JP2006096769A - Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure - Google Patents

Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure Download PDF

Info

Publication number
JP2006096769A
JP2006096769A JP2005342671A JP2005342671A JP2006096769A JP 2006096769 A JP2006096769 A JP 2006096769A JP 2005342671 A JP2005342671 A JP 2005342671A JP 2005342671 A JP2005342671 A JP 2005342671A JP 2006096769 A JP2006096769 A JP 2006096769A
Authority
JP
Japan
Prior art keywords
adsorbent
activated carbon
oral administration
spherical activated
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005342671A
Other languages
Japanese (ja)
Inventor
Naohiro Sonobe
直弘 園部
Susumu Morimoto
進 森本
Hideyuki Yoshihara
秀行 吉原
Hiroyuki Hanatsuka
浩之 花塚
Makoto Arakawa
信 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2005342671A priority Critical patent/JP2006096769A/en
Publication of JP2006096769A publication Critical patent/JP2006096769A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent for oral administration, exhibiting useful selective adsorption characteristics of little adsorptivity of internal useful materials and much adsorption properties of toxic substances. <P>SOLUTION: The adsorbent for the oral administration comprises a spherical activated carbon produced by using a thermosetting resin as a carbon source, and having 0.01-1 mm diameter, and ≥1,000 m<SP>2</SP>/g specific surface area obtained by the Langmuir adsorption equation, or a surface-treated spherical activated carbon produced by using a thermosetting resin as a carbon source, and having 0.01-1 mm diameter, ≥1,000 m<SP>2</SP>/g specific surface area obtained by the Langmuir adsorption equation, 0.40-1.00 meq/g total acidic groups and 0.40-1.10 meq/g total basic groups. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特異な細孔構造を有する球状活性炭を更に酸化処理及び還元処理することによって製造され、同様の特異な細孔構造を有する表面改質球状活性炭からなる経口投与用吸着剤に関する。更に、本発明は、前記の経口投与用吸着剤を有効成分とする腎疾患治療又は予防剤、及び肝疾患治療又は予防剤に関する。
本発明による経口投与用吸着剤は、消化酵素等の体内の有益成分の吸着性が少ないにもかかわらず、有毒な毒性物質(Toxin)の吸着性能が多いという選択吸着特性を有し、更に、特異な細孔構造を有するので、従来の経口投与用吸着剤と比較すると、前記の選択吸着特性が著しく向上する。従って、特に、肝腎疾患者用の経口投与用吸着剤として有効である。
The present invention relates to an adsorbent for oral administration, which is produced by subjecting spherical activated carbon having a specific pore structure to further oxidation treatment and reduction treatment, and comprising surface-modified spherical activated carbon having the same specific pore structure. Furthermore, the present invention relates to a renal disease treatment or prevention agent, and a liver disease treatment or prevention agent comprising the above-mentioned adsorbent for oral administration as an active ingredient.
The adsorbent for oral administration according to the present invention has a selective adsorption property that it has a high adsorption performance for toxic toxic substances (Toxin) despite the low adsorption of beneficial components such as digestive enzymes in the body, Since it has a unique pore structure, the selective adsorption characteristics are remarkably improved as compared with conventional adsorbents for oral administration. Therefore, it is particularly effective as an adsorbent for oral administration for patients with liver and kidney diseases.

腎機能や肝機能の欠損患者らは、それらの臓器機能障害に伴って、血液中等の体内に有害な毒性物質が蓄積したり生成したりするので、尿毒症や意識障害等の脳症をひきおこす。これらの患者数は年々増加する傾向を示しているため、これら欠損臓器に代わって毒性物質を体外へ除去する機能をもつ臓器代用機器あるいは治療薬の開発が重要な課題となっている。現在、人工腎臓としては、血液透析による有毒物質の除去方式が最も普及している。しかしながら、このような血液透析型人工腎臓では、特殊な装置を用いるために、安全管理上から専門技術者を必要とし、また血液の体外取出しによる患者の肉体的、精神的及び経済的負担が高いなどの欠点を有していて、必ずしも満足すべきものではない。   Patients with deficient renal or hepatic functions cause encephalopathy such as uremia and disturbance of consciousness because harmful toxic substances accumulate in the body, such as in the blood, due to their organ dysfunction. Since the number of these patients tends to increase year by year, the development of organ substitute devices or therapeutic agents having a function of removing toxic substances from the body in place of these defective organs has become an important issue. At present, the removal method of toxic substances by hemodialysis is most popular as an artificial kidney. However, such a hemodialysis artificial kidney requires a special engineer from the viewpoint of safety management in order to use a special device, and the physical, mental and economic burden on the patient due to blood removal from the body is high. However, it is not always satisfactory.

近年、これらの欠点を解決する手段として、経口的な服用が可能で、腎臓や肝臓の機能障害を治療することができる経口吸着剤が注目されている。具体的には、特公昭62−11611号公報(特許文献1)に記載の吸着剤は、特定の官能基を有する多孔性の球形炭素質物質(以後、表面改質球状活性炭とよぶ)からなり、生体に対する安全性や安定性が高く、同時に腸内での胆汁酸の存在下でも有毒物質の吸着性に優れ、しかも、消化酵素等の腸内有益成分の吸着が少ないという有益な選択吸着性を有し、また、便秘等の副作用の少ない経口治療薬として、例えば、肝腎機能障害患者に対して広く臨床的に利用されている。なお、前記特公昭62−11611号公報(特許文献1)に記載の吸着剤は、石油ピッチなどのピッチ類を炭素源とし、球状活性炭を調製した後、酸化処理、及び還元処理を行うことにより製造されていた。
特公昭62−11611号公報
In recent years, oral adsorbents that can be taken orally and can treat renal or liver dysfunction have attracted attention as means for solving these drawbacks. Specifically, the adsorbent described in JP-B-62-11611 (Patent Document 1) is composed of a porous spherical carbonaceous material having a specific functional group (hereinafter referred to as surface-modified spherical activated carbon). Highly safe and stable for the living body, and at the same time, it has excellent adsorptivity for toxic substances even in the presence of bile acids in the intestine, and it also has a beneficial selective adsorptive property that it absorbs less intestinal beneficial components such as digestive enzymes. In addition, it is widely used clinically, for example, for patients with hepatorenal dysfunction, as an oral therapeutic drug with few side effects such as constipation. In addition, the adsorbent described in the above Japanese Patent Publication No. 62-11611 (Patent Document 1) is obtained by carrying out oxidation treatment and reduction treatment after preparing spherical activated carbon using pitches such as petroleum pitch as a carbon source. It was manufactured.
Japanese Patent Publication No.62-11611

本発明者は、ピッチ類から球状活性炭を調製し、酸化還元することにより得られる従来の多孔性球状炭素質物質からなる経口吸着剤よりも一層優れた選択的吸着性を示す経口投与用吸着剤の探求を進めていたところ、驚くべきことに、熱硬化性樹脂を炭素源として調製した球状活性炭は、酸化処理及び還元処理を実施する前の状態であるにもかかわらず、生体内の尿毒症性物質のひとつと考えられるβ−アミノイソ酪酸の吸着性に優れており、しかも有益物質である消化酵素(例えば、α−アミラーゼ)等に対する吸着性が少ないという有益な選択吸着性を有することを見出し、更に、その選択吸着性の程度が、前記特公昭62−11611号公報(特許文献1)に記載の吸着剤よりも優れていることを見出した。熱硬化性樹脂を炭素源として調製した前記球状活性炭は、β−アミノイソ酪酸に対して優れた吸着性を示すので、同様の分子サイズを有する他の毒性物質、例えば、オクトパミンやα−アミノ酪酸、更に腎臓病での毒性物質及びその前躯体であるジメチルアミン、アスパラギン酸、あるいはアルギニン等の水溶性の塩基性及び両性物質に対しても優れた吸着性を示すものと考えられる。   The present inventor has prepared a spherical activated carbon from pitches and obtained an adsorbent for oral administration which exhibits a superior selective adsorptivity than an oral adsorbent made of a conventional porous spherical carbonaceous material obtained by oxidation and reduction. Surprisingly, the spherical activated carbon prepared using a thermosetting resin as a carbon source was found to be uremic in vivo even though it was in the state before the oxidation treatment and reduction treatment. It has been found that it has excellent selective adsorptivity with excellent adsorptivity of β-aminoisobutyric acid, which is considered to be one of the active substances, and has low adsorptivity to digestive enzymes (for example, α-amylase) which are beneficial substances. Furthermore, it has been found that the degree of selective adsorptivity is superior to that of the adsorbent described in Japanese Patent Publication No. 62-11611 (Patent Document 1). Since the spherical activated carbon prepared using a thermosetting resin as a carbon source exhibits excellent adsorptivity to β-aminoisobutyric acid, other toxic substances having the same molecular size, such as octopamine and α-aminobutyric acid, Furthermore, it is considered that it exhibits excellent adsorptivity to water-soluble basic and amphoteric substances such as toxic substances in kidney disease and their precursors such as dimethylamine, aspartic acid, or arginine.

従来の多孔性球状炭素質物質、すなわち、前記特公昭62−11611号公報(特許文献1)に記載の吸着剤で用いる表面改質球状活性炭では、ピッチ類から調製される球状活性炭を更に酸化処理及び還元処理して官能基を導入することによって、前記の選択吸着性が発現されることになると考えられていたので、酸化処理及び還元処理を実施する前の球状活性炭の状態で選択的吸着能を発現すること、及びその吸着能が従来の経口投与用吸着剤よりも優れているという本発明者による前記の発見は、驚くべきことである。   In the conventional porous spherical carbonaceous material, that is, the surface-modified spherical activated carbon used in the adsorbent described in JP-B-62-11611 (Patent Document 1), the spherical activated carbon prepared from pitches is further oxidized. In addition, the selective adsorption ability was introduced in the state of spherical activated carbon before performing the oxidation treatment and the reduction treatment because it was thought that the selective adsorption property was expressed by introducing the functional group after the reduction treatment. The above discovery by the inventor of the present invention and its ability to adsorb is superior to conventional adsorbents for oral administration is surprising.

