JP2006096839A - Water-based heat storage material - Google Patents

Water-based heat storage material Download PDF

Info

Publication number
JP2006096839A
JP2006096839A JP2004283460A JP2004283460A JP2006096839A JP 2006096839 A JP2006096839 A JP 2006096839A JP 2004283460 A JP2004283460 A JP 2004283460A JP 2004283460 A JP2004283460 A JP 2004283460A JP 2006096839 A JP2006096839 A JP 2006096839A
Authority
JP
Japan
Prior art keywords
sodium
heat storage
storage material
water
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004283460A
Other languages
Japanese (ja)
Other versions
JP4672322B2 (en
Inventor
Kenji Saida
健二 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Plastech Co Ltd
Original Assignee
Sumika Plastech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Plastech Co Ltd filed Critical Sumika Plastech Co Ltd
Priority to JP2004283460A priority Critical patent/JP4672322B2/en
Publication of JP2006096839A publication Critical patent/JP2006096839A/en
Application granted granted Critical
Publication of JP4672322B2 publication Critical patent/JP4672322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-based heat storage material consisting of water as a major component, wherein water does not easily leak out from a broken container under a compression lord. <P>SOLUTION: The water-based heat storage material comprises a hydrogel prepared by polymerizing sodium αβ-unsaturated carboxylate and NN'-methylenebisacrylamide in the presence of a redox polymerization initiator and water and is characterized by at most 80% deformation rate of the above hydrogel under a compression lord. The water-based heat storage material comprises a hydrogel prepared by polymerizing sodium αβ-unsaturated carboxylate and NN'-methylenebisacrylamide in the presence of sodium chloride and water and is characterized by at most 60% deformation rate of the above hydrogel under a compression lord. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽熱などを蓄熱して住居温熱環境の調整などに用いられる水を主材とした蓄熱材に関する。   The present invention relates to a heat storage material using water as a main material by storing solar heat or the like to adjust a residential thermal environment.

近年、太陽熱を蓄熱材に蓄熱しておき、日没後に蓄熱材から放熱することにより、冬季の日没後の室内温度低下を抑制し、住環境の快適さを向上させることが検討されている(例えば、非特許文献1参照。)。この用途の蓄熱材としては従来から水を主材とするものが用いられ、水を袋に入れたウォーターバッグが蓄熱体として用いられている。水は比熱が大きく、安価かつ安全であるために顕熱型蓄熱材として好適である。しかるに、蓄熱材は長期にわたり建築物内に設置されるので、容器の破損も考慮する必要があり、水を主材とする蓄熱材は、従来は容器破損時に漏洩するという問題点を有していた。   In recent years, solar heat has been stored in a heat storage material, and by reducing heat from the heat storage material after sunset, it has been studied to suppress the indoor temperature drop after sunset in winter and improve the comfort of the living environment ( For example, refer nonpatent literature 1.). As a heat storage material for this application, a material mainly composed of water has been used conventionally, and a water bag containing water in a bag has been used as a heat storage body. Water is suitable as a sensible heat storage material because it has a large specific heat, is inexpensive and safe. However, since the heat storage material is installed in the building for a long time, it is necessary to consider the breakage of the container, and the heat storage material mainly composed of water has a problem that it leaks when the container breaks conventionally. It was.

そこで、水を主材とする蓄熱材(保冷材および蓄冷材を含む。)の容器破損時の漏洩防止について、種々検討がなされている。例えば、アクリルアミド、アクリル酸ナトリウム及びNN’−メチレンビスアクリルアミドを、容器に充填後にレドックス系重合開始剤および水の存在下で重合し、高吸水性樹脂中に水を保持してなるヒドロゲルからなる蓄熱材が提案されている(例えば、特許文献1参照。)。この蓄熱材は保形性はあるが、圧縮荷重の負荷による変位率が非常に大きく(変位率は98%程度。)、圧縮荷重によって容易に流動するので、容器が破損した状態で圧縮荷重が負荷された場合に容器から水が漏洩するという問題点があり、水を主材とした蓄熱材であって、容器が破損した状態で圧縮荷重が負荷されても容易には水が漏洩しない蓄熱材が求められていた。   Accordingly, various studies have been made on preventing leakage of a heat storage material (including a cold storage material and a cold storage material) containing water as a main material when the container is broken. For example, acrylamide, sodium acrylate, and NN'-methylenebisacrylamide are polymerized in the presence of a redox polymerization initiator and water after filling the container, and a heat storage comprising a hydrogel in which water is retained in a superabsorbent resin. A material has been proposed (see, for example, Patent Document 1). Although this heat storage material has shape retention, the displacement rate due to the compression load is very large (displacement rate is about 98%) and flows easily due to the compression load. There is a problem that water leaks from the container when it is loaded, and it is a heat storage material with water as the main material, and heat storage that does not easily leak even when a compressive load is applied with the container damaged The material was sought.

日本建築学会学術講演梗概集D−2環境工学、2002年、第1127−1130頁Abstracts of Architectural Lectures of Architectural Institute of Japan D-2 Environmental Engineering, 2002, pp. 1277-1130 特開平3−126786号公報JP-A-3-126786

本発明の目的は、水を主材とした蓄熱材であって、容器が破損した状態で圧縮荷重が負荷されても容易には水が漏洩しない蓄熱材を提供することにある。   An object of the present invention is to provide a heat storage material having water as a main material and in which water does not easily leak even when a compressive load is applied in a state where a container is damaged.

本発明者はかかる課題を解決すべく保水剤としてのヒドロゲルについて鋭意検討した結果、NN’−メチレンビスアクリルアミドとαβ不飽和カルボン酸ナトリウムを重合させて生じるヒドロゲルの保形性が良く、そのようなヒドロゲルのうち圧縮荷重の負荷による変位率が一定値以下であるものは、圧縮荷重が負荷されても容易には水が漏洩しないことを見出し、本発明を完成させるに至った。   As a result of intensive studies on hydrogels as water retention agents to solve such problems, the present inventor has good shape retention of hydrogels produced by polymerizing NN'-methylenebisacrylamide and sodium αβ unsaturated carboxylate. Among hydrogels, those having a displacement rate by a load of a compression load of a certain value or less were found that water does not easily leak even when a compression load is applied, and the present invention has been completed.

