JP2006095590A - Method for optimizing casting condition for aluminum die-cast product - Google Patents

Method for optimizing casting condition for aluminum die-cast product Download PDF

Info

Publication number
JP2006095590A
JP2006095590A JP2004287535A JP2004287535A JP2006095590A JP 2006095590 A JP2006095590 A JP 2006095590A JP 2004287535 A JP2004287535 A JP 2004287535A JP 2004287535 A JP2004287535 A JP 2004287535A JP 2006095590 A JP2006095590 A JP 2006095590A
Authority
JP
Japan
Prior art keywords
casting
residual gas
conditions
design factors
aluminum die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287535A
Other languages
Japanese (ja)
Inventor
Takeshi Kimijima
猛 君島
Masahiko Nakagawa
昌彦 中川
Yasuhiro Azuma
保寛 東
Taisuke Okazaki
泰典 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004287535A priority Critical patent/JP2006095590A/en
Publication of JP2006095590A publication Critical patent/JP2006095590A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for optimizing casting conditions for aluminum die-cast product, in which the optimum casting conditions are accurately obtained with reduced man-hour, cost and time. <P>SOLUTION: In the method for optimizing the casting conditions for aluminum die-cast product using a fluid CAE (Computer Aided Engineering) imitated to a casting facility, the fluid CAE is constituted so that in the case of inputting the casting conditions constituted from the plurality of designing factors, the remained gas quantity in the cast product cast on the casting condition is calculated and further, a process for obtaining the remained gas quantity by inputting the casting conditions in the fluid CAE, a process for planning a predicting formula for predicting the remained gas quantity by using each designing factor as a parameter, based on the remained gas quantity obtained on each casting condition, and a process for obtaining the casting condition on which the remained gas quantity is minimized, are included. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミダイキャスト製品を鋳造する条件の最適化方法に係り、特に、鋳造品の残存ガス量を流動CAEで予測して鋳造条件を最適化するアルミダイキャスト鋳造条件の最適化方法に関する。   The present invention relates to a method for optimizing the conditions for casting an aluminum die cast product, and more particularly to an aluminum die cast casting condition optimization method for optimizing the casting conditions by predicting the residual gas amount of the cast product by flow CAE. .

最適な鋳造条件を求めるために、従来は鋳造技術者の経験に基づいて鋳造条件をいくつかに絞り込み、この鋳造条件の中で試作を繰り返すことで、最適ではないものの絞り込まれた中では最良の鋳造条件を求めていた。これに対して、特許文献1には、実験計画法に基づく直交配列表にしたがって、鋳造条件(水準)を変化させながら試作・検査を繰り返すことにより、少ない試作回数で優れた鋳造条件を導き出す技術が開示されている。
特開2002−263830号公報
In order to find the optimum casting conditions, the casting conditions have been narrowed down to several based on the experience of the casting engineer, and trial production is repeated within these casting conditions. We were looking for casting conditions. On the other hand, Patent Document 1 discloses a technique for deriving excellent casting conditions with a small number of trial productions by repeating trial production and inspection while changing the casting conditions (levels) according to the orthogonal arrangement table based on the experimental design method. Is disclosed.
JP 2002-263830 A

上記した従来技術では、いずれも試作結果に基づいて鋳造条件を評価しなければならなかったので、多数の試作を余儀なくされる。したがって、最適な鋳造条件が求まるまでに多大な工数、費用、時間を費やさなければならなかった。さらに、鋳造条件を変えて多数の試作品を得られても、これらを定量的に評価することができなかったので、真に最適な鋳造条件を抽出することが難しかった。   In any of the above-described conventional techniques, the casting conditions have to be evaluated based on the trial production results, and thus many trial productions are unavoidable. Therefore, a great amount of man-hours, costs and time had to be spent before finding the optimum casting conditions. Furthermore, even if a large number of prototypes were obtained by changing the casting conditions, these could not be quantitatively evaluated, so it was difficult to extract truly optimum casting conditions.

本発明の目的は、上記した従来技術の課題を解決し、少ない工数、費用、時間で最適な鋳造条件を正確に求められるアルミダイキャスト鋳造条件の最適化方法を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art and to provide a method for optimizing aluminum die-casting conditions in which optimum casting conditions can be accurately obtained with less man-hours, costs and time.

上記した目的を達成するために、本発明は、鋳造設備を模した流動CAEを用いてアルミダイキャスト製品の鋳造条件を最適化する方法において、流動CAEを、複数の設計因子から構成される鋳造条件が入力されると当該鋳造条件で鋳造された鋳造品の残存ガス量を算出するように構成し、さらに以下のような手順を含むことを特徴とする。   In order to achieve the above-described object, the present invention provides a method for optimizing the casting conditions of an aluminum die cast product using a flow CAE that simulates a casting facility. When conditions are input, it is configured to calculate a residual gas amount of a cast product cast under the casting conditions, and further includes the following procedure.