また、本発明者は、前記の球状活性炭を更に酸化処理及び還元処理することによって調製した表面改質球状活性炭は、生体内の尿毒症性物質のひとつと考えられるβ−アミノイソ酪酸の吸着性に優れており、しかも有益物質である消化酵素(例えば、α−アミラーゼ)等に対する吸着性が少ないという前記の有益な選択吸着性が、前記特公昭62−11611号公報(特許文献1)に記載の吸着剤よりも一層向上することを見出した。従って、β−アミノイソ酪酸と同様の分子サイズを有する他の毒性物質、例えば、オクトパミンやα−アミノ酪酸、更に腎臓病での毒性物質及びその前躯体であるジメチルアミン、アスパラギン酸、あるいはアルギニン等の水溶性の塩基性及び両性物質に関しても一層優れた選択吸着性を示すものと考えられる。
本発明はこうした知見に基づくものである。
In addition, the present inventor has demonstrated that the surface-modified spherical activated carbon prepared by further oxidizing and reducing the above-mentioned spherical activated carbon is capable of adsorbing β-aminoisobutyric acid, which is considered to be one of uremic substances in vivo. The beneficial selective adsorptivity, which is excellent and has a low adsorptivity to a beneficial substance such as a digestive enzyme (for example, α-amylase), is described in JP-B-62-11611 (Patent Document 1). It has been found that it is further improved than the adsorbent. Therefore, other toxic substances having the same molecular size as β-aminoisobutyric acid, such as octopamine and α-aminobutyric acid, toxic substances in kidney disease and their precursors dimethylamine, aspartic acid, arginine, etc. It is considered that water-soluble basic and amphoteric substances also exhibit better selective adsorption.
The present invention is based on these findings.

従って、本発明は、熱硬化性樹脂を炭素源として製造され、直径が0.01〜1mmであり、ラングミュアの吸着式により求められる比表面積が1000m/g以上であり、全酸性基が0.40meq/g〜1.00meq/gであり、全塩基性基が0.40meq/g〜1.10meq/gであり、細孔直径20−1000nmの細孔容積が0.0185mL/g以下であり、そしてβ−アミノイソ酪酸又はこれと同等の分子寸法を有する物質の選択吸着率が4.06以上である表面改質球状活性炭からなることを特徴とする、経口投与用吸着剤に関する。
本発明による好ましい経口投与用吸着剤は、細孔直径20〜15000nmの細孔容積が0.1mL/g以下の表面改質球状活性炭からなる。
本発明による別の好ましい経口投与用吸着剤は、フェノール樹脂を炭素源として製造される表面改質球状活性炭からなる。
本発明による更に好ましい経口投与用吸着剤は、非酸化性ガス雰囲気中800℃での熱処理による炭素化収率が40重量%以上の熱硬化性樹脂を炭素源として製造される表面改質球状活性炭からなる。
更に、本発明は、前記の経口投与用吸着剤を有効成分とする腎疾患治療又は予防剤、肝疾患治療又は予防剤、及び尿毒症性物質に関連する疾病の治療又は予防剤にも関する。
Therefore, the present invention is produced using a thermosetting resin as a carbon source, has a diameter of 0.01 to 1 mm, a specific surface area determined by Langmuir's adsorption formula is 1000 m 2 / g or more, and has a total acidic group of 0. .40 meq / g to 1.00 meq / g, all basic groups are 0.40 meq / g to 1.10 meq / g, and the pore volume of pore diameter 20-1000 nm is 0.0185 mL / g or less. Further, the present invention relates to an adsorbent for oral administration characterized by comprising a surface-modified spherical activated carbon having a selective adsorption rate of β-aminoisobutyric acid or a substance having a molecular size equivalent to 4.0-amino acid.
A preferred adsorbent for oral administration according to the present invention comprises a surface-modified spherical activated carbon having a pore diameter of 20 to 15000 nm and a pore volume of 0.1 mL / g or less.
Another preferred oral adsorbent according to the present invention consists of surface-modified spherical activated carbon produced using phenolic resin as a carbon source.
A more preferred adsorbent for oral administration according to the present invention is a surface-modified spherical activated carbon produced using a thermosetting resin having a carbonization yield of 40% by weight or more by a heat treatment at 800 ° C. in a non-oxidizing gas atmosphere as a carbon source. Consists of.
Furthermore, the present invention also relates to an agent for treating or preventing renal diseases, an agent for treating or preventing liver diseases, and an agent for treating or preventing diseases related to uremic substances, comprising the aforementioned adsorbent for oral administration as an active ingredient.

本発明による経口投与用吸着剤は、熱硬化性樹脂を炭素源として製造され、特異な細孔構造を有しているので、経口服用した場合に、消化酵素等の体内の有益成分の吸着性が少ないにもかかわらず、有毒な毒性物質(Toxin)の消化器系内における吸着性能が優れるという選択吸着特性を有し、従来の経口投与用吸着剤と比較すると、前記の選択吸着特性が著しく向上する。   The adsorbent for oral administration according to the present invention is manufactured using a thermosetting resin as a carbon source and has a unique pore structure. Therefore, when it is taken orally, it absorbs beneficial components such as digestive enzymes in the body. In spite of the small amount of toxic toxic substances (Toxin), the selective adsorption property is excellent in the digestive system. Compared with conventional adsorbents for oral administration, the selective adsorption property is remarkable. improves.

本発明の経口投与用吸着剤として用いる表面改質球状活性炭は、前記のとおり、従来の経口投与用吸着剤の炭素源として用いられてきたピッチ類に代えて、炭素源として熱硬化性樹脂を用いる点を特徴としており、それ以外の点では、ピッチ類を用いる従来の製造方法と実質的に同様の操作を利用して調製することができる。   As described above, the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention, instead of the pitches that have been used as the carbon source of the conventional adsorbent for oral administration, uses a thermosetting resin as the carbon source. It is characterized in that it is used, and in other respects, it can be prepared using operations substantially similar to conventional manufacturing methods using pitches.

本発明の経口投与用吸着剤として用いる表面改質球状活性炭は、例えば、以下の方法によって製造することができる。
最初に、熱硬化性樹脂からなる球状体を、炭素と反応性を有する気流(例えば、スチーム又は炭酸ガス)中で、700〜1000℃の温度で賦活処理すると、球状活性炭を得ることができる。ここで、球状「活性炭」とは、球状の熱硬化性樹脂などの炭素前駆体を熱処理した後に、賦活処理を行うことによって得られる多孔質体であり、球状で比表面積が100m/g以上であるものを意味する。本発明においては1000m/g以上が好ましい。
The surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention can be produced, for example, by the following method.
First, a spherical activated carbon can be obtained by subjecting a spherical body made of a thermosetting resin to activation treatment at a temperature of 700 to 1000 ° C. in an air stream having reactivity with carbon (for example, steam or carbon dioxide gas). Here, the spherical “activated carbon” is a porous body obtained by performing an activation treatment after heat treating a carbon precursor such as a spherical thermosetting resin, and is spherical and has a specific surface area of 100 m 2 / g or more. Means something. In this invention, 1000 m < 2 > / g or more is preferable.

なお、熱硬化性樹脂からなる前記球状体が、熱処理により軟化して形状が非球形に変形するか、あるいは球状体同士が融着する場合には、前記の賦活処理の前に、不融化処理として、酸素を含有する雰囲気にて、150℃〜400℃で酸化処理を行うことにより軟化を抑制することができる。
また、前記の熱硬化性樹脂球状体を熱処理すると、多くの熱分解ガスなどが発生する場合には、賦活操作を行う前に適宜予備焼成を行い、予め熱分解生成物を除去してもよい。
In addition, when the spherical body made of a thermosetting resin is softened by heat treatment and deformed into a non-spherical shape, or the spherical bodies are fused, the infusibilization treatment is performed before the activation treatment. As described above, softening can be suppressed by performing an oxidation treatment at 150 ° C. to 400 ° C. in an atmosphere containing oxygen.
In addition, when a large amount of pyrolysis gas is generated when the thermosetting resin spheres are heat-treated, pre-baking may be appropriately performed before the activation operation to remove the pyrolysis products in advance. .

本発明者が見出したところによると、前記の球状活性炭において、全塩基性基が0.4meq/g以上であると、更に優れた吸着性能を得ることができる。また、全塩基性基は、より好ましくは0.6meq/g以上、最も好ましくは0.7meq/g以上である。   According to what the present inventors have found, in the spherical activated carbon, when the total basic groups are 0.4 meq / g or more, further excellent adsorption performance can be obtained. The total basic group is more preferably 0.6 meq / g or more, and most preferably 0.7 meq / g or more.

前記の球状活性炭の選択吸着性を一層向上させるには、こうして得られた球状活性炭を、続いて、酸素含有量0.1〜50vol%(好ましくは1〜30vol%、特に好ましくは3〜20vol%)の雰囲気下、300〜800℃(好ましくは320〜600℃)の温度で酸化処理し、更に800〜1200℃(好ましくは800〜1000℃)の温度下、非酸化性ガス雰囲気下で加熱反応による還元処理をすることにより、本発明の経口投与用吸着剤として用いる表面改質球状活性炭を得ることができる。ここで、表面改質球状活性炭とは、前記の球状活性炭を、前記の酸化処理及び還元処理して得られる多孔質体であり、球状活性の表面に酸性点と塩基性点とをバランスよく付加することにより腸管内の有毒物質の吸着特性を向上させたものである。   In order to further improve the selective adsorptivity of the spherical activated carbon, the spherical activated carbon thus obtained is subsequently subjected to an oxygen content of 0.1 to 50 vol% (preferably 1 to 30 vol%, particularly preferably 3 to 20 vol%). ) In an atmosphere of 300 to 800 ° C. (preferably 320 to 600 ° C.), and further in a non-oxidizing gas atmosphere at a temperature of 800 to 1200 ° C. (preferably 800 to 1000 ° C.). The surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention can be obtained by carrying out the reduction treatment by the above. Here, the surface-modified spherical activated carbon is a porous material obtained by subjecting the spherical activated carbon to the oxidation treatment and reduction treatment described above, and adds an acidic point and a basic point in a balanced manner to the spherical active surface. This improves the adsorption characteristics of toxic substances in the intestinal tract.

出発材料として用いる前記の熱硬化性樹脂球状体は、粒径が約0.02〜1.5mmであることが好ましい。   The thermosetting resin sphere used as a starting material preferably has a particle size of about 0.02 to 1.5 mm.

出発材料として用いる前記の熱硬化性樹脂としては、球状体を成形することが可能な樹脂であり、500℃以下の熱処理においては溶融又は軟化せずに、形状変形も起こさないことが重要である。また、酸化処理などのいわゆる不融化処理により、溶融酸化を回避することのできる熱硬化性樹脂であれば使用することができる。   The thermosetting resin used as a starting material is a resin capable of forming a spherical body, and it is important that the heat treatment at 500 ° C. or lower does not melt or soften and does not cause shape deformation. . Further, any thermosetting resin that can avoid melt oxidation by so-called infusibilization treatment such as oxidation treatment can be used.

