JP2006095509A - Composition having organic compound decomposition property and decomposition method - Google Patents

Composition having organic compound decomposition property and decomposition method Download PDF

Info

Publication number
JP2006095509A
JP2006095509A JP2005119120A JP2005119120A JP2006095509A JP 2006095509 A JP2006095509 A JP 2006095509A JP 2005119120 A JP2005119120 A JP 2005119120A JP 2005119120 A JP2005119120 A JP 2005119120A JP 2006095509 A JP2006095509 A JP 2006095509A
Authority
JP
Japan
Prior art keywords
water
reducing agent
compound
organic compound
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005119120A
Other languages
Japanese (ja)
Other versions
JP4803346B2 (en
Inventor
Akihiko Hiraiwa
明彦 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2005119120A priority Critical patent/JP4803346B2/en
Publication of JP2006095509A publication Critical patent/JP2006095509A/en
Application granted granted Critical
Publication of JP4803346B2 publication Critical patent/JP4803346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a water-soluble chemical agent and to provide a decomposition method capable of economically and efficiently decomposing an organic compound polluting soil and groundwater into harmless substances. <P>SOLUTION: The subject composition containing a water-soluble metal compound containing a metal having a plurality of oxidation numbers and being in +2 or +3 oxidation number state, a reducing agent, and water is used for the decomposition method. The water-soluble metal compound may be zinc chloride, ferrous chloride, manganese dichloride, ferrous sulfate, and ferrous nitrate. The reducing agent may be sodium sulfite, sodium hydrogen sulfite, sodium thiosulfate, sodium phosphite, and sodium pyrophosphite. A preferable ratio of the water-soluble metal compound to the reducing agent is 1 to 200 pts. wt. of the water-soluble metal compound to 100 pts. wt. of the reducing agent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、揮発性有機化合物、特に土壌や地下水を汚染している揮発性有機化合物を安価かつ効果的に分解する性質を有する薬剤に関するものである。   The present invention relates to a drug having the property of cheaply and effectively decomposing volatile organic compounds, particularly volatile organic compounds contaminating soil and groundwater.

トリクロロエテンやテトラクロロエテンなどの揮発性有機化合物は、不燃性・難燃性および脱脂性に富んでいるという特長により、機械工業および半導体工業における洗浄剤、ドライクリーニング用溶剤等として広範囲に用いられてきた。しかしながら、近年、これらの化合物による土壌または地下水の汚染が確認されており、人体の健康を害する恐れから、土壌および地下水を汚染している揮発性有機化合物の除去・分解が強く望まれている。   Volatile organic compounds such as trichloroethene and tetrachloroethene are widely used as cleaning agents and solvents for dry cleaning in the machinery and semiconductor industries due to their nonflammability, flame retardancy, and degreasing properties. I came. However, in recent years, contamination of soil or groundwater by these compounds has been confirmed, and removal / decomposition of volatile organic compounds that contaminate soil and groundwater is strongly desired because of the risk of harming human health.

従来、揮発性有機化合物で汚染された土壌・地下水を浄化する方法としては、土壌ガス吸引法、地下水揚水法および土壌掘削法が提案されているが、これらの方法においては、回収した有機物をその場で分解することができなかったり、技術的な理由により例えば地中深部及び建造物がある場所の土壌汚染に対しては適用が困難であったり、また費用が非常に高価であるなどという問題があった。
上記の浄化方法により土壌等から分離された揮発性有機化合物を分解したりあるいは土壌等中の有機化合物を直接分解することにより土壌等を浄化する方法としては、燃焼分解法、熱的分解法、化学的分解法、触媒的分解法、微生物的分解法および電気的分解法などが知られている。
Conventionally, soil gas suction method, groundwater pumping method and soil excavation method have been proposed as methods for purifying soil and groundwater contaminated with volatile organic compounds. The problem that it cannot be disassembled in the field, is difficult to apply to soil contamination in the deep underground and the place where the building is located for technical reasons, and is very expensive. was there.
As a method of purifying soil etc. by decomposing volatile organic compounds separated from soil etc. by the above purification method or directly decomposing organic compounds in soil etc., combustion decomposition method, thermal decomposition method, Chemical decomposition methods, catalytic decomposition methods, microbial decomposition methods, and electrolysis methods are known.

