressure. A method for calculating blood pressure using Korotkoff sounds is called Korotkoff method.

ここで、図3に示すように、光電脈波、圧脈波及びコロトコフ音の発生時期及び消失時期は、検出方法の違いから差が生じる傾向にある。図3では、光電脈波、圧脈波、コロトコフ音の順に波形が発生している例を示しているが、必ずしも図3のようになることはなく、血管壁の硬さ、血管の太さ、血流量等の血流に関する値に影響される。   Here, as shown in FIG. 3, the photoelectric pulse wave, the pressure pulse wave, and the Korotkoff sound generation time and disappearance time tend to vary due to differences in detection methods. FIG. 3 shows an example in which the waveform is generated in the order of photoelectric pulse wave, pressure pulse wave, and Korotkoff sound. However, the waveform is not necessarily as shown in FIG. It is influenced by values related to blood flow such as blood flow.

従って、光電脈波、圧脈波及びコロトコフ音の発生時期及び消失時期から得られる血圧値には、誤差を含むこととなる。また、被検体によって脈拍数が異なるため、脈波の周期も異なることとなる。そのため、本実施形態では、図1に示す制御部46は、光電脈波検出部25に脈波を検出させ、検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定し、空気式カフ20に所定の押圧力から単位時間当たりの減圧量に従って減圧させ、空気式カフ20に減圧させる過程において、光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51及び音波検出部としてのマイクロフォン21のうち少なくとも2つを作動させる。すなわち、光電脈波検出部25には光電脈波を検出させ、カフ圧検出器51には圧脈波を検出させ、マイクロフォン21にはコロトコフ音を検出させる。   Therefore, an error is included in the blood pressure value obtained from the generation time and disappearance time of the photoelectric pulse wave, pressure pulse wave, and Korotkoff sound. In addition, since the pulse rate varies depending on the subject, the cycle of the pulse wave also varies. Therefore, in this embodiment, the control unit 46 shown in FIG. 1 causes the photoelectric pulse wave detection unit 25 to detect a pulse wave, and obtains a pulse rate per unit time obtained from the detected pulse wave and a predetermined per beat. In the process of calculating the amount of decompression per unit time from the product of the amount of decompression and depressurizing the pneumatic cuff 20 according to the amount of decompression per unit time from a predetermined pressing force, the photoelectric pulse wave detection in the process of depressurizing to the pneumatic cuff 20 And at least two of the cuff pressure detector 51 as the pressure pulse wave detector and the microphone 21 as the sound wave detector. That is, the photoelectric pulse wave detector 25 detects the photoelectric pulse wave, the cuff pressure detector 51 detects the pressure pulse wave, and the microphone 21 detects the Korotkoff sound.

ここで、所定の押圧力とは、例えば図3に示すように100mmhg以上としているが、耳珠に対して負担を考慮すると、脈波が停止したときの押圧力(=カフ圧)を所定の押圧力とすることがよい。   Here, the predetermined pressing force is, for example, 100 mmhg or more as shown in FIG. 3, but considering the burden on the tragus, the pressing force when the pulse wave stops (= cuff pressure) is predetermined. It is good to use a pressing force.

このように、光電脈波により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。さらに、光電脈波法、圧脈波法及びコロトコフ法の少なくとも2つの方法により血圧結果を得ることもでき、測定結果の妥当性の判断も可能である。従って、精度の高い血圧測定を可能とする。また、本実施形態のように光電脈波検出部25、カフ圧検出器51及びマイクロフォン21を備える場合には、さらに、光電脈波法、圧脈波法及びコロトコフ法により3種類の血圧結果を得ることができ、さらに精度の高い血圧測定を可能とする。   Thus, by determining the decompression speed based on the photoelectric pulse wave, the blood pressure can be measured at an appropriate decompression speed in accordance with the pulse rate of the subject, so that the blood pressure can be measured accurately in a short time. . Furthermore, the blood pressure result can be obtained by at least two methods of the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method, and the validity of the measurement result can be judged. Therefore, blood pressure can be measured with high accuracy. Further, when the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 are provided as in the present embodiment, three types of blood pressure results are further obtained by the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method. It is possible to obtain blood pressure measurement with higher accuracy.

また、図3に示す、カフ圧の差(P11、P12、P13のそれぞれの差、P21、P22、P23のそれぞれの差)が著しく大きい場合には、血圧の測定結果に妥当性がない場合がある。そのため、本実施形態では、図1に示す制御部46は、光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51又は音波検出部としてのマイクロフォン21の少なくとも2つに検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の差が所定値よりも大きいときにエラー信号を出力する。   In addition, when the difference in cuff pressure (the difference between P11, P12, and P13, the difference between P21, P22, and P23) shown in FIG. 3 is remarkably large, the blood pressure measurement result may not be valid. is there. Therefore, in the present embodiment, the control unit 46 shown in FIG. 1 causes at least two of the photoelectric pulse wave detection unit 25, the cuff pressure detector 51 as the pressure pulse wave detection unit, or the microphone 21 as the sound wave detection unit to detect. When the difference between the maximum blood pressure value or the minimum blood pressure value determined based on each detected value is larger than a predetermined value, an error signal is output.

脈波情報検出手段としての光電脈波法、圧脈波法及びコロトコフ法のうち少なくとも2つの方法によって得られた結果の差が所定値よりも大きいときにエラー信号を出力することにより、各方法による血圧の測定時に雑音が混入した可能性等、測定結果の妥当性の判断を可能とする。そのため、再測定をする等の判断を可能とする。   Each method by outputting an error signal when the difference between the results obtained by at least two methods out of the photoelectric pulse wave method, the pressure pulse wave method and the Korotkoff method as the pulse wave information detection means is larger than a predetermined value. This makes it possible to judge the validity of measurement results, such as the possibility of noise being mixed during blood pressure measurement. Therefore, it is possible to make a judgment such as re-measurement.

また、光電脈波法、圧脈波法及びコロトコフ法のうち少なくとも2つの方法による検出した検出値に妥当性がある場合には、制御部46は、光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51又は音波検出部としてのマイクロフォン21の少なくとも2つに検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の平均値を算出する。   When the detected value detected by at least two methods among the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method is valid, the control unit 46 includes the photoelectric pulse wave detection unit 25, the pressure pulse wave detection, and the like. An average value of the maximum blood pressure value or the minimum blood pressure value determined based on the respective detected values detected by at least two of the cuff pressure detector 51 as the unit or the microphone 21 as the sound wave detection unit is calculated.

脈波情報検出手段としての光電脈波方法、圧脈波法及びコロトコフ法のうち少なくとも2つの方法によって得られた結果の平均値を取ることにより、各方法による測定結果の誤差を補い、より妥当性のある血圧値を得ることができる。   By taking the average value of the results obtained by at least two of the photoelectric pulse wave method, the pressure pulse wave method and the Korotkoff method as pulse wave information detection means, the error in the measurement result by each method is compensated and more appropriate. A blood pressure value can be obtained.

さらに、本実施形態のように、光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51又は音波検出部としてのマイクロフォン21を3つとも備える場合には、制御部46は、光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51及び音波検出部としてのマイクロフォン21に検出させた検出値に基づいて定められる最高血圧値又は最低血圧値の中間値を選択することも含む。   Further, as in the present embodiment, when the photoelectric pulse wave detection unit 25, the cuff pressure detector 51 as the pressure pulse wave detection unit, or the three microphones 21 as the sound wave detection units are provided, the control unit 46 is Select an intermediate value between the systolic blood pressure value or the systolic blood pressure value determined based on the detected value detected by the photoelectric pulse wave detecting unit 25, the cuff pressure detector 51 as the pressure pulse wave detecting unit, and the microphone 21 as the sound wave detecting unit. To include.

脈波情報検出手段としての光電脈波法、圧脈波法及びコロトコフ法の3つの方法によって得られた結果の中間値を取ることにより、各方法による測定結果の誤差を補い、より妥当性のある血圧値を得ることができる。   By taking an intermediate value of the results obtained by the three methods of photoelectric pulse wave method, pressure pulse wave method and Korotkoff method as pulse wave information detection means, the error of the measurement result by each method is compensated and more appropriate A certain blood pressure value can be obtained.

また、光電脈波法は、図1に示す押圧面32による被検体としての耳珠5の押圧状態に影響されることなく、耳珠5の光電脈波を検出することができるため、光電脈波の波形の振幅強度と、他の方法による検出信号の波形の振幅強度との関係で、圧脈波法及びコロトコフ法による血圧測定の妥当性を検討することもできる。そのため、本実施形態の血圧測定装置60では、制御部46は、押圧部としての空気式カフ20による押圧力53の減圧過程での圧脈波検出部としてのカフ圧検出器51における検出脈波の振幅強度の最大値又は空気式カフ20による押圧力53の減圧過程での音波検出部としてのマイクロフォン21における検出信号強度の最大値が空気式カフ20による押圧前の光電脈波検出部25の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する。   Further, since the photoelectric pulse wave method can detect the photoelectric pulse wave of the tragus 5 without being affected by the pressing state of the tragus 5 as the subject by the pressing surface 32 shown in FIG. The validity of the blood pressure measurement by the pressure pulse wave method and the Korotkoff method can also be examined by the relationship between the amplitude intensity of the wave waveform and the amplitude intensity of the waveform of the detection signal by another method. Therefore, in the blood pressure measurement device 60 of the present embodiment, the control unit 46 detects the detected pulse wave in the cuff pressure detector 51 as the pressure pulse wave detection unit in the process of reducing the pressing force 53 by the pneumatic cuff 20 as the pressing unit. The maximum value of the detection signal intensity in the microphone 21 as the sound wave detection unit in the process of reducing the pressing force 53 by the pneumatic cuff 20 is the maximum value of the amplitude amplitude of the photoelectric pulse wave detection unit 25 before being pressed by the pneumatic cuff 20. When it is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave, a warning is output.

また、本実施形態のように光電脈波検出部25、カフ圧検出器51又はマイクロフォン21を3つとも備える場合には、制御部46は、押圧部としての空気式カフ20による押圧力53の減圧過程でのカフ圧検出器51における検出脈波の振幅強度の最大値及び空気式カフ20による押圧力53の減圧過程でのマイクロフォン21における検出信号強度の最大値が空気式カフ20による押圧前の光電脈波検出部25の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する。ここで、圧脈振幅強度の最大値とは、図3に示す圧脈波形36の30秒付近、コロトコフ音波形37の発生時の振幅強度をいい、所定の値とは、図3に示す光電脈波形35の60秒以降で一定の値に収束したときの振幅強度に基づいて定めた所定値をいい、例えば、図3において、脈波が消失している20秒付近の電気的なノイズレベル以上で、光電脈波形35の振幅強度と圧脈波形36の振幅の値との関係から求められる、時刻T12での圧脈波形36の振幅値以下の値とすればよいが、この所定値の設定は1例に過ぎない。また、例えば、図3において、コロトコフ音が消失している20秒付近の電気的なノイズレベル以上で、光電脈波形35の振幅強度と圧脈波形36の振幅の値との関係から求められる、時刻T13でのコロトコフ音波形37の振幅値以下の値とすればよいが、この所定値の設定は1例に過ぎない。   Further, when the photoelectric pulse wave detector 25, the cuff pressure detector 51, or the microphone 21 are all provided as in the present embodiment, the control unit 46 is configured to reduce the pressing force 53 by the pneumatic cuff 20 as a pressing unit. The maximum value of the amplitude intensity of the detected pulse wave in the cuff pressure detector 51 in the depressurization process and the maximum value of the detection signal intensity in the microphone 21 in the depressurization process of the pressing force 53 by the pneumatic cuff 20 are before pressing by the pneumatic cuff 20. A warning is output when the value is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detector 25. Here, the maximum value of the pressure pulse amplitude intensity means the amplitude intensity when the Korotkoff sound waveform 37 is generated in the vicinity of 30 seconds of the pressure pulse waveform 36 shown in FIG. 3, and the predetermined value indicates the photoelectric intensity shown in FIG. This is a predetermined value determined based on the amplitude intensity when the pulse waveform 35 converges to a constant value after 60 seconds. For example, in FIG. 3, the electrical noise level around 20 seconds when the pulse wave disappears in FIG. The value obtained from the relationship between the amplitude intensity of the photoelectric pulse waveform 35 and the amplitude value of the pressure pulse waveform 36 may be a value equal to or smaller than the amplitude value of the pressure pulse waveform 36 at time T12. Setting is only an example. Further, for example, in FIG. 3, it is obtained from the relationship between the amplitude intensity of the photoelectric pulse waveform 35 and the amplitude value of the pressure pulse waveform 36 at or above the electrical noise level near 20 seconds when the Korotkoff sound disappears. Although it may be set to a value equal to or smaller than the amplitude value of the Korotkoff sound waveform 37 at time T13, the setting of the predetermined value is only an example.

図1に示すカフ圧検出器51の検出脈波の振幅強度の最大値が所定値よりも小さいか或いはマイクロフォン21の検出信号強度の最大値が所定値よりも小さいときには、マイクロフォン21の検出感度が低いか或いは耳珠5の圧迫が不十分である可能性があるため、警告により、カフ圧検出器51又はマイクロフォン21の検出感度を上げたり、血圧測定装置60の再装着を促したりする等の措置を行うことができる。また、警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被検者にして再測定が必要であるか否かを判断することもできる。   When the maximum value of the amplitude intensity of the detected pulse wave of the cuff pressure detector 51 shown in FIG. 1 is smaller than a predetermined value or the maximum value of the detection signal intensity of the microphone 21 is smaller than a predetermined value, the detection sensitivity of the microphone 21 is high. Since it may be low or the compression of the tragus 5 may be insufficient, the warning increases the detection sensitivity of the cuff pressure detector 51 or the microphone 21 or prompts the blood pressure measuring device 60 to be remounted. Measures can be taken. In addition, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary by a warning. It is also possible to determine whether or not the subject needs to be remeasured based on the measurement result after the warning.

また、コロトコフ法による血圧測定では、血液の粘性に影響される。即ち、血液の粘性が高い場合、血液のレイノルズ数は小さくなり、その流れは乱流から次第に層流に移行する。また、レイノルズ数は血管の管径とも関係し、管径が細くなるとレイノルズ数は小さくなる。血液の粘性と血管の管径とでは、レイノルズ数に与える影響は同じであるが、血液の粘性は大幅に変化することはなく、腕などの比較的太い血管では血流は略乱流となる。しかし、本実施形態のように、図1に示す外耳の耳珠5のように比較的小さい生体の部位では、血管2の管径は極小さい。そのため、レイノルズ数に与える影響は大きく、血液の粘性の変化によるレイノルズ数の変化量は大きい。   Moreover, blood pressure measurement by the Korotkoff method is affected by the viscosity of blood. That is, when the viscosity of the blood is high, the Reynolds number of the blood becomes small, and the flow gradually shifts from turbulent flow to laminar flow. The Reynolds number is also related to the tube diameter of the blood vessel, and the Reynolds number decreases as the tube diameter decreases. Blood viscosity and blood vessel tube diameter have the same effect on Reynolds number, but blood viscosity does not change significantly, and blood flow is almost turbulent in relatively thick blood vessels such as arms. . However, as in this embodiment, the diameter of the blood vessel 2 is extremely small in a relatively small living body such as the tragus 5 of the outer ear shown in FIG. Therefore, the influence on the Reynolds number is large, and the amount of change in the Reynolds number due to a change in blood viscosity is large.

コロトコフ音は、血流が乱流である場合、血球が血管壁に衝突するときに発生する。そのため、血流が層流となると、コロトコフ音は発生しない。従って、血液の粘性が高い場合、減圧過程においてコロトコフ音の発生時刻(図3のT13)は図3に示す時刻からさらに遅れる。また、さらに減圧すると、血管径が拡張し流速が低下する。そのため、乱流状態が弱くなり、コロトコフ音の消失時刻(図3のT23)は図3に示す時刻から早まることとなる。   The Korotkoff sound is generated when a blood cell collides with a blood vessel wall when the blood flow is turbulent. Therefore, when the blood flow becomes a laminar flow, Korotkoff sounds are not generated. Therefore, when the blood viscosity is high, the Korotkoff sound generation time (T13 in FIG. 3) is further delayed from the time shown in FIG. Further, when the pressure is further reduced, the blood vessel diameter is expanded and the flow velocity is decreased. Therefore, the turbulent state becomes weak, and the Korotkoff sound disappearance time (T23 in FIG. 3) is advanced from the time shown in FIG.

