JP2006095983A - Volume reduction method of foamed resin molding and equipment therefor - Google Patents

Volume reduction method of foamed resin molding and equipment therefor Download PDF

Info

Publication number
JP2006095983A
JP2006095983A JP2004287504A JP2004287504A JP2006095983A JP 2006095983 A JP2006095983 A JP 2006095983A JP 2004287504 A JP2004287504 A JP 2004287504A JP 2004287504 A JP2004287504 A JP 2004287504A JP 2006095983 A JP2006095983 A JP 2006095983A
Authority
JP
Japan
Prior art keywords
far
foamed resin
volume
conveyor
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287504A
Other languages
Japanese (ja)
Inventor
Hideo Igami
英雄 居上
Ryoji Shibuya
良二 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clay Baan Gijutsu Kenkyusho Kk
Clay Baan Gijutsu Kenkyusho KK
Original Assignee
Clay Baan Gijutsu Kenkyusho Kk
Clay Baan Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clay Baan Gijutsu Kenkyusho Kk, Clay Baan Gijutsu Kenkyusho KK filed Critical Clay Baan Gijutsu Kenkyusho Kk
Priority to JP2004287504A priority Critical patent/JP2006095983A/en
Publication of JP2006095983A publication Critical patent/JP2006095983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide, in order to reuse and completely recycle wastes of foamed resin moldings including foamed polystyrene boxes and the like that have been used for packaging agricultural and marine products and home electric appliances, a processing method which performs the volume reduction needed to reduce costs of the transportation to a reclamation factory and which does not degrade the quality as a recycled material. <P>SOLUTION: An object 5 to be processed is loaded on a roller conveyer 1 installed inside of a box 2 that is enclosed with aluminum reflectors, and transferred. Far infrared rays with wave lengths of 2-15 μm are irradiated on the object to be processed by a far-infrared radiator 3, and the volume of the object is reduced at 70-100°C without causing melting or deterioration. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は農水産品や家電製品の包装に使用された発泡スチロ−ル箱等を含む発泡樹脂成形物の廃棄物を再利用し完全リサイクルするに当たり、再生工場へ運搬するためにコスト削減の必要上、減容化すると共に、リサイクル材としての品質を劣化させない処理方法についての新規かつ進歩性を有する新技術に関するものである。   In the present invention, it is necessary to reduce costs in order to recycle and completely recycle the waste of foamed resin moldings including foamed polystyrene boxes used for packaging of agricultural and marine products and household appliances. The present invention relates to a new and innovative technology for a processing method that reduces the volume and does not deteriorate the quality as a recycled material.

発泡スチロ−ルなどの低融点材料は加熱によって急速に軟化変形するが、溶融点と発火点が近く、溶融すれば変質してしまうし、また発火すれば危険である。そこで従来、100〜150℃の低温度で間接的に加熱する方法や、過熱水蒸気による加熱、或いは熱風によって加熱する方法などがある。
例えば、第1の従来技術として実開平6−45714のような発泡スチロ−ルリサイクル装置がある。その目的は、少量の処理に適合する、安値で、運転操作が容易で、安全性の高い、廃発泡スチレンの熱溶融リサイクル装置を確立するというものである。またその構成は、廃発泡スチレンを熱溶融減容することによりリサイクルの用に供する装置において、可変温度式熱風発生機と、内壁面にセラミック材料から成る遠赤外線放射部を張設し外面に断熱部を張設した減容炉と、自動運転のための操作部と、減容炉内で発生した臭気成分を除去する脱臭装置から構成されるというものである。更に要約すると、熱風雰囲気の空間に遠赤外線放射セラミックス板を張りつけた装置で熱溶融する方法である。
Low melting point materials such as foamed polystyrene rapidly soften and deform by heating, but their melting point and ignition point are close to each other, and if they melt, they change in quality, and if they ignite, they are dangerous. Therefore, conventionally, there are a method of indirectly heating at a low temperature of 100 to 150 ° C., a method of heating with superheated steam, or a method of heating with hot air.
For example, as a first prior art, there is a polystyrene foam recycling apparatus such as Japanese Utility Model Publication No. Hei 6-45714. The purpose is to establish a low-cost, easy-to-operate, high-safety, hot-melt recycling equipment for waste foamed styrene that is suitable for a small amount of processing. In addition, in the equipment that is used for recycling by heat melting and reducing the volume of waste foamed styrene, a variable temperature hot air generator and a far infrared radiation part made of ceramic material on the inner wall surface are stretched to insulate the outer surface. The volume reduction furnace is provided with a section, an operation section for automatic operation, and a deodorization device for removing odor components generated in the volume reduction furnace. In summary, this is a method of heat melting with a device in which a far-infrared radiation ceramic plate is attached to a space of a hot air atmosphere.