その中で、現地で使用し易く、確実に分解できる化学的分解法として、鉄粉などの還元反応を用いた分解法が提案されている(特許文献1)。しかしながら、この方法においては、鉄粉が保管中に空気中の酸素により酸化されるため分解能力が経時的に低下し易く、さらに使用時に地下水が赤くなるという別な問題が発生した。
上記文献1に開示の方法を改良した方法として、鉄粉に他の薬剤を組み合わせた方法(特許文献2)および他の還元薬剤を用いる方法(特許文献3)等が提案されている。しかしながら、これらの方法において使用される分解剤は、いずれも固形物から成っているため、直接土壌に施工するには、土壌と分解剤を固体同士で混合攪拌しなければならない。固体同士の混合では、分解剤と有機物との接触が均質でない点で有機物の分解に長時間を要するという問題があった。
特開2000−135483公報 特開2002−282834公報 特開2004−074141公報 特開平5−231086公報 特開平9−125859公報 特開2003−337534公報
Among them, a decomposition method using a reduction reaction such as iron powder has been proposed as a chemical decomposition method that is easy to use on site and can be reliably decomposed (Patent Document 1). However, in this method, the iron powder is oxidized by oxygen in the air during storage, so that the decomposition ability tends to decrease with time, and another problem arises that groundwater becomes red during use.
As a method improved from the method disclosed in the above-mentioned document 1, a method in which another drug is combined with iron powder (Patent Document 2), a method using another reducing drug (Patent Document 3), and the like have been proposed. However, since the decomposing agents used in these methods are all made of solid matter, the soil and the decomposing agent must be mixed and stirred with each other in order to construct them directly on the soil. In the mixing of solids, there is a problem that it takes a long time to decompose the organic matter in that the contact between the decomposer and the organic matter is not homogeneous.
JP 2000-135483 A JP 2002-282834 A JP 2004-074141 A JP-A-5-231086 Japanese Patent Laid-Open No. 9-1225859 JP 2003-337534 A

本発明が解決しようとする課題は、揮発性有機化合物を分解することにより、それらに汚染された土壌・地下水を浄化する場合において、水への溶解性の良い薬剤を組み合わせて使用することにより、安価に、確実に、効率良く、施工、浄化することにある。   The problem to be solved by the present invention is by decomposing volatile organic compounds and purifying soil and groundwater contaminated with them, by using a combination of chemicals having good solubility in water, To construct and purify at low cost, reliably and efficiently.

本発明者らは、上記課題を解決するため鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は、複数の酸化数を持ち得る金属であって、その酸化数が+2または+3の状態にある金属によって構成される水溶性金属化合物、還元剤および水からなる有機化合物分解性を有する組成物(以下分解性組成物ということがある)に関するものであり、そして以下の発明を含んでいる。
(1)前記金属が遷移金属であって、前記水溶性金属化合物におけるその酸化数が+2であることを特徴とする前記分解性組成物。
(2)前記水溶性金属化合物が金属塩化合物である前記分解性組成物。
(3)前記還元剤が亜硫酸アルカリ金属塩または亜硫酸水素アルカリ金属塩である前記分解性組成物。
(4)前記還元剤100質量部当たり、前記水溶性金属化合物が1〜200質量部含まれる前記分解性組成物。
(5)前記分解性組成物を用いて塩素系有機化合物を分解することからなる有機化合物の分解方法。
(6)有機化合物で汚染された土壌であることを確認する工程、有機化合物分解性を有する組成物を施工することを含むことからなる前記有機化合物の分解方法。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention has a decomposability of an organic compound composed of a water-soluble metal compound, a reducing agent, and water, which is composed of a metal having a plurality of oxidation numbers and having an oxidation number of +2 or +3. The composition includes the following inventions (hereinafter also referred to as a decomposable composition).
(1) The decomposable composition, wherein the metal is a transition metal and the oxidation number of the water-soluble metal compound is +2.
(2) The degradable composition, wherein the water-soluble metal compound is a metal salt compound.
(3) The decomposable composition, wherein the reducing agent is an alkali metal sulfite or an alkali metal hydrogen sulfite.
(4) The decomposable composition comprising 1 to 200 parts by mass of the water-soluble metal compound per 100 parts by mass of the reducing agent.
(5) A method for decomposing an organic compound comprising decomposing a chlorinated organic compound using the decomposable composition.
(6) A method for decomposing the organic compound, comprising: confirming that the soil is contaminated with an organic compound; and applying a composition having organic compound decomposability.

本発明によれば、有機物を分解する性質を有する薬剤を水溶液の形態で汚染土壌に施工することができ、汚染土壌・地下水を化学的に浄化する方法において従来問題点であった高価な施工費用を安価にしつつ、確実、効率的に汚染有機化合物を分解することができる。   According to the present invention, the chemical having the property of decomposing organic matter can be applied to the contaminated soil in the form of an aqueous solution, and the expensive construction cost that has been a problem in the conventional method for chemically purifying the contaminated soil / groundwater. It is possible to decompose the contaminated organic compound reliably and efficiently while making the price low.