出発材料として用いる前記の熱硬化性樹脂としては、熱処理による炭素化収率が高いことが望ましい。炭素化収率が低いと、球状活性炭としての強度が弱くなる。また、不必要な細孔が形成されるため、球状活性炭の嵩密度が低下して、体積あたりの比表面積が低下するので、投与体積が増加し、経口投与が困難になるという問題を引き起こす。従って、熱硬化性樹脂の炭素化収率は高いほど好ましく、非酸化性ガス雰囲気中800℃での熱処理による収率の好ましい値は40重量%以上、更に好ましくは45重量%以上である。   The thermosetting resin used as a starting material desirably has a high carbonization yield by heat treatment. When the carbonization yield is low, the strength as the spherical activated carbon becomes weak. In addition, since unnecessary pores are formed, the bulk density of the spherical activated carbon is lowered, and the specific surface area per volume is lowered, so that the administration volume is increased and oral administration becomes difficult. Therefore, the higher the carbonization yield of the thermosetting resin is, the more preferable, and the preferred value of the yield by heat treatment at 800 ° C. in a non-oxidizing gas atmosphere is 40% by weight or more, more preferably 45% by weight or more.

出発材料として用いる前記の熱硬化性樹脂として、具体的には、フェノール樹脂、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、ノボラック型アルキルフェノール樹脂、若しくはレゾール型アルキルフェノール樹脂を挙げることができ、その他にもフラン樹脂、ユリア樹脂、メラミン樹脂、又はエポキシ樹脂などを用いることができる。熱硬化性樹脂としては、更に、ジビニルベンゼンと、スチレン、アクリロニトリル、アクリル酸、又はメタクリル酸との共重合体を用いることができる。   Specific examples of the thermosetting resin used as a starting material include phenolic resins such as novolak-type phenolic resins, resol-type phenolic resins, novolac-type alkylphenol resins, and resol-type alkylphenol resins. Furan resin, urea resin, melamine resin, or epoxy resin can also be used. As the thermosetting resin, a copolymer of divinylbenzene and styrene, acrylonitrile, acrylic acid, or methacrylic acid can be further used.

また、前記の熱硬化性樹脂として、イオン交換樹脂を用いることもできる。イオン交換樹脂は、一般的に、ジビニルベンゼンと、スチレン、アクリロニトリル、アクリル酸、又はメタクリル酸との共重合体(すなわち、熱硬化性樹脂)からなり、基本的には三次元網目骨格をもつ共重合体母体に、イオン交換基が結合した構造を有する。イオン交換樹脂は、イオン交換基の種類により、スルホン酸基を有する強酸性イオン交換樹脂、カルボン酸基又はスルホン酸基を有する弱酸性イオン交換樹脂、第四級アンモニウム塩を有する強塩基性イオン交換樹脂、第一級又は第三級アミンを有する弱塩基性イオン交換樹脂に大別され、このほか特殊な樹脂として、酸及び塩基両方のイオン交換基を有するいわゆるハイブリッド型イオン交換樹脂があり、本発明においては、これらのすべてのイオン交換樹脂を原料として使用することができる。本発明においては、出発材料としてフェノール樹脂を用いるのが特に好ましい。   Moreover, an ion exchange resin can also be used as said thermosetting resin. An ion exchange resin is generally made of a copolymer of divinylbenzene and styrene, acrylonitrile, acrylic acid, or methacrylic acid (that is, a thermosetting resin), and basically has a three-dimensional network skeleton. It has a structure in which an ion exchange group is bonded to a polymer matrix. Depending on the type of ion exchange group, the ion exchange resin may be a strongly acidic ion exchange resin having a sulfonic acid group, a weak acid ion exchange resin having a carboxylic acid group or a sulfonic acid group, or a strong basic ion exchange having a quaternary ammonium salt. Resins, weakly basic ion exchange resins having primary or tertiary amines, and other special resins include so-called hybrid ion exchange resins having both acid and base ion exchange groups. In the invention, all these ion exchange resins can be used as raw materials. In the present invention, it is particularly preferable to use a phenol resin as a starting material.

本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、熱硬化性樹脂を原料として、例えば前記製造方法によって製造すると共に、直径が0.01〜1mmである。表面改質球状活性炭の直径が0.01mm未満になると、表面改質球状活性炭の外表面積が増加し、消化酵素等の有益物質の吸着が起こり易くなるので好ましくない。また、直径が1mmを越えると、表面改質球状活性炭の内部への毒性物質の拡散距離が増加し、吸着速度が低下するので好ましくない。直径は、好ましくは0.02〜0.8mmである。なお、本明細書で「直径がDl〜Duである」という表現は、JIS K 1474に準じて作成した粒度累積線図(平均粒子径の測定方法に関連して後で説明する)において、ふるいの目開きDl〜Duの範囲に対応するふるい通過百分率(%)が90%以上であることを意味する。   The surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is produced by using the thermosetting resin as a raw material, for example, by the production method described above, and has a diameter of 0.01 to 1 mm. If the diameter of the surface-modified spherical activated carbon is less than 0.01 mm, the outer surface area of the surface-modified spherical activated carbon increases, and adsorption of beneficial substances such as digestive enzymes tends to occur. On the other hand, if the diameter exceeds 1 mm, the diffusion distance of the toxic substance to the inside of the surface-modified spherical activated carbon increases, and the adsorption rate decreases. The diameter is preferably 0.02 to 0.8 mm. In the present specification, the expression “diameter is D1 to Du” is a sieve in a particle size cumulative diagram prepared in accordance with JIS K 1474 (which will be described later in connection with the method of measuring the average particle size). It means that the sieve passing percentage (%) corresponding to the range of the mesh openings Dl to Du is 90% or more.

本発明による経口投与用吸着剤として用いる表面改質球状活性炭は、ラングミュア(Langmuir)の吸着式により求められる比表面積(以下「SSA」と省略することがある)が1000m/g以上である。SSAが1000m/gより小さい表面改質球状活性炭では、毒性物質の吸着性能が低くなるので好ましくない。SSAは、好ましくは1000m/g以上である。SSAの上限は特に限定されるものではないが、嵩密度及び強度の観点から、SSAは、3000m/g以下であることが好ましい。 The surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention has a specific surface area (hereinafter sometimes abbreviated as “SSA”) determined by the Langmuir adsorption formula of 1000 m 2 / g or more. A surface-modified spherical activated carbon having an SSA of less than 1000 m 2 / g is not preferable because the adsorption performance of toxic substances is lowered. SSA is preferably 1000 m 2 / g or more. Although the upper limit of SSA is not particularly limited, SSA is preferably 3000 m 2 / g or less from the viewpoint of bulk density and strength.

前記特公昭62−11611号公報(特許文献1)には、細孔半径100〜75000オングストロームの空隙容積(すなわち、細孔直径20〜15000nmの細孔容積)が0.1〜1mL/gの表面改質球状活性炭からなる吸着剤が記載されているが、本発明による経口投与用吸着剤として用いる表面改質球状活性炭においては、細孔直径20〜1000nmの細孔容積が0.0185mL/g以下である。
なお、本発明による経口投与用吸着剤として用いる表面改質球状活性炭においては、一層優れた選択吸着性を得る観点から、細孔直径7.5〜15000nmの細孔容積が0.25mL/g未満、特に0.2mL/g以下であることが好ましい。
Japanese Patent Publication No. Sho 62-11611 (Patent Document 1) discloses a surface having a pore volume of 100 to 75000 angstroms (that is, a pore volume of 20 to 15000 nm in pore diameter) of 0.1 to 1 mL / g. Although an adsorbent composed of modified spherical activated carbon is described, the surface modified spherical activated carbon used as the adsorbent for oral administration according to the present invention has a pore volume of 20 to 1000 nm and a pore volume of 0.0185 mL / g or less. It is.
In addition, in the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention, the pore volume with a pore diameter of 7.5 to 15000 nm is less than 0.25 mL / g from the viewpoint of obtaining more excellent selective adsorption. In particular, it is preferably 0.2 mL / g or less.

本発明による経口投与用吸着剤として用いる表面改質球状活性炭(すなわち、前記の球状活性炭を更に酸化処理及び還元処理することによって製造される生成物)では、官能基の構成において、全酸性基が0.40〜1.00meq/gであり、全塩基性基が0.40〜1.10meq/gである。官能基の構成において、全酸性基が0.40〜1.00meq/gであり、全塩基性基が0.40〜1.00meq/gの条件を満足すると、前記の選択吸着特性が向上し、特に前記の有毒物質の吸着能が高くなるので好ましい。官能基の構成において、全酸性基は0.40〜0.90meq/gであることが好ましく、全塩基性基は0.40〜1.00meq/gであることが好ましい。   In the surface-modified spherical activated carbon used as an adsorbent for oral administration according to the present invention (that is, a product produced by subjecting the spherical activated carbon to further oxidation treatment and reduction treatment), all the acidic groups are included in the functional group structure. 0.40 to 1.00 meq / g, and all basic groups are 0.40 to 1.10 meq / g. In the structure of the functional group, when the total acidic group is 0.40 to 1.00 meq / g and the total basic group satisfies the condition of 0.40 to 1.00 meq / g, the selective adsorption characteristic is improved. In particular, it is preferable because the adsorption ability of the toxic substance is increased. In the structure of the functional group, the total acidic group is preferably 0.40 to 0.90 meq / g, and the total basic group is preferably 0.40 to 1.00 meq / g.

本発明の吸着剤を肝腎疾患治療薬として用いる場合、その官能基の構成は、全酸性基が0.40〜1.00meq/g、全塩基性基が0.40〜1.10meq/g、フェノール性水酸基が0.20〜0.70meq/g、及びカルボキシル基が0.15meq/g以下の範囲にあり、且つ全酸性基(a)と全塩基性基(b)との比(a/b)が0.40〜2.5であり、全塩基性基(b)とフェノール性水酸基(c)とカルボキシル基(d)との関係〔(b+c)−d〕が0.60以上であることが好ましい。
本発明による経口投与用吸着剤として用いる表面改質球状活性炭が有する各物性値、すなわち、平均粒子径、比表面積、細孔容積、全酸性基、及び全塩基性基は、以下の方法によって測定する。
When the adsorbent of the present invention is used as a therapeutic agent for liver and kidney disease, the constitution of the functional group is 0.40 to 1.00 meq / g for all acidic groups, 0.40 to 1.10 meq / g for all basic groups, The phenolic hydroxyl group is in the range of 0.20 to 0.70 meq / g and the carboxyl group is in the range of 0.15 meq / g or less, and the ratio of the total acidic group (a) to the total basic group (b) (a / b) is 0.40 to 2.5, and the relationship [(b + c) -d] of the total basic group (b), the phenolic hydroxyl group (c) and the carboxyl group (d) is 0.60 or more. It is preferable.
Each physical property value of the surface-modified spherical activated carbon used as an adsorbent for oral administration according to the present invention, that is, average particle diameter, specific surface area, pore volume, total acidic group, and total basic group is measured by the following method. To do.