すなわち本発明は、αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドとをレドックス系重合開始剤および水の存在下で重合させて得られたヒドロゲルからなる蓄熱材であって、該ヒドロゲルの圧縮荷重負荷による変位率が80%以下であることを特徴とする蓄熱材を提供する。また本発明は、αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドとをペルオキソ二硫酸塩、塩化ナトリウムおよび水の存在下で重合させて得られたヒドロゲルからなる蓄熱材であって、該ヒドロゲルの圧縮荷重負荷による変位率が60%以下であることを特徴とする蓄熱材を提供する。   That is, the present invention provides a heat storage material comprising a hydrogel obtained by polymerizing sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide in the presence of a redox polymerization initiator and water, and compressing the hydrogel. Provided is a heat storage material characterized in that a displacement rate by a load is 80% or less. The present invention also relates to a heat storage material comprising a hydrogel obtained by polymerizing sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide in the presence of peroxodisulfate, sodium chloride and water. The thermal storage material is characterized by having a displacement rate of 60% or less due to a compressive load.

ヒドロゲルからなる本発明の蓄熱材は、たとえ容器が破損して圧縮荷重が負荷されてもなお水が漏洩しない蓄熱材であり、住居温熱環境の調整用に好適に用いることができる。また、本願第2発明のヒドロゲルからなる蓄熱材は、さらに通常の寒冷地においては凍結による容器破損も生じることなく、寒冷地における住居温熱環境の調整用に好適に用いることができる。このように本発明は、実用上優れた水主材の蓄熱材を提供できるので、工業的に極めて有用である。   The heat storage material of the present invention made of hydrogel is a heat storage material in which water does not leak even if the container is damaged and a compressive load is applied, and can be suitably used for adjusting the residential thermal environment. In addition, the heat storage material comprising the hydrogel of the second invention of the present application can be suitably used for adjusting the residential thermal environment in a cold region without causing container breakage due to freezing in a normal cold region. As described above, the present invention can provide a heat storage material of a water main material that is practically excellent, and thus is extremely useful industrially.

以下に、本発明について詳しく説明する。
本願第1の発明の蓄熱材は、αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドとをレドックス系重合開始剤および水の存在下で重合させて得られたヒドロゲルからなる蓄熱材であり、該ヒドロゲルの圧縮荷重負荷による変位率が80%以下の蓄熱材である。
The present invention is described in detail below.
The heat storage material of the first invention of the present application is a heat storage material comprising a hydrogel obtained by polymerizing sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide in the presence of a redox polymerization initiator and water, The hydrogel is a heat storage material having a displacement rate of 80% or less due to the compressive load of the hydrogel.

本願第1の発明においては、αβ不飽和カルボン酸ナトリウムがNN’−メチレンビスアクリルアミドとともに重合することにより、吸水性が高く、しかも圧縮荷重を負荷したときに変形が少なく、変位率が低いヒドロゲルを形成し、該ヒドロゲルのうち、圧縮荷重負荷による変位率が80%以下のものを蓄熱材として用いると、圧縮荷重が負荷されても容易には水が漏洩しないのである。   In the first invention of the present application, αβ unsaturated sodium carboxylate is polymerized together with NN′-methylenebisacrylamide, so that a hydrogel having high water absorption and low deformation and low displacement rate when a compressive load is applied. When a hydrogel having a displacement rate of 80% or less as a heat storage material is used as the heat storage material, water does not easily leak even when a compression load is applied.

本願第1の発明に用いるαβ不飽和カルボン酸ナトリウムとしては水に溶解するαβ不飽和カルボン酸ナトリウムが適している。このようなαβ不飽和カルボン酸ナトリウムとしては、具体的にはアクリル酸ナトリウム、メタクリル酸ナトリウムおよびイタコン酸ナトリウムおよびこれらのいずれか2種以上の混合物が例示され、アクリル酸ナトリウムとメタクリル酸ナトリウムからなる群より選ばれる1種以上が好ましい。   As the αβ unsaturated sodium carboxylate used in the first invention of the present application, αβ unsaturated sodium sodium which is soluble in water is suitable. Specific examples of such αβ-unsaturated sodium carboxylate include sodium acrylate, sodium methacrylate, sodium itaconate, and mixtures of any two or more thereof, and consist of sodium acrylate and sodium methacrylate. One or more selected from the group is preferred.

本願第1の発明の蓄熱材の変位率は80%以下であり、圧縮荷重の負荷によっても水が漏洩することがない。この変位率は60%以下であることが好ましい。変位率が80%を超えると、圧縮荷重が負荷されたときにヒドロゲルに流動性が生じて、蓄熱材を収納した容器が破損していた場合、蓄熱材が漏洩する。   The displacement rate of the heat storage material of the first invention of the present application is 80% or less, and water does not leak even when a compression load is applied. This displacement rate is preferably 60% or less. When the displacement rate exceeds 80%, fluidity is generated in the hydrogel when a compressive load is applied, and the heat storage material leaks when the container storing the heat storage material is damaged.