(1)流動CAEに鋳造条件を入力して残存ガス量を求める手順と、前記鋳造条件ごとに得られる残存ガス量に基づいて、前記各設計因子をパラメータとして残存ガス量を予測する予測式を立案する手順と、前記予測式にしたがって、残存ガス量が最少となる鋳造条件を求める手順とを含むことを特徴とする。   (1) A procedure for obtaining the residual gas amount by inputting casting conditions into the flow CAE and a prediction formula for predicting the residual gas amount using the design factors as parameters based on the residual gas amount obtained for each casting condition. And a procedure for determining a casting condition that minimizes the amount of residual gas in accordance with the prediction formula.

(2)前記残存ガス量を求める手順が、鋳造条件を構成するn個の設計因子のうち、m個の第1群の各設計因子に所定の実験条件を登録する手順と、(n−m)個の第2群の各設計因子に関して、実験計画法に基づく直交配列表を生成する手順と、前記直交配列表に各設計因子の水準を登録する手順と、鋳造条件として、前記第1群の各設計因子に前記所定の実験条件に設定し、前記第2群の各設計因子に前記直交配列表に従って水準を設定し、これを前記流動CAEに入力して残存ガス量を求める手順とを含み、前記予測式を立案する手順では、鋳造条件ごとに得られる残存ガス量を用いて、前記第2群の各設計因子をパラメータとして残存ガス量を予測することを特徴とする。   (2) The procedure for obtaining the residual gas amount is a procedure for registering predetermined experimental conditions in each of m design factors of the first group among n design factors constituting casting conditions, and (n−m ) For each design factor of the second group, a procedure for generating an orthogonal arrangement table based on an experimental design, a procedure for registering the level of each design factor in the orthogonal arrangement table, and a casting condition, the first group Setting the predetermined experimental conditions for each of the design factors, setting levels according to the orthogonal arrangement table for the design factors of the second group, and inputting the values into the flow CAE to obtain the residual gas amount. In addition, in the procedure of formulating the prediction formula, the residual gas amount is predicted using each design factor of the second group as a parameter, using the residual gas amount obtained for each casting condition.

(3)第2群の設計因子が、射出プランジャの高速域速度、射出プランジャの速度切換点および金型温度を含むことを特徴とする。   (3) The second group of design factors includes the high speed range speed of the injection plunger, the speed switching point of the injection plunger, and the mold temperature.

(4)第2群の設計因子が、射出プランジャの高速域速度、射出プランジャの速度切換点および金型温度であることを特徴とする。   (4) The design factors of the second group are the high speed range speed of the injection plunger, the speed switching point of the injection plunger, and the mold temperature.

(5)前記予測式が、応答曲面法、遺伝的アルゴリズムおよびニューラルネットワーク法の1つ又は複数を組み合わせて立案されることを特徴とする。   (5) The prediction formula is designed by combining one or more of a response surface method, a genetic algorithm, and a neural network method.

(6)金型温度で複数の設計因子が代表され、最適化された鋳造条件における金型温度に基づいて、前記複数の設計因子をそれぞれ最適化する手順を含むことを特徴とする。   (6) A plurality of design factors are represented by the mold temperature, and the method includes a step of optimizing each of the plurality of design factors based on the mold temperature under the optimized casting conditions.

本発明によれば、以下のような効果が達成される。
(a)流動CAEを利用して鋳造条件を評価するようにしたので、試作を行うことなく鋳造条件を最適化できるようになる。したがって、少ない工数、費用、時間で最適な鋳造条件を求められる。
(b)鋳造品の残存ガス量に基づいて鋳造条件を評価するようにしたので、鋳造条件を定量的に評価できるようになる。したがって、技術者の経験に頼ることなく、様々な鋳造条件を正確に評価できるようになる。
(c)鋳造条件を構成する多数の設計因子を第1群および第2群に分類し、鋳造品への影響が少ないと予測される第1群の設計因子は固定し、鋳造品への影響が大きいと予測される第2群の設計因子に関してのみ、実験計画法に基づく直交配列表を生成して流動CAEを適用するようにしたので、流動CAEの実行回数を減じることができる。
(d)複数の設計因子を金型温度で代表して鋳造条件を最適化し、最適化された鋳造条件における金型温度から前記複数の設計因子を逆算するようにしたので、直交配列表における設計因子の数を少なくできる。
According to the present invention, the following effects are achieved.
(a) Since casting conditions are evaluated using flow CAE, casting conditions can be optimized without trial production. Therefore, optimum casting conditions can be obtained with less man-hours, cost and time.
(b) Since the casting conditions are evaluated based on the residual gas amount of the cast product, the casting conditions can be quantitatively evaluated. Therefore, it becomes possible to accurately evaluate various casting conditions without depending on the experience of engineers.
(c) A large number of design factors that constitute casting conditions are classified into Group 1 and Group 2. The design factors of Group 1 that are expected to have little impact on castings are fixed, and the effects on castings are fixed. Since only the second group of design factors that are predicted to be large is generated by applying the flow CAE by generating the orthogonal array table based on the experimental design, the number of executions of the flow CAE can be reduced.
(d) Optimizing casting conditions by representing a plurality of design factors in terms of mold temperature, and calculating back the plurality of design factors from the mold temperature in the optimized casting conditions. The number of factors can be reduced.