(1)平均粒子径
球状活性炭又は表面改質球状活性炭についてJIS K 1474に準じて粒度累積線図を作成する。平均粒子径は、粒度累積線図において、横軸の50%の点の垂直線と粒度累積線との交点から、横軸に水平線を引いて交点の示すふるいの目開き(mm)を求めて、平均粒子径とする。
(1) Average particle diameter For spherical activated carbon or surface-modified spherical activated carbon, a particle size cumulative diagram is prepared according to JIS K 1474. For the average particle diameter, in the particle size cumulative diagram, the horizontal line is drawn on the horizontal axis from the intersection of the vertical line at the 50% point on the horizontal axis and the particle size cumulative line to obtain the mesh size (mm) of the sieve indicated by the intersection. The average particle size.

(2)比表面積(ラングミュアの式による比表面積の計算法)
ガス吸着法による比表面積測定器(例えば、MICROMERITICS社製「ASAP2010」)を用いて、球状活性炭試料又は表面改質球状活性炭試料のガス吸着量を測定し、ラングミュアの式により比表面積を計算することができる。具体的には、試料である球状活性炭又は表面改質球状活性炭を試料管に充填し、300℃で減圧乾燥した後、乾燥後の試料重量を測定する。次に、試料管を−196℃に冷却し、試料管に窒素を導入し球状活性炭試料又は表面改質球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。
窒素の相対圧力をp、その時の吸着量をv(cm/g STP)とし、ラングミュアプロットを行う。すなわち、縦軸にp/v、横軸にpを取り、pが0.05〜0.3の範囲でプロットし、そのときの傾きをb(g/cm)とすると比表面積S(単位=m/g)は下記の式により求められる。

Figure 2006096769
ここで、MAは窒素分子の断面積で0.162nmを用いた。 (2) Specific surface area (calculation method of specific surface area by Langmuir's formula)
Measure the gas adsorption amount of a spherical activated carbon sample or surface modified spherical activated carbon sample using a specific surface area measuring instrument (for example, “ASAP2010” manufactured by MICROMERITICS) by gas adsorption method, and calculate the specific surface area by Langmuir's formula Can do. Specifically, a sample activated carbon or surface-modified spherical activated carbon is filled in a sample tube, dried at 300 ° C. under reduced pressure, and the sample weight after drying is measured. Next, the sample tube is cooled to −196 ° C., nitrogen is introduced into the sample tube, and nitrogen is adsorbed on the spherical activated carbon sample or the surface-modified spherical activated carbon sample, and the relationship between nitrogen partial pressure and adsorption amount (adsorption isotherm) is obtained. taking measurement.
Langmuir plot is performed with the relative pressure of nitrogen as p and the adsorption amount at that time as v (cm 3 / g STP). That is, when the vertical axis is p / v, the horizontal axis is p, p is plotted in the range of 0.05 to 0.3, and the slope at that time is b (g / cm 3 ), the specific surface area S (unit) = M 2 / g) is obtained by the following equation.
Figure 2006096769
Here, MA were used 0.162Nm 2 in cross-sectional area of nitrogen molecules.

(3)水銀圧入法による細孔容積
水銀ポロシメーター(例えば、MICROMERITICS社製「AUTOPORE 9200」)を用いて細孔容積を測定することができる。試料である球状活性炭又は表面改質球状活性炭を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。次いで、水銀を試料容器内に導入し、徐々に加圧して水銀を球状活性炭試料又は表面改質球状活性炭試料の細孔へ圧入する(最高圧力=414MPa)。このときの圧力と水銀の圧入量との関係から以下の各計算式を用いて球状活性炭試料又は表面改質球状活性炭試料の細孔容積分布を測定する。
具体的には、細孔直径22μmに相当する圧力(0.06MPa)から最高圧力(414MPa:細孔直径3nm相当)までに球状活性炭試料又は表面改質球状活性炭試料に圧入された水銀の体積を測定する。細孔直径の算出は、直径(D)の円筒形の細孔に水銀を圧力(P)で圧入する場合、水銀の表面張力を「γ」とし、水銀と細孔壁との接触角を「θ」とすると、表面張力と細孔断面に働く圧力の釣り合いから、次式:
−πDγcosθ=π(D/2)・P
が成り立つ。従って
D=(−4γcosθ)/P
となる。
本明細書においては、水銀の表面張力を484dyne/cmとし、水銀と炭素との接触角を130度とし、圧力PをMPaとし、そして細孔直径Dをμmで表示し、下記式:
D=1.27/P
により圧力Pと細孔直径Dの関係を求める。例えば、本発明における細孔直径20〜1000nmの範囲の細孔容積とは、水銀圧入圧1.27MPaから63.5MPaまでに圧入された水銀の体積に相当し、細孔直径7.5〜15000nmの範囲の細孔容積とは、水銀圧入圧0.085MPaから169MPaまでに圧入された水銀の体積に相当する。
(3) Pore volume by mercury porosimetry The pore volume can be measured using a mercury porosimeter (for example, “AUTOPORE 9200” manufactured by MICROMERITICS). Sample spherical activated carbon or surface modified spherical activated carbon is placed in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes. Next, mercury is introduced into the sample container, and gradually pressurized to pressurize mercury into the pores of the spherical activated carbon sample or the surface-modified spherical activated carbon sample (maximum pressure = 414 MPa). The pore volume distribution of the spherical activated carbon sample or the surface-modified spherical activated carbon sample is measured from the relationship between the pressure at this time and the intrusion amount of mercury using the following calculation formulas.
Specifically, the volume of mercury injected into the spherical activated carbon sample or the surface-modified spherical activated carbon sample from the pressure corresponding to the pore diameter of 22 μm (0.06 MPa) to the maximum pressure (414 MPa: equivalent to the pore diameter of 3 nm) is determined. taking measurement. The pore diameter is calculated when mercury is pressed into a cylindrical pore having a diameter (D) at a pressure (P), where the surface tension of mercury is “γ” and the contact angle between the mercury and the pore wall is “ θ ”, from the balance between the surface tension and the pressure acting on the pore cross section, the following formula:
−πDγcos θ = π (D / 2) 2 · P
Holds. Therefore, D = (− 4γcos θ) / P
It becomes.
In this specification, the surface tension of mercury is 484 dyne / cm, the contact angle between mercury and carbon is 130 degrees, the pressure P is MPa, and the pore diameter D is expressed in μm.
D = 1.27 / P
To obtain the relationship between the pressure P and the pore diameter D. For example, the pore volume in the range of pore diameter of 20 to 1000 nm in the present invention corresponds to the volume of mercury injected from a mercury intrusion pressure of 1.27 MPa to 63.5 MPa, and a pore diameter of 7.5 to 15000 nm. The pore volume in the range of corresponds to the volume of mercury that is pressed from a mercury pressure of 0.085 MPa to 169 MPa.

(4)全酸性基
0.05規定のNaOH溶液50mL中に、200メッシュ以下に粉砕した球状活性炭試料又は表面改質球状活性炭試料1gを添加し、48時間振とうした後、球状活性炭試料又は表面改質球状活性炭試料をろ別し、中和滴定により求められるNaOHの消費量である。
(4) Total acidic groups Add 1 g of spherical activated carbon sample or surface modified spherical activated carbon sample pulverized to 200 mesh or less in 50 mL of 0.05N NaOH solution, shake for 48 hours, and then add spherical activated carbon sample or surface This is the consumption of NaOH determined by neutralizing titration after filtering the modified spherical activated carbon sample.

(5)全塩基性基
0.05規定のHCl溶液50mL中に、200メッシュ以下に粉砕した球状活性炭試料又は表面改質球状活性炭試料1gを添加し、24時間振とうした後、球状活性炭試料又は表面改質球状活性炭試料をろ別し、中和滴定により求められるHClの消費量である。
(5) Total basic group In 50 mL of 0.05N HCl solution, 1 g of spherical activated carbon sample or surface modified spherical activated carbon sample pulverized to 200 mesh or less was added and shaken for 24 hours. It is the consumption of HCl obtained by filtering the surface-modified spherical activated carbon sample and neutralizing titration.

本発明の経口投与用吸着剤として用いる表面改質球状活性炭は、後述する実施例において示すように、肝疾患憎悪因子や腎臓病での毒性物質の吸着性に優れているにもかかわらず、有益物質である消化酵素等に対する吸着性が少ないという選択吸着性に優れているので、腎疾患の治療用又は予防用経口投与用吸着剤として用いるか、あるいは、肝疾患の治療用又は予防用経口投与用吸着剤として用いることができる。   The surface-modified spherical activated carbon used as an adsorbent for oral administration according to the present invention is beneficial in spite of excellent adsorbability of toxic substances in liver disease aversion factor and kidney disease, as shown in Examples described later. Because it has excellent selective adsorption properties such as low adsorption to substances such as digestive enzymes, it is used as an adsorbent for oral administration for the treatment or prevention of renal diseases, or for oral administration for the treatment or prevention of liver diseases. It can be used as an adsorbent.

腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西男、小磯謙吉、黒川清、1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編集、1981年版参照)。   Examples of renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritic syndrome, acute progressive nephritic syndrome, chronic nephritic syndrome, nephrotic syndrome, nephrosclerosis, interstitial Nephritis, ureteropathy, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, or hypertension syndrome, or secondary kidney disease associated with the above-mentioned primary disease, further, mild renal failure before dialysis, It can also be used to improve the pathology of mild renal failure before dialysis and to improve pathology during dialysis ("Clinical Nephrology" Asakura Shoten, Nishio Honda, Kenkichi Ogura, Kiyoshi Kurokawa, 1990 edition and "Nephrology" medical bookstore (See Teruo Omae and Satoshi Fujimi, 1981 edition).

また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用いることができる。   Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, vibration Mental, encephalopathy, metabolic abnormalities, or functional abnormalities can be mentioned. In addition, it can be used for treatment of diseases caused by harmful substances existing in the body, that is, psychosis.