本願第1の発明に用いられるαβ不飽和カルボン酸ナトリウムおよびNN’−メチレンビスアクリルアミドの使用量は、次の通りとすることが好ましい。すなわち、αβ不飽和カルボン酸ナトリウム濃度(重量%で表し、以下「A」とする。)とNN’−メチレンビスアクリルアミド濃度(αβ不飽和カルボン酸ナトリウム100モルあたりのNN’−メチレンビスアクリルアミドのモル数で濃度を表し、以下「B」とする。)とが以下の3式
(1) 4<A≦15
(2) 0.3≦B≦12
(3) (A−3)×B>15
を満たす領域から選択する。式(3)はαβ不飽和カルボン酸ナトリウム濃度が高くなると、NN’−メチレンビスアクリルアミド濃度が低くてもよい傾向にあることを示している。例えば、αβ不飽和カルボン酸ナトリウム濃度が5または6重量%のときは、NN’−メチレンビスアクリルアミド濃度はそれぞれ7.5または5.0モル以上を用いればよい。
The amount of αβ unsaturated sodium carboxylate and NN′-methylenebisacrylamide used in the first invention of the present application is preferably as follows. That is, αβ unsaturated sodium carboxylate concentration (expressed in% by weight, hereinafter referred to as “A”) and NN′-methylenebisacrylamide concentration (mol of NN′-methylenebisacrylamide per 100 mol of αβ unsaturated sodium carboxylate). The concentration is expressed by a number, and hereinafter referred to as “B”) is expressed by the following three formulas (1) 4 <A ≦ 15
(2) 0.3 ≦ B ≦ 12
(3) (A-3) × B> 15
Select from the areas that satisfy. Formula (3) shows that the NN′-methylenebisacrylamide concentration tends to be low as the αβ unsaturated sodium carboxylate concentration increases. For example, when the αβ unsaturated sodium carboxylate concentration is 5 or 6% by weight, the NN′-methylenebisacrylamide concentration may be 7.5 or 5.0 mol or more, respectively.

Aが4重量%未満ではヒドロゲルの圧縮荷重負荷による変位率が80%を超える傾向があり好ましくなく、15重量%をこえると蓄熱量が低下する傾向があるので好ましくない。Bが0.3モル未満ではヒドロゲルの圧縮荷重負荷による変位率が80%を超える傾向があり好ましくなく、上限の12モルは溶解度をこえると溶解度をこえる。また、(A−3)×B≦15ではヒドロゲルの圧縮荷重負荷による変位率が80%を超える傾向があるため好ましくない。   If A is less than 4% by weight, the displacement rate due to compressive loading of the hydrogel tends to exceed 80%, which is not preferable, and if it exceeds 15% by weight, the amount of stored heat tends to decrease. If B is less than 0.3 mol, the displacement rate due to compressive loading of the hydrogel tends to exceed 80%, which is not preferable, and the upper limit of 12 mol exceeds the solubility and exceeds the solubility. In addition, (A-3) × B ≦ 15 is not preferable because the displacement rate of the hydrogel due to compressive load tends to exceed 80%.

重合に用いるレドックス系重合開始剤としては、具体的には、酸化剤としてペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等が用いられ、還元剤として亜硫酸ナトリウム、チオ硫酸ナトリウム等が用いられる。使用量はαβ不飽和カルボン酸ナトリウムおよびNN’−メチレンビスアクリルアミドの合計量を100重量部としたときに、通常は0.02〜0.2重量部である。   Specifically, as the redox polymerization initiator used for the polymerization, sodium peroxodisulfate, potassium peroxodisulfate, or the like is used as the oxidizing agent, and sodium sulfite, sodium thiosulfate, or the like is used as the reducing agent. The amount used is usually 0.02 to 0.2 parts by weight when the total amount of sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide is 100 parts by weight.

そして、本願第1の発明においては、蓄熱材は、上記αβ不飽和カルボン酸ナトリウム、NN’−メチレンビスアクリルアミドおよびレドックス系重合開始剤を含む水溶液を容器に充填後に重合させ、得られたヒドロゲルからなることが好ましい。   In the first invention of the present application, the heat storage material is polymerized after filling the container with an aqueous solution containing the above-mentioned sodium αβ unsaturated carboxylate, NN′-methylenebisacrylamide and a redox polymerization initiator, and from the obtained hydrogel. It is preferable to become.

このようなαβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドとを重合開始剤および水の存在下で重合して得られたヒドロゲルからなる蓄熱材は、最低気温(外気温)が−10〜−20℃となる寒冷地においては、凍結して蓄熱材を収納している容器が破損する恐れがある。そこで、寒冷地用には、塩化ナトリウムを加えて氷点を下げ、凍結しにくい蓄熱材とすることができる。   Such a heat storage material comprising a hydrogel obtained by polymerizing sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide in the presence of a polymerization initiator and water has a minimum temperature (outside temperature) of −10 to −10. In a cold region where the temperature is −20 ° C., the container storing the heat storage material may freeze and be damaged. Therefore, for cold districts, sodium chloride can be added to lower the freezing point to make a heat storage material that is difficult to freeze.

すなわち本願第2の発明は、αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドとをペルオキソ二硫酸塩、塩化ナトリウムおよび水の存在下で重合させて得られたヒドロゲルからなる蓄熱材であって、該ヒドロゲルの圧縮荷重負荷による変位率が60%以下であることを特徴とする蓄熱材である。   That is, the second invention of the present application is a heat storage material comprising a hydrogel obtained by polymerizing sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide in the presence of peroxodisulfate, sodium chloride and water. The heat storage material is characterized in that the displacement rate of the hydrogel due to compressive load is 60% or less.

本願第2の発明に用いるαβ不飽和カルボン酸ナトリウムとしては本願第1の発明と同様に水に溶解するαβ不飽和カルボン酸ナトリウムが適している。このようなαβ不飽和カルボン酸ナトリウムとしては、具体的にはアクリル酸ナトリウム、メタクリル酸ナトリウムおよびイタコン酸ナトリウムおよびこれらのいずれか2種以上の混合物が例示され、アクリル酸ナトリウムとメタクリル酸ナトリウムからなる群より選ばれる1種以上が好ましい。   As the αβ-unsaturated sodium carboxylate used in the second invention of the present application, sodium αβ-unsaturated carboxylate dissolved in water is suitable as in the first invention of the present application. Specific examples of such αβ-unsaturated sodium carboxylate include sodium acrylate, sodium methacrylate, sodium itaconate, and mixtures of any two or more thereof, and consist of sodium acrylate and sodium methacrylate. One or more selected from the group is preferred.