そのため、本実施形態の血圧測定装置60では、図1に示す制御部46は、押圧部としての空気式カフ20による所定の押圧力からの減圧過程で光電脈波検出部25に脈波を検出させ且つ音波検出部としてのマイクロフォン21にコロトコフ音を検出させ、光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値が所定値よりも大きいか否か又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53と光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する。なお、光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53とは、図3における時刻T21のときのカフ圧P21に対応する。   Therefore, in the blood pressure measurement device 60 of the present embodiment, the control unit 46 shown in FIG. 1 detects the pulse wave in the photoelectric pulse wave detection unit 25 in the process of depressurization from a predetermined pressing force by the pneumatic cuff 20 as the pressing unit. In addition, the microphone 21 as the sound wave detection unit detects Korotkoff sound, and the pressure 21 starts to detect the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detection unit 25 and the Korotkoff sound is detected by the microphone 21. Whether the absolute value of the difference from the pressing force 53 to be detected is larger than a predetermined value or the waveform of the pulse wave detected by the photoelectric pulse wave detection unit 25 and the pressing force 53 at which the Korotkoff sound detected by the microphone 21 disappears. It is determined whether the slope of the envelope 54 is negative and the absolute value of the difference from the pressing force that is the inflection point of the envelope 54 is greater than a predetermined value. Note that the pressing force 53 at which the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative and the inflection point of the envelope 54 is the cuff pressure at time T21 in FIG. Corresponds to P21.

光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値が所定値よりも大きいか又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53と光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53との差の絶対値が所定値よりも大きい場合は、血液の粘性が高いためと推定される。そのため、この場合には、血液の粘性が高いことを通知することができる。これにより、被検体の健康状態を知ることが可能である。   The absolute value of the difference between the pressing force 53 that starts detecting the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detecting unit 25 and the pressing force 53 that starts detecting Korotkoff sound by the microphone 21 is greater than a predetermined value. Or the pressure 53 at which the Korotkoff sound detected by the microphone 21 disappears and the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative and the inflection point of the envelope 54 is obtained. When the absolute value of the difference from the pressing force 53 is larger than a predetermined value, it is estimated that the viscosity of the blood is high. Therefore, in this case, it can be notified that the viscosity of blood is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53と光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53との差が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、再測定を行う等の処理を行うことができる。   On the other hand, the difference between the pressing force 53 that starts detecting the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detecting unit 25 and the pressing force 53 that starts detecting Korotkoff sound by the microphone 21 or the microphone The pressing force 53 at which the Korotkoff sound detected at 21 disappears and the pressing force 53 at which the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative and becomes the inflection point of the envelope 54 If the difference is large compared to the predetermined value, the measurement result may not be valid. In this case, processing such as remeasurement can be performed.

また、本実施形態の血圧測定装置60では、制御部46は、押圧部としての空気式カフ20による所定の押圧力からの減圧過程で圧脈波検出部としてのカフ圧検出器51及び音波検出部としてのマイクロフォン21を作動させ、カフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値が所定値よりも大きいか否か又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値よりも大きいか否かを判断する。なお、カフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53とは、図3における時刻T22のときのカフ圧P22に対応する。   Further, in the blood pressure measurement device 60 of the present embodiment, the control unit 46 detects the cuff pressure detector 51 as the pressure pulse wave detection unit and the sound wave detection in the depressurization process from the predetermined pressing force by the pneumatic cuff 20 as the pressing unit. The pressing force 53 that starts detecting the rising point of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 and the pressing force 53 that starts detecting Korotkoff sound by the microphone 21 are activated. Whether the absolute value of the difference is larger than a predetermined value or the slope of the envelope 55 of the waveform of the pulse wave detected by the pressure 53 and the cuff pressure detector 51 where the Korotkoff sound detected by the microphone 21 disappears and It is determined whether or not the absolute value of the difference from the pressing force 53 that is the inflection point of the envelope 55 is greater than a predetermined value. It should be noted that the pressing force 53 at which the slope of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 is negative and the inflection point of the envelope 55 is the cuff pressure P22 at time T22 in FIG. Corresponding to

カフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値が所定値よりも大きいか又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差が所定値よりも大きい場合には、血液の粘性が高いためと推定される。そのため、この場合には、血液の粘性が高いことを通知することができる。これにより、被検者の健康状態を知ることが可能である。   The absolute value of the difference between the pressing force 53 that starts detecting the rising point of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 and the pressing force 53 that starts detecting Korotkoff sound by the microphone 21 is greater than a predetermined value. The pressing force 53 at which the Korotkoff sound detected by the microphone 21 disappears or the envelope 55 of the waveform of the pulse wave detected by the cuff pressure detector 51 is negative and becomes the inflection point of the envelope 55 When the difference from 53 is larger than a predetermined value, it is estimated that the viscosity of blood is high. Therefore, in this case, it can be notified that the viscosity of blood is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、カフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、再測定を行う等の処理を行うことができる。   On the other hand, the absolute value of the difference between the pressing force at which the rising point of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 starts to be detected and the pressing force 53 at which the Korotkoff sound starts to be detected by the microphone 21 or The pressing force 53 at which the Korotkoff sound detected by the microphone 21 disappears, and the pressing force 53 at which the inclination of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 is negative and becomes the inflection point of the envelope 55. If the absolute value of the difference is larger than the predetermined value, the measurement result may not be valid. In this case, processing such as remeasurement can be performed.

また、本実施形態の血圧測定装置60では、制御部46は、押圧部としての空気式カフ20による所定の押圧力からの減圧過程で光電脈波検出部25及び圧脈波検出部としてのカフ圧検出器51に脈波を検出させ、光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53との差の絶対値が所定値よりも大きいか否か又は光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値よりも大きいか否かを判断する。なお、光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53とは、図3における時刻T21のときのカフ圧P21に対応する。また、カフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53とは、図3における時刻T22のときのカフ圧P22に対応する。   Further, in the blood pressure measurement device 60 of the present embodiment, the control unit 46 includes the photoelectric pulse wave detection unit 25 and the cuffs as the pressure pulse wave detection unit in a depressurization process from a predetermined pressing force by the pneumatic cuff 20 as the pressing unit. The pulse wave is detected by the pressure detector 51 and the cuff pressure detector 51 detects the pulse wave detected by the pressure pulse detector 51 and starts detecting the rising point of the envelope 54 of the pulse wave waveform detected by the photoelectric pulse wave detector 25. Whether the absolute value of the difference from the pressing force 53 at which the rising point of the waveform envelope 55 starts to be detected is greater than a predetermined value or the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 Is negative and the pressure 53 becomes the inflection point of the envelope 54 and the inclination 55 of the pulse waveform detected by the cuff pressure detector 51 is negative and the pressure 55 becomes the inflection point of the envelope 55 It is determined whether or not the absolute value of the difference from 53 is larger than a predetermined value. Note that the pressing force 53 at which the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative and the inflection point of the envelope 54 is the cuff pressure at time T21 in FIG. Corresponds to P21. Further, the pressing force 53 at which the slope of the envelope 55 of the pulse waveform detected by the cuff pressure detector 51 is negative and the inflection point of the envelope 55 is the cuff pressure P22 at time T22 in FIG. Corresponding to

光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53との差の絶対値又は光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がないことが考えられる。この場合に、再測定を行う等の処理を行うことができる。   The rising point of the envelope 53 of the pulse waveform detected by the pressing force 53 and the cuff pressure detector 51 which starts detecting the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is detected. The absolute value of the difference from the starting pressing force 53 or the detection of the pressing force 53 and the cuff pressure at which the slope of the envelope 54 of the waveform of the pulse wave detected by the photoelectric pulse wave detector 25 is negative and becomes the inflection point of the envelope 54 When the slope of the envelope 55 of the pulse wave waveform detected by the detector 51 is negative and the absolute value of the difference from the pressing force 53 that is the inflection point of the envelope 55 is larger than the predetermined value, measurement is performed. The result may not be valid. In this case, processing such as remeasurement can be performed.

ここで、図4に血圧測定装置の別の形態を示した概略図を示す。図4は、本実施形態に係る血圧測定装置を被検体としての生体の外耳及び/又はその周辺に装着した場合の概略図を示す。図4(A)は外耳に本実施形態に係る血圧測定装置が装着されている状態の例を示している。図4(B)は図4(A)に示す外耳および保持部のA−A´部分における拡大概略切断面を示している。   Here, the schematic which showed another form of the blood-pressure measuring apparatus in FIG. 4 is shown. FIG. 4 is a schematic diagram when the blood pressure measurement device according to the present embodiment is attached to the outer ear of a living body as a subject and / or the periphery thereof. FIG. 4A shows an example of a state in which the blood pressure measurement device according to this embodiment is attached to the outer ear. FIG. 4B shows an enlarged schematic cut surface at the AA ′ portion of the outer ear and the holding portion shown in FIG.

図4(B)に示す本実施形態に係る血圧測定装置80は、外耳9の耳珠5を挟むように配置された空気式カフ20及び支え部24と、袋体30の内部に空気を供給する空気供給パイプ23と、空気式カフ20及び支え部24を外耳9に固定する保持部28と、を備える。図4(A)に示すように、本実施形態に係る血圧測定装置80の外耳9へ装着する部分は、保持部28に実装されている。また、上記の他に、血圧測定装置として機能させるために、空気式カフ20の内部の圧力を測定する不図示のカフ圧検出器を備え、該カフ圧検出器と空気式カフ20の内部とを接続する圧力伝達パイプ19を備えている。   The blood pressure measurement device 80 according to the present embodiment shown in FIG. 4B supplies air to the pneumatic cuff 20 and the support portion 24 arranged so as to sandwich the tragus 5 of the outer ear 9 and the inside of the bag body 30. The air supply pipe 23 and the holding part 28 for fixing the pneumatic cuff 20 and the support part 24 to the outer ear 9. As shown in FIG. 4A, the part to be attached to the outer ear 9 of the blood pressure measurement device 80 according to this embodiment is mounted on the holding unit 28. In addition to the above, in order to function as a blood pressure measurement device, a cuff pressure detector (not shown) that measures the pressure inside the pneumatic cuff 20 is provided, and the cuff pressure detector and the pneumatic cuff 20 The pressure transmission pipe 19 which connects is provided.

保持部28は、図4(A)に示すように、外耳9の耳輪脚7から対輪6及び対珠8にかけて接し、また、図4(B)に示すように、外耳9の対輪6および耳珠5に沿う形状に成型しており、外耳9に安定に装着することができる。さらに、保持部28には図4(A)に示すように音声の通路として空洞27が設けられている。この保持部28は、プラスチック、ゴム、ウレタン等の外耳9を傷つけない材料であることが望ましい。   As shown in FIG. 4 (A), the holding portion 28 is in contact with the outer ring leg 7 of the outer ear 9 from the pair of rings 6 and 8 and as shown in FIG. 4 (B). And molded into a shape along the tragus 5, and can be stably attached to the outer ear 9. Further, the holding portion 28 is provided with a cavity 27 as a voice passage as shown in FIG. The holding portion 28 is preferably made of a material that does not damage the outer ear 9 such as plastic, rubber, or urethane.

空気式カフ20及び支え部24は、図4(B)に示すように、保持部28と一体化されていて、耳珠5を挟むように装着される。ここで、空気式カフ20は、筺体29に袋体30を配置して押圧面32を形成したもので、袋体30の内部の気体を送出・排出することにより、袋体30の膨張により押圧面32をせり出させて支え部24と共に耳珠5を圧迫する。また、空気式カフ20の内部への空気の送出・排出は、図4(B)に示すように、空気供給パイプ23により行なわれる。また、カフ圧は、圧力伝達パイプ19によってカフ圧検出器(不図示)に送られる。   As shown in FIG. 4B, the pneumatic cuff 20 and the support portion 24 are integrated with the holding portion 28 and are mounted so as to sandwich the tragus 5. Here, the pneumatic cuff 20 is formed by disposing the bag body 30 on the housing 29 and forming the pressing surface 32, and is pressed by the expansion of the bag body 30 by sending and discharging the gas inside the bag body 30. The surface 32 is protruded and the tragus 5 is pressed together with the support portion 24. Further, air is sent and discharged into the pneumatic cuff 20 through an air supply pipe 23 as shown in FIG. The cuff pressure is sent to a cuff pressure detector (not shown) by the pressure transmission pipe 19.

また、袋体30の内部に、発光素子25b及び受光素子25aを配置している。さらに、袋体30の内部に、音波検出部としてのマイクロフォン21を配置している。発光素子25bは、外耳9の一部としての耳珠5に光を照射し、受光素子25aは、発光素子25bの発光した光のうち耳珠5を透過した透過光47を受光する。そして、発光素子25b及び受光素子25aとで上述した透過型光電脈波検出系を形成して脈波を検出し、その検出した脈波から、前述の原理により血圧を測定する。なお、受光素子25a及び発光素子25bを筺体29の側に配置し若しくは支え部24の側に配して反射型光電脈波検出系を形成してもよい。マイクロフォン21は、耳珠5の押圧時に耳珠5から発生するコロトコフ音を検出する。   In addition, the light emitting element 25b and the light receiving element 25a are disposed inside the bag body 30. Furthermore, a microphone 21 as a sound wave detection unit is disposed inside the bag body 30. The light emitting element 25b irradiates the tragus 5 as a part of the outer ear 9, and the light receiving element 25a receives the transmitted light 47 transmitted through the tragus 5 among the light emitted from the light emitting element 25b. The light-emitting element 25b and the light-receiving element 25a form the transmission photoelectric pulse wave detection system described above to detect a pulse wave, and the blood pressure is measured from the detected pulse wave according to the principle described above. The light receiving element 25a and the light emitting element 25b may be arranged on the housing 29 side or arranged on the support portion 24 side to form a reflective photoelectric pulse wave detection system. The microphone 21 detects Korotkoff sound generated from the tragus 5 when the tragus 5 is pressed.

このように、本実施形態に係る血圧測定装置80では、小型で外耳9に安定に装着できることから、日常生活において煩わしくなく装着して、連続的に、かつ人体の移動などによる雑音の影響を受けることなく血圧を測定できる。なお、本実施形態では、血圧測定装置80を被検体としての生体の外耳9及び/又はその周辺に装着した形態を示したが、血圧測定装置の装着部位は、被検体としての生体の外耳道及び/又は耳介、或いは耳珠及び/又はその周辺とすることがより望ましい。   As described above, the blood pressure measurement device 80 according to the present embodiment is small and can be stably attached to the outer ear 9, so that it is not troublesome in daily life and is continuously affected by noise due to movement of the human body. Blood pressure can be measured without In the present embodiment, the blood pressure measuring device 80 is mounted on the outer ear 9 and / or the periphery of the living body as a subject. However, the mounting site of the blood pressure measuring device is the outer ear canal and the living body as the subject. More preferably, it is the pinna or the tragus and / or its periphery.

以上説明したように、本実施形態に係る血圧測定装置では、コロトコフ法、圧脈波法及び光電脈波法のそれぞれの特長を生かしつつ欠点を補って、より精度の高い血圧測定を可能とする。   As described above, the blood pressure measurement device according to the present embodiment makes it possible to perform blood pressure measurement with higher accuracy by making use of the features of the Korotkoff method, the pressure pulse wave method, and the photoelectric pulse wave method to compensate for the drawbacks. .

ここで、本実施形態に係る血圧測定装置の制御方法について説明すると共に、本実施形態に係る血圧測定装置による血圧測定方法について図1、図5を参照して説明する。図5は、本実施形態に係る血圧測定装置の制御部の基本的な制御フローの1例を示している。   Here, the control method of the blood pressure measurement device according to the present embodiment will be described, and the blood pressure measurement method by the blood pressure measurement device according to the present embodiment will be described with reference to FIGS. 1 and 5. FIG. 5 shows an example of a basic control flow of the control unit of the blood pressure measurement device according to the present embodiment.