以下、図面を参照して本発明の好ましい実施の形態について詳細に説明する。図1は、本発明のアルミダイキャスト鋳造条件の最適化方法が適用される鋳造マシンの主要部の構成を示した図であり、固定金型1と、この固定金型1に対して前後方向に進退することにより型締め,型開きされる可動金型2とを備え、型締めされた両金型1,2間に鋳型キャビティ3が形成される。なお、固定金型1を固定する固定盤および可動金型2を前後方向に進退させる可動盤は図示が省略されている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a configuration of a main part of a casting machine to which an aluminum die cast casting condition optimization method of the present invention is applied. A fixed mold 1 and a longitudinal direction with respect to the fixed mold 1 The mold cavity 3 is formed between the molds 1 and 2 which are clamped and opened by moving forward and backward. Note that a fixed plate for fixing the fixed mold 1 and a movable plate for moving the movable mold 2 back and forth in the front-rear direction are not shown.

前記固定金型1には、鋳型キャビティ3に連通する射出スリーブ4が嵌装され、この射出スリーブ4の後端部上側には注湯口5が形成されている。射出スリーブ4には射出プランジャ6が進退可能に嵌装され、この射出プランジャ6は、図示しない射出シリンダにより前後に駆動される。可動金型2には金型温度を制御するための冷却水路11が形成されており、当該水路11に供給する冷却水量を増減させることで可動金型2は所望の温度に制御される。型開き時には、離型剤供給装置7から供給される離型剤がスプレ8により両金型1,2の内面に塗布される。   An injection sleeve 4 communicating with the mold cavity 3 is fitted into the fixed mold 1, and a pouring port 5 is formed on the upper side of the rear end portion of the injection sleeve 4. An injection plunger 6 is fitted to the injection sleeve 4 so as to be able to advance and retreat. The injection plunger 6 is driven back and forth by an injection cylinder (not shown). The movable mold 2 is formed with a cooling water channel 11 for controlling the mold temperature, and the movable mold 2 is controlled to a desired temperature by increasing or decreasing the amount of cooling water supplied to the water channel 11. At the time of mold opening, the release agent supplied from the release agent supply device 7 is applied to the inner surfaces of both molds 1 and 2 by the spray 8.

手元炉9から注湯口10を経て射出スリーブ4内に溶湯が供給されると、射出プランジャ6が、最初は金属溶湯の空気の巻き込み等を避けるために低速度[Vlow]で前進し、鋳型キャビティ3への金属溶湯の充填が開始される。溶湯の先端が所定の速度切換点[K]に達すると、出射プランジャ6の駆動速度が高速側に切り換えられて高速度(Vfast)で前進し、金属溶湯が鋳型キャビティ3に急速に充填される。鋳型キャビティ3に金属溶湯が充填されたらプランジャによる鋳造圧を目標圧力[P]まで上昇させて金属溶湯を加圧する。その後、溶湯の固化、冷却を待って型開きし、固化された鋳造品が鋳型キャビティ3から取り出される。   When molten metal is supplied into the injection sleeve 4 from the hand furnace 9 through the pouring port 10, the injection plunger 6 first moves forward at a low speed [Vlow] to avoid entrainment of the metal melt air, and the mold cavity. 3 is filled with molten metal. When the molten metal tip reaches a predetermined speed switching point [K], the driving speed of the emission plunger 6 is switched to the high speed side and moves forward at a high speed (Vfast), and the molten metal is rapidly filled in the mold cavity 3. . When the mold cavity 3 is filled with the molten metal, the casting pressure by the plunger is raised to the target pressure [P] to pressurize the molten metal. Thereafter, the mold is opened after the molten metal is solidified and cooled, and the solidified casting is taken out from the mold cavity 3.