また、第2の従来技術としては特開2004−142235に示されるような、発泡スチロ−ルのリサイクルがある。この課題は、ゴミとして回収された発泡スチロ−ルを、圧力を加えて圧縮し、発泡発泡スチロ−ルの体積を凝縮し、発泡スチロ−ルをリサイクルするというものである。
その解決手段は、発泡スチロ−ルを型に入れ圧縮機で圧縮させ体積を凝縮させる。このときに上下に板等をボンド等で張りつけながら圧縮させるとその後加工しやすくなる。また軽く圧縮させた後上下に発泡スチロ−ルの溶ける温度の熱を加えることにより、結合しやすく、さらに板等も接着するので、ボンドを塗る必要がなく、しかも圧縮する時間が短縮できるというものである。
Further, as a second prior art, there is recycling of polystyrene foam as disclosed in JP-A-2004-142235. This problem is to compress the foamed polystyrene recovered as waste by applying pressure, condense the volume of the foamed foamed polystyrene, and recycle the foamed polystyrene.
The solution is to place foamed polystyrene in a mold and compress it with a compressor to condense the volume. At this time, if the plate is compressed while being bonded up and down with a bond or the like, the subsequent processing becomes easy. In addition, it is easy to bond by applying heat at a temperature at which foamed polystyrene melts up and down after being lightly compressed, and it is also possible to bond a plate etc., so there is no need to apply a bond and the compression time can be shortened It is.

実願平3−40407;実開平6−45714Japanese Utility Model No. 3-40407; Japanese Utility Model Application No. 6-45714 特願2002−309267;特開2004−142235Japanese Patent Application No. 2002-309267; Japanese Patent Application Laid-Open No. 2004-142235

しかしながら、上記の従来技術では、発泡樹脂成形物をリサイクルしようとする場合において、夫々以下のような欠点ないし問題点がある。即ち、第1の従来技術では、常に200℃で加熱するとしているが、被加熱体である発泡成形物は多量の空気を含む多孔質であるから、熱伝導率は極めて低く、熱効率が悪く、長時間の加熱が必要となる。そのため100〜150℃位の融点よりも遙に高い200℃という温度を加えて溶融し、減容化する方法がとられている。しかしながら、スチレン等は100℃を超えると揮発し、ガスが揮発されて変質が始まり、更に、溶融状態とすると変質体となり、他の化学工程によらなければ、もとの発泡体にリサイクルすることは不可能となる問題点がある。更にまた、前記の揮発分は空中放出によって大気汚染の原因となる大欠点を有するものである。   However, the above-described conventional techniques have the following drawbacks or problems when trying to recycle the foamed resin molded product. That is, in the first prior art, heating is always performed at 200 ° C., but since the foamed molded article that is the object to be heated is porous including a large amount of air, the thermal conductivity is extremely low, and the thermal efficiency is poor. Long heating is required. Therefore, a method is adopted in which the volume is reduced by adding a temperature of 200 ° C. which is much higher than the melting point of about 100 to 150 ° C. However, styrene and the like volatilize when it exceeds 100 ° C., gas is volatilized and starts to change, and when it is in a molten state, it becomes an altered body, and if it does not depend on other chemical processes, it can be recycled to the original foam. There is a problem that becomes impossible. Furthermore, the volatile matter has a major drawback that causes air pollution by air release.

次に、前記第2の従来技術では、発泡スチロ−ルを圧縮するとしているが、細かい気泡が材質中に残ることは、第1の従来技術と同様であるから、同じ問題点がある。かつまた発泡スチロ−ルの溶ける温度の熱を加える、としているので、矢張り部分過熱と、ガスの揮発公害を発生するという欠点がある。   Next, in the second prior art, the foamed polystyrene is compressed. However, the fact that fine bubbles remain in the material is the same as the first prior art, and thus has the same problem. In addition, since heat at a temperature at which the foamed polystyrene is melted is added, there is a drawback in that it causes overheating of the arrowhead part and volatilization pollution of the gas.