血圧測定の前に、図1に示す被検体としての耳珠5に押圧部としての空気式カフ20が接するようにU字体31で挟持して血圧測定装置60を装着する。そして、血圧測定を開始する。まず、図1に示す血圧測定装置60では、図5に示す押圧手順90において押圧を開始し(ステップS1)する。ステップS1では、図1に示す空気供給パイプ23により袋体30の内部に空気を供給し、空気式カフ20のカフ圧を上昇させて押圧面32をせり出させる。耳珠5は、U字体31によって挟持されているために、押圧面32の押圧力53によって押圧される。ここで、図1に示す血圧測定装置60では、耳珠5の脈波が停止したかを検出しながら押圧を続ける(ステップS2)。そして、押圧力53をさらに上昇させ、耳珠5の内部の血流が停止すると、押圧力53を保ったまま押圧を停止する(ステップS3)。ここで、耳珠5の脈波が停止したか否かの検出は、例えば光電脈波検出部25によって、光電脈波を検出することとしてもよいし、音波検出部としてのマイクロフォン21によってコロトコフ音を検出してもよい。また、圧脈波検出部としてのカフ圧検出器51によって圧脈を検出してもよい。そして、それぞれの検出部において脈波又はコロトコフ音が消失したときに、耳珠5の脈波が停止したことを検知することができる。   Prior to the blood pressure measurement, the blood pressure measuring device 60 is mounted by being sandwiched by the U-shaped body 31 so that the trabecular 5 as the subject shown in FIG. Then, blood pressure measurement is started. First, the blood pressure measurement device 60 shown in FIG. 1 starts pressing in the pressing procedure 90 shown in FIG. 5 (step S1). In step S <b> 1, air is supplied into the bag body 30 by the air supply pipe 23 shown in FIG. 1, and the cuff pressure of the pneumatic cuff 20 is raised to cause the pressing surface 32 to protrude. Since the tragus 5 is clamped by the U-shaped body 31, it is pressed by the pressing force 53 of the pressing surface 32. Here, in the blood pressure measurement device 60 shown in FIG. 1, the pressing is continued while detecting whether the pulse wave of the tragus 5 has stopped (step S2). When the pressing force 53 is further increased and the blood flow inside the tragus 5 is stopped, the pressing is stopped while the pressing force 53 is maintained (step S3). Here, detection of whether or not the pulse wave of the tragus 5 has stopped may be, for example, by detecting the photoelectric pulse wave by the photoelectric pulse wave detection unit 25 or by Korotkoff sound by the microphone 21 as the sound wave detection unit. May be detected. Moreover, you may detect a pressure pulse with the cuff pressure detector 51 as a pressure pulse wave detection part. And when a pulse wave or Korotkoff sound disappears in each detection part, it can detect that the pulse wave of tragus 5 stopped.

次に、図1に示す血圧測定装置60では、血圧測定のための初期設定手順91を行う。まず、脈波が停止したときのカフ圧の検出(ステップS4)、時間tの0設定(ステップS5)を行い、それぞれメモリ45に記憶させる。そして、カフ圧の減圧を開始し(ステップS6)、検出手順92を行う。なお、カフ圧の検出は、図1に示すカフ圧検出器51によって検出する。また、カフ圧の減圧は空気供給パイプ23から袋体30の内部の空気を排出することでカフ圧が減圧する。そして、押圧力53は徐々に低下する。   Next, the blood pressure measurement device 60 shown in FIG. 1 performs an initial setting procedure 91 for blood pressure measurement. First, the cuff pressure is detected when the pulse wave is stopped (step S4), and the time t is set to 0 (step S5) and stored in the memory 45, respectively. Then, the cuff pressure is reduced (step S6), and the detection procedure 92 is performed. The cuff pressure is detected by a cuff pressure detector 51 shown in FIG. Further, the cuff pressure is reduced by discharging the air inside the bag body 30 from the air supply pipe 23. Then, the pressing force 53 gradually decreases.

検出手順92では、まずステップS5の後、時間tをt+Δtに設定(ステップS7)してメモリ45に記憶させ、その時刻でのカフ圧を検出し(ステップS8)メモリ45に記憶させる。そして、図1に示す耳珠5の脈波の検出(ステップS9)を行って、検出値をメモリ45に記憶させる。ここで、本実施形態では、脈波の検出を行うステップS9において、図1に示す光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51、音波検出部としてのマイクロフォン21のうち少なくとも2つに、それぞれの検出対象を検出させる。このように、脈波の検出を行うステップS9において、光電脈波法、圧脈波法及びコロトコフ法のうち少なくとも2種類の血圧結果を得ることができるため、測定結果の妥当性の判断も可能である。従って、精度の高い血圧測定を可能とする。さらに、本実施形態のように、光電脈波検出部25、カフ圧検出器51及びマイクロフォン21を備える場合には、検出手順92により光電脈波法、圧脈波法及びコロトコフ法により3種類の血圧結果を得ることができ、さらに精度の高い血圧測定を可能とする。
そして、カフ圧が所定値(cp:例えば、cp<10mmhg等の耳珠5に負担とならない圧力)未満となったか否かを判断(ステップS10)し、カフ圧が所定値未満なった場合にカフ圧の減圧を停止する(ステップS11)。
In the detection procedure 92, first, after step S5, the time t is set to t + Δt (step S7) and stored in the memory 45, and the cuff pressure at that time is detected (step S8) and stored in the memory 45. Then, the pulse wave of the tragus 5 shown in FIG. 1 is detected (step S9), and the detected value is stored in the memory 45. Here, in this embodiment, in step S9 for detecting a pulse wave, the photoelectric pulse wave detection unit 25, the cuff pressure detector 51 as a pressure pulse wave detection unit, and the microphone 21 as a sound wave detection unit shown in FIG. At least two of them are made to detect each detection target. Thus, in step S9 for detecting the pulse wave, at least two types of blood pressure results among the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method can be obtained, and therefore the validity of the measurement result can be judged. It is. Therefore, blood pressure can be measured with high accuracy. Furthermore, when the photoelectric pulse wave detection unit 25, the cuff pressure detector 51, and the microphone 21 are provided as in the present embodiment, three types of detection are performed by the detection procedure 92 using the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method. Blood pressure results can be obtained and blood pressure can be measured with higher accuracy.
Then, it is determined whether or not the cuff pressure is less than a predetermined value (cp: for example, pressure that does not burden the tragus 5 such as cp <10 mmhg) (step S10), and the cuff pressure is less than the predetermined value. The cuff pressure reduction is stopped (step S11).

その後、血圧算出手順93において、メモリ45に記憶した脈波の検出値を読み出し、最高血圧及び最低血圧を算出する(ステップS12)。そしてステップS12において血圧が算出できたか否かを判断し(ステップS13)、血圧が算出できた場合に、算出した血圧を出力し(ステップS15)、算出できなかった場合にはエラーを出力する(ステップS14)。そして、血圧が測定できたら血圧の測定を終了する。   Thereafter, in the blood pressure calculation procedure 93, the detected pulse wave value stored in the memory 45 is read, and the maximum blood pressure and the minimum blood pressure are calculated (step S12). In step S12, it is determined whether the blood pressure can be calculated (step S13). If the blood pressure can be calculated, the calculated blood pressure is output (step S15). If the blood pressure cannot be calculated, an error is output (step S15). Step S14). When the blood pressure can be measured, the blood pressure measurement is terminated.

ここで、血圧が算出できたか否かは、最高血圧及び最低血圧のいずれか一方又は両方が算出できなかった場合が考えられる。また、血圧の出力は、例えば、表示画面に血圧値を表示してもよいし、紙に印刷して出力することとしてもよい。また、過去の血圧結果と共にグラフ化してもよい。被検者にとって血圧測定結果がわかり易いように、適宜出力方法を適用できる。また、エラーの出力は、表示画面に表示してもよいし、自動的に血圧の再測定を行ってもよい。また、表示画面に表示し、自動的に再測定を行ってもよい。この場合、制御フローは、図5における押圧手順90に戻ることとなる。また、ステップS11における減圧中止過程では、図1に示す袋体30内に残った空気はステップS11においてすべて排出してもよいが、ステップS13において血圧の算出を確認した後に排出してもよい。再測定の場合、押圧過程を短くすることができる。   Here, as to whether or not the blood pressure could be calculated, one or both of the maximum blood pressure and the minimum blood pressure could not be calculated. In addition, the blood pressure may be output, for example, by displaying the blood pressure value on the display screen or printing it on paper. Moreover, you may graph with the past blood pressure result. An output method can be applied as appropriate so that the subject can easily understand the blood pressure measurement result. The error output may be displayed on a display screen, or blood pressure may be automatically remeasured. Alternatively, it may be displayed on the display screen and automatically remeasured. In this case, the control flow returns to the pressing procedure 90 in FIG. In the decompression stop process in step S11, all the air remaining in the bag 30 shown in FIG. 1 may be discharged in step S11, but may be discharged after confirming the calculation of blood pressure in step S13. In the case of re-measurement, the pressing process can be shortened.

本実施形態では、初期設定手順91の前段で、図1に示す空気式カフ20による押圧の前に光電脈波検出部25に脈波を検出させる光電脈波検出手順と、光電脈波検出手順で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定する減圧量算定手順と、を有し、図5における検出手順92のステップS9の脈波検出過程において、図1に示す空気式カフ20に所定の押圧力から、減圧量算定手順で算定した単位時間当たりの減圧量に従って減圧させながら、図1に示す光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51、音波検出部としてのマイクロフォン21のうち少なくとも2つにそれぞれの検出対象を検出させる。   In the present embodiment, a photoelectric pulse wave detection procedure for causing the photoelectric pulse wave detection unit 25 to detect a pulse wave before pressing by the pneumatic cuff 20 shown in FIG. A decompression amount calculation procedure for calculating a decompression amount per unit time from a product of the pulse rate per unit time obtained from the pulse wave detected in step 1 and a predetermined decompression amount per beat, and in FIG. In the pulse wave detection process of step S9 of the detection procedure 92, the pneumatic cuff 20 shown in FIG. 1 is shown in FIG. 1 while being depressurized from a predetermined pressing force according to the pressure reduction amount per unit time calculated in the pressure reduction amount calculation procedure. At least two of the photoelectric pulse wave detector 25, the cuff pressure detector 51 as a pressure pulse wave detector, and the microphone 21 as a sound wave detector are detected.

ここで、所定の押圧力とは、例えば図3に示すように100mmhg以上としているが、耳珠5に対しての負担を考慮すると、図5に示す押圧手順90において脈波が停止したときの押圧力(=カフ圧)を所定の押圧力とすることがよい。   Here, the predetermined pressing force is, for example, 100 mmhg or more as shown in FIG. 3, but considering the burden on the tragus 5, when the pulse wave is stopped in the pressing procedure 90 shown in FIG. 5. The pressing force (= cuff pressure) may be set to a predetermined pressing force.

ここで、図6に本実施形態に係る血圧測定装置の制御フローの1例を示す。図6に示す制御フローでは、スタートと、押圧手順90との間に、図1に示す光電脈波検出部25に脈波を検出させる光電脈波検出手順(ステップS101)と、タイムアウトを判断するステップS102と、光電脈波検出手順(ステップS101)で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定する減圧量算定手順(ステップS103)と、を有している。   Here, FIG. 6 shows an example of a control flow of the blood pressure measurement device according to the present embodiment. In the control flow shown in FIG. 6, between the start and the pressing procedure 90, the photoelectric pulse wave detecting procedure (step S101) for causing the photoelectric pulse wave detecting unit 25 shown in FIG. The amount of decompression per unit time is calculated from the product of step S102 and the pulse rate per unit time obtained from the pulse wave detected in the photoelectric pulse wave detection procedure (step S101) and a predetermined amount of decompression per beat. And a decompression amount calculation procedure (step S103).

光電脈波検出手順(ステップS101)では、検出した検出値をメモリ45に記憶することとする。そして、減圧量算定手順(ステップS103)では、メモリ45から、光電脈波検出手順(ステップS101)において検出した検出値を読み出して、単位時間当たりの減圧量(減圧速度)を算定することとするが、この構成は、制御フローの1例に過ぎない。また、ステップS102のタイムアウト時間は、例えば、人体の脈拍数の平均最低値が50回/秒〜60回/秒であることを考慮すると、少なくとも2回以上の脈拍を得るために、例えば2.5秒とすればよい。   In the photoelectric pulse wave detection procedure (step S101), the detected detection value is stored in the memory 45. In the decompression amount calculation procedure (step S103), the detection value detected in the photoelectric pulse wave detection procedure (step S101) is read from the memory 45, and the decompression amount (decompression rate) per unit time is calculated. However, this configuration is only an example of the control flow. Further, the time-out time in step S102 is, for example, 2. in order to obtain at least two or more pulses, considering that the average minimum value of the pulse rate of the human body is 50 times / second to 60 times / second. What is necessary is just 5 seconds.

減圧量算定手順(ステップS103)により減圧速度を決定することで、被検体の脈拍数にあわせた適切な減圧速度で血圧を測定することができるため、短時間で精度よく血圧を測定することができる。   By determining the decompression speed by the decompression amount calculation procedure (step S103), the blood pressure can be measured at an appropriate decompression speed according to the pulse rate of the subject, so that the blood pressure can be measured accurately in a short time. it can.

また、本実施形態では、図5に示す検出手順92の後に、図1に示す光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51又は音波検出部としてのマイクロフォン21の少なくとも2つから得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の平均値を算出する平均値算出手順をさらに含む。本実施形態では、図5に示すステップS12の血圧を算出する過程において実現することができる。   In the present embodiment, after the detection procedure 92 shown in FIG. 5, at least the photoelectric pulse wave detection unit 25 shown in FIG. 1, the cuff pressure detector 51 as the pressure pulse wave detection unit, or the microphone 21 as the sound wave detection unit. The method further includes an average value calculation procedure for calculating an average value of the systolic blood pressure value or the diastolic blood pressure value determined based on the detected values obtained from the two. The present embodiment can be realized in the process of calculating the blood pressure in step S12 shown in FIG.

ステップS12の血圧を算出する過程において、脈波情報検出手段としての光電脈波法、圧脈波法又はコロトコフ法のうち少なくとも2つの方法によって得られた結果の平均値を取ることにより、各方法による測定結果の誤差を補い、より妥当性のある血圧値を得ることができる。   In the process of calculating the blood pressure in step S12, each method is obtained by taking an average value of the results obtained by at least two methods among the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method as pulse wave information detection means. It is possible to compensate for the error in the measurement result by, and to obtain a more appropriate blood pressure value.

また、本実施形態では、図5に示す検出手順92の後に、図1に示す光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51及び音波検出部としてのマイクロフォン21から得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の中間値を選択する中間値選択手順を有することを含む。本実施形態では、図5に示すステップS12の血圧を算出する過程において実現することができる。   Further, in this embodiment, after the detection procedure 92 shown in FIG. 5, the photoelectric pulse wave detection unit 25 shown in FIG. 1, the cuff pressure detector 51 as the pressure pulse wave detection unit, and the microphone 21 as the sound wave detection unit are obtained. Including an intermediate value selection procedure for selecting a maximum blood pressure value or an intermediate value of the minimum blood pressure values determined based on each detected value. The present embodiment can be realized in the process of calculating the blood pressure in step S12 shown in FIG.

図5に示すステップS12の血圧を算出する過程において、脈波情報検出手段としての光電脈波法、圧脈波法及びコロトコフ法の3つの方法によって得られた結果の中間値を取ることにより、各方法による測定結果の誤差を補い、より妥当性のある血圧値を得ることができる。   In the process of calculating blood pressure in step S12 shown in FIG. 5, by taking an intermediate value of the results obtained by the three methods of the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method as the pulse wave information detection means, The error of the measurement result by each method can be compensated, and a more appropriate blood pressure value can be obtained.

また、本実施形態では、図5に示す検出手順92の後に、図1に示す光電脈波検出部25、圧脈波検出部としてのカフ圧検出器51又は音波検出部としてのマイクロフォン21の少なくとも2つから得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の差が所定値よりも大きいときにエラー信号を出力するエラー信号出力手順を含む。   In the present embodiment, after the detection procedure 92 shown in FIG. 5, at least the photoelectric pulse wave detection unit 25 shown in FIG. 1, the cuff pressure detector 51 as the pressure pulse wave detection unit, or the microphone 21 as the sound wave detection unit. An error signal output procedure for outputting an error signal when the difference between the maximum blood pressure value or the minimum blood pressure value determined based on the detected values obtained from the two is greater than a predetermined value.