このようなダイキャスト鋳造法では、鋳型キャビティ3内に残存する空気や水蒸気等のガスが製品の内部に巻き込まれると、巣、ブローホール等の鋳造欠陥が生じることが知られている。本実施形態では、鋳造品の残像ガス量[Mgas]が鋳造条件を評価する際の指標となり得ることを新たに知見し、残像ガス量[Mgas]が最小値を示す鋳造条件を最適な鋳造条件と見なすようにした点に特徴がある。   In such a die-casting method, it is known that when a gas such as air or water vapor remaining in the mold cavity 3 is caught inside the product, casting defects such as nests and blowholes are generated. In the present embodiment, it is newly found that the afterimage gas amount [Mgas] of the cast product can be an index for evaluating the casting conditions, and the casting conditions in which the afterimage gas amount [Mgas] shows the minimum value are optimal casting conditions. The point is that it is considered to be.

図2は、本発明に係るアルミダイキャスト鋳造条件の最適化手順を示したフローチャートであり、本実施形態では、前記鋳造マシンを模した流動(または鋳造)CAE(Computer Aided Engineering)を用いて、鋳造条件を変化させながら鋳造品の残存ガス量を算出し、残存ガス量が最少値を示す鋳造条件が最適値とされる。   FIG. 2 is a flowchart showing an optimization procedure for aluminum die-casting casting conditions according to the present invention. In this embodiment, flow (or casting) CAE (Computer Aided Engineering) simulating the casting machine is used. The residual gas amount of the cast product is calculated while changing the casting condition, and the casting condition in which the residual gas amount shows the minimum value is the optimum value.

流動CAEは、CADで設計した部品情報をもとにコンピュータ上で湯流れや凝固の解析、鋳造欠陥の予測、鋳造法案の検討などを可能にするソフトウェアであり、本実施形態では、鋳造条件を構成する複数のパラメータを入力すると、当該鋳造条件で鋳造された鋳造品の残存ガス量[Mgas]が求められる。本実施形態では、鋳造条件として9つの設計因子が設定される。
1.手元炉温度[Tf]
2.鋳造圧[P]
3.鋳造圧の立ち上がり速度[ΔP]
4.射出プランジャの低速域速度[Vlow]
5.射出プランジャの高速域速度[Vfast]
6.低速/高速切換点[K]
7.可動型冷却水の水量[W]
8.離型剤塗布時間[t1]
9.サイクルタイム[t2]
Fluid CAE is software that enables analysis of molten metal flow and solidification, prediction of casting defects, examination of casting bills, etc. on a computer based on part information designed by CAD. When a plurality of constituent parameters are input, a residual gas amount [Mgas] of a cast product cast under the casting conditions is obtained. In this embodiment, nine design factors are set as casting conditions.
1. Hand furnace temperature [Tf]
2. Casting pressure [P]
3. Casting pressure rise speed [ΔP]
4). Low speed range of injection plunger [Vlow]
5. High speed range of injection plunger [Vfast]
6). Low speed / high speed switching point [K]
7). Movable cooling water volume [W]
8). Release agent application time [t1]
9. Cycle time [t2]

ただし、図3に示したように、本実施形態では冷却水量[W]、離型剤塗布時間[t1]およびサイクルタイム[t2]をまとめて金型温度[Tc]で代表するので、流動CAEに入力される設計因子は7つとなる。   However, as shown in FIG. 3, in this embodiment, the cooling water amount [W], the release agent application time [t1], and the cycle time [t2] are collectively represented by the mold temperature [Tc]. There are seven design factors input to.

また、本実施形態では前記7つの設計因子が、鋳造品の残留ガス量に及ぼす影響が小さいグループ(第1群)と大きいグループ(第2群)とに分類され、第1群には、手元炉温度[Tf]、鋳造圧[P]、鋳造圧の立ち上がり速度(ΔP)および射出プランジャの低速域速度[Vlow]の4つが所属し、第2群には、射出プランジャの高速域速度[Vfast]、射出プランジャの速度切換点[K]および金型温度[Tc]の3つが所属する。   Further, in the present embodiment, the seven design factors are classified into a group (first group) and a large group (second group) that have a small influence on the residual gas amount of the cast product. The furnace temperature [Tf], casting pressure [P], casting pressure rising speed (ΔP), and injection plunger low speed region velocity [Vlow] belong to the second group, the injection plunger high velocity region velocity [Vfast] ], The speed switching point [K] of the injection plunger and the mold temperature [Tc] belong.