本発明は、前記のような、すべての従来技術の問題点、諸欠点を除去し、改良するものであり、まず被処理物を変質させることなく、揮発成分が最も少ない条件で減容化する、画期的方法である。   The present invention eliminates and improves all the problems and disadvantages of the prior art as described above. First, the volume is reduced under the condition that the volatile component is the smallest without altering the object to be processed. This is a revolutionary method.

本発明においては、上記の課題を解決するため次の手段を創出した。
本発明の手段の第1の特徴は、発泡樹脂成形物を、トンネル形状減容室内に設けた、速度制御可能なメッシュベルトコンベア−又はロ−ラ−コンベア−上に載荷し移送させ、該減容室内に設けた遠赤外線放射機構によつて、該発泡樹脂成形物に、波長2〜15μmの遠赤外線を放射し、溶融又は変質させることなく、100〜70℃で、該発泡樹脂成形物の容積を減少させる発泡樹脂成形物を溶融の容積減少方法であることである。
次に、手段の第2の特徴は、細長のトンネル形状に設けた発泡樹脂成形物の減容室の内側の、天井及び側壁に金属アルミニウムもしくはステンレス板を内張りした光線反射ボックスと該ボックス内に設置された遠赤外線放射体によって構成された遠赤外線放射機構と、該減容室の内部空間長手方向に無限軌道式かつ速度制御可能なメッシュベルトコンベア−又はロ−ラ−コンベア−と、該コンベア−上に載荷した発泡樹脂成形物を連続移動させる機構と、該発泡樹脂成形物に波長2〜15μmの遠赤外線を直接又は反射により放射する遠赤外線放射機構とにより構成した発泡樹脂成形物の容積減少装置であることである。
また、手段の第3の特徴は、前記遠赤外線放射機構が遠赤外線放射ボックスと前記コンベアとの間に放射遠赤外線を散乱させる機能を有する金属アルミニウム或はステンレス製の金網を水平又は曲面状に設置した構成を有するものである発泡樹脂成形物の容積減少装置であることである。
更に、手段の第4の特徴は、前記メッシュベルトコンベア−又はロ−ラ−コンベア−は、それらのコンベア−エンド水冷圧延ロ−ラ−と破砕機を付設して、前記遠赤外線放射機構の末端における、可塑状態の樹脂塊状物を該ロ−ラ−により薄片状とし、続いて該破砕機により小片状として、リサイクル処理を高能率化する発泡樹脂成形物の容積減少装置であることである。
これらの手段の要点は、先ず、赤外吸収波長2〜15μmの間にある被処理体に、同じ波長範囲にある遠赤外線を吸収させ、100℃以下の温度で発熱させて、最短の時間で軟化させ、包含する空気を放出させることである。
次に、被処理物が箱形など不定形のものに、均一に散乱された遠赤外線を照射するという斬新な手段を用いることであり、それらの装置の構造と塊状となった減容物の再利用を有効にするための手段として、その塊状物を小片のフレ−クとすることが必要である。
In the present invention, the following means have been created to solve the above problems.
The first feature of the means of the present invention is that the foamed resin molded product is loaded and transported on a mesh belt conveyor or roller conveyor capable of speed control provided in a tunnel-shaped volume reducing chamber. By the far-infrared radiation mechanism provided in the chamber, far-infrared rays having a wavelength of 2 to 15 μm are radiated to the foamed resin molded product, and the foamed resin molded product is melted or altered at 100 to 70 ° C. It is a method of reducing the volume of a foamed resin molded product that reduces the volume.
Next, the second feature of the means is that there is a light reflecting box with a metal aluminum or stainless steel lined on the ceiling and side walls inside the volume reduction chamber of the foamed resin molding provided in the shape of an elongated tunnel, and in the box. A far-infrared radiation mechanism constituted by an installed far-infrared radiator, a mesh belt conveyor or roller conveyor capable of endless track-type speed control in the longitudinal direction of the interior space of the volume reducing chamber, and the conveyor -Volume of the foamed resin molded product constituted by a mechanism for continuously moving the foamed resin molded product loaded thereon and a far-infrared radiation mechanism for radiating far-infrared rays having a wavelength of 2 to 15 µm directly or by reflection to the foamed resin molded product. It is a reduction device.
A third feature of the means is that the far-infrared radiation mechanism has a function of scattering the far-infrared radiation between the far-infrared radiation box and the conveyor. This is a volume reducing device for a foamed resin molded product having an installed configuration.
Further, the fourth feature of the means is that the mesh belt conveyor or the roller conveyor is provided with a conveyor-end water-cooled rolling roller and a crusher, and the end of the far-infrared radiation mechanism. The volume-reducing apparatus for foamed resin moldings for improving the efficiency of recycling by converting the plastic lump in the plastic state into thin pieces with the roller and then making small pieces with the crusher. .
The main point of these means is to first absorb the far infrared ray in the same wavelength range on the object to be processed between the infrared absorption wavelengths of 2 to 15 μm and generate heat at a temperature of 100 ° C. or less, in the shortest time. Softening and releasing the enclosing air.
Next, it is necessary to use a novel means to irradiate far-infrared rays that are uniformly scattered to an indefinite shape such as a box shape. As a means for making the reuse effective, it is necessary to make the mass into small pieces of flakes.