本実施形態では、図5に示す検出手順92のステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、カフ圧検出器51又はマイクロフォン21の少なくとも2つに検出させることとする。また、図5に示す血圧算出手順93のステップS13の血圧の算出ができたか否かを判断する過程とステップS15の血圧を出力する過程との間で、最高血圧値又は最低血圧値の差の絶対値が所定値よりも大きいか否かを判断することとする。   In the present embodiment, in the process of detecting the pulse wave in step S9 of the detection procedure 92 shown in FIG. 5, at least two of the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 shown in FIG. I will do it. Further, the difference between the maximum blood pressure value or the minimum blood pressure value is determined between the process of determining whether or not the blood pressure can be calculated in step S13 of the blood pressure calculation procedure 93 shown in FIG. 5 and the process of outputting the blood pressure in step S15. It is determined whether or not the absolute value is larger than a predetermined value.

図7に、本実施形態に係る血圧測定装置の制御フローの1例を示す。図7では、図5に示すステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、カフ圧検出器51及びマイクロフォン21の3つで検出した場合について示している。   FIG. 7 shows an example of a control flow of the blood pressure measurement device according to the present embodiment. FIG. 7 shows a case where detection is performed by three of the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 shown in FIG. 1 in the process of detecting the pulse wave in step S9 shown in FIG.

図7に示すように、ステップS13の血圧の算出ができたか否かを判断する過程の後に、図1に示す光電脈波検出部25、カフ圧検出器51及びマイクロフォン21の3つで検出した検出結果を基に算出したそれぞれの最高血圧の絶対値の差が所定の値より大きいか否かを判断し(ステップS145)、大きい場合にエラーを表示するエラー出力手順(ステップS146)を有する。また、さらに、光電脈波検出部25、カフ圧検出器51及びマイクロフォン21の3つで検出した検出結果を基に算出したそれぞれの最低血圧の絶対値の差が所定の値より大きいか否かを判断し(ステップS147)、大きい場合にエラーを表示するエラー出力手順(ステップS148)を有する。   As shown in FIG. 7, after the process of determining whether or not the blood pressure has been calculated in step S <b> 13, detection is performed by the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 shown in FIG. 1. It is determined whether or not the difference between the absolute values of the respective systolic blood pressures calculated based on the detection result is larger than a predetermined value (step S145), and an error output procedure (step S146) for displaying an error if the difference is larger. Furthermore, whether or not the difference between the absolute values of the diastolic blood pressures calculated based on the detection results detected by the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 is greater than a predetermined value. (Step S147), and an error output procedure (step S148) for displaying an error if it is larger is included.

なお、図7では、最高血圧及び最低血圧について判断を行っているが、いずれか一方であってもよい。また、図1に示す光電脈波検出部25、カフ圧検出器51又はマイクロフォン21のいずれか2つで検出した場合には、2つの検出結果に基に算出した2つの最高血圧、最低血圧について判断することとする。また、最高血圧及び最低血圧について判断を行ってもよいし、いずれか一方について判断することとしてもよい。本実施形態のように、最高血圧及び最低血圧について判断を行うことで、より精度のよい血圧値を選択することができる。   In FIG. 7, the determination is made with respect to the maximum blood pressure and the minimum blood pressure, but either one may be used. In addition, when any two of the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 shown in FIG. 1 are used for detection, the two systolic blood pressure and the systolic blood pressure calculated based on the two detection results are used. Judgment will be made. Further, the determination may be made for the maximum blood pressure and the minimum blood pressure, or may be made for either one. By determining the maximum blood pressure and the minimum blood pressure as in this embodiment, a more accurate blood pressure value can be selected.

このようにして、図5に示す検出手順92の後において、脈波情報検出手段としての光電脈波法、圧脈波法又はコロトコフ法のうち少なくとも2つの方法によって得られた結果の差の絶対値が所定値よりも大きいときにエラー信号を出力することにより、各方法による血圧の測定時に雑音が混入した可能性等、測定結果の妥当性の判断が可能となる。そのため、再測定をする等の判断を可能とする。   Thus, after the detection procedure 92 shown in FIG. 5, the absolute difference between the results obtained by at least two methods of the photoelectric pulse wave method, the pressure pulse wave method, and the Korotkoff method as the pulse wave information detection means By outputting an error signal when the value is larger than the predetermined value, it is possible to determine the validity of the measurement result, such as the possibility of noise being mixed during blood pressure measurement by each method. Therefore, it is possible to make a judgment such as re-measurement.

また、本実施形態では、図1に示す押圧部として空気式カフ20により押圧力を減圧させながら、光電脈波検出部25及び圧脈波検出部としてのカフ圧検出器51に脈波を検出させる検出手順と、検出手順でカフ圧検出器51の検出する脈波の振幅強度の最大値が空気式カフ20による押圧の前の光電脈波検出部25の検出する脈波の強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、を含む。   Further, in the present embodiment, the pulse wave is detected by the photoelectric pulse wave detection unit 25 and the cuff pressure detector 51 as the pressure pulse wave detection unit while reducing the pressing force by the pneumatic cuff 20 as the pressing unit shown in FIG. And the maximum amplitude value of the pulse wave amplitude detected by the cuff pressure detector 51 in the detection procedure is predetermined based on the pulse wave intensity detected by the photoelectric pulse wave detector 25 before being pressed by the pneumatic cuff 20. A warning output procedure for outputting a warning when the value is smaller than the value.

本実施形態では、図5に示す検出手順92のステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、カフ圧検出器51の2つに脈波を検出させることとする。また、図5に示すステップS11の減圧を停止する過程と血圧算出手順のステップS12の血圧を算出する過程との間に、上記の警告出力手順を設けることとする。   In the present embodiment, in the process of detecting the pulse wave in step S9 of the detection procedure 92 shown in FIG. 5, the pulse wave is detected by the photoelectric pulse wave detector 25 and the cuff pressure detector 51 shown in FIG. And Further, the above warning output procedure is provided between the process of stopping the decompression in step S11 shown in FIG. 5 and the process of calculating the blood pressure in step S12 of the blood pressure calculation procedure.

図8は、本実施形態に係る血圧測定装置の制御フローの1例を示す。図8では、ステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、カフ圧検出器51の2つで検出した場合について示している。図8に示すように、ステップS11の減圧を停止する過程と血圧算出手順93のステップS12の血圧の算出をする過程との間で、脈波の振幅強度の最大値が所定値よりも小さいか否かを判断するステップS111と、脈波の振幅強度の最大値が所定値よりも小さい場合に警告するステップS112と、を有する警告出力手順921を備えている。なお、脈波の振幅強度は、ステップS9において検出した光電脈波の検出結果とする。   FIG. 8 shows an example of a control flow of the blood pressure measurement device according to the present embodiment. FIG. 8 shows a case where detection is performed by two of the photoelectric pulse wave detection unit 25 and the cuff pressure detector 51 shown in FIG. 1 in the process of detecting the pulse wave in step S9. As shown in FIG. 8, whether the maximum value of the amplitude intensity of the pulse wave is smaller than a predetermined value between the process of stopping the decompression in step S11 and the process of calculating the blood pressure in step S12 of the blood pressure calculation procedure 93. A warning output procedure 921 having a step S111 for judging whether or not and a step S112 for giving a warning when the maximum value of the amplitude intensity of the pulse wave is smaller than a predetermined value. The amplitude intensity of the pulse wave is the detection result of the photoelectric pulse wave detected in step S9.

脈波の振幅強度の最大値が所定値よりも小さいか否かを判断するステップS111では、図5に示す脈波を検出する過程(ステップS9)においてメモリ45に記憶された圧脈振幅強度の最大値が、ステップS9の光電脈波を検出する過程でメモリ45に記憶された所定の値(C(光電脈波の強度))よりも小さいか否かを判断する。ここで、圧脈振幅強度の最大値とは、図3に示す圧脈波形36の30秒付近の振幅強度をいい、所定の値(C(光電脈波の強度))とは、図3に示す光電脈波形35の60秒以降で一定の値に収束したときに振幅強度に基づいて定められる所定の値をいい、例えば、図3において、脈波が消失している20秒付近の電気的なノイズレベル以上で、時刻T12での圧脈波形36の振幅値以下の値とすればよい。また、時刻T12での圧脈波形36の振幅値は、光電脈波形35の振幅強度と圧脈波形36の振幅の値との関係から求められるが、この所定値の設定は1例に過ぎない。   In step S111 for determining whether or not the maximum value of the amplitude of the pulse wave is smaller than a predetermined value, the pressure pulse amplitude intensity stored in the memory 45 in the process of detecting the pulse wave shown in FIG. It is determined whether or not the maximum value is smaller than a predetermined value (C (photoelectric pulse wave intensity)) stored in the memory 45 in the process of detecting the photoelectric pulse wave in step S9. Here, the maximum value of the pressure pulse amplitude intensity refers to the amplitude intensity in the vicinity of 30 seconds of the pressure pulse waveform 36 shown in FIG. 3, and the predetermined value (C (intensity of photoelectric pulse wave)) is illustrated in FIG. This is a predetermined value determined based on the amplitude intensity when the photoelectric pulse waveform 35 converges to a constant value after 60 seconds. For example, in FIG. It may be set to a value not less than a certain noise level and not more than the amplitude value of the pressure pulse waveform 36 at time T12. Further, the amplitude value of the pressure pulse waveform 36 at time T12 is obtained from the relationship between the amplitude intensity of the photoelectric pulse waveform 35 and the amplitude value of the pressure pulse waveform 36, but the setting of this predetermined value is only an example. .

このように、警告出力手順921において、カフ圧検出器51の検出脈波の振幅強度の最大値が所定値よりも小さいときには、図1に示すカフ圧検出器51の検出感度が低いか或いは耳珠5の圧迫が不十分である可能性がある。そのため、警告を出力してカフ圧検出器51の検出感度を上げたり、血圧測定装置60の再装着を促したりする等の措置を行うことができる。また、警告出力手順921においてなされた警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被検者において再測定が必要であると判断することもできる。   Thus, in the warning output procedure 921, when the maximum value of the amplitude intensity of the detected pulse wave of the cuff pressure detector 51 is smaller than the predetermined value, the detection sensitivity of the cuff pressure detector 51 shown in FIG. There is a possibility that the pressure of the pearl 5 is insufficient. Therefore, it is possible to take measures such as outputting a warning to increase the detection sensitivity of the cuff pressure detector 51 and prompting the blood pressure measuring device 60 to be remounted. Further, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary based on the warning made in the warning output procedure 921. Moreover, it can also be judged from the measurement result after the warning that re-measurement is necessary in the subject.

また、本実施形態では、図1に示す押圧部として空気式カフ20により押圧力53を減圧させながら、光電脈波検出部25に脈波を検出させ且つ音波検出部としてのマイクロフォン21にコロトコフ音を検出させる検出手順と、検出手順でマイクロフォン21の検出する検出信号強度の最大値が空気式カフ20による押圧の前の光電脈波検出部25の検出する脈波の強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、を含む。   In the present embodiment, the pressure pulse 53 is reduced by the pneumatic cuff 20 as the pressing portion shown in FIG. 1, the pulse wave is detected by the photoelectric pulse wave detection portion 25, and the Korotkoff sound is detected by the microphone 21 as the sound wave detection portion. And the maximum value of the detection signal intensity detected by the microphone 21 in the detection procedure is greater than a predetermined value based on the intensity of the pulse wave detected by the photoelectric pulse wave detection unit 25 before being pressed by the pneumatic cuff 20. A warning output procedure for outputting a warning when it is small.

本実施形態では、図5に示す検出手順92のステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、マイクロフォン21の2つに脈波を検出させることとする。また、図5に示すステップS11の減圧を停止する過程と血圧算出手順93のステップS12の血圧を算出する過程との間に、上記の警告出力手順を設けることとする。   In the present embodiment, in the process of detecting the pulse wave in step S9 of the detection procedure 92 shown in FIG. 5, the pulse wave detection unit 25 and the microphone 21 shown in FIG. Further, the above warning output procedure is provided between the process of stopping the decompression in step S11 shown in FIG. 5 and the process of calculating the blood pressure in step S12 of the blood pressure calculation procedure 93.

図9に、本実施形態に係る血圧測定装置の制御フローの1例を示す。図9では、ステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、マイクロフォン21の2つで検出した場合について示している。図9に示すように、ステップS11の減圧を停止する過程と血圧算出手順93のステップS12の血圧の算出をする過程との間で、コロトコフ音の検出強度の最大値が所定値よりも小さいか否かを判断するステップS113と、コロトコフ音の検出強度の最大値が所定値よりも小さい場合に警告するステップS114と、を有する警告出力手順922を備えている。なお、脈波の振幅強度は、ステップS9において検出した光電脈波の検出結果とする。   FIG. 9 shows an example of a control flow of the blood pressure measurement device according to the present embodiment. FIG. 9 shows a case where detection is performed by two of the photoelectric pulse wave detector 25 and the microphone 21 shown in FIG. 1 in the process of detecting the pulse wave in step S9. As shown in FIG. 9, whether the maximum value of the Korotkoff sound detection intensity is smaller than a predetermined value between the process of stopping the pressure reduction in step S11 and the process of calculating the blood pressure in step S12 of the blood pressure calculation procedure 93. A warning output procedure 922 having a step S113 for judging whether or not and a step S114 for giving a warning when the maximum value of the detected intensity of the Korotkoff sound is smaller than a predetermined value. The amplitude intensity of the pulse wave is the detection result of the photoelectric pulse wave detected in step S9.

コロトコフ音の検出強度の最大値が所定値よりも小さいか否かを判断するステップS113では、脈波を検出する過程(ステップS9)においてメモリ45に記憶されたコロトコフ音の検出強度の最大値が、ステップS9の光電脈波を検出する過程でメモリ45に記憶された所定の値(C(光電脈波の強度))よりも小さいか否かを判断する。ここで、コロトコフ音の検出強度の最大値とは、図3に示すコロトコフ音波形37の発生時の振幅強度をいい、所定の値(C(光電脈波の強度))とは、図3に示す光電脈波形35の60秒以降で一定の値に収束したときに振幅強度に基づいて定められる所定の値をいい、例えば、図3において、コロトコフ音が消失している20秒付近の電気的なノイズレベル以上で、時刻T13でのコロトコフ音波形37の振幅値以下の値とすればよい。また、時刻T13でのコロトコフ音波形37の振幅値は、光電脈波形35の振幅強度とコロトコフ音波形37の振幅の値との関係から求められるが、この所定値の設定は1例に過ぎない。   In step S113 for determining whether or not the maximum value of the Korotkoff sound detection intensity is smaller than a predetermined value, the maximum value of the Korotkoff sound detection intensity stored in the memory 45 in the process of detecting the pulse wave (step S9) is calculated. In the process of detecting the photoelectric pulse wave in step S9, it is determined whether or not the value is smaller than a predetermined value (C (photoelectric pulse wave intensity)) stored in the memory 45. Here, the maximum value of the detected intensity of the Korotkoff sound means the amplitude intensity when the Korotkoff sound waveform 37 shown in FIG. 3 is generated, and the predetermined value (C (photoelectric pulse wave intensity)) is shown in FIG. This is a predetermined value determined based on the amplitude intensity when the photoelectric pulse waveform 35 converges to a constant value after 60 seconds. For example, in FIG. 3, the electrical current around 20 seconds where the Korotkoff sound disappears in FIG. It may be set to a value not less than a certain noise level and not more than the amplitude value of the Korotkoff sound waveform 37 at time T13. The amplitude value of the Korotkoff sound waveform 37 at time T13 is obtained from the relationship between the amplitude intensity of the photoelectric pulse waveform 35 and the amplitude value of the Korotkoff sound waveform 37, but the setting of this predetermined value is only an example. .