本願第2の発明の蓄熱材の変位率は60%以下であり、この範囲であれば圧縮荷重の負荷によっても水が漏洩することがない。塩化ナトリウムの影響により、変位率の上限は本願第1の発明の場合より低い60%であり、60%を超えると、蓄熱材を収納した容器が破損して圧縮荷重が負荷された場合、蓄熱材が漏洩する。   The displacement rate of the heat storage material according to the second invention of the present application is 60% or less, and water is not leaked even when a compression load is applied within this range. Due to the influence of sodium chloride, the upper limit of the displacement rate is 60%, which is lower than in the case of the first invention of this application, and if it exceeds 60%, the container storing the heat storage material is damaged and a compression load is applied. Material leaks.

本願第2発明に用いられるαβ不飽和カルボン酸ナトリウムおよびNN’−メチレンビスアクリルアミドの使用量は、塩化ナトリウムの影響により本願第1の発明の場合と異なり、次の通りとすることが好ましい。すなわち、αβ不飽和カルボン酸ナトリウム濃度(重量%で表し、以下「C」とする。)とNN’−メチレンビスアクリルアミド濃度(αβ不飽和カルボン酸ナトリウム100モルあたりのNN’−メチレンビスアクリルアミドのモル数で濃度を表し、以下「D」とする。)とが以下の3式
(4) 4<C≦15
(5) 0.3≦D≦12
(6) (C−4)×D≧3.3
を満たす領域から選択することが好ましい。式(6)は、αβ不飽和カルボン酸ナトリウム濃度が高くなると、NN’−メチレンビスアクリルアミド濃度が低くてもよい傾向にあることを示している。例えば、αβ不飽和カルボン酸ナトリウム濃度が5または6重量%のときは、NN’−メチレンビスアクリルアミド濃度はそれぞれ3.3または1.7モル以上を用いることが好ましい。
The amount of sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide used in the second invention of the present application is preferably as follows, unlike the case of the first invention of the present application due to the influence of sodium chloride. That is, the concentration of sodium αβ unsaturated carboxylate (expressed in weight%, hereinafter referred to as “C”) and the concentration of NN′-methylenebisacrylamide (moles of NN′-methylenebisacrylamide per 100 mol of sodium αβ unsaturated carboxylate) The concentration is expressed by a number, and hereinafter referred to as “D”.) Is expressed by the following three formulas (4) 4 <C ≦ 15
(5) 0.3 ≦ D ≦ 12
(6) (C-4) × D ≧ 3.3
It is preferable to select from a region satisfying the above. Formula (6) shows that the NN′-methylenebisacrylamide concentration tends to be low as the αβ unsaturated sodium carboxylate concentration increases. For example, when the concentration of sodium αβ unsaturated carboxylate is 5 or 6% by weight, the concentration of NN′-methylenebisacrylamide is preferably 3.3 or 1.7 mol or more, respectively.

Cが4重量%未満ではヒドロゲルの圧縮荷重負荷による変位率が60%を超える傾向があるため好ましくなく、15重量%をこえると蓄熱量が低下する傾向があるので好ましくない。Dが0.3未満ではヒドロゲルの圧縮荷重負荷による変位率が60%を超える傾向があるため好ましくなく、12を超えると溶解度を超える。また、(C−4)×D<3.3ではヒドロゲルの圧縮荷重負荷による変位率が60%を超える傾向があるため好ましくない。   If C is less than 4% by weight, the displacement rate due to compressive loading of the hydrogel tends to exceed 60%, which is not preferable, and if it exceeds 15% by weight, the amount of stored heat tends to decrease. When D is less than 0.3, the displacement rate due to compressive load of the hydrogel tends to exceed 60%, which is not preferable. When D exceeds 12, the solubility is exceeded. Further, (C-4) × D <3.3 is not preferable because the displacement rate of the hydrogel due to compressive load tends to exceed 60%.

重合に際して用いる重合開始剤としては、ペルオキソ二硫酸ナトリウムまたはペルオキソ二硫酸カリウム等のペルオキソ二硫酸塩を用いられる。本願第1の発明の場合とは異なり、レドックス系重合開始剤を用いるとヒドロゲルの圧縮荷重負荷による変位率が高くなり60%を超えることがあるので好ましくない。重合開始剤の使用量は、αβ不飽和カルボン酸ナトリウムおよびNN’−メチレンビスアクリルアミドの合計量を100重量部としたときに、通常は0.02〜0.2重量部である。   As a polymerization initiator used in the polymerization, a peroxodisulfate such as sodium peroxodisulfate or potassium peroxodisulfate is used. Unlike the case of the first invention of the present application, the use of a redox polymerization initiator is not preferable because the displacement rate of the hydrogel due to compressive load increases and may exceed 60%. The amount of the polymerization initiator used is usually 0.02 to 0.2 parts by weight when the total amount of sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide is 100 parts by weight.

ここで、氷点を−10℃〜−20℃にするためには塩化ナトリウム濃度14.0〜23.4重量%(水と塩化ナトリウムの合計の重量に対する塩化ナトリウムの重量の比率が0.14〜0.234)にする必要がある。塩化ナトリウム−水系の共晶点は−21.3℃(23.4重量%)であるから(Gmelins Handbuch der Anorganischen Chemie、第8版、21巻、332頁(1928年))、23.4重量%以上添加しても氷点降下に寄与しない。したがって、塩化ナトリウムの好ましい量は、水に対して14.0〜23.4重量%である。   Here, in order to set the freezing point to −10 ° C. to −20 ° C., the sodium chloride concentration is 14.0 to 23.4% by weight (the ratio of the weight of sodium chloride to the total weight of water and sodium chloride is 0.14 to 0.234). Since the eutectic point of the sodium chloride-water system is −21.3 ° C. (23.4% by weight) (Gmelins Handbuch der Anorganischen Chemie, Eighth Edition, Vol. 21, p. 332 (1928)), 23.4%. % Or more does not contribute to freezing point depression. Therefore, the preferred amount of sodium chloride is 14.0-23.4% by weight with respect to water.