ステップS1では、第1の設計因子群に含まれる手元炉温度[Tf]、鋳造圧[P]、鋳造圧の立ち上がり速度(ΔP)および射出プランジャの低速域速度[Vlow]の各設計因子に、過去の経験則や制約条件に基づいて実験条件が固定的に登録される。ステップS2では、第2の設計因子群に含まれる射出プランジャの高速域速度[Vfast]、射出プランジャの速度切換点[K]および金型温度(Tc)の各設計因子に関して、図4に一例を示したように、実験計画法に基づくL9直交配列表(各水準のすべての組合せが同数回ずつ現れるように割付けた表)が生成され、ステップS3において、その各欄に各水準(実験条件:Vfast(1)〜(3),K(1)〜(3),Tc(1)〜(3))が登録される。この配列表では、各設計因子の標準値が第2水準(2)として登録され、これを中央値として所定値だけ増減させた値が、それぞれ第1水準(1)および第3水準(3)として登録される。   In step S1, the design factors of the hand furnace temperature [Tf], casting pressure [P], casting pressure rising speed (ΔP), and injection plunger low speed [Vlow] included in the first design factor group are Experimental conditions are registered in a fixed manner based on past empirical rules and constraints. In step S2, an example is shown in FIG. 4 for each of the design factors of the high speed range speed [Vfast] of the injection plunger, the speed switching point [K] of the injection plunger, and the mold temperature (Tc) included in the second design factor group. As shown, an L9 orthogonal array table based on the experimental design (a table assigned so that all combinations of each level appear the same number of times) is generated, and in step S3, each level (experimental condition: Vfast (1) to (3), K (1) to (3), Tc (1) to (3)) are registered. In this arrangement table, the standard values of each design factor are registered as the second level (2), and the values obtained by increasing or decreasing the median by the predetermined value are the first level (1) and the third level (3), respectively. Registered as

ステップS4では、前記鋳造マシンをシミューレートした流動CAEに、複数の設計因子の組み合わせから構成される鋳造条件が入力され、鋳造条件ごとに残存ガス量が算出される。このとき、第1の設計因子群に含まれる4つの設計因子には、前記ステップS1で登録された実験条件が固定的に設定される。第2の設計因子群に含まれる3つの設計因子には、前記L9直交配列表に従って各水準が動的に設定され、L9直交配列表の行ごとに残存ガス量[Mgas(1)〜Mgas(9)]が求められる。   In step S4, a casting condition composed of a combination of a plurality of design factors is input to the flow CAE simulated in the casting machine, and a residual gas amount is calculated for each casting condition. At this time, the experimental conditions registered in step S1 are fixedly set for the four design factors included in the first design factor group. The three design factors included in the second design factor group are dynamically set according to the L9 orthogonal array table, and the residual gas amounts [Mgas (1) to Mgas ( 9)] is required.

ステップS5では、ステップS4で離散的にサンプリングして求められた残存ガス量の集合から、実際にはサンプリングしていない点の残存ガス量を予測するために、応答曲面法(RSM:Response Surface methodology)を用いて、前記第2の設計因子群に含まれる3つの設計因子(Vfast,K,Tc)をパラメータとして残存ガス量[Mgas]を予測する予測式(1)が求められる。
(数1) Mgas=f(Vfast,K,Tc) ・・・(1)
In step S5, a response surface methodology (RSM: Response Surface methodology) is used to predict the residual gas amount at a point not actually sampled from the set of residual gas amounts obtained by discrete sampling in step S4. ) Is used to obtain the prediction formula (1) for predicting the residual gas amount [Mgas] using the three design factors (Vfast, K, Tc) included in the second design factor group as parameters.
(Equation 1) Mgas = f (Vfast, K, Tc) (1)

すなわち、本実施形態では、解析の対象となる設計因子について複数のサンプリング点を設定し、それらのサンプリング点における残存ガス量を流動CAEを用いて算出する。そして、これらの算出結果から応答曲面法に代表される近似式を用いて、流動CAEにより算出されていないサンプリング点における残存ガス量を予測する予測式が求められる。   That is, in the present embodiment, a plurality of sampling points are set for the design factor to be analyzed, and the residual gas amount at these sampling points is calculated using the flow CAE. From these calculation results, a predictive formula for predicting the residual gas amount at the sampling point that is not calculated by the flow CAE is obtained using an approximate formula typified by the response surface methodology.

図5は、応答曲面の一例を模式的に示した図であり、速度切換点[K]および射出プランジャの高速域速度[Vfast]をパラメータとしたガス量[Mgas]の予測結果が、前記予測式(1)で求められた予測値を含む曲面で表現されている。本実施形態では、このような応答曲面が金型温度[Tc]ごとに生成される。   FIG. 5 is a diagram schematically showing an example of a response curved surface. The prediction result of the gas amount [Mgas] using the speed switching point [K] and the high speed range velocity [Vfast] of the injection plunger as parameters is the above prediction. It is expressed by a curved surface including the predicted value obtained by Expression (1). In the present embodiment, such a response curved surface is generated for each mold temperature [Tc].