1)発泡樹脂廃棄物の減容方法は、従来技術では、加熱するについても、不均一で部分的 過熱があり、変質、分解揮発、悪臭発生等の弊害があるが、これに対し本発明では特別 な機構の均一軟化脱気方法により、遠赤外線で短時間60秒処理で、減容率が1/60 となるほか、揮発ガスも殆どなく、材質の変化も全くないという、従来技術にはない、 画期的顕著な効果を有する。
2)従来技術では、発泡樹脂廃棄物を溶融して処理するため変質して、その後のリサイク ル工程では発泡しにくくなり、実質上再生産は不能になり、ただ減容して処分場への、 運賃を安くし捨てるだけであるが、本発明では、変質せずに、中間原料としての回収が 出来るから、それを軟化し細片化して、再度発泡剤を加えて発泡させれば、新品の数分 の1のコストで発泡樹脂製品を得ることが出来るという大きな効果を奏する。
3)従来技術では、発泡樹脂廃棄物を単に減容して、処分場への運賃を下げるだけで、埋 め立ての場所をとることは、従来同じで、逼迫している処分場対策には殆どならないが 本発明によれば、発泡樹脂廃棄物の全量をリサイクルして再度新製品同様となし得るの で、最終処分場を殆ど使用しなくてすむという、公共的に大きな効果をも有するもので ある。
1) In the conventional technology, the volume reduction method for foamed resin waste is non-uniform and partially overheated even when it is heated, and there are problems such as alteration, decomposition and volatilization, and generation of bad odors. In the conventional technology, the uniform softening and deaeration method with a special mechanism reduces the volume reduction rate to 1/60 after 60 seconds of treatment with far infrared rays, and there is almost no volatile gas and no change in material. No, it has an epoch-making remarkable effect.
2) In the conventional technology, the foamed resin waste is transformed to be melted and processed, and it becomes difficult to foam in the subsequent recycling process, making it virtually impossible to reproduce, and just reducing the volume to the disposal site. However, in the present invention, it can be recovered as an intermediate raw material without alteration, so if you soften it, break it down, add foaming agent again and foam it, a new one can be obtained. The foamed resin product can be obtained at a cost of 1 / minute.
3) In the conventional technology, simply reducing the volume of foamed resin waste and lowering the fare to the disposal site, and taking a landfill site is the same as in the past. According to the present invention, since the entire amount of foamed resin waste can be recycled and re-similar to that of the new product, it has a great public effect that the final disposal site is hardly used. It is.