本発明において分解の対象となる有機化合物としては、特に制限されるものではないが1,1−ジクロロエテン、1,2−ジクロロエテン、トリクロロエテン、テトラクロロエテン、ジクロロメタン、四塩化炭素、1,2−ジクロロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1,2,2−テトラクロロエタンおよびクロロベンゼン等のハロゲン化炭化水素、ならびにベンゼン、トルエンおよびキシレン等の芳香族炭化水素等が挙げられる。
上記ハロゲン化炭化水素または芳香族炭化水素は、過去に空調機の冷却媒体または塗料用溶剤等として地球上で大量に使用された結果、現在では土壌、地下水等を汚染する代表的な有機化合物であると言われている。
The organic compound to be decomposed in the present invention is not particularly limited, but 1,1-dichloroethene, 1,2-dichloroethene, trichloroethene, tetrachloroethene, dichloromethane, carbon tetrachloride, 1, Halogenated hydrocarbons such as 2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane and chlorobenzene, and aromatic carbonization such as benzene, toluene and xylene Hydrogen etc. are mentioned.
The above-mentioned halogenated hydrocarbons or aromatic hydrocarbons are typical organic compounds that contaminate soil, groundwater, etc. as a result of being used in large quantities on earth as a cooling medium for air conditioners or paint solvents in the past. It is said that there is.

本発明の分解性組成物は、前記のとおり、複数の酸化数を持ち得る金属であって、その酸化数が+2または+3の状態にある金属によって構成される水溶性金属化合物を一成分として含む。なお、本発明において水溶性とは、水100gに対して溶解度が1g以上あることを言う。
本発明において使用し得る水溶性金属化合物(以下単に金属化合物ということがある)としては、塩化マグネシウム、塩化亜鉛、二塩化マンガン、塩化第一鉄、塩化コバルト、塩化ニッケル、三塩化チタン、三塩化バナジウムおよび二塩化クロム等の金属塩化物、硫酸マグネシウム、硫酸亜鉛、硫酸第一マンガン、硫酸第一鉄、硝酸第一鉄、硫酸第一鉄アンモニウム、硫酸コバルト、硫酸ニッケル、三硫酸二チタンおよび二硫酸ジルコニウム等の金属硫酸塩等が挙げられる。金属化合物として、複数の化合物を併用すこともできる。
好ましい金属化合物は、塩化第一鉄および二塩化マンガン等の+2の酸化数を有する遷移金属塩であり、さらに好ましくは、塩化第一鉄および硫酸第一鉄である。
As described above, the decomposable composition of the present invention includes a water-soluble metal compound that is a metal that can have a plurality of oxidation numbers and is composed of a metal that has an oxidation number of +2 or +3 as a component. . In the present invention, “water-soluble” means that the solubility is 1 g or more with respect to 100 g of water.
Water-soluble metal compounds that may be used in the present invention (hereinafter sometimes referred to simply as metal compounds) include magnesium chloride, zinc chloride, manganese dichloride, ferrous chloride, cobalt chloride, nickel chloride, titanium trichloride, and trichloride. Metal chlorides such as vanadium and chromium dichloride, magnesium sulfate, zinc sulfate, manganese sulfate, ferrous sulfate, ferrous nitrate, ferrous ammonium sulfate, cobalt sulfate, nickel sulfate, dititanium trisulfate and di Examples thereof include metal sulfates such as zirconium sulfate. A plurality of compounds can be used in combination as the metal compound.
Preferred metal compounds are transition metal salts having an oxidation number of +2 such as ferrous chloride and manganese dichloride, more preferably ferrous chloride and ferrous sulfate.

上記水溶性金属化合物と組合わせて使用する還元剤としては、以下の要件を満足する還元反応性を有する化合物が好ましく、具体的には亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜燐酸ナトリウムおよびピロ亜燐酸ナトリウムまたはこれらのナトリウムをカリウムに置換した化合物が好ましい。
本発明において還元反応性は、沃素との酸化還元反応を利用する以下の方法によって評価され、本発明における還元剤としては、以下の(ニ)において無色にできた化合物が好ましい。なお、下記評価方法においては、でんぷんに関するJIS K 8659−1996におけるでんぷんの鋭敏度試験の条件をそのまま採用している。
(イ)でんぷん水溶液;でんぷん1gを水100mlに溶解した溶液1mlをさらに水20mlに希釈した水溶液
(ロ)でんぷん/沃素溶液;上記でんぷん溶液20mlに対して、濃度2.5mmol/Lの沃素溶液0.2mlを添加したもの
(ハ)還元剤の添加;上記でんぷん/沃素溶液20mlに対して、濃度5.0mmol/Lの還元剤溶液0.2mlを添加して、室温で10分間放置する。
(ニ)上記(ハ)における10分間放置の後に、溶液が無色になったかどうかを見る。
The reducing agent used in combination with the water-soluble metal compound is preferably a compound having a reduction reactivity that satisfies the following requirements, specifically sodium sulfite, sodium bisulfite, sodium thiosulfate, sodium phosphite and Sodium pyrophosphite or a compound in which these sodium is substituted with potassium is preferred.
In the present invention, the reduction reactivity is evaluated by the following method using an oxidation-reduction reaction with iodine, and the reducing agent in the present invention is preferably a compound that is colorless in the following (d). In addition, in the following evaluation method, the conditions of the starch sensitivity test in JIS K 8659-1996 concerning starch are employed as they are.
(A) Aqueous starch solution; an aqueous solution obtained by further diluting 1 ml of starch in 100 ml of water into 20 ml of water (b) starch / iodine solution; iodine solution having a concentration of 2.5 mmol / L with respect to 20 ml of the above starch solution (2) Addition of 2 ml (c) Addition of reducing agent; To 20 ml of the starch / iodine solution, 0.2 ml of a reducing agent solution having a concentration of 5.0 mmol / L is added and left at room temperature for 10 minutes.
(D) Check whether the solution has become colorless after standing for 10 minutes in (c) above.