ステップS6では、前記予測式を用いて、第2設計因子群に含まれる3つの設計因子を変化させながら、残存ガス量[Mgas]が最小値を示す3つの設計因子の組み合わせが求められる。本実施形態では、前記ステップS1で第1設計因子群の各設計因子に登録された実験条件と、残存ガス量[Mgas]が最小値を示した際の第2設計因子群の各設計因子の水準(実験条件)との組み合わせが、最適化された鋳造条件となる。   In step S6, using the prediction formula, a combination of three design factors in which the residual gas amount [Mgas] exhibits a minimum value is obtained while changing the three design factors included in the second design factor group. In the present embodiment, the experimental conditions registered in the design factors of the first design factor group in step S1 and the design factors of the second design factor group when the residual gas amount [Mgas] shows the minimum value. The combination with the level (experimental conditions) is the optimized casting condition.

ステップS7では、前記最適化された鋳造条件における金型温度[Tc]に基づいて、可動型の冷却水量[W]、離型剤塗布時間[t1]およびサイクルタイム[t2]が逆算され、これが、当該3つの設計因子に関する最適な条件となる。この逆算は、金型温度[Tc]と可動型の冷却水量[W]、離型剤塗布時間[t1]およびサイクルタイム[t2]との関係を求めた実験結果に重回帰分析を行って得られる予測式を用いて行うことができる。   In step S7, based on the mold temperature [Tc] under the optimized casting conditions, the amount of cooling water [W], the release agent application time [t1], and the cycle time [t2] of the movable mold are calculated back. This is the optimum condition for the three design factors. This back calculation is obtained by performing multiple regression analysis on the experimental results for the relationship between the mold temperature [Tc], the movable cooling water amount [W], the release agent application time [t1], and the cycle time [t2]. The prediction formula can be used.

以上のように最適化された鋳造条件にしたがって実際に鋳造を行った結果、所望の条件を満足できない場合には、前記第1設計因子群の各設計因子の実験条件を振りながら上記した各処理が繰り返えされる。   As a result of actual casting according to the optimized casting conditions as described above, when the desired conditions cannot be satisfied, the above-described processes are performed while varying the experimental conditions of the design factors of the first design factor group. Is repeated.

なお、上記した実施形態では、L9直交配列表にしたがって求められた複数のサンプリング点から、他のサンプリング点における残存ガス量を予測するために応答曲面法を採用するものとして説明したが、本発明はこれにみに限定されるものではなく、遺伝的アルゴリズムやニューラルネットワーク法等の他の最適化手法の1つ又は複数を組み合わせも良い。   In the above-described embodiment, the response surface method is used to predict the residual gas amount at other sampling points from a plurality of sampling points obtained according to the L9 orthogonal array table. However, the present invention is not limited to this, and one or a plurality of other optimization methods such as a genetic algorithm and a neural network method may be combined.

本発明のアルミダイキャスト鋳造条件の最適化方法が適用される鋳造マシンの主要部の構成を示した図である。It is the figure which showed the structure of the principal part of the casting machine to which the optimization method of the aluminum die-casting conditions of this invention is applied. 本発明に係るアルミダイキャスト鋳造条件の最適化手順を示したフローチャートである。It is the flowchart which showed the optimization procedure of the aluminum die-casting casting condition which concerns on this invention. 設計因子の分類方法を示した図である。It is the figure which showed the classification method of the design factor. L9直交配列表の一例を示した図である。It is the figure which showed an example of the L9 orthogonal sequence table. 速度切換点[K]および射出プランジャの高速域速度[Vfast]をパラメータとしてガス量[Mgas]を予測する応答曲面の一例を模式的に示した図である。It is the figure which showed typically an example of the response curved surface which estimates gas amount [Mgas] by using the speed switching point [K] and the high speed area speed [Vfast] of an injection plunger as parameters.

符号の説明Explanation of symbols

1…固定金型,2…可動金型,3…鋳型キャビティ,4…射出スリーブ,5…注湯口,6…射出プランジャ,7…離型剤供給装置,8…スプレ,9…手元炉,10…注湯口,11…冷却水路   DESCRIPTION OF SYMBOLS 1 ... Fixed mold, 2 ... Movable mold, 3 ... Mold cavity, 4 ... Injection sleeve, 5 ... Pouring inlet, 6 ... Injection plunger, 7 ... Release agent supply apparatus, 8 ... Spray, 9 ... Hand furnace, 10 ... Pouring port, 11 ... Cooling channel

Claims (6)