このように、図9に示す警告出力手順922において、マイクロフォン21の検出信号強度が所定値よりも小さいときには、図1に示すマイクロフォン21の検出感度が低いか或いは耳珠5の圧迫が不十分である可能性がある。そのため、警告を出力してマイクロフォン21の検出感度を上げたり、血圧測定装置60の再装着を促したりする等の措置を行うことができる。また、警告出力手順922においてなされた警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被検者において再測定が必要であると判断することもできる。   Thus, in the warning output procedure 922 shown in FIG. 9, when the detection signal intensity of the microphone 21 is smaller than a predetermined value, the detection sensitivity of the microphone 21 shown in FIG. 1 is low or the compression of the tragus 5 is insufficient. There is a possibility. Therefore, it is possible to take measures such as outputting a warning to increase the detection sensitivity of the microphone 21 or prompting the blood pressure measuring device 60 to be remounted. Also, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary based on the warning made in the warning output procedure 922. Moreover, it can also be judged from the measurement result after the warning that re-measurement is necessary in the subject.

また、本実施形態では、図1に示す押圧部としての空気式カフ20により押圧力53を減圧させながら、光電脈波検出部25及び圧脈波検出部としてのカフ圧検出器51に脈波を検出させ且つ音波検出部としてのマイクロフォン21にコロトコフ音を検出させる検出手順と、検出手順でカフ圧検出器51の検出する脈波の振幅強度の最大値又はマイクロフォン21の検出する検出信号強度が空気式カフ20による押圧の前の光電脈波検出部25の検出する脈波の強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、を含む。   In the present embodiment, the pulse wave is applied to the photoelectric pulse wave detection unit 25 and the cuff pressure detector 51 serving as the pressure pulse wave detection unit while the pressing force 53 is reduced by the pneumatic cuff 20 serving as the pressing unit illustrated in FIG. And a detection procedure for detecting the Korotkoff sound by the microphone 21 as the sound wave detection unit, and the maximum value of the amplitude intensity of the pulse wave detected by the cuff pressure detector 51 in the detection procedure or the detection signal intensity detected by the microphone 21 A warning output procedure for outputting a warning when the value is smaller than a predetermined value based on the intensity of the pulse wave detected by the photoelectric pulse wave detection unit 25 before being pressed by the pneumatic cuff 20.

本実施形態では、図5に示す検出手順92のステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、カフ圧検出器51及びマイクロフォン21の3つに検出させることとする。また、図5に示すステップS11の減圧を停止する過程と血圧算出手順93のステップS12の血圧の算出をする過程との間に、上記の警告出力手順を設けることとする。   In the present embodiment, in the process of detecting the pulse wave in step S9 of the detection procedure 92 shown in FIG. 5, the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 shown in FIG. And Further, the above warning output procedure is provided between the process of stopping the decompression in step S11 shown in FIG. 5 and the process of calculating the blood pressure in step S12 of the blood pressure calculation procedure 93.

図10に、本実施形態に係る血圧測定装置の制御フローの1例を示す。図10では、ステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25、カフ圧検出器51及びマイクロフォン21の3つで検出した場合について示している。図10に示すように、ステップS11の減圧を停止する過程と血圧算出手順93のステップS12の血圧の算出する過程との間で、コロトコフ音の検出信号強度の最大値が所定値よりも小さいか否かを判断し、また、脈波の振幅強度の最大値が所定値よりも小さいか否かを判断するステップS115と、コロトコフ音の検出信号強度の最大値が所定値よりも小さく且つ脈波の振幅強度の最大値が所定値よりも小さい場合に警告するステップS116と、を有する警告出力手順923を備えている。なお、脈波の振幅強度は、ステップS9において検出した光電脈波の検出結果とする。   FIG. 10 shows an example of a control flow of the blood pressure measurement device according to this embodiment. FIG. 10 shows a case where detection is performed by the photoelectric pulse wave detector 25, the cuff pressure detector 51, and the microphone 21 shown in FIG. 1 in the process of detecting the pulse wave in step S9. As shown in FIG. 10, whether the maximum value of the Korotkoff sound detection signal intensity is smaller than a predetermined value between the process of stopping the decompression in step S11 and the process of calculating the blood pressure in step S12 of the blood pressure calculation procedure 93. Step S115 for determining whether or not the maximum value of the amplitude intensity of the pulse wave is smaller than a predetermined value, and the maximum value of the detection signal intensity of the Korotkoff sound is smaller than the predetermined value and the pulse wave A warning output procedure 923 having a warning step S116 when the maximum value of the amplitude intensity is smaller than a predetermined value. The amplitude intensity of the pulse wave is the detection result of the photoelectric pulse wave detected in step S9.

コロトコフ音波形の振幅強度の最大値が所定値よりも小さいか否かを判断し、また、脈波の振幅強度の最大値が所定値よりも小さいか否かを判断するステップS115では、脈波を検出する過程(ステップS9)においてメモリ45に記憶された圧脈振幅強度及びコロトコフ音の検出信号強度の最大値が、ステップS9の光電脈波を検出する過程でメモリ45に記憶された所定の値(C1(光電脈波の強度))、(C2(光電脈波の強度))よりも小さいか否かをそれぞれ判断する。ここで、圧脈振幅強度の最大値とは、図3に示す圧脈波形36の30秒付近の振幅強度をいい、所定の値(C1(光電脈波の強度))とは、図3に示す光電脈波形35の60秒以降で一定の値に収束したときに振幅強度に基づいて定められる所定の値をいい、例えば、図3において、脈波が消失している20秒付近の電気的なノイズレベル以上で、時刻T12での圧脈波形36の振幅値以下の値とすればよい。また、時刻T12での圧脈波形36の振幅値は、光電脈波形35の振幅強度と圧脈波形36の振幅の値との関係から求められるが、この所定値の設定は1例に過ぎない。   In step S115 for determining whether the maximum value of the amplitude intensity of the Korotkoff sound waveform is smaller than a predetermined value and determining whether the maximum value of the amplitude intensity of the pulse wave is smaller than the predetermined value, the pulse wave The maximum values of the pressure pulse amplitude intensity and the Korotkoff sound detection signal intensity stored in the memory 45 in the process of detecting the signal (step S9) are the predetermined values stored in the memory 45 in the process of detecting the photoelectric pulse wave in step S9. It is determined whether or not it is smaller than the values (C1 (intensity of photoelectric pulse wave)) and (C2 (intensity of photoelectric pulse wave)). Here, the maximum value of the pressure pulse amplitude intensity means the amplitude intensity around 30 seconds of the pressure pulse waveform 36 shown in FIG. 3, and the predetermined value (C1 (intensity of photoelectric pulse wave)) is shown in FIG. This is a predetermined value determined based on the amplitude intensity when the photoelectric pulse waveform 35 converges to a constant value after 60 seconds. For example, in FIG. It may be set to a value not less than a certain noise level and not more than the amplitude value of the pressure pulse waveform 36 at time T12. Further, the amplitude value of the pressure pulse waveform 36 at time T12 is obtained from the relationship between the amplitude intensity of the photoelectric pulse waveform 35 and the amplitude value of the pressure pulse waveform 36, but the setting of this predetermined value is only an example. .

また、コロトコフ音の検出信号強度の最大値とは、図3に示すコロトコフ音波形37の発生時の振幅強度をいい、所定の値(C2(光電脈波の強度))とは、図3に示す光電脈波形35の60秒以降で一定の値に収束したときに振幅強度に基づいて定められる所定の値をいい、例えば、図3において、コロトコフ音が消失している20秒付近の電気的なノイズレベル以上で、時刻T13でのコロトコフ音波形37の振幅値以下の値とすればよい。時刻T13でのコロトコフ音波形37の振幅値は、光電脈波形35の振幅強度とコロトコフ音波形37の振幅の値との関係から求められるが、この所定値の設定は1例に過ぎない。   Further, the maximum value of the detected signal intensity of the Korotkoff sound means the amplitude intensity when the Korotkoff sound waveform 37 shown in FIG. 3 is generated, and the predetermined value (C2 (intensity of photoelectric pulse wave)) is shown in FIG. This is a predetermined value determined based on the amplitude intensity when the photoelectric pulse waveform 35 converges to a constant value after 60 seconds. For example, in FIG. 3, the electrical current around 20 seconds where the Korotkoff sound disappears in FIG. It may be set to a value not less than a certain noise level and not more than the amplitude value of the Korotkoff sound waveform 37 at time T13. The amplitude value of the Korotkoff sound waveform 37 at time T13 is obtained from the relationship between the amplitude intensity of the photoelectric pulse waveform 35 and the amplitude value of the Korotkoff sound waveform 37, but the setting of this predetermined value is only an example.

このように、警告出力手順923において、カフ圧検出器51の検出脈波の振幅強度の最大値が所定値よりも小さいか或いはマイクロフォン21の検出信号強度が所定値よりも小さいときには、図1に示すカフ圧検出器51又はマイクロフォン21の検出感度が低いか或いは耳珠5の圧迫が不十分である可能性がある。そのため、警告を出力してカフ圧検出器51又はマイクロフォン21の検出感度を上げたり、血圧測定装置60の再装着を促したりする等の措置を行うことができる。また、図10に示す警告出力手順923においてなされた警告により、再測定が必要であると判断し、自動で再測定を行う等の処理も可能である。また、警告後の測定結果により、被検者において再測定が必要であると判断することもできる。   Thus, in the warning output procedure 923, when the maximum value of the amplitude intensity of the detected pulse wave of the cuff pressure detector 51 is smaller than the predetermined value or the detected signal intensity of the microphone 21 is smaller than the predetermined value, FIG. There is a possibility that the detection sensitivity of the cuff pressure detector 51 or the microphone 21 shown is low, or the compression of the tragus 5 is insufficient. Therefore, it is possible to take measures such as outputting a warning to increase the detection sensitivity of the cuff pressure detector 51 or the microphone 21 or prompting the blood pressure measurement device 60 to be remounted. Further, it is possible to perform processing such as automatically re-measurement by determining that re-measurement is necessary based on the warning made in the warning output procedure 923 shown in FIG. Moreover, it can also be judged from the measurement result after the warning that re-measurement is necessary in the subject.

また、本実施形態では、図1に示す押圧部としての空気式カフ20に所定の押圧力から減圧させながら、光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53と音波検出部としてのマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値が所定値よりも大きいか否か又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53と光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含む。   Further, in the present embodiment, the rising point of the envelope 54 of the pulse wave waveform detected by the photoelectric pulse wave detecting unit 25 while reducing the pressure from the predetermined pressing force to the pneumatic cuff 20 as the pressing unit shown in FIG. Whether the absolute value of the difference between the pressing force 53 that starts to be detected and the pressing force 53 that starts to detect the Korotkoff sound with the microphone 21 as the sound wave detection unit is greater than a predetermined value or the Korotkoff sound that is detected by the microphone 21 disappears. The absolute value of the difference between the pressing force 53 and the pressing force 53 at which the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative and the inflection point of the envelope 54 is greater than a predetermined value. A determination procedure for determining whether or not the value is large is included.

本実施形態では、図5に示す検出手順92のステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25に脈波を検出させ、マイクロフォン21にコロトコフ音を検出させることとする。また、図5に示すステップS13の血圧を算出できたか否かを判断する過程と、ステップS15の血圧を出力する過程との間に、上記の判断手順を設けることとする。   In the present embodiment, in the process of detecting the pulse wave in step S9 of the detection procedure 92 shown in FIG. 5, the pulse wave is detected by the photoelectric pulse wave detector 25 shown in FIG. 1, and the Korotkoff sound is detected by the microphone 21. And Further, the above determination procedure is provided between the process of determining whether or not the blood pressure in step S13 shown in FIG. 5 has been calculated and the process of outputting the blood pressure in step S15.

図11に、本実施形態に係る血圧測定装置の制御フローの1例を示す。図11では、図1に示す光電脈波検出部25、マイクロフォン21の2つで検出した場合について示している。図11に示すように、本実施形態に係る制御フローでは、ステップS13の後に、光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力(P1光電脈波)とマイクロフォン21でコロトコフ音を検出し始める押圧力(P1コロトコフ音)との差の絶対値が所定値よりも大きいか否かを判断するステップS131と、マイクロフォン21で検出するコロトコフ音が消失する押圧力(P2コロトコフ音)と光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力(P2光電脈波)との差の絶対値が所定値よりも大きいか否かを判断するステップS132と、を含む判断手順931を備えている。 FIG. 11 shows an example of a control flow of the blood pressure measurement device according to the present embodiment. FIG. 11 shows a case where detection is performed by the photoelectric pulse wave detector 25 and the microphone 21 shown in FIG. As shown in FIG. 11, in the control flow according to the present embodiment, after step S13, the pressing force (P 1) starts to detect the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25. Step S131 for determining whether the absolute value of the difference between the photoelectric pulse wave ) and the pressing force at which the microphone 21 starts detecting Korotkoff sound (P1 Korotkoff sound ) is larger than a predetermined value; Korotkoff detected by the microphone 21 pressing force sound disappears (P 2 Korotkoff sounds) and the pressing force which the slope of the envelope 54 of the pulse wave waveform detected by the photoelectric pulse wave detector 25 becomes the inflection point of the negatively and envelope 54 (P 2 Step S132 for determining whether or not the absolute value of the difference from the photoelectric pulse wave is larger than a predetermined value.

また、この他に判断手順931には、ステップS131において差の絶対値が所定値よりも大きい場合、P1光電脈波>P1コロトコフ音か否かを判断するステップS133と、ステップS133においてP1光電脈波≦P1コロトコフ音と判断した場合に、さらにステップS132と同様の判断を行うステップS134と、ステップS134において差の絶対値が所定値より大きいと判断した場合に、P2コロトコフ音>P2光電脈波か否かを判断するステップS135と、ステップS132において差の絶対値が所定値より大きいと判断した場合に、P2コロトコフ音>P2光電脈波か否かを判断するステップS135と、を備えている。ステップS133からステップS136を設けるのは、血液の粘性によりコロトコフ音の発生が遅れ、消失が早まるということに基づいている。 In addition, in the determination procedure 931, if the absolute value of the difference is larger than the predetermined value in step S131, it is determined whether or not P1 photoelectric pulse wave > P1 Korotkoff sound , and P in step S133. If it is determined that 1 photoelectric pulse wave ≦ P 1 Korotkoff sound , step S134 in which the same determination as in step S132 is performed, and if it is determined in step S134 that the absolute value of the difference is greater than a predetermined value, P 2 Korotkoff sound If it is determined that the absolute value of the difference is larger than the predetermined value in step S135 for determining whether or not> P2 photoelectric pulse wave, and whether or not P2 Korotkoff sound > P2 photoelectric pulse wave is determined in step S132 Step S135. The provision of steps S133 to S136 is based on the fact that the generation of Korotkoff sounds is delayed due to the viscosity of blood, and the disappearance is accelerated.

そして、ステップS133、ステップS135、ステップS136において判断が異なる場合、それぞれエラーを出力する(ステップS151、ステップS152、ステップS153)。また、ステップS134、ステップS135、ステップS136における判断において、所定の場合、血液の粘性が高い可能性があることを出力する(ステップS154)。要するに、これらのステップでは、図3に示す光電脈波形35とコロトコフ音波形37とを比較して、P11を基準にP13が所定の範囲で内側に又はP21を基準にP23が内側に入る場合には、血液の粘性が高い可能性があることを出力することを意味している。また、上記に関わらず、P11を基準にP13が所定の範囲で外側に又はP21を基準にP23が外側に入る場合には、エラーを出力することを意味している。   If the determinations are different in step S133, step S135, and step S136, an error is output (step S151, step S152, and step S153). Further, in the determination in step S134, step S135, or step S136, it is output that there is a possibility that the blood viscosity is high in a predetermined case (step S154). In short, in these steps, the photoelectric pulse waveform 35 and the Korotkoff waveform 37 shown in FIG. 3 are compared, and when P13 is on the inside in a predetermined range with respect to P11 or P23 is on the inside with reference to P21. Means that the blood viscosity may be high. Regardless of the above, if P13 is outside in a predetermined range with P11 as a reference or P23 is outside with P21 as a reference, an error is output.