上記還元剤と金属化合物の好ましい割合は、有機化合物を効率よく分解する点で、還元剤100質量部当たり、金属化合物1〜200質量部である。特に好ましくは、還元剤100質量部当たり、金属化合物10〜100質量部である。
本発明の組成物は、上記還元剤と金属化合物と水を必須成分とするものであり、水の好ましい使用量は、還元剤と金属化合物と水の合計量を基準にして、還元剤と金属化合物(以下これらを合わせて有効成分という)の合計量が0.01〜10質量%となる量である。さらに好ましい水の使用量は、有効成分の割合が0.1〜5質量%となる量である。
A preferred ratio of the reducing agent to the metal compound is 1 to 200 parts by mass of the metal compound per 100 parts by mass of the reducing agent in that the organic compound is efficiently decomposed. Especially preferably, it is 10-100 mass parts of metal compounds per 100 mass parts of reducing agents.
The composition of the present invention comprises the above reducing agent, metal compound and water as essential components, and the preferred amount of water used is based on the total amount of the reducing agent, metal compound and water. The total amount of the compounds (hereinafter collectively referred to as active ingredients) is 0.01 to 10% by mass. A more preferable amount of water used is such that the proportion of the active ingredient is 0.1 to 5% by mass.

各成分を混合する方法も特に限定されるものではなく、各薬剤を水に投入、溶解後、使用しても良いし、各薬剤を粉末状態で混合後に、水に溶解して使用しても良いし、また個々の薬剤の水溶液を調整しておいた後、施工前に混合するという方法でも良い。好ましくは、これらの薬剤を安定的に施工することができるという理由で、還元剤と金属化合物を施工直前に混合したり、水溶液化して、使用する方法である。
本発明における還元剤と金属化合物は、各々単独で有機化合物と接触させても、充分な分解能力を発揮することはないが、これらを混合して用いることにより、非常に優れた分解能力を発揮する。その分解機構は、明らかではないが、後記する実施例においてトリクロロエテンの分解生成物として、炭酸ガスと塩素イオンのみが確認されたことから、従来のトリクロロエテンの還元的な分解反応とは異なるものと推測される。従来のトリクロロエテンの還元的な分解においては、cis−1,2−ジクロロエテン、クロロエテンおよびエチレンが分解生成物として検出されたことから、逐次的な脱塩素反応が起こっていると説明されている。
The method of mixing each component is not particularly limited, and each drug may be used after being dissolved in water and dissolved, or after each drug is mixed in a powder state and dissolved in water. It is also possible to prepare an aqueous solution of each drug and then mix it before construction. Preferably, the reducing agent and the metal compound are mixed immediately before the construction or used as an aqueous solution because they can be stably applied.
In the present invention, the reducing agent and the metal compound do not exhibit sufficient decomposition ability even if they are brought into contact with an organic compound alone, but they exhibit excellent decomposition ability when used in combination. To do. The decomposition mechanism is not clear, but in the examples described later, only carbon dioxide gas and chlorine ions were confirmed as the decomposition products of trichloroethene, so that they are different from the conventional reductive decomposition reaction of trichloroethene. It is guessed. In the conventional reductive decomposition of trichloroethene, cis-1,2-dichloroethene, chloroethene and ethylene were detected as decomposition products, and therefore it is explained that sequential dechlorination reaction occurs. .