そして、本願第2の発明においても、蓄熱材は、上記αβ不飽和カルボン酸ナトリウム、NN’−メチレンビスアクリルアミド、塩化ナトリウムおよびペルオキソ二硫酸塩を含む水溶液を容器に充填後に重合させ、得られたヒドロゲルからなることが好ましい。   Also in the second invention of the present application, a heat storage material was obtained by polymerizing an aqueous solution containing the above αβ unsaturated sodium carboxylate, NN′-methylenebisacrylamide, sodium chloride and peroxodisulfate after filling the container. It preferably consists of a hydrogel.

このようにして構成される本願第2の発明の蓄熱材は、容器が破損した状態で、圧縮荷重が負荷された状態であっても水が漏洩することがないのみならず、最低気温が−10〜−20℃程度となる寒冷地においても凍結することなく、容器の破損が生じる可能性が低くなり、長期にわたり安定して使用できる蓄熱材となる。   The heat storage material of the second invention of the present application configured as described above is not only in a state where the container is damaged, and even when a compressive load is applied, water does not leak, and the minimum temperature is − Even in a cold region where the temperature is about 10 to -20 ° C, the possibility of breakage of the container is reduced without freezing, and the heat storage material can be used stably over a long period of time.

上記のように、本願第1および第2の発明においては、原料として架橋型重合体ではなく単量体を使用するので、重合前の混合材料は粘度の低い液状組成物である。したがって、容器が複雑な形状をしていても混合材料を容易に注入することができ、容器内で重合を行うことにより、ゼリー状の蓄熱材を複雑な形状の容器に容易に生成せしめることができる。容器内に混合材料を注入して重合を行う場合は、容器内を予め窒素置換しておいてもよい。   As described above, in the first and second inventions of the present application, since a monomer is used as a raw material instead of a crosslinked polymer, the mixed material before polymerization is a liquid composition having a low viscosity. Therefore, even if the container has a complicated shape, the mixed material can be easily injected, and by performing polymerization in the container, a jelly-like heat storage material can be easily generated in the container having a complicated shape. it can. When the polymerization is performed by injecting the mixed material into the container, the inside of the container may be replaced with nitrogen in advance.

蓄熱材を充填する容器へ、重合前の液状組成物を注入する方法としては、αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドの水溶液(本願第2の発明においては塩化ナトリウムも含有した水溶液)に流通系内で重合開始剤を連続混合し、得られた液状組成物を注入する方法が好ましい。さらに具体的には、例えば、αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドの水溶液(本願第2の発明においては塩化ナトリウムも含有した水溶液)を容器へ注入する途中で重合開始剤の水溶液を添加する方法、該水溶液を分割し、一方だけに重合開始剤を添加しておき、容器への注入経路で両液を衝突させて混合し、容器に注入する方法などが挙げられる。混合をより十分に行わせるため、液状組成物の流路にスタティックミキサー、インラインミキサーを入れることも可能である。   As a method for injecting the liquid composition before polymerization into the container filled with the heat storage material, an aqueous solution of αβ unsaturated sodium carboxylate and NN′-methylenebisacrylamide (in the second invention of the present application, an aqueous solution containing sodium chloride) ) Is preferably a method in which a polymerization initiator is continuously mixed in a flow system and the obtained liquid composition is injected. More specifically, for example, an aqueous solution of a polymerization initiator during the injection of an aqueous solution of sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide (an aqueous solution containing sodium chloride in the second invention of the present application) into the container. And a method in which the aqueous solution is divided, a polymerization initiator is added to only one, the two liquids collide with each other through an injection path into the container, and the mixture is injected into the container. In order to perform mixing more sufficiently, it is possible to put a static mixer or an in-line mixer in the flow path of the liquid composition.

本発明におけるヒドロゲルは保形性のよい粘弾性体であって、圧縮荷重を負荷することによる変位率が小さいものである。この点において高吸水性樹脂粉末を水に添加したものと性状が異なる。高吸水性樹脂粉末に水を添加した場合、保形性はあるが、圧縮荷重の負荷による変位率が非常に大きく、圧縮荷重によって容易に流動する。従って、高吸水性樹脂粉末を水に添加したものを蓄熱材として用いると、容器が破損した状態でも圧縮荷重が負荷されない状態では漏洩しないとしても、圧縮荷重の負荷によってヒドロゲル自体が流動して漏洩し、水が漏洩する。それに対して、本発明の蓄熱材は、容器が破損した状態で、なおかつ圧縮荷重が負荷されても、水が漏洩することはないのである。   The hydrogel in the present invention is a viscoelastic body having good shape retention, and has a small displacement rate when a compressive load is applied. In this respect, the properties are different from those obtained by adding the superabsorbent resin powder to water. When water is added to the highly water-absorbent resin powder, there is shape retention, but the displacement rate due to the load of the compression load is very large, and it easily flows due to the compression load. Therefore, when a superabsorbent resin powder added to water is used as a heat storage material, the hydrogel itself flows and leaks due to the load of the compressive load, even if the container is damaged and does not leak when the compressive load is not applied. And water leaks. On the other hand, the heat storage material of the present invention does not leak water even when the container is damaged and a compression load is applied.

変位率を測定するに際して、ヒドロゲルを、例えばポリエチレン袋のような柔軟な不透水性包材に密封したものを用いる。圧縮荷重負荷により発生する圧縮応力としては0.01〜0.1MPaとし、例えば断面積0.5〜2cm2に対して0.05〜2kgの荷重を負荷する。圧縮荷重の負荷によってヒドロゲルは変位するが、変位量は時間とともに増大するので、負荷時間を例えば30〜120秒間の一定値を用いて変位量を測定する。圧縮荷重の負荷によるヒドロゲルの変位量を負荷前の厚みで除して100を乗じたものを変位率(%)と称する。 In measuring the displacement rate, a hydrogel sealed in a flexible impermeable packaging material such as a polyethylene bag is used. The compressive stress generated by the compressive load is 0.01 to 0.1 MPa. For example, a load of 0.05 to 2 kg is applied to a cross-sectional area of 0.5 to 2 cm 2 . Although the hydrogel is displaced by the load of the compressive load, the amount of displacement increases with time. Therefore, the amount of displacement is measured using a constant value of, for example, 30 to 120 seconds. A displacement rate (%) is obtained by dividing the amount of displacement of the hydrogel due to the compression load by the thickness before the load and multiplying by 100.