ここで、所定の値C1とは、例えば、図3に示すP11とP13との差の2倍等を設定する。また、所定の値C2とは、例えば、図3に示すP21とP23との差の2倍等を設定する。なお、光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力とは、図3における時刻T21のときのカフ圧P21に対応する。   Here, the predetermined value C1 is set to, for example, twice the difference between P11 and P13 shown in FIG. The predetermined value C2 is set to, for example, twice the difference between P21 and P23 shown in FIG. Note that the pressing force at which the slope of the envelope 54 of the pulse wave detected by the photoelectric pulse wave detector 25 is negative and the inflection point of the envelope 54 is the cuff pressure P21 at time T21 in FIG. Corresponding to

このように、判断手順931において、図1に示す光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53と光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53との差の絶対値が所定値と比較して大きい場合には、血液の粘性が高いことを通知することができる。これにより、被検者の健康状態を知ることが可能である。   As described above, in the determination procedure 931, the Korotkoff sound is started to be detected by the pressing force 53 and the microphone 21 which starts detecting the rising point of the envelope 54 of the pulse wave waveform detected by the photoelectric pulse wave detector 25 shown in FIG. The absolute value of the difference from the pressing force 53 or the pressing force 53 at which the Korotkoff sound detected by the microphone 21 disappears and the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detecting unit 25 is negative and the envelope 54 When the absolute value of the difference from the pressing force 53 that is the inflection point is larger than the predetermined value, it can be notified that the viscosity of the blood is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53と光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、エラーを出力して判断手順931の後に再測定を行う等の処理を行うことができる。   On the other hand, the absolute difference between the pressing force 53 that starts detecting the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detecting unit 25 and the pressing force 53 that starts detecting Korotkoff sound by the microphone 21. Value or the pressing force 53 at which the Korotkoff sound detected by the microphone 21 disappears, and the inclination of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative, and the pressing force becomes the inflection point of the envelope 54 If the absolute value of the difference from 53 is larger than the predetermined value, the measurement result may not be valid. In this case, processing such as outputting an error and performing remeasurement after the determination procedure 931 can be performed.

また、本実施形態では、図1に示す押圧部としての空気式カフ20に所定の押圧力から減圧させながら、圧脈波検出部としてのカフ圧検出器51に脈波を検出させ且つ音波検出部としてのマイクロフォン21にコロトコフ音を検出させ、カフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力とマイクロフォン21でコロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又はマイクロフォン21でコロトコフ音が消失する押圧力とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含む。   In the present embodiment, the cuff pressure detector 51 as the pressure pulse wave detector 51 detects the pulse wave and detects the sound wave while reducing the pressure from the predetermined pressure to the pneumatic cuff 20 as the pressing portion shown in FIG. A pressing force that causes the microphone 21 to detect Korotkoff sound and starts detecting the rising point of the envelope 55 of the waveform of the pulse wave detected by the cuff pressure detector 51; and a pressing force that starts to detect Korotkoff sound by the microphone 21; Whether the absolute value of the difference between the two is greater than a predetermined value, or the slope of the envelope 55 of the waveform of the pulse wave detected by the cuff pressure detector 51 and the pressing force at which the Korotkoff sound disappears by the microphone 21 is negative and the envelope And a determination procedure for determining whether or not the absolute value of the difference from the pressing force at 55 inflection point is larger than a predetermined value.

本実施形態では、図5に示す検出手順92のステップS9の脈波を検出する過程において、図1に示すカフ圧検出器51に脈波を検出させ、マイクロフォン21にコロトコフ音を検出させることとする。また、図5に示すステップS13の血圧を算出できたか否かを判断する過程と、ステップS15の血圧を出力する過程との間に、上記の判断手順を設けることとする。   In the present embodiment, in the process of detecting the pulse wave in step S9 of the detection procedure 92 shown in FIG. 5, the cuff pressure detector 51 shown in FIG. 1 detects the pulse wave, and the microphone 21 detects Korotkoff sound. To do. Further, the above determination procedure is provided between the process of determining whether or not the blood pressure in step S13 shown in FIG. 5 has been calculated and the process of outputting the blood pressure in step S15.

図12に、本実施形態に係る血圧測定装置の制御フローの1例を示す。図12は、図1に示すカフ圧検出器51、マイクロフォン21の2つで検出した場合について示している。本実施形態に係る制御フローでは、図12に示すように、ステップS13の後に、カフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力(P1圧脈波)とマイクロフォン21でコロトコフ音を検出し始める押圧力(P1コロトコフ音)との差の絶対値が所定値よりも大きいか否かを判断するステップS137と、マイクロフォン21で検出するコロトコフ音が消失する押圧力(P2コロトコフ音)とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力(P2圧脈波)との差の絶対値が所定値よりも大きいか否かを判断するステップS138と、を含む判断手順932を備えている。 FIG. 12 shows an example of a control flow of the blood pressure measurement device according to this embodiment. FIG. 12 shows a case where detection is performed by the cuff pressure detector 51 and the microphone 21 shown in FIG. In the control flow according to the present embodiment, as shown in FIG. 12, the pressing force (P1 pressure) that starts detecting the rising point of the envelope 55 of the waveform of the pulse wave detected by the cuff pressure detector 51 after step S13. Step S137 for determining whether the absolute value of the difference between the pulse wave ) and the pressing force at which the microphone 21 starts to detect Korotkoff sounds (P1 Korotkoff sound ) is greater than a predetermined value; Korotkoff sounds detected by the microphone 21 Pressure (P 2 Korotkoff sound ) and the inclination of the envelope 55 of the pulse waveform detected by the cuff pressure detector 51 are negative, and the pressure (P 2 pressure pulse) becomes the inflection point of the envelope 55 Step S138 for determining whether or not the absolute value of the difference from the ( wave ) is larger than a predetermined value.

また、この他に判断手順932には、ステップS137において差の絶対値が所定値よりも大きい場合、P1圧脈波>P1コロトコフ音か否かを判断するステップS139と、ステップS139において、P1圧脈波≦P1コロトコフ音と判断した場合に、さらにステップS138と同様の判断を行うステップS140と、ステップS140において差の絶対値が所定値より大きいと判断した場合に、P2コロトコフ音>P2圧脈波か否かを判断するステップS141と、ステップS138において差の絶対値が所定値より大きいと判断した場合に、P2コロトコフ音>P2圧脈波か否かを判断するステップS142と、を備えている。ステップS139からステップS142を設けるのは、血液の粘性によりコロトコフ音の発生が遅れ、消失が早まるということに基づいている。 In addition, in the determination procedure 932, if the absolute value of the difference is larger than the predetermined value in step S137, it is determined whether or not P 1 pressure pulse wave > P 1 Korotkoff sound, and in step S139, When it is determined that P 1 pressure pulse wave ≦ P 1 Korotkoff sound , step S140 in which the same determination as in step S138 is performed, and in step S140, when it is determined that the absolute value of the difference is greater than a predetermined value, P 2 Korotkoff sound Step S141 for determining whether or not sound > P2 pressure pulse wave, and if it is determined in step S138 that the absolute value of the difference is greater than a predetermined value, it is determined whether or not P2 Korotkoff sound > P2 pressure pulse wave. Step S142. The provision of steps S139 to S142 is based on the fact that the generation of Korotkoff sounds is delayed due to the viscosity of blood and disappearance is accelerated.

そして、ステップS139、ステップS141、ステップS142において判断が異なる場合、それぞれエラーを出力する(ステップS155、ステップS156、ステップS157)。また、ステップS140、ステップS141、ステップS142における判断において、所定の場合、血液の粘性が高い可能性があることを出力する(ステップS158)。要するに、これらのステップでは、図3に示す圧脈波形36とコロトコフ音波形37とを比較して、P12を基準にP13が所定の範囲で内側に又はP22を基準にP23が内側に入る場合には、血液の粘性が高い可能性があることを出力することを意味している。また、上記に関わらず、P12を基準にP13が所定の範囲で外側に又はP22を基準にP23が外側に入る場合には、エラーを出力することを意味している。   If the determinations in step S139, step S141, and step S142 are different, an error is output (step S155, step S156, and step S157). Further, in the determinations in step S140, step S141, and step S142, it is output that there is a possibility that blood viscosity is high in a predetermined case (step S158). In short, in these steps, the pressure pulse waveform 36 and the Korotkoff waveform 37 shown in FIG. 3 are compared, and when P13 is inward within a predetermined range with P12 as a reference or P23 is inward with P22 as a reference Means that the blood viscosity may be high. Regardless of the above, if P13 is outside in a predetermined range with P12 as a reference or P23 is outside with P22 as a reference, an error is output.

ここで、所定の値C1とは、例えば、図3に示すP12とP13との差の2倍等を設定する。また、所定の値C2とは、例えば、図3に示すP22とP23との差の2倍等を設定する。なお、カフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力とは、図3における時刻T22のときのカフ圧P22に対応する。   Here, the predetermined value C1 is set to, for example, twice the difference between P12 and P13 shown in FIG. The predetermined value C2 is set to, for example, twice the difference between P22 and P23 shown in FIG. Note that the pressing force at which the slope of the envelope 55 of the pulse waveform detected by the cuff pressure detector 51 is negative and the inflection point of the envelope 55 is the cuff pressure P22 at time T22 in FIG. Correspond.

このように、判断手順932において、図1に示すカフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値と比較して大きい場合には、血液の粘性が高いことを通知することができる。これにより、被検者の健康状態を知ることが可能である。   As described above, in the determination procedure 932, the pressing force 53 that starts detecting the rising point of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 shown in FIG. 1 and the pressing force 53 that starts detecting Korotkoff sound by the microphone 21 are detected. The absolute value of the difference from the pressure 53 or the slope of the envelope 55 of the pulse wave waveform detected by the pressing force 53 and the cuff pressure detector 51 where the Korotkoff sound detected by the microphone 21 disappears and the envelope 55 changes When the absolute value of the difference from the pressing force 53 serving as the bending point is larger than the predetermined value, it can be notified that the blood viscosity is high. Thereby, it is possible to know the health condition of the subject.

また、一方で、カフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力とマイクロフォン21でコロトコフ音を検出し始める押圧力53との差の絶対値又はマイクロフォン21で検出するコロトコフ音が消失する押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差が所定値と比較して大きい場合には、測定結果に妥当性がない場合もある。この場合には、判断手順932の後に再測定を行う等の処理を行うことができる。   On the other hand, the absolute value of the difference between the pressing force at which the rising point of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 starts to be detected and the pressing force 53 at which the Korotkoff sound starts to be detected by the microphone 21 or The pressing force 53 at which the Korotkoff sound detected by the microphone 21 disappears, and the pressing force 53 at which the inclination of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 is negative and becomes the inflection point of the envelope 55. If the difference is large compared to the predetermined value, the measurement result may not be valid. In this case, processing such as performing remeasurement after the determination procedure 932 can be performed.

また、本実施形態では、図1に示す押圧部としての空気式カフ20に所定の押圧力53から減圧させながら、光電脈波検出部25及び圧脈波検出部としてのカフ圧検出器51に脈波を検出させ、光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53との差の絶対値が所定値よりも大きいか否か又は光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含む。   In the present embodiment, the pneumatic cuff 20 as the pressing unit shown in FIG. 1 is depressurized from the predetermined pressing force 53 while the photoelectric pulse wave detecting unit 25 and the cuff pressure detector 51 as the pressure pulse wave detecting unit are used. A pulse wave is detected, and a pressing force 53 that starts detecting the rising point of the envelope 54 of the pulse wave detected by the photoelectric pulse wave detector 25 and an envelope 55 of the pulse waveform detected by the cuff pressure detector 51 are detected. Whether the absolute value of the difference from the pressing force 53 that starts detecting the rising point of the pulse wave is larger than a predetermined value, or the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative and the envelope The difference between the pressing force 53 that is the inflection point of the line 54 and the pressing force 53 that is the inclination of the envelope 55 of the waveform of the pulse wave detected by the cuff pressure detector 51 and is the inflection point of the envelope 55 A determination procedure for determining whether or not the absolute value is larger than a predetermined value is included.

本実施形態では、図5に示す検出手順92のステップS9の脈波を検出する過程において、図1に示す光電脈波検出部25及びカフ圧検出器51に脈波を検出させることとする。また、図5に示すステップS13の血圧を算出できたか否かを判断する過程と、ステップS15の血圧を出力する過程との間に、上記の判断手順を設けることとする。   In the present embodiment, the pulse wave is detected by the photoelectric pulse wave detector 25 and the cuff pressure detector 51 shown in FIG. 1 in the process of detecting the pulse wave in step S9 of the detection procedure 92 shown in FIG. Further, the above determination procedure is provided between the process of determining whether or not the blood pressure in step S13 shown in FIG. 5 has been calculated and the process of outputting the blood pressure in step S15.

図13に、本実施形態に係る血圧測定装置の制御フローの1例を示す。図13は、図1に示す光電脈波検出部25及びカフ圧検出器51の2つで脈波を検出した場合について示している。本実施形態に係る制御フローでは、図13に示すように、ステップS13の後に、図1に示す光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53との差の絶対値が所定値よりも大きいか否かを判断するステップS143と、光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値よりも大きいか否かを判断するステップS144と、を有する判断手順933を備えている。そして、ステップS143、ステップS144いずれのステップにおいても所定値より大きい場合には、エラーを出力する(ステップS159)。   FIG. 13 shows an example of a control flow of the blood pressure measurement device according to the present embodiment. FIG. 13 shows a case where a pulse wave is detected by the photoelectric pulse wave detector 25 and the cuff pressure detector 51 shown in FIG. In the control flow according to the present embodiment, as shown in FIG. 13, after step S <b> 13, a push to start detecting the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 shown in FIG. 1 is started. Step S143 for determining whether the absolute value of the difference between the pressure 53 and the pressing force 53 at which the rising point of the envelope 55 of the pulse wave waveform detected by the cuff pressure detector 51 starts to be detected is greater than a predetermined value; The pulse waveform detected by the cuff pressure detector 51 and the pressing force 53 and the inflection point of the envelope 54 are negative and the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative. A determination procedure 933 including a step S144 of determining whether or not an absolute value of a difference from the pressing force 53 that is an inflection point of the envelope 55 is greater than a predetermined value when the inclination of the envelope 55 is negative. ing. If the value is larger than the predetermined value in either step S143 or step S144, an error is output (step S159).

ここで、所定の値C1とは、例えば、図3に示すP11とP12との差の2倍等を設定する。また、所定の値C2とは、例えば、図3に示すP21とP22との差の2倍等を設定する。なお、光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力とは、図3における時刻T21のときのカフ圧P21に対応する。また、カフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力とは、図3における時刻T22のときのカフ圧P22に対応する。   Here, the predetermined value C1 is set to, for example, twice the difference between P11 and P12 shown in FIG. The predetermined value C2 is set to, for example, twice the difference between P21 and P22 shown in FIG. Note that the pressing force at which the slope of the envelope 54 of the pulse wave detected by the photoelectric pulse wave detector 25 is negative and the inflection point of the envelope 54 is the cuff pressure P21 at time T21 in FIG. Corresponding to Further, the pressing force at which the slope of the envelope 55 of the pulse waveform detected by the cuff pressure detector 51 is negative and the inflection point of the envelope 55 is the cuff pressure P22 at time T22 in FIG. Correspond.

このように、図1に示す光電脈波検出部25で検出する脈波の波形の包絡線54の立ち上がり点を検出し始める押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の立ち上がり点を検出し始める押圧力53との差の絶対値又は光電脈波検出部25で検出する脈波の波形の包絡線54の傾きが負で且つ包絡線54の変曲点となる押圧力53とカフ圧検出器51で検出する脈波の波形の包絡線55の傾きが負で且つ包絡線55の変曲点となる押圧力53との差の絶対値が所定値と比較して大きい場合には、測定結果に妥当性がないことが考えられる。この場合に、図13の判断手順933の後に再測定を行う等の処理を行うことができる。   As described above, the pressing force 53 that starts detecting the rising point of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 shown in FIG. 1 and the envelope of the pulse waveform detected by the cuff pressure detector 51 are detected. The absolute value of the difference from the pressing force 53 that starts detecting the rising point of the line 55 or the slope of the envelope 54 of the pulse waveform detected by the photoelectric pulse wave detector 25 is negative and the inflection point of the envelope 54 The absolute value of the difference between the pressing force 53 and the pressing force 53 that is the inflection point of the envelope 55 is negative and the slope of the envelope 55 of the pulse waveform detected by the cuff pressure detector 51 is negative. If it is large, the measurement result may be invalid. In this case, processing such as performing re-measurement after the determination procedure 933 in FIG. 13 can be performed.

以上説明したように、本実施形態に係る血圧測定装置の制御方法では、コロトコフ法、圧脈波法及び光電脈波法のそれぞれの特長を生かしつつ欠点を補って、より精度の高い血圧測定を可能とする。   As described above, in the control method of the blood pressure measurement device according to the present embodiment, more accurate blood pressure measurement can be performed by making use of the respective features of the Korotkoff method, the pressure pulse wave method, and the photoelectric pulse wave method to compensate for the drawbacks. Make it possible.

本発明の血圧測定装置は、生体の外耳等の小さい部位での長時間の血圧の測定を可能とするため、体調や体の活動状態を知るための手段としての用途にも適用できる。   The blood pressure measurement device of the present invention can be applied to the use as a means for knowing the physical condition and the activity state of the body because it enables measurement of blood pressure for a long time at a small site such as the outer ear of a living body.

1実施形態に係る血圧測定装置を被検体としての生体の外耳の耳珠に装着した概略図である。It is the schematic which mounted | wore with the tragus of the outer ear of the biological body as a test subject the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置を被検体としての生体の外耳の耳珠に装着した概略図である。It is the schematic which mounted | wore with the tragus of the outer ear of the biological body as a test subject the blood pressure measuring device which concerns on 1 embodiment. 光電脈波、圧脈及びコロトコフ音を、被検体としての耳珠を押圧して、減圧過程において測定したそれぞれの結果を示した図である。It is the figure which showed each result which measured the photoelectric pulse wave, the pressure pulse, and the Korotkoff sound in the pressure reduction process by pressing the tragus as a subject. 血圧測定装置の別の形態を示した概略図である。It is the schematic which showed another form of the blood-pressure measuring apparatus. 1実施形態に係る血圧測定装置の制御部の基本的な制御フローの1例を示した図である。It is the figure which showed one example of the basic control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment. 1実施形態に係る血圧測定装置の制御部の制御フローの1例を示した図である。It is the figure which showed one example of the control flow of the control part of the blood pressure measuring device which concerns on 1 embodiment.

符号の説明Explanation of symbols

2:血管,3:血球,5:耳珠
6:対輪,7:耳輪脚,8:対珠,9:外耳
19:圧力伝達パイプ,20:空気式カフ,21:マイクロフォン,22:圧電素子
23:空気供給パイプ
24:支え部
25a:受光素子,25b:発光素子,25:光電脈波検出部
27:空洞,28:保持部,29:筺体
51:カフ圧検出器,52:空気ポンプ
54、55:包絡線
30:袋体,31:U字体,32:押圧面
41a,b,c,d,e,f:指示配線
45:メモリ,46:制御部
47:透過光,48:散乱光,49:照射光
53:押圧力
60、70、80:血圧測定装置
2: blood vessel, 3: blood cell, 5: tragus 6: opposite ring, 7: ear ring leg, 8: opposite ring, 9: outer ear 19: pressure transmission pipe, 20: pneumatic cuff, 21: microphone, 22: piezoelectric element 23: Air supply pipe 24: Support part 25a: Light receiving element, 25b: Light emitting element, 25: Photoelectric pulse wave detecting part 27: Cavity, 28: Holding part, 29: Housing 51: Cuff pressure detector, 52: Air pump 54 55: envelope 30: bag body, 31: U-shaped body, 32: pressing surface 41a, b, c, d, e, f: instruction wiring
45: Memory, 46: Control unit 47: Transmitted light, 48: Scattered light, 49: Irradiated light 53: Pressure 60, 70, 80: Blood pressure measuring device

Claims (30)

被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記圧脈波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記光電脈波検出部に脈波を検出させ、検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定し、前記押圧部に所定の押圧力から前記単位時間当たりの減圧量に従って減圧させ、前記押圧部に減圧させる過程において、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させることを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit and the pressure pulse wave detection unit;
A blood pressure measuring device comprising:
The control unit causes the photoelectric pulse wave detection unit to detect a pulse wave, and reduces the pressure reduction per unit time from the product of the pulse rate per unit time obtained from the detected pulse wave and a predetermined amount of pressure reduction per beat. In the process of calculating the amount, depressurizing the pressing unit from a predetermined pressing force according to the depressurizing amount per unit time, and depressurizing the pressing unit, the photoelectric pulse wave detecting unit and the pressure pulse wave detecting unit A blood pressure measurement device characterized by detecting the blood pressure.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記音波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記光電脈波検出部に脈波を検出させ、検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定し、前記押圧部に所定の押圧力から前記単位時間当たりの減圧量に従って減圧させ、前記押圧部に減圧させる過程において、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させることを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A sound wave detector for detecting Korotkoff sounds from the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit and the sound wave detection unit;
A blood pressure measuring device comprising:
The control unit causes the photoelectric pulse wave detection unit to detect a pulse wave, and reduces the pressure reduction per unit time from the product of the pulse rate per unit time obtained from the detected pulse wave and a predetermined amount of pressure reduction per beat. In the process of calculating the amount, depressurizing the pressing unit from a predetermined pressing force according to the depressurizing amount per unit time, and depressurizing the pressing unit, the photoelectric pulse wave detecting unit detects the pulse wave and the sound wave detection A blood pressure measuring apparatus, characterized in that a Korotkoff sound is detected by a part.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記光電脈波検出部に脈波を検出させ、検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定し、前記押圧部に所定の押圧力から前記単位時間当たりの減圧量に従って減圧させ、前記押圧部に減圧させる過程において、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させることを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit, the pressure pulse wave detection unit, and the sound wave detection unit;
A blood pressure measuring device comprising:
The control unit causes the photoelectric pulse wave detection unit to detect a pulse wave, and reduces the pressure reduction per unit time from the product of the pulse rate per unit time obtained from the detected pulse wave and a predetermined amount of pressure reduction per beat. In the process of calculating the amount, depressurizing the pressing unit from a predetermined pressing force according to the depressurizing amount per unit time, and depressurizing the pressing unit, the photoelectric pulse wave detecting unit and the pressure pulse wave detecting unit And detecting the Korotkoff sound in the sound wave detection unit.
被検体への押圧力を増減できる押圧部と、
前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、
前記押圧部の押圧力を増減させ且つ前記脈波情報検出手段の検出を指示する制御部と、
を備える血圧測定装置であって、
前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
のうち少なくとも2つの検出部を有し、
前記制御部は、前記少なくとも2つの検出部に検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の差の絶対値が所定値よりも大きいときにエラー信号を出力することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
Pulse wave information detecting means for detecting information relating to the pulse wave of the subject from the outside of the subject;
A control unit for increasing / decreasing the pressing force of the pressing unit and instructing detection by the pulse wave information detecting unit;
A blood pressure measuring device comprising:
The pulse wave information detection means is a light emitting element that irradiates light to the subject, and a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element. A photoelectric pulse wave detector for detecting a pulse wave;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
At least two detection units,
The control unit outputs an error signal when an absolute value of a difference between a systolic blood pressure value or a diastolic blood pressure value determined based on the detected values detected by the at least two detecting units is larger than a predetermined value. A blood pressure measuring device characterized by the above.
被検体への押圧力を増減できる押圧部と、
前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、
前記押圧部の押圧力を増減させ且つ前記脈波情報検出手段の検出を指示する制御部と、
を備える血圧測定装置であって、
前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
のうち少なくとも2つの検出部を有し、
前記制御部は、前記少なくとも2つの検出部に検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の平均値を算出することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
Pulse wave information detection means for detecting information related to the pulse wave of the subject from outside the subject;
A control unit for increasing / decreasing the pressing force of the pressing unit and instructing detection by the pulse wave information detecting unit;
A blood pressure measuring device comprising:
The pulse wave information detection means is a light emitting element that irradiates light to the subject, and a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element. A photoelectric pulse wave detector for detecting a pulse wave;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
At least two detection units,
The blood pressure measuring device, wherein the control unit calculates a maximum blood pressure value or an average value of minimum blood pressure values determined based on the detection values detected by the at least two detection units.
被検体への押圧力を増減できる押圧部と、
前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、
前記押圧部の押圧力を増減させ且つ前記脈波情報検出手段の検出を指示する制御部と、
を備える血圧測定装置であって、
前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を有し、
前記制御部は、前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部に検出させたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の中間値を選択することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
Pulse wave information detection means for detecting information related to the pulse wave of the subject from outside the subject;
A control unit for increasing / decreasing the pressing force of the pressing unit and instructing detection by the pulse wave information detecting unit;
A blood pressure measuring device comprising:
The pulse wave information detection means is a light emitting element that irradiates light to the subject, and a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element. A photoelectric pulse wave detector for detecting a pulse wave;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
Have
The control unit selects an intermediate value of a systolic blood pressure value or a diastolic blood pressure value determined based on each detection value detected by the photoelectric pulse wave detecting unit, the pressure pulse wave detecting unit, and the sound wave detecting unit. A blood pressure measuring device characterized by the above.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記圧脈波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記押圧部による押圧力の減圧過程での前記圧脈波検出部の検出脈波の振幅強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit and the pressure pulse wave detection unit;
A blood pressure measuring device comprising:
The control unit detects a pulse detected by the photoelectric pulse wave detecting unit before the pressure by the pressing unit is detected by the maximum amplitude intensity of the detected pulse wave of the pressure pulse wave detecting unit in the process of reducing the pressing force by the pressing unit. A blood pressure measurement device that outputs a warning when the value is smaller than a predetermined value based on the amplitude intensity of a wave.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体でのコロトコフ音を検出する音波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記音波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記押圧部による押圧力の減圧過程での前記音波検出部の検出信号強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A sound wave detector for detecting Korotkoff sounds in the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit and the sound wave detection unit;
A blood pressure measuring device comprising:
The control unit is configured such that the maximum value of the detection signal intensity of the sound wave detection unit in the process of reducing the pressing force by the pressing unit is the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before the pressing by the pressing unit. A blood pressure measurement device that outputs a warning when it is smaller than a predetermined value based on the blood pressure.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記押圧部による押圧力の減圧過程での前記圧脈波検出部の検出脈波の振幅強度の最大値及び前記押圧部による押圧力の減圧過程での前記音波検出部の検出信号強度の最大値が前記押圧部による押圧前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit, the pressure pulse wave detection unit, and the sound wave detection unit;
A blood pressure measuring device comprising:
The control unit detects the maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit in the process of reducing the pressing force by the pressing unit and the detection of the sound wave detection unit in the process of reducing the pressing force by the pressing unit. A blood pressure measurement device that outputs a warning when the maximum value of the signal intensity is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before being pressed by the pressing unit.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記音波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記押圧部による所定の押圧力からの減圧過程で前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させ、前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部で前記コロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出する前記コロトコフ音が消失する押圧力と前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A sound wave detector for detecting Korotkoff sounds from the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit and the sound wave detection unit;
A blood pressure measuring device comprising:
The control unit causes the photoelectric pulse wave detection unit to detect a pulse wave and the sound wave detection unit to detect a Korotkoff sound in a process of depressurization from a predetermined pressing force by the pressing unit, and the photoelectric pulse wave detection unit detects the pulse wave. Whether or not the absolute value of the difference between the pressing force at which the rising point of the envelope of the waveform of the pulse wave to be detected starts to detect the Korotkoff sound at the sound wave detection unit is greater than a predetermined value, or whether the sound wave The difference between the pressing force at which the Korotkoff sound detected by the detecting unit disappears and the pressing force at which the slope of the envelope of the pulse waveform detected by the photoelectric pulse wave detecting unit is negative and becomes the inflection point of the envelope It is judged whether the absolute value of is larger than a predetermined value.
被検体への押圧力を増減できる押圧部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
前記押圧部の押圧力を増減させ且つ前記圧脈波検出部及び前記音波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記押圧部による所定の押圧力からの減圧過程で前記圧脈波検出部及び前記音波検出部を作動させ、前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部でコロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出するコロトコフ音が消失する押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the pressure pulse wave detection unit and the sound wave detection unit;
A blood pressure measuring device comprising:
The control unit operates the pressure pulse wave detection unit and the sound wave detection unit in a process of reducing pressure from a predetermined pressing force by the pressing unit, and detects an envelope of a waveform of a pulse wave detected by the pressure pulse wave detection unit. Whether the absolute value of the difference between the pressing force at which the rising point starts to be detected and the pressing force at which the sound wave detection unit starts to detect the Korotkoff sound is greater than a predetermined value, or the Korotkoff sound detected by the sound wave detection unit disappears Whether the absolute value of the difference between the pressing force and the pressing force that becomes the inflection point of the envelope is larger than a predetermined value, and the slope of the envelope of the pulse wave detected by the pressure pulse wave detector is negative A blood pressure measurement device characterized by determining whether or not.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記押圧部の押圧力を増減させ且つ前記光電脈波検出部及び前記圧脈波検出部の作動を指示する制御部と、
を備える血圧測定装置であって、
前記制御部は、前記押圧部による所定の押圧力からの減圧過程で前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ、前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断することを特徴とする血圧測定装置。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A control unit that increases or decreases the pressing force of the pressing unit and instructs the operation of the photoelectric pulse wave detection unit and the pressure pulse wave detection unit;
A blood pressure measuring device comprising:
The control unit causes the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect a pulse wave in a pressure reducing process from a predetermined pressing force by the pressing unit, and detects a pulse wave detected by the photoelectric pulse wave detection unit. The absolute value of the difference between the pressing force at which the rising point of the waveform envelope starts to be detected and the pressing force at which the rising point of the envelope of the pulse wave detected by the pressure pulse wave detection unit starts to be detected is greater than a predetermined value. The pulse wave detected by the pressure pulse wave detection unit and the pressing force that is negative or has a negative envelope slope of the pulse wave waveform detected by the photoelectric pulse wave detection unit and becomes an inflection point of the envelope curve A blood pressure measuring apparatus, comprising: determining whether or not an absolute value of a difference from a pressing force serving as an inflection point of the envelope is greater than a predetermined value when the slope of the envelope of the waveform is negative.
前記被検体は、生体の外耳及び/又はその周辺であることを特徴とする請求項1から12のいずれかに記載の血圧測定装置。   The blood pressure measuring device according to any one of claims 1 to 12, wherein the subject is an outer ear of a living body and / or its periphery. 前記被検体は、生体の外耳道及び/又は耳介であることを特徴とする請求項1から12のいずれかに記載の血圧測定装置。   The blood pressure measuring device according to any one of claims 1 to 12, wherein the subject is a living external ear canal and / or pinna. 前記被検体は、生体の耳珠及び/又はその周辺であることを特徴とする請求項1から12のいずれかに記載の血圧測定装置。   The blood pressure measuring device according to any one of claims 1 to 12, wherein the subject is a living tragus and / or its periphery. 被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部による押圧の前に前記光電脈波検出部に脈波を検出させる光電脈波検出手順と、
前記光電脈波検出手順で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から単位時間当たりの減圧量を算定する減圧量算定手順と、
前記減圧量算定手順において算定した前記単位時間当たりの減圧量に従って、前記押圧部に所定の押圧力から減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させる検出手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave by a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A method for controlling a blood pressure measurement device comprising:
A photoelectric pulse wave detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave before being pressed by the pressing unit;
A decompression amount calculation procedure for calculating a decompression amount per unit time from a product of a pulse rate per unit time obtained from the pulse wave detected by the photoelectric pulse wave detection procedure and a predetermined decompression amount per beat;
Detection that causes the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect pulse waves while reducing the pressure from a predetermined pressing force to the pressing unit according to the pressure reduction amount per unit time calculated in the pressure reduction amount calculation procedure Procedure and
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部による押圧の前に前記光電脈波検出部に脈波を検出させる光電脈波検出手順と、
前記光電脈波検出手順で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から時間当たりの減圧量を算定する減圧量算定手順と、
前記減圧量算定手順において算定した前記単位時間当たりの減圧量に従って、前記押圧部に所定の押圧力から減圧させながら、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A sound wave detector for detecting Korotkoff sounds from the subject;
A method for controlling a blood pressure measurement device comprising:
A photoelectric pulse wave detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave before being pressed by the pressing unit;
A decompression amount calculation procedure for calculating a decompression amount per time from a product of the pulse rate per unit time obtained from the pulse wave detected by the photoelectric pulse wave detection procedure and a predetermined decompression amount per beat;
In accordance with the pressure reduction amount per unit time calculated in the pressure reduction amount calculation procedure, the photoelectric pulse wave detection unit detects a pulse wave and the sound wave detection unit detects Korotkoff sound while reducing the pressure from a predetermined pressing force to the pressing unit. A detection procedure for detecting
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を測定圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を備える血圧測定装置であって、
前記押圧部による押圧の前に前記光電脈波検出部に脈波を検出させる光電脈波検出手順と、
前記光電脈波検出手順で検出した脈波から得られる単位時間当たりの脈拍数と予め定めた1拍当たりの減圧量との積から時間当たりの減圧量を算定する減圧量算定手順と、
前記減圧量算定手順において算定した前記単位時間当たりの減圧量に従って、前記押圧部に所定の押圧力から減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pulse wave measurement unit that measures a pulse wave from vibration of the surface of the subject; and
A sound wave detector for detecting Korotkoff sounds from the subject;
A blood pressure measuring device comprising:
A photoelectric pulse wave detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave before being pressed by the pressing unit;
A decompression amount calculation procedure for calculating a decompression amount per time from a product of the pulse rate per unit time obtained from the pulse wave detected by the photoelectric pulse wave detection procedure and a predetermined decompression amount per beat;
In accordance with the pressure reduction amount per unit time calculated in the pressure reduction amount calculation procedure, the photoelectric pulse wave detection unit and the pressure pulse wave detection unit detect a pulse wave while reducing the pressure from a predetermined pressing force to the pressing unit, and A detection procedure for causing the sound wave detection unit to detect Korotkoff sounds;
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、
を備える血圧測定装置であって、
前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
のうち少なくとも2つの検出部を有し、
前記押圧部に所定の押圧力から減圧させながら、前記少なくとも2つの検出部にそれぞれの検出対象を検出させる検出手順と、
前記検出手順の後に、前記少なくとも2つの検出部から得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の差の絶対値が所定値よりも大きいときにエラー信号を出力するエラー出力手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
Pulse wave information detection means for detecting information related to the pulse wave of the subject from outside the subject;
A blood pressure measuring device comprising:
The pulse wave information detection means is a light emitting element that irradiates light to the subject, and a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element. A photoelectric pulse wave detector for detecting a pulse wave;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
At least two detection units,
A detection procedure for causing the at least two detection units to detect respective detection targets while reducing the pressure from a predetermined pressing force to the pressing unit;
After the detection procedure, an error signal is output when the absolute value of the difference between the systolic blood pressure value or the diastolic blood pressure value determined based on the respective detection values obtained from the at least two detection units is greater than a predetermined value. Error output procedure and
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、
を備える血圧測定装置であって、
前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
のうち少なくとも2つの検出部を有し、
前記押圧部に所定の押圧力から減圧させながら、前記少なくとも2つの検出部にそれぞれの検出対象を検出させる検出手順と、
前記検出手順の後に、前記少なくとも2つの検出部から得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の平均値を算出する平均値算出手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
Pulse wave information detection means for detecting information related to the pulse wave of the subject from outside the subject;
A blood pressure measuring device comprising:
The pulse wave information detection means is a light emitting element that irradiates light to the subject, and a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element. A photoelectric pulse wave detector for detecting a pulse wave;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
At least two detection units,
A detection procedure for causing the at least two detection units to detect respective detection targets while reducing the pressure from a predetermined pressing force to the pressing unit;
After the detection procedure, an average value calculation procedure for calculating an average value of the systolic blood pressure value or the diastolic blood pressure value determined based on the respective detection values obtained from the at least two detection units;
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体の脈波に関する情報を前記被検体の外部から検出する脈波情報検出手段と、
を備える血圧測定装置であって、
前記脈波情報検出手段は、前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を有し、
前記押圧部に所定の押圧力から減圧させながら、前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部にそれぞれの検出対象を検出させる検出手順と、
前記検出手順の後に、前記光電脈波検出部、前記圧脈波検出部及び前記音波検出部から得られたそれぞれの検出値に基づいて定められる最高血圧値又は最低血圧値の中間値を選択する中間値選択手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
Pulse wave information detection means for detecting information related to the pulse wave of the subject from outside the subject;
A blood pressure measuring device comprising:
The pulse wave information detection means is a light emitting element that irradiates light to the subject, and a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element. A photoelectric pulse wave detector for detecting a pulse wave;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
Have
A detection procedure for causing the photoelectric pulse wave detection unit, the pressure pulse wave detection unit, and the sound wave detection unit to detect respective detection targets while reducing the pressure from a predetermined pressing force to the pressing unit;
After the detection procedure, the intermediate value of the maximum blood pressure value or the minimum blood pressure value determined based on the respective detection values obtained from the photoelectric pulse wave detection unit, the pressure pulse wave detection unit, and the sound wave detection unit is selected. Intermediate value selection procedure;
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部により押圧力を減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させる検出手順と、
前記検出手順での前記圧脈波検出部の検出脈波の振幅強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A method for controlling a blood pressure measurement device comprising:
A detection procedure for causing the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect a pulse wave while reducing the pressing force by the pressing unit;
The maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detection unit in the detection procedure is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before being pressed by the pressing unit. When the warning output procedure to output a warning,
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部により押圧力を減圧させながら、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、
前記検出手順での前記音波検出部の検出信号強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A sound wave detector for detecting Korotkoff sounds from the subject;
A method for controlling a blood pressure measurement device comprising:
A detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave and causing the sound wave detection unit to detect Korotkoff sound while reducing the pressing force by the pressing unit;
When the maximum value of the detection signal intensity of the sound wave detection unit in the detection procedure is smaller than a predetermined value based on the amplitude intensity of the detected pulse wave of the photoelectric pulse wave detection unit before being pressed by the pressing unit, a warning is issued. And a warning output procedure for outputting the blood pressure measurement device.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部により押圧力を減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、
前記検出手順での前記圧脈波検出部の検出脈波の振幅強度の最大値又は前記音波検出部の検出信号強度の最大値が前記押圧部による押圧の前の前記光電脈波検出部の検出脈波の振幅強度に基づく所定値よりも小さいときに、警告を出力する警告出力手順と、
を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
A method for controlling a blood pressure measurement device comprising:
A detection procedure in which the photoelectric pulse wave detection unit and the pressure pulse wave detection unit detect a pulse wave and the sound wave detection unit detects a Korotkoff sound while reducing the pressing force by the pressing unit;
Detection of the photoelectric pulse wave detection unit before the pressing by the pressing unit is the maximum value of the amplitude intensity of the detected pulse wave of the pressure pulse wave detecting unit or the maximum value of the detection signal intensity of the sound wave detecting unit in the detection procedure A warning output procedure for outputting a warning when it is smaller than a predetermined value based on the amplitude intensity of the pulse wave;
A control method for a blood pressure measurement device, comprising:
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部により押圧力を減圧させながら、前記光電脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、
前記検出手順において前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部で前記コロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出する前記コロトコフ音が消失する押圧力と前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A sound wave detector for detecting Korotkoff sounds from the subject;
A method for controlling a blood pressure measurement device comprising:
A detection procedure for causing the photoelectric pulse wave detection unit to detect a pulse wave and causing the sound wave detection unit to detect Korotkoff sound while reducing the pressing force by the pressing unit;
In the detection procedure, the absolute value of the difference between the pressing force at which the rising point of the envelope of the pulse wave waveform detected by the photoelectric pulse wave detection unit starts to be detected and the pressing force at which the sound wave detection unit starts to detect the Korotkoff sound The pressure of the Korotkoff sound detected by the sound wave detection unit disappears and the slope of the envelope of the waveform of the pulse wave detected by the photoelectric pulse wave detection unit is negative and the envelope A control method for a blood pressure measurement device, comprising: a determination procedure for determining whether an absolute value of a difference from a pressing force that is an inflection point of a line is larger than a predetermined value.
被検体への押圧力を増減できる押圧部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
前記被検体からのコロトコフ音を検出する音波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部により押圧力を減圧させながら、前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させる検出手順と、
前記検出手順において前記圧脈波検出部に脈波を検出させ且つ前記音波検出部にコロトコフ音を検出させ、前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記音波検出部で前記コロトコフ音を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記音波検出部で検出する前記コロトコフ音が消失する押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A sound wave detector for detecting Korotkoff sounds from the subject;
A method for controlling a blood pressure measurement device comprising:
A detection procedure in which the pressure pulse wave detection unit detects a pulse wave and the sound wave detection unit detects Korotkoff sound while reducing the pressing force by the pressing unit;
In the detection procedure, the pressure pulse wave detection unit detects the pulse wave and the sound wave detection unit detects Korotkoff sound, and detects the rising point of the envelope of the pulse wave waveform detected by the pressure pulse wave detection unit. Whether the absolute value of the difference between the pressing force to start and the pressing force to start detecting the Korotkoff sound by the sound wave detection unit is greater than a predetermined value, or the pressing force at which the Korotkoff sound detected by the sound wave detection unit disappears Judgment is made as to whether or not the slope of the envelope of the pulse wave detected by the pressure pulse wave detector is negative and the absolute value of the difference from the pressing force that is the inflection point of the envelope is greater than a predetermined value The control method of the blood-pressure measuring device characterized by including the judgment procedure to do.
被検体への押圧力を増減できる押圧部と、
前記被検体に光を照射する発光素子及び該発光素子からの光のうち前記被検体を透過した光又は前記被検体の内部で散乱した光を受光する受光素子で脈波を検出する光電脈波検出部と、
前記被検体の表面の振動から脈波を検出する圧脈波検出部と、
を備える血圧測定装置の制御方法であって、
前記押圧部により押圧力を減圧させながら、前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させる検出手順と、
前記検出手順において前記光電脈波検出部及び前記圧脈波検出部に脈波を検出させ、前記光電脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の立ち上がり点を検出し始める押圧力との差の絶対値が所定値よりも大きいか否か又は前記光電脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力と前記圧脈波検出部で検出する脈波の波形の包絡線の傾きが負で且つ前記包絡線の変曲点となる押圧力との差の絶対値が所定値よりも大きいか否かを判断する判断手順を含むことを特徴とする血圧測定装置の制御方法。
A pressing part that can increase or decrease the pressing force on the subject;
A light emitting element that irradiates light to the subject, and a photoelectric pulse wave that detects a pulse wave with a light receiving element that receives light transmitted through the subject or light scattered inside the subject out of light from the light emitting element A detection unit;
A pressure pulse wave detection unit for detecting a pulse wave from vibration of the surface of the subject;
A method for controlling a blood pressure measurement device comprising:
A detection procedure for causing the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect a pulse wave while reducing the pressing force by the pressing unit;
A pressing force that causes the photoelectric pulse wave detection unit and the pressure pulse wave detection unit to detect a pulse wave in the detection procedure and starts detecting a rising point of an envelope of a pulse wave waveform detected by the photoelectric pulse wave detection unit; Whether the absolute value of the difference from the pressing force at which the rising point of the envelope of the pulse wave waveform detected by the pressure pulse wave detection unit starts to be detected is larger than a predetermined value or detected by the photoelectric pulse wave detection unit The slope of the envelope of the pulse wave waveform is negative and the slope of the envelope of the pulse waveform detected by the pressure pulse wave detector and the pressing force that is the inflection point of the envelope is negative and the envelope A control method for a blood pressure measurement device, comprising: a determination procedure for determining whether an absolute value of a difference from a pressing force that is an inflection point of a line is larger than a predetermined value.
前記被検体は、生体の外耳及び/又はその周辺であることを特徴とする請求項16から27のいずれかに記載の血圧測定装置の制御方法。   The method for controlling a blood pressure measurement device according to any one of claims 16 to 27, wherein the subject is an outer ear of a living body and / or its periphery. 前記被検体は、生体の外耳道及び/又は耳介であることを特徴とする請求項16から27のいずれかに記載の血圧測定装置の制御方法。   28. The method for controlling a blood pressure measurement device according to any one of claims 16 to 27, wherein the subject is an external auditory canal and / or pinna of a living body. 前記被検体は、生体の耳珠及び/又はその周辺であることを特徴とする請求項16から27のいずれかに記載の血圧測定装置の制御方法。
28. The method of controlling a blood pressure measurement device according to claim 16, wherein the subject is a living tragus and / or its periphery.
JP2004293419A 2004-10-06 2004-10-06 Blood pressure measurement device Active JP4412659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293419A JP4412659B2 (en) 2004-10-06 2004-10-06 Blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293419A JP4412659B2 (en) 2004-10-06 2004-10-06 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2006102189A true JP2006102189A (en) 2006-04-20
JP4412659B2 JP4412659B2 (en) 2010-02-10

Family

ID=36372561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293419A Active JP4412659B2 (en) 2004-10-06 2004-10-06 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP4412659B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509226A (en) * 2009-10-29 2013-03-14 シーエヌシステムズ メディジンテクニク アクチェンゲゼルシャフト Apparatus and method for enhancing and analyzing signals from continuous non-invasive blood pressure devices
KR20170006106A (en) * 2015-07-07 2017-01-17 삼성전자주식회사 Apparatus and method for measuring bio-signal
JP7176711B2 (en) 2017-07-13 2022-11-22 株式会社タニタ Blood pressure measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509226A (en) * 2009-10-29 2013-03-14 シーエヌシステムズ メディジンテクニク アクチェンゲゼルシャフト Apparatus and method for enhancing and analyzing signals from continuous non-invasive blood pressure devices
KR20170006106A (en) * 2015-07-07 2017-01-17 삼성전자주식회사 Apparatus and method for measuring bio-signal
KR102436728B1 (en) * 2015-07-07 2022-08-26 삼성전자주식회사 Apparatus and method for measuring bio-signal
JP7176711B2 (en) 2017-07-13 2022-11-22 株式会社タニタ Blood pressure measuring device

Also Published As

Publication number Publication date
JP4412659B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
EP3337393B1 (en) Monitoring apparatus for monitoring blood pressure of a subject
US11064947B2 (en) Apparatus and method for measuring biometric information
US7488292B2 (en) Blood vessel detection device
CN101730502A (en) Arterial blood pressure monitor with a liquid filled cuff
TW200400021A (en) Blood-pressure determining apparatus
JPH11514898A (en) Method and apparatus for continuous non-invasive monitoring of blood pressure parameters
US6602198B2 (en) Automatic blood-pressure measuring apparatus
AU2018210232A1 (en) Non-invasive blood pressure measurement using pulse wave velocity
WO2017140748A2 (en) Personal hand-held monitor
JP4412660B2 (en) Blood pressure monitor, blood pressure correction method, and measurement start pressure correction method
US20040171941A1 (en) Blood flow amount estimating apparatus
JP4412659B2 (en) Blood pressure measurement device
JP2008523933A (en) Method and apparatus for non-invasive determination (detection) of blood flow in an artery and related parameters, in particular arterial waveform and blood pressure
JP2006212178A (en) Blood pressure-measuring apparatus and blood pressure judgment method
JP2006102191A (en) Blood pressure measuring device
US20210244297A1 (en) Apparatus and method and computer program product for determining a blood pressure measurement
JP2000217792A (en) Biological information detector
WO2016035041A1 (en) Apparatus and method for non-invasive pressure measurement of a fluid confined in a vessel with elastic or rigid walls fitted with an elastic window
JP2010167181A (en) Electronic manometer, information processor, measuring management system, measuring management program, and measuring management method
JP2008168055A (en) Stroke volume estimating apparatus
JP2006296808A (en) Blood pressure measuring apparatus
JP2006325900A (en) Blood pressure-measuring device and blood pressure-measuring method
EP4221578B1 (en) Estimating central blood pressure
JP2006102252A (en) Circulatory organ function measuring device, circulatory organ function measuring method, control program and computer-readable storage medium
JP2005021347A (en) Sphygmomanometer and method for measuring blood pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350