全長3〜3.5m,高さ2m,幅1.5mのトンネル型内部アルミ反射板張り、遠赤外線放射装置;減容室を設け、室内下部に長さ3m幅1.2mで、速度制御可能な無限軌道式金属製メッシュベルトコンベア−又はロ−ラ−コンベア−を設け、その上に被処理物を載荷し、入口より出口に向けて移動する。この速度は、被処理物の処理状況により調節制御する。かつ、該コンベヤ−の上方から、遠赤外線バ−ナ−により、波長2〜15μmの遠赤外線を放射する。遠赤外線は放射体セラミックスにより放射し、その温度が550〜700℃に調節可能のものを使用し、該遠赤外線を被処理物に、可及的均一に作用させるため、該装置内上方に、真ん中を下方に湾曲させ、全体としては平らな形状のステンレス金網を水平に設ける。このステンレス金網の開口部分の面積は15mm×15mm程度が最良である。このような構造にすれば、被処理物と放射体セラミックスの間には適宜の距離があり、かつ、遠赤外線の均一散乱機構もあるので、被処理物、例えば発泡スチロ−ルを90〜100℃で変質させずに減容させることができ、最良の状態で脱気が行なわれ、該処理物の容積は数10分の1となる。これらを更に、ベルト終端において、破砕機に投入し、細片として発泡樹脂製品の原料とし最良のリサイクルを達成することができる。尚、実施例において、更に詳細に説明する。   Tunnel-type internal aluminum reflector with a total length of 3 to 3.5m, height of 2m, and width of 1.5m, far-infrared radiation device; a volume reduction chamber is provided, and the speed can be controlled with a length of 3m and a width of 1.2m. An endless track type metal mesh belt conveyor or a roller conveyor is provided, and an object to be processed is loaded on the mesh belt conveyor and moved from an inlet toward an outlet. This speed is adjusted and controlled according to the processing status of the workpiece. And far infrared rays with a wavelength of 2 to 15 μm are emitted from above the conveyor by a far infrared burner. Far infrared rays are radiated by radiator ceramics, and those whose temperature can be adjusted to 550 to 700 ° C. are used. In order to make the far infrared rays act on the workpiece as uniformly as possible, The middle is bent downward, and a flat stainless steel mesh is provided horizontally as a whole. The area of the opening portion of this stainless steel wire mesh is optimally about 15 mm × 15 mm. With such a structure, there is an appropriate distance between the object to be processed and the radiator ceramic, and there is a uniform scattering mechanism of far infrared rays. The volume can be reduced without changing quality at 0 ° C., and deaeration is performed in the best condition, and the volume of the processed product is reduced to several tenths. Furthermore, these can be put into a crusher at the end of the belt, and the best recycling can be achieved as a raw material for foamed resin products as fine pieces. The embodiment will be described in more detail.

上記の課題を解決する為に、次のような実施を行なった。波長4〜10μmの主波長を持つガス遠赤外線照射空間を作り、放射帯の温度550〜600℃の放射面からの被処理物の距離と軟化変形及び近似溶融についての実験実施を行なった。この場合、遠赤外線の照射強度は放射体面積1cm2 当たり5kcalであった。放射体と被処理物(被熱物)の距離、揮発変形等の有無の状態については、表1に示す通りであった。   In order to solve the above problems, the following implementation was performed. A gas far-infrared irradiation space having a dominant wavelength of 4 to 10 μm was created, and experiments were conducted on the distance, softening deformation and approximate melting of the object to be processed from the radiation surface having a radiation band temperature of 550 to 600 ° C. In this case, the irradiation intensity of far infrared rays was 5 kcal per 1 cm @ 2 of the radiator area. Table 1 shows the distance between the radiator and the object to be processed (heated object) and the presence or absence of volatile deformation.

Figure 2006095983
なお、表1において、距離200mmの空間温度は150℃であり、400mmの空間温度は90〜100℃であった。
Figure 2006095983
In Table 1, the space temperature at a distance of 200 mm was 150 ° C., and the space temperature at 400 mm was 90 to 100 ° C.