次に、本発明を実施例によりさらに詳しく説明するが、本発明はこれらに限定されるものではない。
実施例1〜7、比較例1〜4
100mlビーカーにアクリル酸ナトリウムとNN’−メチレンビスアクリルアミドを所定量添加し、37℃水浴中で溶解して水溶液50.0gを得た。各成分の濃度を表1に示す。これに亜硫酸ナトリウム0.10g、チオ硫酸ナトリウム0.10gを添加して溶解したものをポリエチレン袋に充填し、この中にペルオキソ二硫酸ナトリウム0.10gを投入し、直ちに撹拌して溶解させ、1分後にシールし、37℃水浴中で加温した結果、透明なヒドロゲルを得た。37℃で更に2時間加温した後室温で一夜静置後にポリエチレン袋の上から直径11mmの重りつきアルミ棒で圧縮応力が0.05MPaとなるように圧縮荷重を1分間負荷し、変位率を測定した。また、ポリエチレン袋の上から直径3mmの釘を打ちつけ、釘を抜いたところ、いずれの実施例のサンプルも漏洩はなかった。2個の釘穴のうち、上の穴をセロハンテープで塞ぎ、下の穴をパンチングメタル(目開き6mm)の上にのせ、真上から、重さ2.0kgのおもりを2分間のせて圧縮荷重を負荷(圧縮応力:0.005MPa)し、漏洩量を測定することによって漏洩試験を行った。表1に示す如く、実施例1〜7のものは変位率が80%以下で、釘打ち穴からの漏洩がなかった。比較例2においてはヒドロゲルの流動性が大きく、ヒドロゲル自体が漏洩し、他の実施例および比較例と比較できるデータが得られなかった。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these.
Examples 1-7, Comparative Examples 1-4
Predetermined amounts of sodium acrylate and NN′-methylenebisacrylamide were added to a 100 ml beaker and dissolved in a 37 ° C. water bath to obtain 50.0 g of an aqueous solution. Table 1 shows the concentration of each component. A solution obtained by adding 0.10 g of sodium sulfite and 0.10 g of sodium thiosulfate to the polyethylene bag is filled into a polyethylene bag, and 0.10 g of sodium peroxodisulfate is added thereto, and immediately stirred to dissolve. After a minute, it was sealed and heated in a 37 ° C. water bath to obtain a transparent hydrogel. After further heating for 2 hours at 37 ° C. and standing at room temperature overnight, a compression load is applied for 1 minute with a weighted aluminum rod having a diameter of 11 mm from the top of the polyethylene bag so that the compression stress becomes 0.05 MPa, and the displacement rate is set. It was measured. Further, when a nail having a diameter of 3 mm was struck from the top of the polyethylene bag and the nail was pulled out, none of the samples of any of the examples leaked. Of the two nail holes, the upper hole is closed with cellophane tape, the lower hole is placed on a punching metal (opening 6 mm), and a weight of 2.0 kg is placed for 2 minutes from above and compressed. A leakage test was performed by applying a load (compressive stress: 0.005 MPa) and measuring the amount of leakage. As shown in Table 1, in Examples 1 to 7, the displacement rate was 80% or less, and there was no leakage from the nail holes. In Comparative Example 2, the fluidity of the hydrogel was large, the hydrogel itself leaked, and data that could be compared with other examples and comparative examples could not be obtained.

Figure 2006096839
(注1):MBAAはNN’−メチレンビスアクリルアミドの略称であり、MBAA量はアクリル酸ナトリウム100モルあたりのモル量である。
Figure 2006096839
(Note 1): MBAA is an abbreviation for NN′-methylenebisacrylamide, and the amount of MBAA is the molar amount per 100 moles of sodium acrylate.

実施例8〜10、比較例5〜7
100mlビーカーに、塩化ナトリウムを水に対して23重量%含有した塩化ナトリウム水溶液、アクリル酸ナトリウムとNN’−メチレンビスアクリルアミドとを所定量添加し、37℃水浴中で溶解して水溶液50.0gを得た。各成分の濃度を表2に示す。これをポリエチレン袋に充填し、この中にペルオキソ二硫酸ナトリウム0.10gを投入し、直ちに撹拌して溶解させ、1分後にシールし、37℃水浴中で加温した結果、透明なヒドロゲルを得た。37℃で更に2時間加温した後室温で一夜静置後にポリエチレン袋の上から直径11mmの重りつきアルミ棒で圧縮応力が0.05MPaとなるように圧縮荷重を1分間負荷し、変位率を測定した。また、ポリエチレン袋の上から直径3mmの釘を打ちつけ、釘を抜いたところ、いずれの実施例のサンプルも漏洩はなかった。2個の釘穴のうち、上の穴をセロハンテープで塞ぎ、下の穴をパンチングメタル(目開6mm)の上にのせ、真上から、重さ2.0kgのおもりを2分間のせて圧縮荷重を負荷(圧縮応力:0.005MPa)し、漏洩量を測定することによって漏洩試験を行った。表2に示す如く、実施例8〜10のものは変位率が60%以下で、釘打ち穴からの漏洩がなかった。比較例6と7においてはヒドロゲルの流動性が大きく、ヒドロゲル自体が漏洩し、他の実施例および比較例と比較できるデータが得られなかった。
上記の試料を−18℃の冷凍庫で一夜静置後に観察した結果、いずれも凍結していなかった。
Examples 8-10, Comparative Examples 5-7
To a 100 ml beaker, add a predetermined amount of sodium chloride aqueous solution containing 23% by weight of sodium chloride with respect to water, sodium acrylate and NN'-methylenebisacrylamide, dissolve in a 37 ° C water bath, and dissolve 50.0 g of the aqueous solution. Obtained. Table 2 shows the concentration of each component. This was filled into a polyethylene bag, and 0.10 g of sodium peroxodisulfate was put into this, immediately stirred to dissolve, sealed after 1 minute, and heated in a 37 ° C. water bath to obtain a transparent hydrogel. It was. After further heating for 2 hours at 37 ° C. and standing at room temperature overnight, a compression load is applied for 1 minute with a weighted aluminum rod having a diameter of 11 mm from the top of the polyethylene bag so that the compression stress becomes 0.05 MPa, and the displacement rate is set. It was measured. Further, when a nail having a diameter of 3 mm was struck from the top of the polyethylene bag and the nail was pulled out, none of the samples of any of the examples leaked. Of the two nail holes, the upper hole is closed with cellophane tape, the lower hole is placed on a punching metal (opening 6 mm), and a weight of 2.0 kg is placed for 2 minutes from above and compressed. A leakage test was performed by applying a load (compressive stress: 0.005 MPa) and measuring the amount of leakage. As shown in Table 2, in Examples 8 to 10, the displacement rate was 60% or less, and there was no leakage from the nail holes. In Comparative Examples 6 and 7, the fluidity of the hydrogel was large, the hydrogel itself leaked, and data that could be compared with other examples and comparative examples could not be obtained.
As a result of observing the above samples after standing overnight in a freezer at −18 ° C., none were frozen.