鋳造設備を模した流動CAEを用いてアルミダイキャスト製品の鋳造条件を最適化する方法において、
前記流動CAEは、複数の設計因子から構成される鋳造条件を入力されると、当該鋳造条件で鋳造された鋳造品の残存ガス量を算出するように構成され、
前記流動CAEに鋳造条件を入力して残存ガス量を求める手順と、
前記鋳造条件ごとに得られる残存ガス量に基づいて、前記各設計因子をパラメータとして残存ガス量を予測する予測式を立案する手順と、
前記予測式にしたがって、残存ガス量が最少となる鋳造条件を求める手順とを含むことを特徴とするアルミダイキャスト製品の鋳造条件最適化方法。
In the method of optimizing the casting conditions of aluminum die-cast products using fluid CAE imitating casting equipment,
The flow CAE is configured to calculate a residual gas amount of a cast product cast under the casting conditions when a casting condition composed of a plurality of design factors is input,
A procedure for obtaining a residual gas amount by inputting casting conditions to the flow CAE;
Based on the amount of residual gas obtained for each casting condition, a procedure for formulating a prediction formula for predicting the amount of residual gas using each design factor as a parameter;
A method for optimizing the casting conditions of an aluminum die-cast product, comprising the step of obtaining a casting condition that minimizes the amount of residual gas in accordance with the prediction formula.
前記残存ガス量を求める手順は、
鋳造条件を構成するn個の設計因子のうち、m個の第1群の各設計因子に所定の実験条件を登録する手順と、
(n−m)個の第2群の各設計因子に関して、実験計画法に基づく直交配列表を生成する手順と、
前記直交配列表に各設計因子の水準を登録する手順と、
鋳造条件として、前記第1群の各設計因子に前記所定の実験条件に設定し、前記第2群の各設計因子に前記直交配列表に従って水準を設定し、これを前記流動CAEに入力して残存ガス量を求める手順とを含み、
前記予測式を立案する手順では、鋳造条件ごとに得られる残存ガス量を用いて、前記第2群の各設計因子をパラメータとして残存ガス量を予測することを特徴とする請求項1に記載のアルミダイキャスト製品の鋳造条件最適化方法。
The procedure for obtaining the residual gas amount is as follows:
A procedure for registering predetermined experimental conditions in each of the m first group of design factors among the n design factors constituting the casting conditions;
For each (n−m) second group of design factors, a procedure for generating an orthogonal array table based on an experimental design method;
Registering the level of each design factor in the orthogonal array table;
As casting conditions, the predetermined experimental conditions are set for the design factors of the first group, the levels are set for the design factors of the second group according to the orthogonal arrangement table, and these are input to the flow CAE. A procedure for determining the amount of residual gas,
2. The residual gas amount is predicted by using the residual gas amount obtained for each casting condition as a parameter for each design factor of the second group in the procedure of formulating the prediction formula. Method for optimizing casting conditions for aluminum die-cast products.
前記設計因子が、射出プランジャの高速域速度[Vfast]、射出プランジャの速度切換点[K]および金型温度[Tc]を含むことを特徴とする請求項1に記載のアルミダイキャスト製品の鋳造条件最適化方法。   2. The casting of an aluminum die cast product according to claim 1, wherein the design factors include a high speed range velocity [Vfast] of the injection plunger, a speed switching point [K] of the injection plunger, and a mold temperature [Tc]. Condition optimization method. 前記第2群の設計因子が、射出プランジャの高速域速度[Vfast]、射出プランジャの速度切換点[K]および金型温度[Tc]であることを特徴とする請求項2に記載のアルミダイキャスト製品の鋳造条件最適化方法。   3. The aluminum die according to claim 2, wherein the design factors of the second group are a high-speed region speed [Vfast] of the injection plunger, a speed switching point [K] of the injection plunger, and a mold temperature [Tc]. Casting conditions optimization method for cast products. 前記予測式が、応答曲面法、遺伝的アルゴリズムおよびニューラルネットワーク法の1つ又は複数を組み合わせて立案されることを特徴とする請求項1ないし4のいずれかに記載のアルミダイキャスト製品の鋳造条件最適化方法。   The casting condition of the aluminum die-cast product according to any one of claims 1 to 4, wherein the prediction formula is formulated by combining one or more of a response surface method, a genetic algorithm, and a neural network method. Optimization method. 前記金型温度で複数の設計因子が代表され、前記最適化された鋳造条件における金型温度に基づいて、前記複数の設計因子をそれぞれ最適化する手順を含むことを特徴とする請求項1ないし5のいずれかに記載のアルミダイキャスト製品の鋳造条件最適化方法。   A plurality of design factors are represented by the mold temperature, and the method includes a step of optimizing each of the plurality of design factors based on a mold temperature in the optimized casting condition. 5. A method for optimizing casting conditions of an aluminum die-cast product according to any one of 5 above.
JP2004287535A 2004-09-30 2004-09-30 Method for optimizing casting condition for aluminum die-cast product Pending JP2006095590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287535A JP2006095590A (en) 2004-09-30 2004-09-30 Method for optimizing casting condition for aluminum die-cast product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287535A JP2006095590A (en) 2004-09-30 2004-09-30 Method for optimizing casting condition for aluminum die-cast product

Publications (1)

Publication Number Publication Date
JP2006095590A true JP2006095590A (en) 2006-04-13

Family

ID=36235897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287535A Pending JP2006095590A (en) 2004-09-30 2004-09-30 Method for optimizing casting condition for aluminum die-cast product

Country Status (1)

Country Link
JP (1) JP2006095590A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069030B1 (en) 2006-12-15 2011-09-29 현대중공업 주식회사 Computation program and design method for the castable slot of the diecasting motor rotor
CN102937784A (en) * 2012-10-30 2013-02-20 中冶南方工程技术有限公司 Artificial neural network based method for controlling online prediction of casting billet quality
WO2018062398A1 (en) * 2016-09-30 2018-04-05 株式会社Uacj Device for predicting aluminum product properties, method for predicting aluminum product properties, control program, and storage medium
JP2022042338A (en) * 2020-09-02 2022-03-14 トヨタ自動車株式会社 Blowhole analysis method, program, blowhole analysis device and casting condition derivation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069030B1 (en) 2006-12-15 2011-09-29 현대중공업 주식회사 Computation program and design method for the castable slot of the diecasting motor rotor
CN102937784A (en) * 2012-10-30 2013-02-20 中冶南方工程技术有限公司 Artificial neural network based method for controlling online prediction of casting billet quality
WO2018062398A1 (en) * 2016-09-30 2018-04-05 株式会社Uacj Device for predicting aluminum product properties, method for predicting aluminum product properties, control program, and storage medium
CN109843460A (en) * 2016-09-30 2019-06-04 株式会社Uacj The Predicting Performance Characteristics device of aluminum products, the characteristic prediction method of aluminum products, control program and recording medium
JPWO2018062398A1 (en) * 2016-09-30 2019-07-25 株式会社Uacj Property prediction apparatus of aluminum product, property prediction method of aluminum product, control program, and recording medium
JP2022042338A (en) * 2020-09-02 2022-03-14 トヨタ自動車株式会社 Blowhole analysis method, program, blowhole analysis device and casting condition derivation method
CN114202090A (en) * 2020-09-02 2022-03-18 丰田自动车株式会社 Method and program for analyzing voids, void analyzing device, and method for deriving casting conditions
JP7367640B2 (en) 2020-09-02 2023-10-24 トヨタ自動車株式会社 Blast hole analysis method, program, and casting condition derivation method

Similar Documents

Publication Publication Date Title
KR100982995B1 (en) Optimization of a production process
Rao et al. Parameters optimization of selected casting processes using teaching–learning-based optimization algorithm
CN108241774A (en) For simulating the method for forming process
Jaju A review on optimization of gating system for reducing defect
Yan et al. Numerical simulation of AZ91D alloy automobile plug in pressure die casting process
Boydak et al. A numerical and an experimental investigation of a high-pressure die-casting aluminum alloy
JP2006095590A (en) Method for optimizing casting condition for aluminum die-cast product
Raffaeli et al. Virtual prototyping in the design process of optimized mould gating system for high pressure die casting
KR100980781B1 (en) Gating system analyzing automatic apparatus and its method
KR20090072465A (en) Gating system analyzing automatic apparatus and its method
JP2019000861A (en) Method for determining run of molten metal in pressure casting and its device
JP7256448B2 (en) Casting analysis method
Tokova et al. Construction of a Computer Technology for Information Support of Decisions in the Foundry Production Proces
Rianmora et al. A development of computer aided program for aluminium die-casting mold design
Vispute et al. Utilizing flow simulation in the design phase of a casting die to optimize design parameters and defect analysis
Sirviö et al. Complete Simulation of High Pressure Die Casting Process
Tsoukalas An adaptive neuro-fuzzy inference system (ANFIS) model for high pressure die casting
Suresha et al. Numerical simulation aided design of heat sink using Z-cast
Shi Defect minimizing control of low pressure die casting
Qi et al. Optimization of Plunger Injection Input for Die Casting Process
JP5445257B2 (en) Casting simulation method and casting simulation apparatus
JP5915218B2 (en) Mold life prediction device
Vijayaram et al. Computers in Foundries
JP3582930B2 (en) Manufacturing method for injection molded products
JP4373353B2 (en) DIE-CAST SIMULATION METHOD, ITS DEVICE, ITS PROGRAM, AND RECORDING MEDIUM CONTAINING THE PROGRAM