図1は本発明の発泡樹脂成形物の減容装置の横断面説明図であり、赤外線照射面積は1m2のものでロ−ラ−コンベア1は入り口から出口方向に載荷物を流し、該載荷物の移動方向の全長は3.0mの設備を製作した。2はアルミニウム反射板囲いボックスで、遠赤外線放射器3はガス遠赤外線バ−ナ−で、その下にステンレス金網4を水平に設ける。発泡スチロ−ル製の被処理物5は、使用済の漁箱でサイズ350mm×550mm×185(厚さ30mm)を被処理物とし、照射時間60秒・80秒・120秒の3水準で処理し、放射体セラミックスの温度が550〜700℃に調整可能なもので、波長4〜10nm、1ユニット5,500Kcal/hrのものを両サイドに4ケ、天井水平面に3ケ設置し、合計38,500〜42,000Kcal/hrの遠赤外線放射体をアルミ板で囲った。
図2は該ベルトコンベア−と支持物の縦断面図である。
また、図1中4のステンレス金網は開口部面積15×15mmのものを用い中心部を曲面に成形したものを水平に設置した。また、ロ−ラ−コンベア−エンドには減容軟化して可塑状態にある処理物を水冷圧延ロ−ラ−7により厚さ2mmの薄片状とした後、破砕機8で破砕して小片状として回収する。遠赤外線の照射時間と減容率、揮発ガスの有無、材質の変化の関係は表2の通りであり、照射時間60秒ならば、揮発ガスはなく、材質は変化せずに、減容率は1/60となることが、確認された。また、以上の実験から、発泡スチロ−ル(かさ密度0.02)は90〜100℃の空間温度となる条件で処理すれば溶融に近くなり、揮発スチレンを放出することなく約2分間で1/50以下にし減容塊状物6となしうることを確認した。
FIG. 1 is a cross-sectional explanatory view of a volume reduction device for a foamed resin molding according to the present invention. The infrared irradiation area is 1 m @ 2 and the roller conveyor 1 flows the load from the entrance to the exit. An equipment with a total length of 3.0 m was manufactured. Reference numeral 2 denotes an aluminum reflector-enclosed box, and the far-infrared radiator 3 is a gas far-infrared burner, and a stainless wire mesh 4 is horizontally provided below the far-infrared burner. The processing object 5 made of Styrofoam is a used fishing box with a size of 350 mm x 550 mm x 185 (thickness 30 mm) as the object to be processed, and the irradiation time is 60 seconds, 80 seconds, and 120 seconds. The radiator ceramics can be adjusted to a temperature of 550 to 700 ° C., and a wavelength of 4 to 10 nm, one unit of 5,500 Kcal / hr, four on both sides and three on the horizontal surface of the ceiling, a total of 38 , 500-42,000 Kcal / hr of far-infrared radiator was enclosed with an aluminum plate.
FIG. 2 is a longitudinal sectional view of the belt conveyor and the support.
Further, the stainless steel wire mesh 4 in FIG. 1 having an opening area of 15 × 15 mm was used and the center part formed into a curved surface was installed horizontally. Further, the processed product in the plastic state after being reduced in volume and softened at the roller conveyor end is made into a thin piece having a thickness of 2 mm by a water-cooled rolling roller 7 and then crushed by a crusher 8 to give small pieces. Collect as a state. The relationship between far-infrared irradiation time and volume reduction rate, presence or absence of volatile gas, and change in material is as shown in Table 2. If irradiation time is 60 seconds, there is no volatile gas and the material does not change, volume reduction rate Was confirmed to be 1/60. Further, from the above experiment, the foamed polystyrene (bulk density 0.02) is close to melting when treated under the condition of a space temperature of 90 to 100 ° C., and is 1 for about 2 minutes without releasing volatile styrene. / 50 or less, it was confirmed that the volume-reducing mass 6 can be obtained.

Figure 2006095983
特に被熱体が箱状のものは、側壁の高さが約200mm程度ある為、照射初期には約15秒で変形して軟化するが、照射時間の経過と共に急速に距離が長くなり、微量の揮発成分の放出でほぼ均等に減容し処理時間僅か60秒で約1/50〜1/60となる事を確認した。
もう1つの課題は、箱形被処理体の内外側壁面と底面に遠赤外線を均等に放射させる方法であるが、遠赤外放射室内は前記請求項2に記載したように、遠赤外線反射率の最も高いアルミニウム板で囲ってあり、また、外側面には約45度の傾斜角度でそれぞれ放射体を取り付けるが、内側面の受熱面積を広くする為、図1中の4に示すように、ステンレス又はアルミニウムの金網を水平に設置し特に中央部分を断面が曲線状になるようにして、遠赤外線を内側面へ散乱放射させるようにしたものである。
Figure 2006095983
In particular, a box-shaped object to be heated has a side wall height of about 200 mm, so it deforms and softens in about 15 seconds in the initial stage of irradiation. It was confirmed that the volume was reduced almost evenly by the release of the volatile components, and it was about 1/50 to 1/60 in only 60 seconds.
Another problem is a method of uniformly radiating far-infrared rays on the inner and outer wall surfaces and bottom surface of the box-shaped object. The far-infrared radiation chamber has a far-infrared reflectance as described in claim 2. In addition, each radiator is attached to the outer side surface at an inclination angle of about 45 degrees. In order to increase the heat receiving area on the inner side surface, as indicated by 4 in FIG. A stainless steel or aluminum wire mesh is installed horizontally, and in particular, the central portion has a curved cross section so that far infrared rays are scattered and radiated to the inner surface.

技術分野のところでほぼ記載した通り、本発明は農水産品や家電製品の包装に使用された発泡スチロ−ル箱等を含む発泡樹脂成形物の廃棄物を再利用し完全リサイクルするに当たり、再生工場へ運搬するためにコスト削減の必要上、減容化すると共に、リサイクル材としての品質を劣化させない処理方法についての新規かつ進歩性を有する新技術に関するものであり、斬新なる方法と装置であるから、その産業上の利用可能性は絶大なものがある。   As almost described in the technical field, the present invention is to recycle the waste of foamed resin moldings including foamed polystyrene boxes used for packaging of agricultural and fishery products and household appliances. Because it is necessary to reduce the cost for transportation, it is related to a new technology with a novel and innovative process method that does not deteriorate the quality as a recycled material, and it is a novel method and apparatus. Its industrial applicability is tremendous.

本発明の発泡樹脂成形物の減容装置の横断面説明図Cross-sectional explanatory drawing of a volume reduction device for foamed resin moldings of the present invention 本発明装置のベルトコンベア−と支持物の縦断面図Longitudinal sectional view of belt conveyor and support of the device of the present invention

符号の説明Explanation of symbols

1;ロ−ラ−コンベア−
2;アルミ反射板囲いボックス
3;遠赤外線放射器
4;ステンレス金網
5;被処理物
6;減容塊状物
7;水冷圧延ロ−ラ−
8;破砕機
1; Roller conveyor
2; Aluminum reflector-enclosed box 3; Far-infrared radiator 4; Stainless steel mesh 5; Material to be treated 6; Volume-reducing mass 7; Water-cooled rolling roller
8; Crusher

Claims (4)

発泡樹脂成形物を、トンネル形状減容室内に設けた、速度制御可能なメッシュベルトコンベア−又はロ−ラ−コンベア−上に載荷し移送させ、該減容室内に設けた遠赤外線放射機構によつて、該発泡樹脂成形物に、波長2〜15μmの遠赤外線を放射し、溶融又は変質させることなく、100〜70℃で、該発泡樹脂成形物の容積を減少させることを特徴とする発泡樹脂成形物を溶融の容積減少方法。   The foamed resin molded product is loaded and transported on a mesh belt conveyor or roller conveyor capable of speed control provided in a tunnel-shaped volume reduction chamber, and the far infrared radiation mechanism provided in the volume reduction chamber. Thus, the foamed resin molded product is characterized by reducing the volume of the foamed resin molded product at 100 to 70 ° C. without irradiating the foamed resin molded product with far infrared rays having a wavelength of 2 to 15 μm and without melting or altering. A method of reducing the volume of melting a molding. 細長のトンネル形状に設けた発泡樹脂成形物の減容室の内側、天井及び側壁に金属アルミニウムもしくはステンレス板を内張りした光線反射ボックスと該ボックス内に設置された遠赤外線放射体によって構成された遠赤外線放射機構と、該減容室の内部空間長手方向に無限軌道式かつ速度制御可能なメッシュベルトコンベア−又はロ−ラ−コンベア−と、該コンベア−上に載荷した発泡樹脂成形物を連続移動させる機構と、該発泡樹脂成形物に、波長2〜15μmの遠赤外線を直接又は反射により放射する遠赤外線放射機構とにより構成したことを特徴とする発泡樹脂成形物の容積減少装置。   A far-infrared tunnel is formed by a light-reflective box with metal aluminum or stainless steel lined on the inside, ceiling, and side walls of a foamed resin molding provided in an elongated tunnel shape, and a far-infrared radiator installed in the box. Continuous movement of infrared radiation mechanism, mesh belt conveyor or roller conveyor capable of endless track type and speed control in the longitudinal direction of the interior space of the volume reducing chamber, and foamed resin moldings loaded on the conveyor And a far-infrared radiation mechanism that radiates far-infrared rays having a wavelength of 2 to 15 μm directly or by reflection to the foamed resin molded product. 前記遠赤外線放射機構が遠赤外線放射ボックスと前記コンベアとの間に放射遠赤外線を散乱させる機能を有する金属アルミニウム或はステンレス製の金網を水平又は曲面状に設置した構成を有するものである請求項1又は2に記載の発泡樹脂成形物の容積減少装置。   The far-infrared radiation mechanism has a configuration in which a metal aluminum or stainless steel wire mesh having a function of scattering far-infrared radiation between the far-infrared radiation box and the conveyor is installed horizontally or on a curved surface. 3. A volume reducing device for a foamed resin molded article according to 1 or 2. 前記メッシュベルトコンベア−又はロ−ラ−コンベア−は、それらのコンベア−エンド水冷圧延ロ−ラ−と破砕機を付設して、前記遠赤外線放射機構の末端における、可塑状態の樹脂塊状物を該ロ−ラ−により薄片状とし、続いて該破砕機により小片状として、リサイクル処理を高能率化するものである請求項1〜3のいずれかに記載の発泡樹脂成形物の容積減少装置。   The mesh belt conveyor or roller conveyor is provided with a conveyor-end water-cooled rolling roller and a crusher, and the resin mass in the plastic state at the end of the far-infrared radiation mechanism is added to the mesh belt conveyor or roller conveyor. The volume reduction device for a foamed resin molded product according to any one of claims 1 to 3, wherein a recycling process is made highly efficient by making a thin piece by a roller and then making a small piece by the crusher.
JP2004287504A 2004-09-30 2004-09-30 Volume reduction method of foamed resin molding and equipment therefor Pending JP2006095983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287504A JP2006095983A (en) 2004-09-30 2004-09-30 Volume reduction method of foamed resin molding and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287504A JP2006095983A (en) 2004-09-30 2004-09-30 Volume reduction method of foamed resin molding and equipment therefor

Publications (1)

Publication Number Publication Date
JP2006095983A true JP2006095983A (en) 2006-04-13

Family

ID=36236253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287504A Pending JP2006095983A (en) 2004-09-30 2004-09-30 Volume reduction method of foamed resin molding and equipment therefor

Country Status (1)

Country Link
JP (1) JP2006095983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780798B1 (en) * 2017-01-09 2017-09-21 서원태 The processor Play for recycling of expanded polystyrene foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780798B1 (en) * 2017-01-09 2017-09-21 서원태 The processor Play for recycling of expanded polystyrene foam

Similar Documents

Publication Publication Date Title
US8552248B2 (en) Method for conversion of materials including asbestos
RU2010132157A (en) METHOD AND DEVICE FOR PRELIMINARY HEATING OF CARPET OF PRESSED MATERIAL IN THE PROCESS OF MANUFACTURE OF WOOD-BOARDS
JPS6374629A (en) Manufacture of rigid cellular material
FR2678542B1 (en) PROCESS AND INSTALLATION FOR THE HEATING, BY INFRARED RADIATION, OF PLASTIC PREFORMS, PARTICULARLY PET, FOR THE MANUFACTURE OF CONTAINERS.
US20240034677A1 (en) Production of foamed sand using near infrared
CN1130280C (en) Method for Re-using expanded styrene and apparatus for processing expanded styrene
JP2006095983A (en) Volume reduction method of foamed resin molding and equipment therefor
NZ198655A (en) Removing organic coatings from scrap aluminium by pyrolysis using hot gas stream
US5430207A (en) Process for degrading complex hydrocarbons to produce simpler hydrocarbons
DE502006004363D1 (en) Method and apparatus for blow molding containers
CN215198902U (en) Device for treating waste circuit board based on microwave
JP2004182837A (en) Apparatus for decomposing plastic
JPH0691651A (en) Machine for volume-reducing plastic container
JP2004298585A (en) Medical waste treatment equipment
EP1386710A4 (en) Method of manufacturing hot formed object, and device and method for continuous high-frequency heating.
KR20100043917A (en) Produce of non-flammable styrofoam
JPH06166034A (en) Foamed polystyrol processing device
EP3210679B1 (en) A method for disposing of asbestos-containing waste and a system for disposing of asbestos-containing waste
JP2006117794A (en) Method for drying carbon material raw material and furnace for drying carbon material raw material
JP4253746B2 (en) Waste plastic dechlorination treatment method, treatment apparatus and treatment equipment
JP2023019404A (en) Detoxification treatment method of waste containing toxic substance such as asbestos
JPH0368487A (en) Method and device for treating medical waste by microwave
KR100453676B1 (en) waterproof building veneer board manufacturing method using waste fiber
RU2000123667A (en) INSTALLATION FOR CONTINUOUS MANUFACTURE OF FACING BOARDS ON THE BASIS OF HOUSEHOLD AND INDUSTRIAL GLASS WASTE
JPH04210863A (en) Method for removing molding sand from molding flask