比較例8
実施例10と同様にペルオキソ二硫酸ナトリウム0.10gを投入するまでの操作を行い、投入してから20秒後にペルオキソ二硫酸ナトリウムに代えて亜硫酸ナトリウム0.10gを投入し、更に40秒間撹拌後にシールし37℃水浴中で加温した結果、透明なヒドロゲルを得た。これを実施例8と同様に変位率を測定し、漏洩試験とを行った。表2に結果を示す如く、変位率が高く、漏洩が顕著であった。本例は重合開始剤としてレドックス系を用いた場合を示したもので、ペルオキソ二硫酸ナトリウム単独使用(実施例10)に比してゲル強度が低下していることが明らかである。
Comparative Example 8
The same procedure as in Example 10 was repeated until 0.10 g of sodium peroxodisulfate was added. After 20 seconds, 0.10 g of sodium sulfite was added instead of sodium peroxodisulfate, and the mixture was further stirred for 40 seconds. As a result of sealing and heating in a 37 ° C. water bath, a transparent hydrogel was obtained. The displacement rate was measured in the same manner as in Example 8, and a leakage test was performed. As shown in Table 2, the displacement rate was high and leakage was remarkable. This example shows the case where a redox system is used as a polymerization initiator, and it is clear that the gel strength is reduced as compared with the use of sodium peroxodisulfate alone (Example 10).

比較例9
100mlビーカーに塩化ナトリウム23重量%の水溶液50.0gを入れ、37℃水浴中で加熱後に、高吸水性樹脂(住友化学工業(株)製、「アクアキープ」(商品名))粉末を所定量添加した。各成分の濃度を表2に示す。これをポリエチレン袋に充填し、シールした後37℃水浴中で2時間加温した。室温で一夜静置後に、実施例8と同じ方法で変位率を求め漏洩試験を行った。表2に示す如く、変位率は83%と高い値であり、釘穴からの漏洩が顕著であった。
Comparative Example 9
Put 50.0 g of 23% by weight aqueous solution of sodium chloride in a 100 ml beaker and heat it in a 37 ° C water bath. Added. Table 2 shows the concentration of each component. This was filled in a polyethylene bag, sealed, and heated in a 37 ° C. water bath for 2 hours. After leaving still at room temperature overnight, the leak rate was tested by obtaining the displacement rate by the same method as in Example 8. As shown in Table 2, the displacement rate was as high as 83%, and leakage from the nail holes was remarkable.

Figure 2006096839
(注1):MBAAはNN’−メチレンビスアクリルアミドの略称であり、MBAA量はアクリル酸ナトリウム100モルあたりのモル量である。
(注2):圧縮応力0.002MPa負荷時。
Figure 2006096839
(Note 1): MBAA is an abbreviation for NN′-methylenebisacrylamide, and the amount of MBAA is the molar amount per 100 moles of sodium acrylate.
(Note 2): With a compressive stress of 0.002 MPa.

Claims (6)

αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドとをレドックス系重合開始剤および水の存在下で重合させて得られたヒドロゲルからなる蓄熱材であって、該ヒドロゲルの圧縮荷重負荷による変位率が80%以下であることを特徴とする蓄熱材。   A heat storage material comprising a hydrogel obtained by polymerizing sodium αβ unsaturated carboxylate and NN'-methylenebisacrylamide in the presence of a redox polymerization initiator and water, wherein the displacement rate of the hydrogel due to compressive load loading Is a heat storage material characterized by being 80% or less. αβ不飽和カルボン酸ナトリウム濃度(重量%、A)とNN’−メチレンビスアクリルアミド濃度(αβ不飽和カルボン酸ナトリウム100モルあたりのモル数、B)とが以下の3式を満たす値である請求項1記載の蓄熱材。
(1) 4<A≦15
(2) 0.3≦B≦12
(3) (A−3)×B>15
The αβ-unsaturated sodium carboxylate concentration (% by weight, A) and the NN′-methylenebisacrylamide concentration (mole per 100 mol of αβ-unsaturated sodium carboxylate, B) are values satisfying the following three formulas: The heat storage material according to 1.
(1) 4 <A ≦ 15
(2) 0.3 ≦ B ≦ 12
(3) (A-3) × B> 15
変位率が60%以下である請求項1または2に記載の蓄熱材。   The heat storage material according to claim 1 or 2, wherein a displacement rate is 60% or less. αβ不飽和カルボン酸ナトリウムとNN’−メチレンビスアクリルアミドとをペルオキソ二硫酸塩、塩化ナトリウムおよび水の存在下で重合させて得られたヒドロゲルからなる蓄熱材であって、該ヒドロゲルの圧縮荷重負荷による変位率が60%以下であることを特徴とする蓄熱材。   A heat storage material comprising a hydrogel obtained by polymerizing sodium αβ unsaturated carboxylate and NN′-methylenebisacrylamide in the presence of peroxodisulfate, sodium chloride and water, depending on the compressive load applied to the hydrogel A heat storage material having a displacement rate of 60% or less. 塩化ナトリウム濃度が14〜23重量%であり、αβ不飽和カルボン酸ナトリウム濃度(重量%、A)とNN’−メチレンビスアクリルアミド濃度(αβ不飽和カルボン酸ナトリウム100モルあたりのモル数、B)とが以下の3式を満たす値である請求項4記載の蓄熱材。
(4) 4<A≦15
(5) 0.3≦B≦12
(6) (A−4)×B≧3.3
Sodium chloride concentration is 14-23 wt%, αβ unsaturated sodium carboxylate concentration (wt%, A) and NN′-methylenebisacrylamide concentration (moles per 100 mol of αβ unsaturated sodium carboxylate, B) 5 is a value satisfying the following three formulas.
(4) 4 <A ≦ 15
(5) 0.3 ≦ B ≦ 12
(6) (A-4) × B ≧ 3.3
αβ不飽和カルボン酸ナトリウムが、アクリル酸ナトリウムとメタクリル酸ナトリウムからなる群より選ばれる1種以上である請求項1〜5のいずれかに記載の蓄熱材。
The heat storage material according to claim 1, wherein the sodium αβ unsaturated carboxylate is at least one selected from the group consisting of sodium acrylate and sodium methacrylate.
JP2004283460A 2004-09-29 2004-09-29 Water heat storage material Expired - Fee Related JP4672322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283460A JP4672322B2 (en) 2004-09-29 2004-09-29 Water heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283460A JP4672322B2 (en) 2004-09-29 2004-09-29 Water heat storage material