従って、本発明による経口投与用吸着剤を腎臓疾患治療薬として用いる場合には、前記の表面改質球状活性炭を有効成分として含有する。本発明の経口投与用吸着剤を腎臓疾患治療薬又は肝臓疾患治療薬として用いる場合、その投与量は、投与対象がヒトであるかあるいはその他の動物であるかにより、また、年令、個人差、又は病状などに影響されるので、場合によっては下記範囲外の投与量が適当なこともあるが、一般にヒトを対象とする場合の経口投与量は1日当り1〜20gを3〜4回に分けて服用し、更に症状によって適宜増減することができる。投与形態は、散剤、顆粒、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤等であることができる。カプセル剤として服用する場合は、通常のゼラチンの他に、必要に応じて腸溶性のカプセルを用いることもできる。錠剤として用いる場合は、体内でもとの微小粒体に解錠されることが必要である。更に他の薬剤であるアルミゲルやケイキサレートなどの電解質調節剤と配合した複合剤の形態で用いることもできる。   Accordingly, when the adsorbent for oral administration according to the present invention is used as a therapeutic agent for renal diseases, the surface-modified spherical activated carbon is contained as an active ingredient. When the adsorbent for oral administration of the present invention is used as a therapeutic agent for kidney disease or a therapeutic agent for liver disease, the dosage depends on whether the subject of administration is a human or other animal, and varies depending on age, individual difference. In some cases, doses outside the following range may be appropriate depending on the medical condition, etc. In general, the oral dose for human subjects is from 1 to 20 g per day to 3 to 4 times. It can be taken separately and further increased or decreased depending on the symptoms. The dosage form can be powders, granules, tablets, dragees, capsules, suspensions, sticks, sachets or emulsions. When taking as a capsule, an enteric capsule can be used as required in addition to normal gelatin. When used as a tablet, it is necessary that the tablet is unlocked into fine particles. Furthermore, it can also be used in the form of a composite agent blended with other chemicals such as an aluminum gel and an electrolyte regulator such as silicaxate.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
以下の実施例において、α−アミラーゼ吸着試験及びDL−β−アミノイソ酪酸吸着試験は以下の方法で実施し、選択吸着率は以下の方法で計算した。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
In the following examples, the α-amylase adsorption test and the DL-β-aminoisobutyric acid adsorption test were performed by the following methods, and the selective adsorption rate was calculated by the following method.

(1)α−アミラーゼ吸着試験
球状活性炭試料又は表面改質球状活性炭試料を乾燥した後、乾燥試料0.125gを正確に量って共栓付三角フラスコにとる。一方、α−アミラーゼ(液化型)0.100gを正確に秤量して、pH7.4のリン酸塩緩衝液を加えて溶かし、正確に1000mLとした液(原液)50mLを、前記の共栓付三角フラスコに正確に加え、37±1℃で3時間振り混ぜる。フラスコの内容物をろ孔0.65μmのメンブランフィルターで吸引ろ過し、はじめのろ液約20mLを除き、次のろ液約10mLを取って試料溶液とする。
一方、pH7.4のリン酸塩緩衝液を用いて同じ操作を行い、そのろ液を補正液とする。試料溶液及び補正液につき、pH7.4のリン酸塩緩衝液を対照とし、吸光度測定法により試験を行い、波長282nmにおける吸光度を測定する。試料溶液の吸光度と補正液の吸光度の差を試験吸光度とする。
検量線はα−アミラーゼ原液を0mL、25mL、50mL、75mL、及び100mLの量でメスフラスコに正確に分取し、pH7.4リン酸塩緩衝液で100mLにメスアップして波長282nmにおける吸光度を測定することにより作成した。
試験吸光度と検量線より、α−アミラーゼ残存量(mg/dL)を計算した。
球状活性炭試料又は表面改質球状活性炭試料の量の依存性を測定するため、球状活性炭試料又は表面改質球状活性炭試料の量を0.500gとし、上記方法と同様の方法で試験吸光度を測定し、α−アミラーゼ残存量を計算した。
(1) α-Amylase adsorption test After drying a spherical activated carbon sample or a surface-modified spherical activated carbon sample, 0.125 g of the dried sample is accurately weighed and placed in an Erlenmeyer flask with a stopper. On the other hand, 0.100 g of α-amylase (liquefied type) was accurately weighed and dissolved by adding a phosphate buffer solution of pH 7.4 to make exactly 1000 mL of the solution (stock solution) with the above stopper. Add exactly to the Erlenmeyer flask and shake at 37 ± 1 ° C for 3 hours. The contents of the flask are suction filtered with a membrane filter having a filter hole of 0.65 μm, about 20 mL of the first filtrate is removed, and about 10 mL of the next filtrate is taken as a sample solution.
On the other hand, the same operation is performed using a pH 7.4 phosphate buffer solution, and the filtrate is used as a correction solution. For the sample solution and the correction solution, the pH 7.4 phosphate buffer is used as a control, the test is performed by the absorbance measurement method, and the absorbance at a wavelength of 282 nm is measured. The difference between the absorbance of the sample solution and the absorbance of the correction solution is taken as the test absorbance.
The calibration curve was obtained by accurately dispensing the α-amylase stock solution into 0 mL, 25 mL, 50 mL, 75 mL, and 100 mL volumes into a volumetric flask, measuring up to 100 mL with pH 7.4 phosphate buffer, and measuring the absorbance at a wavelength of 282 nm. Created by measuring.
From the test absorbance and the calibration curve, α-amylase residual amount (mg / dL) was calculated.
In order to measure the dependency of the amount of the spherical activated carbon sample or the surface modified spherical activated carbon sample, the amount of the spherical activated carbon sample or the surface modified spherical activated carbon sample is set to 0.500 g, and the test absorbance is measured by the same method as above. The residual amount of α-amylase was calculated.

(2)DL−β−アミノイソ酪酸吸着試験
球状活性炭試料又は表面改質球状活性炭試料を乾燥した後、乾燥試料2.500gを正確に量って共栓付三角フラスコにとる。一方、DL−β−アミノイソ酪酸0.100gを正確に量り、pH7.4のリン酸塩緩衝液を加えて溶かし、正確に1000mLとした液(原液)50mLを、前記の共栓付三角フラスコに正確に加え、37±1℃で3時間振り混ぜる。フラスコの内容物をろ孔0.65μmのメンブランフィルターで吸引ろ過し、はじめのろ液約20mLを除き、次のろ液約10mLを取って試料溶液とする。
試料溶液0.1mLを試験管に正確に取り、pH8.0のリン酸塩緩衝液5mLを正確に加えて混合した後、フルオレスカミン0.100gを非水滴定用アセトン100mLに溶かした液1mLを正確に加えて混合した後で、15分間静置する。この液につき、蛍光光度法により試験を行い、励起波長390nm、及び蛍光波長475nmで蛍光強度を測定する。
DL−β−アミノイソ酪酸原液を0mL、15mL、50mL、75mL、及び100mLの量とpH7.4リン酸塩緩衝液とで100mLにして攪拌し、ろ過し、ろ液0.1mLを試験管に正確に取り、pH8.0のリン酸塩緩衝液5mLを正確に加えて混合した後、フルオレスカミン0.100gを非水滴定用アセトン100mLに溶かした液1mLを正確に加えて混合した後で、15分間静置する。これらの液につき、蛍光光度法により試験を行い、励起波長390nm、及び蛍光波長475nmで蛍光強度を測定し、検量線を作成する。最後にDL−β−アミノイソ酪酸の残存量(mg/dL)を上記検量線を用いて計算する。
球状活性炭試料又は表面改質球状活性炭試料の量の依存性を測定するため、球状活性炭試料又は表面改質球状活性炭試料の量を0.500gとして上記方法と同様の方法で試験蛍光強度を測定し、DL−β−アミノイソ酪酸の残存量を計算した。
(2) DL-β-aminoisobutyric acid adsorption test After drying the spherical activated carbon sample or the surface-modified spherical activated carbon sample, accurately weigh 2.500 g of the dried sample into a conical stoppered Erlenmeyer flask. On the other hand, 0.100 g of DL-β-aminoisobutyric acid was accurately weighed and dissolved by adding a phosphate buffer solution of pH 7.4 to make exactly 1000 mL of the solution (stock solution) into the conical flask with a stopper. Add exactly and shake at 37 ± 1 ° C for 3 hours. The contents of the flask are suction filtered with a membrane filter having a filter hole of 0.65 μm, about 20 mL of the first filtrate is removed, and about 10 mL of the next filtrate is taken as a sample solution.
Take exactly 0.1 mL of the sample solution in a test tube, add exactly 5 mL of pH 8.0 phosphate buffer, mix, and then add 1 mL of 0.100 g of fluorescamine dissolved in 100 mL of nonaqueous titration acetone. After adding and mixing accurately, let stand for 15 minutes. This liquid is tested by a fluorometric method, and the fluorescence intensity is measured at an excitation wavelength of 390 nm and a fluorescence wavelength of 475 nm.
DL-β-aminoisobutyric acid stock solution is stirred with 100 mL of 0 mL, 15 mL, 50 mL, 75 mL, and 100 mL and pH 7.4 phosphate buffer, filtered, and 0.1 mL of filtrate is accurately added to the test tube. After adding 5 mL of phosphate buffer pH 8.0 accurately and mixing, 1 mL of a solution of 0.100 g of fluorescamine dissolved in 100 mL of non-aqueous titration was added and mixed. Let stand for 15 minutes. These liquids are tested by a fluorometric method, the fluorescence intensity is measured at an excitation wavelength of 390 nm and a fluorescence wavelength of 475 nm, and a calibration curve is created. Finally, the remaining amount of DL-β-aminoisobutyric acid (mg / dL) is calculated using the calibration curve.
In order to measure the dependency of the amount of the spherical activated carbon sample or the surface modified spherical activated carbon sample, the amount of the spherical activated carbon sample or the surface modified spherical activated carbon sample is set to 0.500 g, and the test fluorescence intensity is measured by the same method as described above. The residual amount of DL-β-aminoisobutyric acid was calculated.

(3)選択吸着率
球状活性炭試料又は表面改質球状活性炭試料の使用量が0.500gの場合のα−アミラーゼ吸着試験におけるα−アミラーゼ残存量、及び同様に、球状活性炭試料又は表面改質球状活性炭試料の使用量が0.500gの場合のDL−β−アミノイソ酪酸吸着試験におけるDL−β−アミノイソ酪酸残存量のそれぞれのデータに基づいて、以下の計算式:
A=(10−Tr)/(10−Ur)
(ここで、Aは選択吸着率であり、TrはDL−β−アミノイソ酪酸の残存量であり、Urはα−アミラーゼの残存量である)
から計算した。
(3) Selective adsorption rate The amount of residual α-amylase in the α-amylase adsorption test when the amount of spherical activated carbon sample or surface modified spherical activated carbon sample used is 0.500 g, and similarly, the spherical activated carbon sample or surface modified spherical Based on the respective data of the residual amount of DL-β-aminoisobutyric acid in the DL-β-aminoisobutyric acid adsorption test when the amount of the activated carbon sample used is 0.500 g, the following calculation formula:
A = (10−Tr) / (10−Ur)
(Here, A is the selective adsorption rate, Tr is the residual amount of DL-β-aminoisobutyric acid, and Ur is the residual amount of α-amylase)
Calculated from

《参考例1》
球状のフェノール樹脂(粒子径=10〜700μm:商品名「高機能真球樹脂マリリンHF500タイプ」;群栄化学株式会社製)を目開き250μmの篩で篩分し、微粉末を除去した後、微粉除去した球状のフェノール樹脂150gを目皿付き石英製縦型反応管に入れ、窒素ガス気流下1.5時間で350℃まで昇温し、更に900℃まで6時間で昇温した後、900℃で1時間保持して、球状炭素質材料68.1gを得た。その後、窒素ガス(3NL/min)と水蒸気(2.5NL/min)との混合ガス雰囲気中、900℃で賦活処理を行った。球状活性炭の充填密度が0.5mL/gまで減少した時点で賦活処理を終了とし、球状活性炭29.9g(収率19.9wt%)を得た。
得られた球状活性炭の特性を表1及び表2に示す。
から計算した。
<< Reference Example 1 >>
Spherical phenol resin (particle size = 10 to 700 μm: trade name “Highly Functional True Spherical Resin Marilyn HF500 Type”; manufactured by Gunei Chemical Co., Ltd.) is sieved with a sieve having an opening of 250 μm, and fine powder is removed. After adding 150 g of spherical phenol resin from which fine powder has been removed to a quartz vertical reaction tube with a mesh pan, the temperature is raised to 350 ° C. in a nitrogen gas flow for 1.5 hours, and further to 900 ° C. in 6 hours. Holding at 1 ° C. for 1 hour, 68.1 g of a spherical carbonaceous material was obtained. Thereafter, activation treatment was performed at 900 ° C. in a mixed gas atmosphere of nitrogen gas (3 NL / min) and water vapor (2.5 NL / min). When the packing density of the spherical activated carbon decreased to 0.5 mL / g, the activation treatment was terminated, and 29.9 g of spherical activated carbon (yield 19.9 wt%) was obtained.
The characteristics of the obtained spherical activated carbon are shown in Tables 1 and 2.
Calculated from

《参考例2》
参考例1で用いたフェノール樹脂(群栄化学株式会社製)に代えて、住友ベークライト株式会社製の球状のフェノール樹脂(平均粒径=700μm:商品名「フェノール樹脂球状硬化物 ACSシリーズ PR−ACS−2−50C」)を使用したこと以外は、参考例1に記載の方法を繰り返して、球状活性炭を得た。収率は26.5%であった。
得られた球状活性炭の特性を表1及び表2に示す。
から計算した。
<< Reference Example 2 >>
Instead of the phenol resin (manufactured by Gunei Chemical Co., Ltd.) used in Reference Example 1, a spherical phenol resin (average particle size = 700 μm: product name “phenol resin spherical cured product ACS series PR-ACS” manufactured by Sumitomo Bakelite Co., Ltd. Except for using -2-50C "), the method described in Reference Example 1 was repeated to obtain spherical activated carbon. The yield was 26.5%.
The characteristics of the obtained spherical activated carbon are shown in Tables 1 and 2.
Calculated from

《実施例1》
参考例1で得られた球状活性炭を更に流動床にて、酸素濃度18.5vol%の窒素と酸素との混合ガス雰囲気下470℃で3時間15分間酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理を行い、表面改質球状活性炭を得た。
得られた表面改質球状活性炭の特性を表1及び表2に示す。
から計算した。
Example 1
The spherical activated carbon obtained in Reference Example 1 was further oxidized in a fluidized bed in a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 18.5 vol% at 470 ° C. for 3 hours and 15 minutes, and then in a fluidized bed Reduction treatment was performed at 900 ° C. for 17 minutes in a gas atmosphere to obtain surface-modified spherical activated carbon.
The characteristics of the obtained surface-modified spherical activated carbon are shown in Tables 1 and 2.
Calculated from

《実施例2》
出発材料として、参考例2で得られた球状活性炭を使用したこと以外は、実施例1に記載の方法を繰り返して、表面改質球状活性炭を得た。
得られた表面改質球状活性炭の特性を表1及び表2に示す。
から計算した。
Example 2
A surface-modified spherical activated carbon was obtained by repeating the method described in Example 1 except that the spherical activated carbon obtained in Reference Example 2 was used as a starting material.
The characteristics of the obtained surface-modified spherical activated carbon are shown in Tables 1 and 2.
Calculated from

《参考例3》
フェノール樹脂に替えてイオン交換性樹脂(スチレン系;有効径=0.50〜0.65mm:商品名「Amberlite15WET」;オルガノ株式会社製)を使用したこと以外は、実施例1に記載の方法を繰り返して、表面改質球状活性炭を得た。
得られた表面改質球状活性炭の特性を表1及び表2に示す。
また、得られた表面改質球状活性炭の表面構造を示す走査型電子顕微鏡写真(50倍)を図1に示す。更に、得られた表面改質球状活性炭の断面構造を示す走査型電子顕微鏡写真(200倍)を図2に示す。
<< Reference Example 3 >>
The method described in Example 1 was used except that an ion exchange resin (styrene type; effective diameter = 0.50 to 0.65 mm: trade name “Amberlite 15WET”; manufactured by Organo Corporation) was used instead of the phenol resin. Repeatedly, a surface modified spherical activated carbon was obtained.
The characteristics of the obtained surface-modified spherical activated carbon are shown in Tables 1 and 2.
Moreover, the scanning electron micrograph (50 times) which shows the surface structure of the obtained surface modification spherical activated carbon is shown in FIG. Furthermore, the scanning electron micrograph (200 times) which shows the cross-sectional structure of the obtained surface modification spherical activated carbon is shown in FIG.

《比較例1》
石油系ピッチ(軟化点=210℃;キノリン不溶分=1重量%以下;H/C原子比=0.63)68kgと、ナフタレン32kgとを、攪拌翼のついた内容積300Lの耐圧容器に仕込み、180℃で溶融混合を行った後、80〜90℃に冷却して押し出し、紐状成形体を得た。次いで、この紐状成形体を直径と長さの比が約1〜2になるように破砕した。
0.23重量%のポリビニルアルコール(ケン化度=88%)を溶解して93℃に加熱した水溶液中に、前記の破砕物を投入し、攪拌分散により球状化した後、前記のポリビニルアルコール水溶液を水で置換することにより冷却し、20℃で3時間冷却し、ピッチの固化及びナフタレン結晶の析出を行い、球状ピッチ成形体スラリーを得た。
大部分の水をろ過により除いた後、球状ピッチ成形体の約6倍重量のn−ヘキサンでピッチ成形体中のナフタレンを抽出除去した。このようにして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、235℃まで昇温した後、235℃にて1時間保持して酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。得られた多孔性球状酸化ピッチの酸素含有率は14重量%であった。
続いて、多孔性球状酸化ピッチを、流動床を用い、50vol%の水蒸気を含む窒素ガス雰囲気中900℃で170分間賦活処理して球状活性炭を得、更にこれを流動床にて、酸素濃度18.5vol%の窒素と酸素との混合ガス雰囲気下で470℃で3時間15分間、酸化処理し、次に流動床にて窒素ガス雰囲気下900℃で17分間還元処理を行い、表面改質球状活性炭を得た。
得られた表面改質球状活性炭の特性を表1及び表2に示す。
得られた表面改質球状活性炭の表面構造を示す走査型電子顕微鏡写真(50倍)を図3に示す。更に、得られた表面改質球状活性炭の断面構造を示す走査型電子顕微鏡写真(200倍)を図4に示す。
<< Comparative Example 1 >>
68 kg of petroleum-based pitch (softening point = 210 ° C .; quinoline insoluble content = 1 wt% or less; H / C atomic ratio = 0.63) and 32 kg of naphthalene are charged into a pressure-resistant container having an internal volume of 300 L with a stirring blade. After melt mixing at 180 ° C., the mixture was cooled to 80 to 90 ° C. and extruded to obtain a string-like molded body. Next, the string-like molded body was crushed so that the ratio of diameter to length was about 1-2.
The crushed material was put into an aqueous solution in which 0.23% by weight of polyvinyl alcohol (degree of saponification = 88%) was dissolved and heated to 93 ° C., and spheroidized by stirring and dispersing. Was replaced by water and cooled at 20 ° C. for 3 hours to solidify the pitch and precipitate naphthalene crystals to obtain a spherical pitch formed body slurry.
After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with about 6 times the weight of n-hexane of the spherical pitch formed body. The porous spherical pitch obtained in this way was heated to 235 ° C. through heated air using a fluidized bed, and then oxidized by holding at 235 ° C. for 1 hour, so that it was infusible to heat. A porous spherical oxide pitch was obtained. The resulting porous spherical oxide pitch had an oxygen content of 14% by weight.
Subsequently, the porous spherical oxidation pitch was activated using a fluidized bed in a nitrogen gas atmosphere containing 50 vol% of water vapor at 900 ° C. for 170 minutes to obtain spherical activated carbon, which was further treated in a fluidized bed with an oxygen concentration of 18 Oxidation treatment was performed at 470 ° C. for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen of 5 vol%, and then the reduction treatment was performed in a fluidized bed at 900 ° C. for 17 minutes in a nitrogen gas atmosphere. Activated carbon was obtained.
The characteristics of the obtained surface-modified spherical activated carbon are shown in Tables 1 and 2.
A scanning electron micrograph (50 times) showing the surface structure of the obtained surface-modified spherical activated carbon is shown in FIG. Furthermore, the scanning electron micrograph (200 times) which shows the cross-sectional structure of the obtained surface modification spherical activated carbon is shown in FIG.

《比較例2》
球状活性炭の酸化処理及び還元処理を行わないこと以外は、比較例1に記載の方法を繰り返して、球状活性炭を得た。
得られた球状活性炭の特性を表1及び表2に示す。

Figure 2006096769
<< Comparative Example 2 >>
Spherical activated carbon was obtained by repeating the method described in Comparative Example 1 except that the spherical activated carbon was not oxidized and reduced.
The characteristics of the obtained spherical activated carbon are shown in Tables 1 and 2.
Figure 2006096769

前記表1に記載の「細孔容積(Hg pore)」は、水銀圧入法により求めた細孔直径20〜1000nmの範囲の細孔容積に相当する。
前記表1に記載の「SSA(BET式)」は、参考として記載した比表面積の測定値であり、以下の方法によって測定した。
ラングミュアの式による比表面積の測定と同様にして−196℃で球状活性炭試料又は表面改質球状活性炭試料に窒素を吸着させ、窒素分圧と吸着量の関係(吸着等温線)を測定する。
窒素の相対圧力をp、その時の吸着量をv(cm/g STP)とし、BETプロットを行う。すなわち、縦軸にp/(v(1−p))、横軸にpを取り、pが0.05〜0.3の範囲でプロットし、そのときの傾きb(単位=g/cm)、及び切片c(単位=g/cm)から、比表面積S(単位=m/g)は下記の式により求められる。

Figure 2006096769
ここで、MAは窒素分子の断面積で0.162nmを用いた。 The “pore volume (Hg pore)” shown in Table 1 corresponds to the pore volume in the range of pore diameters of 20 to 1000 nm determined by mercury porosimetry.
“SSA (BET type)” described in Table 1 above is a specific surface area measurement value described as a reference, and was measured by the following method.
Similarly to the measurement of the specific surface area by Langmuir's equation, nitrogen is adsorbed on the spherical activated carbon sample or the surface-modified spherical activated carbon sample at -196 ° C., and the relationship between nitrogen partial pressure and adsorption amount (adsorption isotherm) is measured.
BET plotting is performed with the relative pressure of nitrogen as p and the adsorption amount at that time as v (cm 3 / g STP). That is, p / (v (1-p)) is plotted on the vertical axis, p is plotted on the horizontal axis, and p is plotted in the range of 0.05 to 0.3, and the slope b (unit = g / cm 3) at that time is plotted. ) And the intercept c (unit = g / cm 3 ), the specific surface area S (unit = m 2 / g) is determined by the following equation.
Figure 2006096769
Here, MA were used 0.162Nm 2 in cross-sectional area of nitrogen molecules.

Figure 2006096769
Figure 2006096769

《薬理効果確認試験1:腎疾患の改善作用》
腎臓の3/4を摘出して作製した腎不全モデルラットを用い、本発明の経口投与用吸着剤の投与による腎不全に対する薬理効果確認試験を行った。試料としては、前記参考例1及び実施例1で得られた経口投与用吸着剤を使用した。確認試験は、モデルラット作製から6週間経過時点で群間に偏りのないように、対照群(6匹;以下C1群と呼ぶ)、参考例1の経口投与用吸着剤投与群(6匹;以下P1群と呼ぶ)及び実施例1の経口投与用吸着剤投与群(6匹;以下与P2群と呼ぶ)に分けた。
各群に粉末飼料を与えた。各群に対する給餌量はC1群の2〜3日間の平均摂餌量を基準にして決めた。P1群及びP2群に対しては、前記C1群と同様の粉末飼料に、経口投与用吸着剤5重量%を追加混合して与えた。経口投与用吸着剤の投与を開始してから8週目に、血清中のクレアチニン、尿素窒素、尿中のクレアチニン、クレアチニン・クリアランス、及び蛋白排泄量を測定した。なお、腎臓を摘出していない正常ラット(6匹)についても同様の実験を行った(正常群)。
結果を図5〜図8に示す。血清中のクレアチニン(図5)及び尿素窒素(図6)は、C1群に比してP1群及びP2群において、投与開始から8週間経過時でそれぞれ有意に低値を示した。腎機能の指標であるクレアチニン・クリアランス(図7)は、C1群において低下が認められ、P1群及びP2群においては、C1群で認められた低下に対して有意な抑制が認められた。一方、尿細管機能の指標となる蛋白排泄量(図8)は、C1群で増加が認められたが、P1群及びP2群においては、その増加を有意に抑制することが認められた。なお、尿中のクレアチニンついても同様の結果が得られた。
以上の結果から、本発明の経口投与用吸着剤は、慢性腎不全の進行を抑制、あるいは改善し、腎機能の低下を防止及び維持することができることが明らかとなった。
<< Pharmacological effect confirmation test 1: Kidney disease improvement action >>
Using a renal failure model rat prepared by extracting 3/4 of the kidney, a pharmacological effect confirmation test for renal failure by administration of the oral adsorbent of the present invention was performed. As a sample, the adsorbent for oral administration obtained in Reference Example 1 and Example 1 was used. In the confirmation test, the control group (6 animals; hereinafter referred to as the C1 group) and the adsorbent administration group for oral administration in Reference Example 1 (6 animals) were prepared so that there was no bias between the groups after 6 weeks from the preparation of the model rats. (Hereinafter referred to as P1 group) and adsorbent administration group for oral administration of Example 1 (6 animals; hereinafter referred to as given P2 group).
Each group was fed a powdered feed. The amount of food fed to each group was determined based on the average amount of food consumed for 2-3 days in group C1. For the P1 group and the P2 group, 5 wt% of an adsorbent for oral administration was additionally mixed with the powdered feed similar to the C1 group. At 8 weeks after the start of the administration of the adsorbent for oral administration, serum creatinine, urea nitrogen, urine creatinine, creatinine clearance, and protein excretion were measured. The same experiment was performed on normal rats (6 animals) from which kidneys were not removed (normal group).
The results are shown in FIGS. The serum creatinine (FIG. 5) and urea nitrogen (FIG. 6) were significantly lower in the P1 group and the P2 group than in the C1 group after 8 weeks from the start of administration. A decrease in creatinine clearance (FIG. 7), which is an index of renal function, was observed in the C1 group, and a significant suppression was observed in the P1 and P2 groups against the decrease observed in the C1 group. On the other hand, the amount of protein excretion (FIG. 8), which is an index of tubular function, was observed to increase in the C1 group, but the increase was significantly suppressed in the P1 and P2 groups. Similar results were obtained for creatinine in urine.
From the above results, it was revealed that the oral adsorbent of the present invention can suppress or improve the progression of chronic renal failure and prevent and maintain the decrease in renal function.

《薬理効果確認試験2:肝疾患の改善作用》
四塩化炭素誘発肝疾患モデルラットを用い、本発明の経口投与用吸着剤の投与による肝疾患に対する薬理効果確認試験を行った。試料としては、前記参考例1及び実施例1で得られた経口投与用吸着剤を用いた。
具体的には、Sprague−Dauleyラット(日本クレア製;雄性7週齢)を用い、四塩化炭素を12mg/kgの量で、週2回の割合にて、本薬理効果確認試験の終了時まで(約4ヵ月間)皮下投与を継続した。四塩化炭素の投与を開始してから2ヶ月後に、肝機能の低下が確認されたので、病態が群間に偏りのないように、対照群(6匹;以下C2群と呼ぶ)、参考例1の経口投与用吸着剤投与群(6匹;以下Q1群と呼ぶ)及び実施例1の経口投与用吸着剤投与群(6匹;以下与Q2群と呼ぶ)に分けた。
各群に粉末飼料を与えた。各群に対する給餌量はC2群の2〜3日間の平均摂餌量を基準にして決めた。Q1群及びQ2群に対しては、前記C2群と同様の粉末飼料に、経口投与用吸着剤5重量%を追加混合して、群分け後2ヶ月間投与した。四塩化炭素を投与しない正常ラットについても同様の実験を行った(正常群)。
経口投与用吸着剤投与を開始してから投与実験が完了するまでの約2ヶ月間にわたり、ICG(Indocyanine green:インドシアニングリーン)、GOT(glutamic−oxaloacetic transaminase;グルタミン酸−オキサロ酢酸トランスアミナーゼ)、及びGPT(glutamic−pyruvic transaminase;グルタミン酸−ピルビン酸トランスアミナーゼ)を測定した。経口投与用吸着剤の投与開始から2ヶ月後の結果を図9(ICG)、図10(GOT)、及び図11(GPT)に示す。肝実質機能を反映するICGテストを比較すると、C2群に比して、Q1群及びQ2群は、いずれも有意に低値を示した。更に、逸脱酵素であるGOT及びGPTでも、C2群に比して、Q1群及びQ2群は、いずれも有意に低値を示した。
以上の結果から、本発明の経口投与用吸着剤は、肝機能の低下を改善することができることが明らかとなった。
<< Pharmacological effect confirmation test 2: Liver disease improvement action >>
Using a carbon tetrachloride-induced liver disease model rat, a test for confirming the pharmacological effect on liver disease by the administration of the oral adsorbent of the present invention was performed. As a sample, the adsorbent for oral administration obtained in Reference Example 1 and Example 1 was used.
Specifically, Sprague-Dauley rats (manufactured by CLEA Japan; male 7-week-old) and carbon tetrachloride in an amount of 12 mg / kg, twice a week until the end of this pharmacological effect confirmation test Subcutaneous administration was continued (for about 4 months). 2 months after the start of administration of carbon tetrachloride, since a decrease in liver function was confirmed, a control group (6 animals; hereinafter referred to as group C2), reference example so that the disease state was not biased between groups It was divided into 1 adsorbent administration group for oral administration (6 animals; hereinafter referred to as Q1 group) and 1 adsorbent administration group for oral administration in Example 1 (6 animals; hereinafter referred to as Q2 group).
Each group was fed a powdered feed. The amount of food fed to each group was determined based on the average amount of food consumed for 2-3 days in group C2. For the Q1 group and the Q2 group, 5 wt% of an adsorbent for oral administration was additionally mixed in the same powdered feed as in the C2 group and administered for 2 months after grouping. The same experiment was performed for normal rats not administered with carbon tetrachloride (normal group).
ICG (Indocyanine green), GOT (glutamic-oxaloacetic transaminase), GPT, and GPT for about 2 months from the start of administration of the adsorbent for oral administration to completion of the administration experiment (Glutamic-pyruvic transaminase; glutamate-pyruvate transaminase) was measured. The results two months after the start of administration of the adsorbent for oral administration are shown in FIG. 9 (ICG), FIG. 10 (GOT), and FIG. 11 (GPT). When the ICG test reflecting liver parenchymal function was compared, both the Q1 group and the Q2 group showed significantly lower values than the C2 group. Furthermore, in the GOT and GPT, which are the deviating enzymes, both the Q1 group and the Q2 group showed significantly lower values than the C2 group.
From the above results, it was revealed that the oral administration adsorbent of the present invention can improve the decrease in liver function.

本発明による経口投与用吸着剤は、熱硬化性樹脂を炭素源として製造され、特異な細孔構造を有しているので、経口服用した場合に、消化酵素等の体内の有益成分の吸着性が少ないにもかかわらず、有毒な毒性物質(Toxin)の消化器系内における吸着性能が優れるという選択吸着特性を有し、従来の経口投与用吸着剤と比較すると、前記の選択吸着特性が著しく向上する。
本発明の経口投与用吸着剤は、腎疾患の治療用又は予防用経口投与用吸着剤として用いるか、あるいは、肝疾患の治療用又は予防用吸着剤として用いることができる。
腎疾患としては、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、若しくは高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、更に、透析前の軽度腎不全を挙げることができ、透析前の軽度腎不全の病態改善や透析中の病態改善にも用いることができる(「臨床腎臓学」朝倉書店、本田西男、小磯謙吉、黒川清、1990年版及び「腎臓病学」医学書院、尾前照雄、藤見惺編集、1981年版参照)。
The adsorbent for oral administration according to the present invention is manufactured using a thermosetting resin as a carbon source and has a unique pore structure. Therefore, when it is taken orally, it absorbs beneficial components such as digestive enzymes in the body. In spite of the small amount of toxic toxic substances (Toxin), the selective adsorption property is excellent in the digestive system. Compared with conventional adsorbents for oral administration, the selective adsorption property is remarkable. improves.
The adsorbent for oral administration of the present invention can be used as an adsorbent for oral administration for the treatment or prevention of kidney disease, or as an adsorbent for treatment or prevention of liver disease.
Examples of renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritic syndrome, acute progressive nephritic syndrome, chronic nephritic syndrome, nephrotic syndrome, nephrosclerosis, interstitial Nephritis, ureteropathy, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, or hypertension syndrome, or secondary kidney disease associated with the above-mentioned primary disease, further, mild renal failure before dialysis, It can also be used to improve the condition of mild renal failure before dialysis and to improve the condition during dialysis ("clinical nephrology" Asakura Shoten, Nishio Honda, Kenkichi Ogura, Kiyoshi Kurokawa, 1990 edition and "Nephrology" medical bookstore (See Teruo Omae and Satoshi Fujimi, 1981 edition).

また、肝疾患としては、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振せん、脳症、代謝異常、又は機能異常を挙げることができる。その他、体内に存在する有害物質による病気、すなわち、精神病等の治療にも用いることができる。
以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。
Liver diseases include, for example, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, vibration Mental, encephalopathy, metabolic abnormalities, or functional abnormalities can be mentioned. In addition, it can be used for treatment of diseases caused by harmful substances existing in the body, that is, psychosis.
As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.

イオン交換樹脂を炭素源とする表面改質球状活性炭の表面構造を示す走査型電子顕微鏡写真(50倍)である。It is a scanning electron micrograph (50 times) which shows the surface structure of the surface modification spherical activated carbon which uses an ion exchange resin as a carbon source. イオン交換樹脂を炭素源とする表面改質球状活性炭の断面構造を示す走査型電子顕微鏡写真(200倍)である。It is a scanning electron micrograph (200 times) which shows the cross-sectional structure of the surface modification spherical activated carbon which uses an ion exchange resin as a carbon source. 従来法による表面改質球状活性炭の表面構造を示す走査型電子顕微鏡写真(50倍)である。It is a scanning electron micrograph (50 times) which shows the surface structure of the surface modification spherical activated carbon by a conventional method. 従来法による表面改質球状活性炭の断面構造を示す走査型電子顕微鏡写真(200倍)である。It is a scanning electron micrograph (200 times) which shows the cross-sectional structure of the surface modification spherical activated carbon by a conventional method. 本発明の経口投与用吸着剤による血清クレアチニンへの効果を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the effect to the serum creatinine by the adsorbent for oral administration of this invention. 本発明の経口投与用吸着剤による血中尿素窒素への効果を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the effect to blood urea nitrogen by the adsorbent for oral administration of this invention. 本発明の経口投与用吸着剤によるクレアチニン・クリアランスへの効果を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the effect on the creatinine clearance by the adsorbent for oral administration of the present invention. 本発明の経口投与用吸着剤による尿蛋白排泄量への効果を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the effect on the urinary protein excretion amount by the adsorbent for oral administration of the present invention. 本発明の経口投与用吸着剤によるICG(Indocyanine green:インドシアニングリーン)への効果を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the effect on ICG (Indocyanine green: indocyanine green) by the adsorbent for oral administration of this invention. 本発明の経口投与用吸着剤によるGOT(glutamic−oxaloacetic transaminase;グルタミン酸−オキサロ酢酸トランスアミナーゼ)への効果を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the effect on GOT (glutamic-oxaloacetic transaminase; glutamic acid-oxaloacetic transaminase) by the adsorbent for oral administration of this invention. 本発明の経口投与用吸着剤によるGPT(glutamic−pyruvic transaminase;グルタミン酸−ピルビン酸トランスアミナーゼ)への効果を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the effect on GPT (glutamic-pyruvic transaminase; glutamic acid-pyruvate transaminase) by the adsorbent for oral administration of this invention.

Claims (11)

熱硬化性樹脂を炭素源として製造され、直径が0.01〜1mmであり、そしてラングミュアの吸着式により求められる比表面積が1000m/g以上である球状活性炭からなることを特徴とする、経口投与用吸着剤。It is manufactured using a thermosetting resin as a carbon source, and is made of spherical activated carbon having a diameter of 0.01 to 1 mm and a specific surface area determined by Langmuir adsorption formula of 1000 m 2 / g or more. Adsorbent for administration. 全塩基性基が0.40meq/g以上の球状活性炭からなる請求項1に記載の経口投与用吸着剤。  The adsorbent for oral administration according to claim 1, comprising spherical activated carbon having a total basic group of 0.40 meq / g or more. 熱硬化性樹脂を炭素源として製造され、直径が0.01〜1mmであり、ラングミュアの吸着式により求められる比表面積が1000m/g以上であり、全酸性基が0.40〜1.00meq/gであり、そして全塩基性基が0.40〜1.10meq/gである表面改質球状活性炭からなることを特徴とする、経口投与用吸着剤。Manufactured using a thermosetting resin as a carbon source, the diameter is 0.01 to 1 mm, the specific surface area determined by Langmuir's adsorption formula is 1000 m 2 / g or more, and the total acidic groups are 0.40 to 1.00 meq. / G, and consists of surface-modified spherical activated carbon having a total basic group of 0.40 to 1.10 meq / g. 請求項1〜3のいずれか一項に記載の経口投与用吸着剤を有効成分とする、腎疾患治療又は予防剤。  A therapeutic or prophylactic agent for renal diseases, comprising as an active ingredient the adsorbent for oral administration according to any one of claims 1 to 3. 請求項1〜3のいずれか一項に記載の経口投与用吸着剤を有効成分とする、肝疾患治療又は予防剤。  The liver disease treatment or prevention agent which uses the adsorption agent for oral administration as described in any one of Claims 1-3 as an active ingredient. 請求項1〜3のいずれか一項に記載の経口投与用吸着剤と薬剤学的に許容可能な担体又は希釈剤とを含む、腎疾患治療又は予防剤。  An agent for treating or preventing renal disease, comprising the adsorbent for oral administration according to any one of claims 1 to 3 and a pharmaceutically acceptable carrier or diluent. 請求項1〜3のいずれか一項に記載の経口投与用吸着剤と薬剤学的に許容可能な担体又は希釈剤とを含む、肝疾患治療又は予防剤。  The liver disease treatment or prevention agent containing the adsorption agent for oral administration as described in any one of Claims 1-3, and a pharmacologically acceptable carrier or diluent. 請求項1〜3のいずれか一項に記載の経口投与用吸着剤の有効量を、腎疾患治療又は予防が必要な患者に投与することを含む、腎疾患治療又は予防方法。  A method for treating or preventing renal disease, comprising administering an effective amount of the adsorbent for oral administration according to any one of claims 1 to 3 to a patient in need of treatment or prevention of renal disease. 請求項1〜3のいずれか一項に記載の経口投与用吸着剤の有効量を、肝疾患治療又は予防が必要な患者に投与することを含む、肝疾患治療又は予防方法。  A method for treating or preventing liver disease, comprising administering an effective amount of the adsorbent for oral administration according to any one of claims 1 to 3 to a patient in need of treatment or prevention of liver disease. 腎疾患治療又は予防剤の製造のための、請求項1〜3のいずれか一項に記載の経口投与用吸着剤の使用。  Use of the adsorbent for oral administration according to any one of claims 1 to 3 for the manufacture of an agent for treating or preventing a renal disease. 肝疾患治療又は予防剤の製造のための、請求項1〜3のいずれか一項に記載の経口投与用吸着剤の使用。  Use of the adsorbent for oral administration according to any one of claims 1 to 3 for the manufacture of an agent for treating or preventing a liver disease.
JP2005342671A 2002-11-01 2005-11-28 Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure Pending JP2006096769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342671A JP2006096769A (en) 2002-11-01 2005-11-28 Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002320253 2002-11-01
JP2005342671A JP2006096769A (en) 2002-11-01 2005-11-28 Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004548107A Division JP3835698B2 (en) 2002-11-01 2003-10-31 Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006233573A Division JP4471959B2 (en) 2002-11-01 2006-08-30 Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent

Publications (1)

Publication Number Publication Date
JP2006096769A true JP2006096769A (en) 2006-04-13

Family

ID=36236905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342671A Pending JP2006096769A (en) 2002-11-01 2005-11-28 Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure

Country Status (1)

Country Link
JP (1) JP2006096769A (en)

Similar Documents

Publication Publication Date Title
JP3835698B2 (en) Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent
RU2396965C2 (en) Oral adsorbent and agent for treatment or prevention of renal or hepatic disease
JP3522708B2 (en) Adsorbent for oral administration
US8309130B2 (en) Adsorbent for oral administration
EP2628483B1 (en) Medical adsorbent and method for producing same
US20050112114A1 (en) Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
JP3672200B2 (en) Adsorbent for oral administration
JPWO2006123618A1 (en) Oxidative stress inhibitor
WO2014129618A1 (en) Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
JP2006070047A (en) Adsorbents for oral administration, remedies or prophylactic agent for kidney diseases and remedies or prophylactic agent for liver diseases
JP2006143736A (en) Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases
WO2014129617A1 (en) Orally administered adsorbent, therapeutic agent for renal disease, and therapeutic agent for liver disease
JP4471959B2 (en) Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent
JP2006096769A (en) Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure
JP4311923B2 (en) Treatment or prevention agent for liver disease for oral administration
JP3600901B2 (en) Oral renal disease treatment or prevention agent
JP2006077028A (en) Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
JP2006328085A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060125

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704