本発明において、本発明の分解性組成物の使用方法に関してはいかなる制限もないが、土壌に散布し、浸透させる方法が好ましく採用される。具体的には、有機化合物で汚染された土壌であることを確認する工程、および前記の有機物分解性を有する組成物を施工する工程が採用される。
有機化合物で汚染された土壌であることを確認する工程の具体例としては、土壌汚染対策法施行規則に基き、環境省令告示第十六号に定める土壌ガス調査に係る採取及び測定を行う。その他、特許文献4ないし6に記載の方法によることも可能である。
調査する地点についても、法規則に基き、10m格子の中心点や30m格子の中心点であったり、当該する土地全体の広さ、汚染の広がりの可能性なども考慮して決められる。
汚染土壌が集中して存在するおそれが多いと認められる部分については、特許文献6に記載してあるように1m格子にしたり、揮発性有機化合物の取り扱いの履歴、移動不可能な建築物・大型設備の存在等も勘案し、実情に応じて特定の地点を決めることもできる。
In the present invention, there is no limitation on the method of using the degradable composition of the present invention, but a method of spreading and infiltrating the soil is preferably employed. Specifically, a step of confirming that the soil is contaminated with an organic compound and a step of applying the composition having the organic matter decomposability are employed.
As a specific example of the process for confirming soil contaminated with organic compounds, sampling and measurement related to soil gas surveys stipulated in Ordinance No. 16 of the Ordinance of the Ministry of the Environment are conducted based on the Enforcement Rules of the Soil Contamination Countermeasures Law. In addition, the methods described in Patent Documents 4 to 6 are also possible.
The points to be surveyed are also determined based on the laws and regulations, taking into consideration the center point of the 10m grid and the center point of the 30m grid, the size of the entire land concerned, and the possibility of contamination spreading.
As for the part where it is recognized that there is a high possibility that contaminated soil is concentrated, a 1m grid as described in Patent Document 6, a history of handling volatile organic compounds, immovable buildings and large-sized buildings Considering the existence of equipment, etc., it is possible to determine a specific point according to the actual situation.

有機物分解性を有する組成物を施工する工程の具体例としては、前記の調査により汚染を検出した地点を選定し、高濃度で検出された地点を重点的に施工する。必要により汚染された地点の周辺や低濃度の地点も施工する。地下水の流れ、汚染が拡散した方向が判っている場合には、その上流側に施工することが効果的である。   As a specific example of the process of applying a composition having organic substance decomposability, a spot where contamination is detected by the above-mentioned investigation is selected, and a spot detected at a high concentration is mainly applied. If necessary, work around contaminated points and low-concentration points. If the flow of groundwater or the direction in which the contamination has spread is known, it is effective to install it upstream.

本発明の分解性組成物の施工は、土壌に散布し浸透させてもよく、また土壌や地下水に注入管を挿入し、該注入管を通して分解性組成物を注入する方法も採用できる。より具体的には、調査に用いた穴や井戸で、特に高濃度の汚染を観測した調査孔に分解性組成物を直接注入したり、それらの調査孔を含む周辺に散布、浸透する方法が採用される。それらの調査孔周辺の汲み上げた地下水に分解性組成物を添加したり、このように処理した水を地下水に戻し循環してもよい。土壌ガス吸引、揚水曝気、エアースパージング等により直接水などとともに回収したり、一旦活性炭などに吸着した有機化合物を分解性組成物で処理、分解してもよい。掘り起こした汚染土壌に分解性組成物を混合することにより、有機化合物を分解することも可能である。   The construction of the decomposable composition of the present invention may be applied by spreading and infiltrating the soil, or a method of injecting the decomposable composition through the injection tube by inserting an injection tube into the soil or groundwater can be employed. More specifically, there is a method in which the decomposable composition is directly injected into the holes or wells used in the survey, especially in the hole where the high concentration of contamination is observed, or is sprayed and permeated around the hole including those holes. Adopted. A degradable composition may be added to the groundwater pumped around these survey holes, or the water treated in this way may be returned to the groundwater and circulated. It may be recovered together with water directly by soil gas suction, pumped water aeration, air sparging, or the like, or an organic compound once adsorbed on activated carbon or the like may be treated with a decomposable composition and decomposed. It is also possible to decompose organic compounds by mixing the degradable composition into the excavated contaminated soil.

分解性組成物の好ましい使用量は、前記金属化合物と還元剤との合計量で有機化合物1質量部当たり、0.5〜10,000質量部であり、さらに好ましくは、同一の基準で2〜4,000質量部である。   The preferable use amount of the decomposable composition is 0.5 to 10,000 parts by mass with respect to 1 part by mass of the organic compound as the total amount of the metal compound and the reducing agent, and more preferably 2 to 2 on the same basis. 4,000 parts by mass.

本発明の分解性組成物は、前記の処理で有機物の分解が不十分であった場合、または一旦該処理により有機物が分解した後に再汚染された場合には、その土壌に対して前記と同様の方法により再調査、再施工することが可能である。
以下に、実施例および比較例を挙げて本発明をさら具体的に説明する。
○実施例1
The decomposable composition of the present invention is the same as described above for the soil when the organic matter is not sufficiently decomposed by the above treatment, or when the organic matter is once decontaminated after being decomposed by the treatment. It is possible to re-investigate and reconstruct by this method.
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
○ Example 1

40mL容のバイアル瓶に亜硫酸水素ナトリウム0.1gと塩化第一鉄0.1gを採り、そこに蒸留水20gを加え、混合、溶解し、ふっ素樹脂によりコーティングされたシリコーンゴム製セプタム及びアルミキャップにより密栓した。その中に、マイクロシリンジを用い、5μLのトリクロロエテンを注入し、25℃恒温槽中で、3日間振とう後の気相部におけるトリクロロエテンの濃度をヘッドスペースガスクロマトグラフィー法にて分析し、薬剤を添加しない場合の混合直後の分析結果(以下ブランクという)に対する比率を次の式の如く、分解比率と定義し、算出したところ、0.5となった。
なお、ガスクロマトグラフィーでは、cis−1,2−ジクロロエテン、クロロエテンおよびエチレンは検出されなかった。また、別途の分析方法により、分解ガス中に、炭酸ガスと塩素イオンが生成したことを確認した。
分解比率=(3日後のトリクロロエテンの面積)÷(ブランクの面積)
○実施例2〜14
Into a 40 mL vial, take 0.1 g of sodium bisulfite and 0.1 g of ferrous chloride, add 20 g of distilled water, mix, dissolve, and use a silicone rubber septum and aluminum cap coated with fluorine resin. Sealed. Inside, 5 μL of trichloroethene was injected using a microsyringe, and the concentration of trichloroethene in the gas phase after shaking for 3 days in a thermostatic chamber at 25 ° C. was analyzed by headspace gas chromatography. The ratio with respect to the analysis result immediately after mixing (hereinafter referred to as “blank”) when no chemical was added was defined as the decomposition ratio as shown in the following formula and was calculated to be 0.5.
In gas chromatography, cis-1,2-dichloroethene, chloroethene and ethylene were not detected. Further, it was confirmed by the separate analysis method that carbon dioxide gas and chlorine ions were generated in the cracked gas.
Decomposition ratio = (area of trichloroethene after 3 days) ÷ (area of blank)
○ Examples 2 to 14

表1記載の還元剤と金属化合物を用い、所定時間振とうした後の分解比率を求めた結果を表1に示す。
○比較例1〜9
Table 1 shows the results of determining the decomposition ratio after shaking for a predetermined time using the reducing agent and metal compound described in Table 1.
○ Comparative Examples 1-9

表1に記載した条件でトリクロロエテンの分解を行い、その結果を分解比率で表した。   Trichloroethene was decomposed under the conditions described in Table 1, and the result was expressed as a decomposition ratio.

Figure 2006095509
○実施例15
Figure 2006095509
Example 15

直径26mm、高さ300mmのガラス製カラムにマサ土(*1)150gを詰め、そこにトリクロロエテン7.5mgを水20gへ溶かしたものを加え、土壌溶出量5.0mg/Lに相当する汚染が調査により検出された地点を想定した模擬汚染土壌層を調整した。そこに亜硫酸水素ナトリウムと塩化第一鉄を重量比5対1で蒸留水に溶かした5重量%の水溶液80gを0.48g/分の速度で滴下して薬液を浸透させた。薬液滴下後の土壌溶出量を測定したところ0.01mg/Lであり、流出液中のトリクロロエテンも加え、系内で検出したトリクロロエテンの総量は1.9mgであった。薬剤を添加しない蒸留水のみを同量滴下した場合の系内で検出されたトリクロロエテンの総量(以下ブランクという)に対する比率を、次の式の如く分解比率と定義し、算出したところ0.4となった。
なお、ガスクロマトグラフィーでは、cis−1,2−ジクロロエテン、クロロエテンおよびエチレンは検出されなかった。また、別途の分析方法により、分解ガス中の炭酸ガスと液中の塩素イオンが増加していることを確認した。
分解比率=(薬液処理後のトリクロロエテンの総量)÷(ブランクの総量)
*1.マサ土:中部地方の山地より、採取した花崗岩等の風化した土礫類。
○実施例16
A glass column with a diameter of 26 mm and a height of 300 mm is packed with 150 g of masa soil (* 1), to which 7.5 mg of trichloroethene dissolved in 20 g of water is added, and the pollution corresponding to a soil elution amount of 5.0 mg / L Adjusted the simulated contaminated soil layer assuming the point detected by the survey. Thereto, 80 g of a 5 wt% aqueous solution prepared by dissolving sodium bisulfite and ferrous chloride in distilled water at a weight ratio of 5: 1 was added dropwise at a rate of 0.48 g / min to infiltrate the chemical solution. The soil elution amount after dropping the drug droplet was measured to be 0.01 mg / L, and the total amount of trichloroethene detected in the system was 1.9 mg by adding trichloroethene in the effluent. The ratio to the total amount of trichloroethene detected in the system (hereinafter referred to as blank) when only the same amount of distilled water without addition of chemicals was added dropwise was defined as the decomposition ratio and calculated as 0.4 It became.
In gas chromatography, cis-1,2-dichloroethene, chloroethene and ethylene were not detected. Moreover, it was confirmed by the separate analysis method that the carbon dioxide gas in the cracked gas and the chlorine ions in the liquid were increased.
Decomposition ratio = (total amount of trichloroethene after chemical treatment) ÷ (total amount of blank)
* 1. Masa soil: Weathered debris such as granite collected from the Chubu region.
Example 16

表2記載の還元剤と金属化合物を用い、実施例15と同様の試験をおこなった。その結果を表2に示す。
○実施例17
The same test as in Example 15 was performed using the reducing agent and metal compound described in Table 2. The results are shown in Table 2.
Example 17

実施例15のトリクロロエテン7.5mgをテトラクロロエテン3.2mgに変え、同様の試験を行った。結果を表2に示す。
○実施例18〜19
A similar test was conducted by changing 7.5 mg of trichloroethene of Example 15 to 3.2 mg of tetrachloroethene. The results are shown in Table 2.
Examples 18 to 19

実施例15のマサ土を赤黄色土(*2)に変え、表2記載の条件で試験をおこなった。結果を表2に示す。
*2.赤黄色土:西日本地方の丘陵地より、採取されたもの。
○実施例20
The test was performed under the conditions shown in Table 2 except that the Masa soil of Example 15 was changed to red yellow soil (* 2). The results are shown in Table 2.
* 2. Red-yellow soil: Collected from hills in western Japan.
Example 20

実施例19の赤黄色土を黒ボク土(*3)に変え、薬剤を表2記載のものに変更した以外、実施例19と同様の方法により試験をおこなった。結果を表2に示す。
*3.黒ボク土:中部地方の丘陵地で、採取したもの。
○比較例10
The test was performed in the same manner as in Example 19 except that the red-yellow soil in Example 19 was changed to black I * 3 (* 3) and the chemicals were changed to those shown in Table 2. The results are shown in Table 2.
* 3. Kuroboku soil: collected from the hilly area of the Chubu region.
○ Comparative Example 10

実施例15の模擬汚染土壌層に対し、薬剤を添加しない蒸留水のみを同量滴下した後の土壌溶出量を測定したところ、0.03mg/Lであり、流出液中のトリクロロエテンも加え、系内で検出したトリクロロエテンの総量は4.9mgとなった。また、この結果を実施例15のブランクとした。
○比較例11〜15
For the simulated contaminated soil layer of Example 15, when the amount of soil elution after dropping only the same amount of distilled water without adding a drug was measured, it was 0.03 mg / L, and trichloroethene in the effluent was also added. The total amount of trichloroethene detected in the system was 4.9 mg. In addition, this result was used as the blank of Example 15.
○ Comparative Examples 11-15

表2に記載した各々の実施例に対応した模擬汚染土壌層を調整し、薬剤を添加しない蒸留水のみを各々の実施例と同量滴下し、試験後の土壌溶出量及び系内で検出した有機化合物の総量を測定するとともに、各々の実施例のブランクとし、各々の実施例と比較例を比較した結果を表2にまとめた。   The simulated contaminated soil layer corresponding to each of the examples described in Table 2 was prepared, and only the distilled water with no chemical added was dropped in the same amount as in each of the examples, and the amount of soil elution after the test and detected in the system. The total amount of the organic compound was measured, and the results of comparing each example and a comparative example were summarized in Table 2 as blanks for each example.

Figure 2006095509
Figure 2006095509

本発明によれば、安価に、確実に、揮発性有機化合物を分解することが可能となり、それらに汚染された土壌・地下水を経済的に、効率良く、施工、浄化することができる。

According to the present invention, volatile organic compounds can be decomposed reliably and inexpensively, and soil and groundwater contaminated by them can be constructed and purified economically and efficiently.

Claims (7)

複数の酸化数を持ち得る金属であって、その酸化数が+2または+3の状態にある金属によって構成される水溶性金属化合物、還元剤および水からなる有機化合物分解性を有する組成物。
An organic compound decomposable composition comprising a water-soluble metal compound composed of a metal having a plurality of oxidation numbers and having an oxidation number of +2 or +3, a reducing agent, and water.
前記金属が遷移金属であって、前記水溶性金属化合物におけるその酸化数が+2であることを特徴とする請求項1記載の有機化合物分解性を有する組成物。
2. The organic compound-decomposable composition according to claim 1, wherein the metal is a transition metal and the oxidation number of the water-soluble metal compound is +2.
前記水溶性金属化合物が金属塩化合物であることを特徴とする請求項1または2記載の有機化合物分解性を有する組成物。
3. The organic compound-decomposable composition according to claim 1, wherein the water-soluble metal compound is a metal salt compound.
前記還元剤が亜硫酸アルカリ金属塩または亜硫酸水素アルカリ金属塩であることを特徴とする請求項1、2または3記載の有機化合物分解性を有する組成物。
4. The organic compound-decomposable composition according to claim 1, wherein the reducing agent is an alkali metal sulfite or an alkali metal hydrogen sulfite.
前記還元剤100質量部当たり、前記水溶性金属化合物が1〜200質量部含まれることを特徴とする請求項1、2、3または4記載の有機化合物分解性を有する組成物。
5. The organic compound-decomposable composition according to claim 1, wherein the water-soluble metal compound is contained in an amount of 1 to 200 parts by weight per 100 parts by weight of the reducing agent.
請求項1〜5のいずれかに記載の有機物分解性を有する組成物を用いて有機化合物を分解することを特徴とする有機化合物の分解方法。
A method for decomposing an organic compound, comprising decomposing an organic compound using the composition having organic decomposability according to any one of claims 1 to 5.
有機化合物で汚染された土壌であることを確認する工程、請求項1〜5のいずれかに記載の有機物分解性を有する組成物を施工する工程を含むことを特徴とする請求項6に記載の有機化合物の分解方法。


The step of confirming that the soil is contaminated with an organic compound, and the step of constructing a composition having an organic matter decomposability according to any one of claims 1 to 5, comprising: Method for decomposing organic compounds.


JP2005119120A 2004-09-02 2005-04-18 Composition having organic compound decomposability and decomposition method Active JP4803346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119120A JP4803346B2 (en) 2004-09-02 2005-04-18 Composition having organic compound decomposability and decomposition method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004255742 2004-09-02
JP2004255742 2004-09-02
JP2005119120A JP4803346B2 (en) 2004-09-02 2005-04-18 Composition having organic compound decomposability and decomposition method

Publications (2)

Publication Number Publication Date
JP2006095509A true JP2006095509A (en) 2006-04-13
JP4803346B2 JP4803346B2 (en) 2011-10-26

Family

ID=36235824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119120A Active JP4803346B2 (en) 2004-09-02 2005-04-18 Composition having organic compound decomposability and decomposition method

Country Status (1)

Country Link
JP (1) JP4803346B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074141A (en) * 2001-12-20 2004-03-11 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material
JP2004082115A (en) * 2002-08-07 2004-03-18 Katsuhisa Honda Soil treating agent and soil treatment method
JP2004249227A (en) * 2003-02-20 2004-09-09 Ishihara Sangyo Kaisha Ltd Decomposing agent for organic compound and environmental decontaminating method using it
JP2004359726A (en) * 2003-06-02 2004-12-24 Ishihara Sangyo Kaisha Ltd Organic compound decomposition agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074141A (en) * 2001-12-20 2004-03-11 Ishihara Sangyo Kaisha Ltd Organic compound decomposing material
JP2004082115A (en) * 2002-08-07 2004-03-18 Katsuhisa Honda Soil treating agent and soil treatment method
JP2004249227A (en) * 2003-02-20 2004-09-09 Ishihara Sangyo Kaisha Ltd Decomposing agent for organic compound and environmental decontaminating method using it
JP2004359726A (en) * 2003-06-02 2004-12-24 Ishihara Sangyo Kaisha Ltd Organic compound decomposition agent

Also Published As

Publication number Publication date
JP4803346B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5029562B2 (en) Soil and / or groundwater purification method
EP2828208B1 (en) Organic acid activation of persulfates
EP2828209B1 (en) Environmental remediation process
BRPI0617476A2 (en) Oxidation method of a contaminant present in an environment, and, composition
US9814919B2 (en) Degrading halogenated organic compounds
JP4069174B2 (en) Detoxification method of soil
JP2007209824A (en) Method for cleaning contaminated soil or contaminated groundwater
TWI566806B (en) A composition for decomposing a chemical substance and a method for decomposing a chemical substance by using the composition
JP2000005740A (en) Cleaning method of soil and underground water contaminated with organic chlorine compound
JP5666832B2 (en) Organic substance decomposition treatment method and organic substance decomposition treatment agent kit
JP4721320B2 (en) Decomposition method of organic pollutants
JP4803346B2 (en) Composition having organic compound decomposability and decomposition method
JP4569427B2 (en) Method for decomposing organic compounds
JP4831292B2 (en) Composition and method for decomposing organic compounds
JP5888877B2 (en) Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same
JP4324372B2 (en) Organic compound decomposition material
JP2008201809A (en) Organic compound decomposing material and method of treating soil or water therewith
JP5109036B2 (en) Detoxification method of soil
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP4596524B2 (en) Contaminated soil purification method
JP4403316B2 (en) Purification method of contaminated soil or contaminated water
JP4126347B2 (en) Purification method of contaminated soil or contaminated water
JP2010194450A (en) Method for cleaning organic halide
JP2013107943A (en) Decomposing agent and cleaning method of organochlorine-based agricultural chemical
JP2012126905A (en) Organic compound decomposing agent and treating method for soil or water by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4803346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250