Publications (2)

Publication Number Publication Date
JP2006096839A true JP2006096839A (en) 2006-04-13
JP4672322B2 JP4672322B2 (en) 2011-04-20

Family

ID=36236969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283460A Expired - Fee Related JP4672322B2 (en) 2004-09-29 2004-09-29 Water heat storage material

Country Status (1)

Country Link
JP (1) JP4672322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033413A1 (en) * 2009-07-16 2011-01-27 Geohumus International Research & Development Gmbh Improvement of the heat transfer and the heat capacity of heat accumulators
JP2015199810A (en) * 2014-04-07 2015-11-12 日産化学工業株式会社 Method for producing hydrogel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966479A (en) * 1982-10-08 1984-04-14 Esuren Kako Kk Preparation of agent for storage of cold-heat
JPS59102976A (en) * 1982-12-04 1984-06-14 Esuren Kako Kk Preparation of cold-keeping agent
JPS60120783A (en) * 1983-12-02 1985-06-28 Sekisui Plastics Co Ltd Production of cold thermal energy storage material
JPH03126786A (en) * 1989-10-12 1991-05-29 Kooriyama Kasei Kk Production of cold-accumulation agent
JPH0665560A (en) * 1991-06-06 1994-03-08 Arakawa Chem Ind Co Ltd Water-containing gel composition for cold-reserving agent excellent in shape retention, and cold-reserving agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966479A (en) * 1982-10-08 1984-04-14 Esuren Kako Kk Preparation of agent for storage of cold-heat
JPS59102976A (en) * 1982-12-04 1984-06-14 Esuren Kako Kk Preparation of cold-keeping agent
JPS60120783A (en) * 1983-12-02 1985-06-28 Sekisui Plastics Co Ltd Production of cold thermal energy storage material
JPH03126786A (en) * 1989-10-12 1991-05-29 Kooriyama Kasei Kk Production of cold-accumulation agent
JPH0665560A (en) * 1991-06-06 1994-03-08 Arakawa Chem Ind Co Ltd Water-containing gel composition for cold-reserving agent excellent in shape retention, and cold-reserving agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033413A1 (en) * 2009-07-16 2011-01-27 Geohumus International Research & Development Gmbh Improvement of the heat transfer and the heat capacity of heat accumulators
JP2015199810A (en) * 2014-04-07 2015-11-12 日産化学工業株式会社 Method for producing hydrogel

Also Published As

Publication number Publication date
JP4672322B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
CN108779203B (en) Single-or multicomponent compositions for producing hydrogels
PT78028B (en) Process for the preparation of n-vinyl-lactames based polymers useful in the recovery and processing of natural resources
CN109851817B (en) Preparation method of urushiol co-crosslinked anti-freezing/heat-resistant adhesive hydrogel
US7285614B2 (en) Superabsorbent polymer with slow absorption times
JP4672322B2 (en) Water heat storage material
JP3970604B2 (en) Water-stop agent and water-stop method
AU2016305256B2 (en) Tire filling based on acrylic hydrogels
US20150225646A1 (en) Porous gels and uses thereof
CN106832310B (en) A kind of degradable selfreparing hydrogel and the preparation method and application thereof
US20130105727A1 (en) Heat storage composition comprising a cationic polyelectrolyte and calcium chloride hexahydrate
US8309669B2 (en) Use of swellable polymer for sealing
JPH0525467A (en) Heat storage material composition and its production
CN106366223B (en) The preparation method of CPVC impact modifier
Rodrigues et al. Pseudoplasticity and setting properties of two‐solution bone cement containing poly (methyl methacrylate) microspheres and nanospheres for kyphoplasty and vertebroplasty
JP2004115646A (en) Water sealant
US5882542A (en) Sodium sulfate base heat-storage composition and process for producing the same
JPH0362880A (en) Water stopping material
JP4465727B2 (en) Thermal storage material composition
Shim et al. Analysis of the shelf life of a two-solution bone cement
JP2001019943A (en) Cold insulator
EP0638624B1 (en) Thermal storage material composition and process for producing the same
JP3479109B2 (en) Thermal storage material composition and method for producing the same
CN109369851B (en) Preparation method of starch-based foaming buffer material
JPH0315951B2 (en)
McKee Influence two Compositional Changes on In Vitro Properties of an Antibiotic-Loaded Acrylic Bone Cement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R150 Certificate of patent or registration of utility model

Ref document number: 4672322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees