JP2006094940A - Method and device for controlling local membrane potential in vivo and method and device for recovering nerve function - Google Patents

Method and device for controlling local membrane potential in vivo and method and device for recovering nerve function Download PDF

Info

Publication number
JP2006094940A
JP2006094940A JP2004282082A JP2004282082A JP2006094940A JP 2006094940 A JP2006094940 A JP 2006094940A JP 2004282082 A JP2004282082 A JP 2004282082A JP 2004282082 A JP2004282082 A JP 2004282082A JP 2006094940 A JP2006094940 A JP 2006094940A
Authority
JP
Japan
Prior art keywords
magnetic field
potential
fluctuation
vivo
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004282082A
Other languages
Japanese (ja)
Other versions
JP4613285B2 (en
Inventor
Hiroji Yanagimoto
広二 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2004282082A priority Critical patent/JP4613285B2/en
Publication of JP2006094940A publication Critical patent/JP2006094940A/en
Application granted granted Critical
Publication of JP4613285B2 publication Critical patent/JP4613285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Treatment Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for controlling a local membrane potential in vivo which use a conductive material to produce a transient reversible cell depolarization and a spreading depression intentionally by using a safe method, and a method and a device for recovering nerve functions. <P>SOLUTION: The device for controlling the local membrane potential in vivo includes a variable magnetic field generating means for generating a variable magnetic field by current supply, a current supply part for supplying a current to the variable magnetic field generating means, and a variation potential converting means for applying stimuli of the variation potential in vivo by converting the variable magnetic field generated by the variable magnetic field generating means to a variation potential. A local potential varying device in vivo is characterized with the variation potential converting means that converts the variable magnetic field generated by the variable magnetic field generating means by the current supply from the current supply part to the variation potential at local parts in vivo and applies the variation potential in vivo for producing a transient reversible cell depolarization and a spreading depression. The production of the transient reversible cell depolarization and the spreading depression is used for treating neurodegenerative diseases and the impairment of brain functions, for mitigating various damage and disorder of cerebral nerves, and for recovering and regenerating the functions of the damaged brain and organs. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は導電体を用いた生体内局所膜電位制御方法並びに制御装置及び神経機能回復方法並びに回復装置に関する。
本発明の目的は、局所における膜(直流)電位を安全に意図的に変化させることを可能とする生体内局所膜電位制御方法及び制御装置を提供することにある。さらに、その技術を応用することで、内在性幹細胞を活性化させる性質を有する連続的な細胞脱分極、或いは長期の拡延性抑制を生じさせ、その結果、脳梗塞や外傷などによって揖傷を受けた脳機能の回復、或いはアルツハイマー病、パーキンソン病、ハンチントン病、脊髄小脳変性症、筋萎縮性側索硬化症などの神経変性疾患或いはその他の原因による知能低下などの治療に有効な神経機能回復方法及び回復装置を提供することにある。
The present invention relates to an in vivo local membrane potential control method, a control device, a nerve function recovery method, and a recovery device using a conductor.
An object of the present invention is to provide an in-vivo local membrane potential control method and control apparatus that can safely and intentionally change a local membrane (direct current) potential. Furthermore, by applying this technology, it causes continuous cell depolarization that has the property of activating endogenous stem cells, or long-term spread suppression, and as a result, suffers contusion due to cerebral infarction or trauma. Neurological function recovery method that is effective for the recovery of brain function or neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar degeneration, amyotrophic lateral sclerosis, and other causes And providing a recovery device.

皮膚や消化管の上皮などでは、新しい細胞を作り出すことができる幹(前駆)細胞が成長発達後も常に存在しており、この幹(前駆)細胞が分裂、増殖して新しい機能的細胞集団を作り出している。一方、成人の脳には、記憶に関連する海馬の一部や嗅球の神経細胞の脱落を補充すると考えられている内在性神経幹(前駆)細胞の存在は明らかとなったが、その他の大部分の脳においては、新たな神経細胞の補充手段や神経突起の伸展促進手段はないと考えられてきた。
従って、何らかの理由によって、例えば、脳梗塞や外傷、或いはアルツハイマー病、パーキンソン病、ハンチントン病、脊髄小脳変性症、筋萎縮性側索硬化症などの神経変性疾患などによって、脳細胞が損傷を受けると、損傷を受けた脳や神経の機能を回復することは、一般的に困難である。
In the epithelium of the skin and gastrointestinal tract, stem (precursor) cells that can create new cells always exist after growth and development, and these stem (precursor) cells divide and proliferate to create new functional cell populations. Producing. On the other hand, in the adult brain, the presence of endogenous neural stem (progenitor) cells, which are thought to replenish the memory-related loss of hippocampus and olfactory bulb neurons, has been revealed. In some brains, it has been considered that there is no new means for supplementing nerve cells or means for promoting neurite extension.
Therefore, when brain cells are damaged for some reason, for example, due to cerebral infarction or trauma, or neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar degeneration, amyotrophic lateral sclerosis, etc. It is generally difficult to restore damaged brain and nerve function.

一方、神経細胞の神経突起伸展促進作用、神経細胞の生存維持・生存能増強作用や分化誘導作用などの神経細胞の生存維持に必要な作用を示す神経栄養因子と呼ばれる分子が存在している。ニューロンの発生・分化の過程において、神経栄養因子が存在しないと、そのニューロンはアポトーシスを起こすことから、神経栄養因子の存在はニューロンの生存維持にとって重要である。   On the other hand, there is a molecule called a neurotrophic factor that exhibits actions necessary for maintaining the survival of nerve cells, such as a nerve cell neurite extension promoting action, a nerve cell survival maintenance / viability enhancement action, and a differentiation induction action. In the process of neuronal development / differentiation, if a neurotrophic factor does not exist, the neuron causes apoptosis. Therefore, the presence of the neurotrophic factor is important for maintaining the survival of the neuron.

この神経栄養因子のような神経細胞の成長を刺激することができる薬剤を脳に供給することによって、神経変性疾患の治療や損傷を受けた脳細胞の修復が可能ではないかと考えられており、例えば、特許文献1には、1,5−ジ(ピリジン−4−イル)−ペンタ−1,4−ジエン−3−オンと神経栄養因子とを含有する薬剤組成物が記載されている。   It is thought that by supplying drugs that can stimulate the growth of nerve cells such as this neurotrophic factor to the brain, it is possible to treat neurodegenerative diseases and repair damaged brain cells, For example, Patent Document 1 describes a pharmaceutical composition containing 1,5-di (pyridin-4-yl) -penta-1,4-dien-3-one and a neurotrophic factor.

特表2001−504470号公報JP-T-2001-504470

脳を有害な物質から守るために、脳や脊髄の血管は物質が自由に通行できず、さらに選択的に取り込んだ物質しか脳内に入らないような血液脳関門とよばれる仕組みが備わっている。
従って、患者の体内に投与された特許文献1に記載されるような薬剤組成物は、血液脳関門を通過しなければ脳内に到達することはできず、神経細胞の成長作用を示すことはできなかった。また、脳内或いはその他の臓器に成長発達後も存在する内在性神経幹(前駆)細胞を安全な手段を用いて意図的に分裂させ、神経細胞等の機能的細胞を安全な手法を用いて意図的に増加させることは不可能であった。
In order to protect the brain from harmful substances, blood vessels in the brain and spinal cord have a mechanism called the blood-brain barrier that prevents substances from freely passing through and allows only selectively incorporated substances to enter the brain. .
Therefore, the pharmaceutical composition as described in Patent Document 1 administered into the body of a patient cannot reach the brain unless it passes through the blood-brain barrier, and exhibits a growth action of nerve cells. could not. In addition, endogenous neural stem (progenitor) cells that exist in the brain or other organs after growth and development are intentionally divided using safe means, and functional cells such as nerve cells are used using safe techniques. It was impossible to increase it intentionally.

本発明者は、確実にしかも安全に、生体(細胞)膜(直流)電位を制御する技術を見出した。さらに、その技術の応用により、生体内幹(前駆)細胞の細胞分裂、増殖を促進させることが可能であることを見出し、本発明の完成に至った。   The present inventor has found a technique for controlling a biological (cell) membrane (direct current) potential reliably and safely. Furthermore, it has been found that application of the technology can promote cell division and proliferation of in vivo stem (progenitor) cells, and the present invention has been completed.

即ち、請求項1に係る発明は、生体内に留置した導電体に電位変動を生じさせ、それにより生体内局所における膜電位を制御することを特徴とする生体内局所膜電位制御方法に関する。
請求項2に係る発明は、生体内に留置した導電体に電位変動を生じさせ、それにより生体内局所における膜電位を制御することを特徴とする神経機能回復方法に関する。
請求項3に係る発明は、電流の供給により変動磁場を生成する変動磁場生成手段と、該変動磁場生成手段に電流を供給する電流供給部と、該変動磁場生成手段によって生成された変動磁場を変動電位に変換して生体に変動電位刺激を与える変動電位変換手段と、を含み、前記変動電位変換手段は、前記電流供給部からの電流供給によって前記変動磁場生成手段が生成した変動磁場を生体内局所において変動電位に変換して、該変動電位を生体に与えて、可逆的細胞脱分極又は伝播性抑制を生じさせることを特徴とする生体内局所膜電位制御装置に関する。
請求項4に係る発明は、前記変動磁場生成手段が生成する変動磁場が、パルス磁場であることを特徴とする請求項3に記載の生体内局所膜電位制御装置に関する。
請求項5に係る発明は、に係る発明は、前記変動磁場生成手段が生成する変動磁場が、周波数1〜3000Hz、パルス幅0.0001〜10000ms、平均磁場強度0.1〜100Tであることを特徴とする請求項3又は4に記載の生体内局所膜電位制御装置に関する。
請求項6に係る発明は、前記変動電位変換手段が、導電体を含むことを特徴とする請求項3乃至5のいずれかに記載の生体内局所膜電位制御装置に関する。
請求項7に係る発明は、前記導電体の表面の一部又は全面が絶縁体によって覆われていることを特徴とする請求項6に記載の生体内局所膜電位制御装置に関する。
請求項8に係る発明は、電流の供給により変動磁場を生成する変動磁場生成手段と、該変動磁場生成手段に電流を供給する電流供給部と、該変動磁場生成手段によって生成された変動磁場を変動電位に変換して生体に変動電位刺激を与える変動電位変換手段と、を含み、前記変動電位変換手段は、前記電流供給部からの電流供給によって前記変動磁場生成手段が生成した変動磁場を生体内局所において変動電位に変換して、該変動電位を生体に与えて、可逆的細胞脱分極又は伝播性抑制を生じさせることを特徴とする神経機能回復装置に関する。
請求項9に係る発明は、前記変動磁場生成手段が生成する変動磁場が、パルス磁場であることを特徴とする請求項8に記載の神経機能回復装置に関する。
請求項10に係る発明は、前記変動磁場生成手段が生成する変動磁場が、周波数1〜3000Hz、パルス幅0.0001〜10000ms、平均磁場強度0.1〜100Tであることを特徴とする請求項8又は9に記載の神経機能回復装置に関する。
請求項11に係る発明は、前記変動電位変換手段が、導電体を含むことを特徴とする請求項8乃至10のいずれかに記載の神経機能回復装置に関する。
請求項12に係る発明は、前記導電体の表面の一部又は全面が絶縁体によって覆われていることを特徴とする請求項11に記載の神経機能回復装置に関する。
That is, the invention according to claim 1 relates to an in-vivo local membrane potential control method characterized by causing a potential fluctuation in a conductor placed in a living body, thereby controlling the membrane potential in the in-vivo region.
The invention according to claim 2 relates to a nerve function recovery method characterized by causing a potential fluctuation in a conductor placed in a living body, thereby controlling a membrane potential in a local area in the living body.
According to a third aspect of the present invention, there is provided a variable magnetic field generation unit that generates a variable magnetic field by supplying a current, a current supply unit that supplies a current to the variable magnetic field generation unit, and a variable magnetic field generated by the variable magnetic field generation unit. Fluctuating potential conversion means for converting the fluctuating potential to give a fluctuating potential stimulus to the living body, and the fluctuating potential converting means generates the fluctuating magnetic field generated by the fluctuating magnetic field generating means by supplying current from the current supplying section. The present invention relates to an in-vivo local membrane potential control device characterized in that it is converted into a variable potential locally in the body, and the variable potential is applied to a living body to cause reversible cell depolarization or propagation suppression.
The invention according to claim 4 relates to the in-vivo local membrane potential control apparatus according to claim 3, wherein the variable magnetic field generated by the variable magnetic field generating means is a pulsed magnetic field.
According to a fifth aspect of the present invention, the fluctuating magnetic field generated by the fluctuating magnetic field generating means has a frequency of 1 to 3000 Hz, a pulse width of 0.0001 to 10000 ms, and an average magnetic field strength of 0.1 to 100 T. The in-vivo local membrane potential control device according to claim 3 or 4, characterized in that
The invention according to claim 6 relates to the in-vivo local membrane potential control apparatus according to any one of claims 3 to 5, wherein the variable potential conversion means includes a conductor.
The invention according to claim 7 relates to the in-vivo local membrane potential control apparatus according to claim 6, wherein a part or the entire surface of the conductor is covered with an insulator.
According to an eighth aspect of the present invention, there is provided a variable magnetic field generation unit that generates a variable magnetic field by supplying a current, a current supply unit that supplies current to the variable magnetic field generation unit, and a variable magnetic field generated by the variable magnetic field generation unit. Fluctuating potential conversion means for converting the fluctuating potential to give a fluctuating potential stimulus to the living body, and the fluctuating potential converting means generates the fluctuating magnetic field generated by the fluctuating magnetic field generating means by supplying current from the current supplying section. The present invention relates to a nerve function recovery device characterized in that it is converted into a variable potential locally in the body, and the variable potential is applied to a living body to cause reversible cell depolarization or propagation suppression.
The invention according to claim 9 relates to the nerve function recovery device according to claim 8, wherein the fluctuation magnetic field generated by the fluctuation magnetic field generation means is a pulse magnetic field.
According to a tenth aspect of the present invention, the variable magnetic field generated by the variable magnetic field generating means has a frequency of 1 to 3000 Hz, a pulse width of 0.0001 to 10000 ms, and an average magnetic field strength of 0.1 to 100 T. The nerve function recovery apparatus according to 8 or 9.
The invention according to claim 11 relates to the nerve function recovery apparatus according to any one of claims 8 to 10, wherein the fluctuation potential converting means includes a conductor.
The invention according to claim 12 relates to the nerve function recovery apparatus according to claim 11, wherein a part or the whole of the surface of the conductor is covered with an insulator.

本発明に係る生体内局所膜電位制御方法及び制御装置は、生体内局所の膜電位を制御することを可能とする方法及び装置である。
生体内局所膜電位制御方法及び制御装置は、目的とする細胞集団に一過性可逆的細胞脱分極或いは拡延性抑制を意図的に生じさせることで、様々な疾患の治療や予防を可能とする方法及び装置である。一過性可逆的細胞脱分極、或いは、拡延性抑制が連続的に加わることで、内在性神経幹(前駆)細胞、その他の幹細胞、或いはその他の分裂、増殖が可能な細胞の分裂、増殖活性が高まり、その結果、目的とする細胞集団を意図的に分裂、増殖させることができる。
The in-vivo local membrane potential control method and control apparatus according to the present invention are a method and an apparatus capable of controlling a local membrane potential in the living body.
In vivo local membrane potential control method and control device enables treatment and prevention of various diseases by intentionally causing transient reversible cell depolarization or spreading suppression in a target cell population Method and apparatus. Transient reversible cell depolarization or spreading suppression continuously, endogenous neural stem (progenitor) cells, other stem cells, or other cells that can divide and proliferate, proliferative activity As a result, the target cell population can be intentionally divided and expanded.

また、神経機能回復方法及び装置は、前記生体内局所膜電位制御方法及び制御装置を応用した方法及び装置であり、目的とする細胞集団に一過性可逆的細胞脱分極或いは拡延性抑制を意図的に生じさせることができる。一過性可逆的細胞脱分極、或いは、拡延性抑制が連続的に加わることで、内在性神経幹(前駆)細胞、その他の幹細胞、或いはその他の分裂、増殖が可能な細胞の分裂、増殖活性が高まり、その結果、目的とする細胞集団を意図的に分裂、増殖させることができる。
この分裂可能な細胞には、末梢神経或いは中枢神経細胞や心臓等の構成細胞を生み出す細胞、すなわち、再生不可能と考えられていた細胞集団を産生する幹(前駆)細胞も含まれる。この神経機能回復方法及び装置により、幹(前駆)細胞の分裂、増殖を活性化し、さらに成長・栄養因子の産生を増加させることで、機能低下に陥った臓器を再生させることができる。従って、本発明に係る神経機能回復方法及び装置は、脳梗塞等の各種疾患や外傷によって損傷を受けた脳の治療、或いはアルツハイマー病、パーキンソン病、ハンチントン病、脊髄小脳変性症、筋萎縮性側索硬化症などの神経変性疾患、慢性疼痛、或いはその他の原因による知能低下などの治療、動脈硬化等による局所脳循環不全に対する治療を目的として用いることができる。
脳においては伝播性の一過性可逆性脱分極現象である拡延性抑制を繰り返し生じさせることによって脳由来神経栄養因子を増加させることが可能であり、神経突起の伸展促進作用による低下した脳機能改善や鬱病の治療を目的として用いることができる。一方、脳以外の臓器に生体内局所細胞脱分極発生法を用いた連続的な脱分極刺激を行った場合、当該臓器における内在性幹(前駆)細胞を分裂、増殖させることで再生を計る、各種細胞臓器再生治療目的に用いることも可能である。
Further, the neural function recovery method and device is a method and device that applies the in vivo local membrane potential control method and control device, and is intended for transient reversible cell depolarization or spreading suppression to a target cell population. Can be generated automatically. Transient reversible cell depolarization or spreading suppression continuously, endogenous neural stem (progenitor) cells, other stem cells, or other cells that can divide and proliferate, proliferative activity As a result, the target cell population can be intentionally divided and expanded.
The cells that can divide include cells that produce constituent cells such as peripheral nerves or central nerve cells and the heart, that is, stem (progenitor) cells that produce a cell population that has been considered non-renewable. By this nerve function recovery method and device, it is possible to regenerate an organ that has fallen in function by activating the division and proliferation of stem (progenitor) cells and further increasing the production of growth / nutrient factors. Therefore, the method and apparatus for recovering nerve function according to the present invention provides treatment of brain damaged by various diseases such as cerebral infarction or trauma, or Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar degeneration, muscle atrophic side. It can be used for the treatment of neurodegenerative diseases such as cord sclerosis, chronic pain, or decreased intelligence due to other causes, and the treatment of regional cerebral circulatory failure due to arteriosclerosis.
In the brain, it is possible to increase brain-derived neurotrophic factor by repeatedly causing spreading suppression, which is a transient, reversible depolarization phenomenon that is transmitted, and reduced brain function due to the neurite extension promoting action Can be used to improve or treat depression. On the other hand, when continuous depolarization stimulation using the in vivo local cell depolarization generation method is performed on organs other than the brain, regeneration is measured by dividing and proliferating endogenous stem (precursor) cells in the organ. It can also be used for various cell organ regeneration treatment purposes.

以下、本発明に係る生体内局所膜電位制御方法について説明する。
本発明に係る生体内局所膜電位制御方法は、生体局所において様々なレベルと性質を有する電位変動を意図的に生じさせることを特徴とする。
The in vivo local membrane potential control method according to the present invention will be described below.
The in vivo local membrane potential control method according to the present invention is characterized in that potential fluctuations having various levels and properties are intentionally generated in a local area of the living body.

生体局所の直流電位をある一定以上に変化させると、細胞内外における直流電位の差として観察される分極状態が一過性に減少する方向に傾く、すなわち細胞内外脱分極が生じる。脳では、その局所に生じた脱分極が、一定の閾値に達すると、その脱分極した領域を焦点として周辺に2〜5mm/分程度の固有の速度で伝わる同じく脱分極性の電位変動性波が波紋のように同側脳全体に拡がる。この現象は、伝播性抑制或いは、拡延性抑制(spreading depression)と呼ばれており、すなわち、周囲の細胞集団へ連続的に伝播する性質を有する一過性可逆的細胞脱分極現象である。この現象は、成熟脳の正常な状態では出現せず、偏頭痛時、てんかん発作や脳梗塞、脳に対して極度な温度刺激や脳を傷つける程度の物理的刺激が加えられたとき、或いは、脳虚血等に随伴して生じることが知られている。拡延性抑制そのものは脳にとって無害であることが知られ、また、生体における拡延性抑制現象の有する意義は未だに不明である。拡延性抑制は、通常の偏頭痛発作に随伴して脳内にて生じることでも明らかなごとく、この拡延性抑制現象が単回から数回生じることのみでは、脳における何らかの治療的、或いは、予防的効果を示さないと考えられる。また、このことは下記のごとくに実験的にも裏付けされている。
本発明者は、数時間のみではなく、数日間に及ぶ連続的拡延性抑制の発現誘導が、脳内において新たな神経細胞を増加させることを見出した。即ち、一定期間連続的に拡延性抑制を生じさせることによって、脳内在性神経幹(前駆)細胞の分裂活動が活性化する。一方、同刺激は、脳内での脳由来神経栄養因子をも増加させる。この脳由来神経栄養因子の増加は、神経突起の伸展を促し或いは、中枢神経系に内在する神経幹(前駆)細胞の細胞分裂によって生じた細胞群を神経細胞への分化を促進させる働きを有する。すなわち、長期に及ぶ連続的拡延性抑制の誘導により、脳内では通常極限られた範囲でわずかに生じている神経の新生が促進される。生体内局所膜電位制御方法を適切に応用することで初めて生体における治療、予防効果がもたらされる。
従って、本発明に係る生体内局所膜電位制御方法は、神経機能回復方法として適用することができる。
When the direct-current potential in the living body is changed to a certain value or more, the polarization state observed as the difference between the direct-current potentials inside and outside the cell is tilted in a direction that temporarily decreases, that is, intracellular and extracellular depolarization occurs. In the brain, when the depolarization that occurs locally reaches a certain threshold value, the same depolarizing potential-varying wave that travels at a specific speed of about 2 to 5 mm / min around the depolarized region as a focal point. Spreads throughout the ipsilateral brain like a ripple. This phenomenon is called propagation suppression or spreading depression, that is, a transient reversible cell depolarization phenomenon that has the property of continuously propagating to surrounding cell populations. This phenomenon does not appear in the normal state of the mature brain, when migraine, epileptic seizures or cerebral infarction, extreme temperature stimulation to the brain or physical stimulation that damages the brain, or It is known to occur accompanying cerebral ischemia and the like. It is known that the spread suppression itself is harmless to the brain, and the significance of the spread suppression phenomenon in the living body is still unclear. As is evident from the fact that spreading suppression occurs in the brain associated with a normal migraine attack, only a single to several times of this spreading suppression phenomenon can cause any therapeutic or prevention in the brain. It is thought that it does not show an effective effect. This is also supported experimentally as follows.
The present inventor has found that induction of continuous spreading suppression over several days, not just hours, increases new neurons in the brain. That is, by causing spread suppression continuously for a certain period of time, the division activity of brain intrinsic neural stem (progenitor) cells is activated. On the other hand, this stimulation also increases brain-derived neurotrophic factor in the brain. This increase in brain-derived neurotrophic factor has the function of promoting neurite outgrowth or promoting the differentiation of the cell group produced by cell division of neural stem (progenitor) cells in the central nervous system into nerve cells. . In other words, the induction of continuous spread suppression over a long period of time promotes the neurogenesis that occurs slightly in the brain, usually in a limited range. Appropriate application of the in vivo local membrane potential control method provides therapeutic and preventive effects in vivo.
Therefore, the in vivo local membrane potential control method according to the present invention can be applied as a nerve function recovery method.

細胞の分裂活性を促す性質を有する一過性可逆的脱分極、又は拡延性抑制を生じさせるには、局所直流電位を繰り返し一定に変化させればよく、具体的には、細胞に分裂、増殖活性を生じさせるような局所膜電位の変動を生じさせればよい。
生体局所直流電位を変化させる程度は特に限定されないが、1回あたりの変動に関しては、変動電位刺激により、通常は、−5〜−100mV程度に維持(分極)されている細胞内電位を5〜100mV程度変化(脱分極)させればよい。この局所脱分極が一定の閾値に達することで、脳では、拡延性抑制(伝搬性電位変動波)が生じる。
In order to cause transient reversible depolarization or spreading suppression having the property of promoting cell division activity, the local direct-current potential may be changed repeatedly and specifically, the cell may divide and proliferate. The local membrane potential may be changed so as to cause the activity.
The degree to which the local local direct-current potential is changed is not particularly limited, but regarding the fluctuation per time, the intracellular potential normally maintained (polarized) at about −5 to −100 mV by the fluctuation potential stimulation is changed to 5 to 5. What is necessary is just to change about 100 mV (depolarization). When this local depolarization reaches a certain threshold value, spread suppression (propagating potential fluctuation wave) occurs in the brain.

内在性幹(前駆)細胞の細胞分裂或いは、増殖を促すためには、一定期間連続的に或いは、断続的に可逆的細胞脱分極又は拡延性抑制を生じさせる必要がある。可逆的細胞脱分極の回数、又は拡延性抑制を生じさせる期間は特に限定されないが、可逆的細胞脱分極であれば、少なくとも2〜10回は連続的に、拡延性抑制であれば、少なくとも1〜6時間程度は連続的に生じさせることが必要であり、好ましくは可逆的細胞脱分極であれば、10回以上、拡延性抑制であれば、6時間以上、さらにこれらを断続的に繰り返し生じさせればよい。   In order to promote the cell division or proliferation of endogenous stem (progenitor) cells, it is necessary to cause reversible cell depolarization or spreading suppression continuously for a certain period or intermittently. The number of reversible cell depolarizations or the period for causing spread suppression is not particularly limited, but at least 2 to 10 times continuously for reversible cell depolarization and at least 1 for spread suppression. ˜6 hours must be continuously generated, preferably 10 times or more if reversible cell depolarization, 6 hours or more if spreadability is suppressed, and further repeated intermittently. You can do it.

脳や神経幹(前駆)細胞などの生体に与えられる変動電位刺激の各種パラメータ値は特に限定されず、脳や神経幹(前駆)細胞などの生体に可逆的細胞脱分極又は拡延性抑制を生じさせることができる電位変動であれば構わない。
生体に電位変動を与える方法は特に限定されないが、例えば、変動磁場内に置かれることで、生体に変動電位刺激を与えることができる(即ち、変動磁場を変動電位に変換することができる)変動電位変換手段を脳などの生体局所に配置して、この変動電位変換手段に外部から変動磁場を与える方法を例示することができる。
特に本発明では、変動電位変換手段に与えられる変動磁場刺激はパルス磁場刺激であることが好ましい。パルス磁場の一例としては、周波数が1〜3000Hz、好ましくは1〜50Hz、パルス幅が0.0001〜10000ms、好ましくは0.1〜3000ms、平均磁場強度が0.1〜100T、好ましくは0.5〜10Tであるパルス磁場を例示することができる。
尚、変動磁場を変動電位変換手段に与えた際に変動電位変換手段が生体に与える電位変動は、変動電位変換手段に与えられる変動磁場刺激の大きさ、変動磁場を生成する装置と変動電位変換手段との位置関係や距離、変動電位変換手段の形態などに応じて変化する。従って、前記した変動磁場刺激のパラメータ値は一例であり、変動電位変換手段から生体に与えられる電位変動が生体に可逆的細胞脱分極又は拡延性抑制を生じさせることができる電位変動となるような変動磁場刺激が、変動電位変換手段に与えられればよい。
脳や神経幹(前駆)細胞などの生体に電位変動を与える期間は特に限定されないが、1日当り1時間〜24時間の連続或いは、断続刺激を1〜30日間程度与えればよい。
Various parameter values of variable potential stimulation applied to living bodies such as brain and neural stem (progenitor) cells are not particularly limited, and reversible cell depolarization or spreading suppression occurs in living bodies such as brain and neural stem (precursor) cells. Any potential fluctuation can be used.
A method for applying a potential variation to a living body is not particularly limited. For example, a variation in which a living body can be subjected to a varying potential stimulus by being placed in a varying magnetic field (that is, a varying magnetic field can be converted into a varying potential). An example is a method in which the potential converting means is disposed locally in a living body such as the brain and a varying magnetic field is applied to the varying potential converting means from the outside.
In particular, in the present invention, it is preferable that the fluctuation magnetic field stimulation given to the fluctuation potential converting means is a pulse magnetic field stimulation. As an example of the pulse magnetic field, the frequency is 1 to 3000 Hz, preferably 1 to 50 Hz, the pulse width is 0.0001 to 10000 ms, preferably 0.1 to 3000 ms, and the average magnetic field strength is 0.1 to 100 T, preferably 0. The pulse magnetic field which is 5-10T can be illustrated.
The potential fluctuation that the fluctuation potential conversion means gives to the living body when the fluctuation magnetic field is given to the fluctuation potential conversion means is the magnitude of the fluctuation magnetic field stimulus given to the fluctuation potential conversion means, the apparatus that generates the fluctuation magnetic field, and the fluctuation potential conversion. It varies depending on the positional relationship with the means, the distance, the form of the fluctuation potential conversion means, and the like. Therefore, the parameter value of the above-mentioned variable magnetic field stimulation is an example, and the potential fluctuation given to the living body from the variable potential conversion means becomes a potential fluctuation that can cause reversible cell depolarization or spreading suppression in the living body. Fluctuating magnetic field stimulation may be applied to the varying potential conversion means.
There is no particular limitation on the period during which potential changes are applied to living bodies such as brain and neural stem (progenitor) cells, but continuous or intermittent stimulation for 1 to 24 hours per day may be applied for about 1 to 30 days.

電位変動を与える脳の部分は特に限定されず、例えば、脳皮質、海馬、基底核、中脳、小脳、延髄などを例示することができる。
また電位変動は、この他の細胞分裂によって再生を期待する臓器に与えることもできる。
The part of the brain that gives potential fluctuation is not particularly limited, and examples thereof include brain cortex, hippocampus, basal ganglia, midbrain, cerebellum, medulla and the like.
The potential fluctuation can also be applied to other organs that are expected to be regenerated by cell division.

次に、本発明に係る生体内局所膜電位制御装置について説明する。生体内局所膜電位制御装置(以下、単に制御装置という場合がある。)は、生体局所において様々なレベルと性質を有する電位変動を意図的に生じさせることができる。図1は本発明に係る制御装置の概略を示すブロック図である。
本発明に係る制御装置(10)は、電流の供給によって変動磁場を生成することができる変動磁場生成手段(12)と、変動磁場生成手段(12)に電流を供給する電流供給部(11)と、変動磁場生成手段(12)によって生成された変動磁場を変動電位に変換して生体に電位変動を与えることができる変動電位変換手段(13)と、を含む。
Next, the in-vivo local membrane potential control apparatus according to the present invention will be described. An in-vivo local membrane potential control device (hereinafter sometimes simply referred to as a control device) can intentionally generate potential fluctuations having various levels and properties in a local region of the living body. FIG. 1 is a block diagram showing an outline of a control device according to the present invention.
The control device (10) according to the present invention includes a variable magnetic field generation unit (12) that can generate a variable magnetic field by supplying current, and a current supply unit (11) that supplies a current to the variable magnetic field generation unit (12). And a fluctuation potential conversion means (13) capable of converting the fluctuation magnetic field generated by the fluctuation magnetic field generation means (12) into a fluctuation potential to give a potential fluctuation to the living body.

電流供給部(11)は、変動磁場生成手段(12)に変動磁場を生成させることができる電流を供給するために設けられており、図示例の電流供給部(11)は、電源部(11a)と制御部(11b)と出力部(11c)とから構成されている。
電源部(11a)は所要の電流を供給するために設けられており、例えば、アルカリイオン電池、リチウムイオン電池、100V電源、200V電源、バッテリーなどが用いられる。
The current supply unit (11) is provided to supply a current that can cause the variable magnetic field generation means (12) to generate a variable magnetic field. The current supply unit (11) in the illustrated example includes the power supply unit (11a). ), A control unit (11b), and an output unit (11c).
The power supply unit (11a) is provided to supply a required current. For example, an alkaline ion battery, a lithium ion battery, a 100V power supply, a 200V power supply, a battery, or the like is used.

制御部(11b)は、CPU(図示せず)、発振器(図示せず)、電源部(11a)から供給された電力の電圧を調節するための電圧調節器(図示せず)などから構成されている。電源部(11a)からの電源供給を受けるとともに、所要の電流を出力するように出力部(11c)を制御する。
出力部(11c)は、制御部(11b)の制御によって、変動磁場生成手段(12)に所要の電流を出力する。
出力部(11c)と変動磁場生成手段(12)はリード線などにより接続されている。
The control unit (11b) includes a CPU (not shown), an oscillator (not shown), a voltage regulator (not shown) for adjusting the voltage of power supplied from the power supply unit (11a), and the like. ing. While receiving the power supply from the power supply unit (11a), the output unit (11c) is controlled so as to output a required current.
The output unit (11c) outputs a required current to the variable magnetic field generation means (12) under the control of the control unit (11b).
The output unit (11c) and the variable magnetic field generation means (12) are connected by a lead wire or the like.

変動磁場生成手段(12)は、電流供給部(11)からの電流供給によって変動磁場を生成することができるものであればよく、具体的には、ヘルムホルツコイルなどを例示することができる。また、電流供給部(11)からの電流供給によって、磁性体を回転させて変動磁場を生成することができるものであっても構わない。   The variable magnetic field generation means (12) may be any means as long as it can generate a variable magnetic field by supplying current from the current supply unit (11). Specifically, a Helmholtz coil or the like can be exemplified. Further, the magnetic field may be generated by rotating the magnetic body by supplying current from the current supply unit (11).

図2は、変動電位変換手段(13)の概略構成を示す部分断面図である。
変動電位変換手段(13)は、変動磁場生成手段(12)によって生成された変動磁場を変動電位に変換して生体に変動電位刺激を与えることができる。通常の場合、変動電位変換手段(13)は、変動磁場生成手段(12)と物理的空間的に離れて配置される。
変動電位変換手段(13)としては、変動磁場内に置かれることによって生体に変動電位刺激を与えることができるものであればよい。変動磁場内に置かれることによって変動電位を生成することができるものとしては、例えば、導電体を例示することができ、具体的には、ステンレス、鉄、アルミニウム、銅、金、銀などの金属、或いは導電性ポリアセチレン、導電性ポリチオフェン、導電性ポリピロールなどの導電性ポリマーなどを例示することができる。
変動電位変換手段(13)の形態は特に限定されず、例えば、球形、ネジ型、プレート状、膜状、或いはこれらの形状を組み合わせた形状を例示することができる。
変動電位変換手段(13)は、生成した変動電位が生体内の目的とする生体(細胞)膜に到達するように、必要に応じて、リード線、或いは変動電位変換手段(13)の一定部分を覆う絶縁体が付属する。
図2の(a)に示す変動電位変換手段(13)では、導電体(13a)の一部表面のみが露出するように、導電体(13a)のその他の表面は絶縁体(13b)により被覆されている。図2の(a)に示す変動電位変換手段(13)は、絶縁体(13b)によって被覆されていない導電体(13a)の一部表面が、変動電位刺激を与える目的部位或いはその近傍と直接接触するように配置される。
図2の(b)に示す変動電位変換手段(13)では、導電体(13a)の全表面は絶縁体(13b)により被覆されているとともに、リード線(13c)が設けられており、リード線(13c)の一方の端部は導電体(13a)に接続されている。リード線(13c)の他方の端部は、電位変動を与える目的部位或いはその近傍に配置される。
FIG. 2 is a partial cross-sectional view showing a schematic configuration of the variable potential conversion means (13).
The fluctuation potential conversion means (13) can convert the fluctuation magnetic field generated by the fluctuation magnetic field generation means (12) into a fluctuation potential to give a fluctuation potential stimulus to the living body. In a normal case, the fluctuation potential conversion means (13) is arranged physically and spatially separated from the fluctuation magnetic field generation means (12).
The variable potential conversion means (13) may be any means as long as it can apply a variable potential stimulus to a living body by being placed in a variable magnetic field. For example, a conductor can be exemplified as one that can generate a variable potential by being placed in a variable magnetic field, and specifically, a metal such as stainless steel, iron, aluminum, copper, gold, silver, and the like. Alternatively, conductive polymers such as conductive polyacetylene, conductive polythiophene, and conductive polypyrrole can be exemplified.
The form of the variable potential conversion means (13) is not particularly limited, and examples thereof include a spherical shape, a screw shape, a plate shape, a membrane shape, or a shape obtained by combining these shapes.
The variable potential converting means (13) is a lead wire or a fixed portion of the variable potential converting means (13) as necessary so that the generated variable potential reaches the target biological (cell) membrane in the living body. Insulator covering is attached.
In the variable potential conversion means (13) shown in FIG. 2 (a), the other surface of the conductor (13a) is covered with an insulator (13b) so that only a part of the surface of the conductor (13a) is exposed. Has been. The variable potential conversion means (13) shown in FIG. 2 (a) is such that a part of the surface of the conductor (13a) that is not covered with the insulator (13b) is directly on or near the target site for applying the variable potential stimulus. Arranged to touch.
In the variable potential conversion means (13) shown in FIG. 2B, the entire surface of the conductor (13a) is covered with an insulator (13b), and a lead wire (13c) is provided. One end of the line (13c) is connected to the conductor (13a). The other end of the lead wire (13c) is arranged at or near the target site that gives potential fluctuations.

変動電位変換手段(13)を配置する個数は特に限定されないが、変動電位刺激を与えたい目的部位(例えば、大脳、小脳、血管、神経細胞など)或いはその近傍に、複数個の変動電位変換手段(13)からの変動電位刺激が与えられるように配置する必要があり、図1では、変動電位変換手段(13)は大脳(B)と接するように合計4個配置されている。
複数個配置される変動電位変換手段(13)は、全ての変動電位変換手段(13)が同じ形態であっても構わないし、異なる形態であっても構わない。また、その個数は特に限定されない。
The number of the variable potential conversion means (13) to be arranged is not particularly limited, but a plurality of variable potential conversion means are provided at or near a target site (for example, cerebrum, cerebellum, blood vessel, nerve cell, etc.) to which the variable potential stimulation is to be applied. It is necessary to arrange so that the fluctuation potential stimulation from (13) is given. In FIG. 1, a total of four fluctuation potential conversion means (13) are arranged so as to be in contact with the cerebrum (B).
In the plurality of variable potential conversion means (13) arranged, all the variable potential conversion means (13) may have the same form or different forms. Moreover, the number is not specifically limited.

図3及び4は、変動電位変換手段(13)を生体に配置した状態を示す図である。尚、図3及び4中、aは頭皮であり、bは頭骨であり、cは硬膜であり、dはくも膜であり、eはくも膜下腔であり、fは軟膜であり、gは大脳皮質である。
変動電位変換手段(13)は、変動磁場を受けることによって生成された変動電位刺激を生体に与えることができるように配置されていれば特に限定されず、変動電位変換手段(13)は皮下に埋め込むことも可能であるし、また体外に配置することもできる。
変動電位変換手段(13)を皮下に埋め込む場合、変動電位変換手段(13)が配置される位置は特に限定されないが、変動電位刺激の到達部位が脳皮質、海馬、基底核、中脳、小脳、延髄などとなるように、これらの目的箇所或いはその近傍に変動電位変換手段(13)の一部(絶縁体で覆われていない部分)が接触するように配置することができる。
この他、細胞分裂による組織再生、臓器再生或いは血管再生を期待する臓器或いは血管を構築する細胞集団に接するような位置に配置したり、目的箇所から離れた位置に埋め込んだ変動電位変換手段(13)で生成した電位変動を、皮下に埋め込んだリード線を介して目的箇所或いはその近傍に誘導したりしても構わない。皮下に埋め込んだ場合は、長期間の電位変動に適している。
変動電位変換手段(13)を体外に配置する場合は、例えば、細胞分裂による組織再生或いは、臓器再生を期待する臓器或いは、血管の近傍の皮膚と接するように配置して、この変動電位変換手段(13)で生成した変動電位を、皮下に埋め込んだリード線を介して目的箇所に誘導すればよい。体外に配置した場合は、短期間の変動電位生成に適している。
3 and 4 are views showing a state in which the variable potential conversion means (13) is arranged in the living body. 3 and 4, a is the scalp, b is the skull, c is the dura mater, d is the arachnoid membrane, e is the subarachnoid space, f is the pia mater, and g is the cerebrum. Cortex.
The fluctuation potential conversion means (13) is not particularly limited as long as it is arranged so that a fluctuation potential stimulation generated by receiving a fluctuation magnetic field can be given to a living body, and the fluctuation potential conversion means (13) is subcutaneously provided. It can be implanted or placed outside the body.
When the variable potential converting means (13) is implanted subcutaneously, the position where the variable potential converting means (13) is arranged is not particularly limited, but the arrival site of the variable potential stimulus is the brain cortex, hippocampus, basal ganglia, midbrain, cerebellum. And it can arrange | position so that a part (part which is not covered with an insulator) of the fluctuation potential conversion means (13) may contact these target locations or its vicinity so that it may become a medulla.
In addition to this, a variable potential conversion means (13) arranged at a position in contact with a tissue group by cell division, organ regeneration, or a cell population for constructing blood vessels, or embedded at a position away from a target location. The potential fluctuation generated in (1) may be guided to the target location or the vicinity thereof via a lead wire embedded under the skin. When implanted subcutaneously, it is suitable for long-term potential fluctuations.
When the variable potential converting means (13) is arranged outside the body, for example, the variable potential converting means is arranged so as to be in contact with an organ that is expected to undergo tissue regeneration or organ regeneration or skin near the blood vessel. The variable potential generated in (13) may be guided to the target location via a lead wire embedded under the skin. When arranged outside the body, it is suitable for short-term fluctuation potential generation.

具体的には、図3に示すように、頭骨(b)に穿孔して孔部を設けて、この孔部に、硬膜(c)と接するように変動電位変換手段(13)を配置する方法を例示することができる。尚、図3に示す変動電位変換手段(13)の硬膜(c)と接する部分以外の部分には、絶縁体が設けられており、変動磁場を受けることによって生成した変動電位は、硬膜に直接到達することができる。この硬膜に伝わった変動電位は、くも膜や軟膜およびその周辺の構造物を介して脳へと伝わる。
また図4に示すように、変動電位変換手段(13)を頭皮(a)表面に配置するとともに、頭骨に穿孔して孔部を設けて、この孔部からリード線(13c)を硬膜(c)に接続する方法を例示することができる。尚、図4に示す変動電位変換手段(13)の周囲は絶縁体で覆われており、変動磁場を受けることによって生成した電位変動は、リード線(13c)を通じて硬膜に到達することができる。
Specifically, as shown in FIG. 3, the skull (b) is perforated to provide a hole, and the variable potential converting means (13) is disposed in this hole so as to be in contact with the dura mater (c). A method can be illustrated. Incidentally, an insulator is provided in a portion other than the portion in contact with the dura mater (c) of the fluctuating potential converting means (13) shown in FIG. 3, and the fluctuating potential generated by receiving the varying magnetic field is the dura mater. Can be reached directly. The fluctuation potential transmitted to the dura mater is transmitted to the brain via the arachnoid membrane, the buffy coat and surrounding structures.
As shown in FIG. 4, the variable potential converting means (13) is disposed on the surface of the scalp (a), and the skull is perforated to provide a hole, from which the lead wire (13c) is connected to the dura mater ( The method of connecting to c) can be illustrated. 4 is covered with an insulator, and the potential fluctuation generated by receiving the fluctuation magnetic field can reach the dura mater through the lead wire (13c). .

次に、本発明に係る制御装置(1)の作用について説明する。
変動磁場生成手段(12)に、電源供給部(11)から電流が供給されることによって、変動磁場生成手段(12)は変動磁場を生成する。
生体には、変動磁場内に置かれることによって電位変動を生成することができる変動電位変換手段(13)の複数個が、所要の位置に配置されている。図1の例では、電位変動を脳(B)に与える場合が示されており、合計4個の変動電位変換手段(13)が片側脳(B)の硬膜と接するように配置されている(配置する変動電位手段の個数は特に限定されない)。
変動磁場生成手段(12)によって生成した変動磁場内に変動電位変換手段(13)を置くことにより、変動電位変換手段(13)において変動電位が生じる。この変動電位は脳神経細胞に対する脱分極性刺激となり、その刺激が一定の閾値に達すると脳(B)には拡延性抑制が生じる。
長期にわたって連続的に拡延性抑制が生じることにより、内在性神経幹(前駆)細胞の分裂活動、及び、脳由来神経栄養因子の産生を増加させることができる。これにより、脳(B)内では機能回復に関連する神経突起の進展や新たな神経細胞の産生等が促進される。従って、本発明に係る制御装置(1)は、神経機能回復装置として利用することができる。
Next, the operation of the control device (1) according to the present invention will be described.
When the current is supplied from the power supply unit (11) to the variable magnetic field generating means (12), the variable magnetic field generating means (12) generates a variable magnetic field.
In the living body, a plurality of variable potential conversion means (13) that can generate a potential variation by being placed in a varying magnetic field are arranged at a required position. In the example of FIG. 1, a case where potential fluctuation is applied to the brain (B) is shown, and a total of four fluctuation potential conversion means (13) are arranged so as to be in contact with the dura mater of the unilateral brain (B). (The number of variable potential means to be arranged is not particularly limited).
By placing the fluctuation potential conversion means (13) within the fluctuation magnetic field generated by the fluctuation magnetic field generation means (12), a fluctuation potential is generated in the fluctuation potential conversion means (13). This fluctuation potential becomes a depolarizing stimulus for the cerebral nerve cell, and when the stimulus reaches a certain threshold value, spreading suppression occurs in the brain (B).
The continuous spreading suppression over a long period of time can increase the endogenous neural stem (progenitor) cell division activity and the production of brain-derived neurotrophic factor. Thereby, in the brain (B), the development of neurites related to functional recovery, production of new neurons, and the like are promoted. Therefore, the control device (1) according to the present invention can be used as a nerve function recovery device.

本発明に係る生体内局所膜電位制御方法並びに装置及び神経機能回復方法並びに装置は、あらゆる動物の脳や神経幹(前駆)細胞に適用することができ、特にヒト、サル、ウシ、ヒツジ、ウマなどの哺乳動物に好適に適用することができる。   The in vivo local membrane potential control method and apparatus, and the nerve function recovery method and apparatus according to the present invention can be applied to the brain and nerve stem (progenitor) cells of any animal, and particularly humans, monkeys, cows, sheep, horses. It can apply suitably to mammals, such as.

以下、本発明を実施例に基づき説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(試験例)
8〜9週齢のSprague−Dawley系雄性ラットの頭蓋に、変動電位変換手段として、直径2mmの球形金属導電体(ステンレス製)4個を硬膜に接するように頭蓋骨に穿った小孔内に外科的に留置し、外面より接着剤を用いて骨内に固定した。変動電位変換手段の一部表面が脳表面を覆う硬膜に接するよう配置することで、変動電位変換手段により生成した電位変動は、硬膜を介して脳に達することが可能となった。
変動電位変換手段を固定した後、頭部皮膚は縫合、閉創した。この処置後、この変動電位変換手段に対して、体外より、刺激頻度25パルス/秒、パルス幅0.2m秒、磁束変化率が毎秒30〜120kTである変動磁場を1回連続2秒間、10分間隔に計18回与えることで脳局所の電位を変動させ、拡延性抑制の誘発を試みた。変動磁場による電位変動後、3日後に脳を取り出し、脳内での拡延性抑制が出現したことの組織学的指標となるグリア線維性酸性蛋白質(GFAP)或いは、脳由来神経栄養因子(BDNF)の発現を観察した。
グリア線維性酸性蛋白質(GFAP)の観察に使用したラットの脳の顕微鏡写真を図5に、脳由来神経栄養因子(BDNF)の観察に使用したラットの脳の顕微鏡写真を図6に、それぞれ示す。図5及び6の(1)は、比較対照のラットの脳を示す顕微鏡写真であり、図5及び6の(2)が球形金属導電体で変動電位刺激を与えたラットの脳を示す顕微鏡写真である。
摘出した脳を組織学的に観察した結果、刺激側脳内での広範囲にわたるGFAP及び脳由来神経栄養因子の増加が確認された。即ち、変動磁場を用いた細胞脱分極発生法は脳内において拡延性抑制を生じさせたことが明らかとなった。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.
(Test example)
In the cranium of 8-9 week old Sprague-Dawley male rats, as a variable potential conversion means, 4 spherical metal conductors (made of stainless steel) with a diameter of 2 mm were placed in a small hole drilled in the skull so as to contact the dura mater. It was placed surgically and fixed in the bone using an adhesive from the outer surface. By arranging the partial surface of the variable potential converting means so as to contact the dura mater covering the brain surface, the potential fluctuation generated by the variable potential converting means can reach the brain through the dura mater.
After fixing the variable potential conversion means, the head skin was sutured and closed. After this treatment, a fluctuation magnetic field having a stimulation frequency of 25 pulses / second, a pulse width of 0.2 msec, and a magnetic flux change rate of 30 to 120 kT per second is continuously applied to the fluctuating potential converting means once for 2 seconds. By giving a total of 18 times per minute, the brain local potential was varied to try to induce spreading suppression. Three days after the potential fluctuation due to the changing magnetic field, the brain was taken out, and glial fibrillary acidic protein (GFAP) or brain-derived neurotrophic factor (BDNF) is used as a histological indicator that spread suppression in the brain has appeared. The expression of was observed.
FIG. 5 shows a micrograph of a rat brain used for observation of glial fibrillary acidic protein (GFAP), and FIG. 6 shows a micrograph of a rat brain used for observation of brain-derived neurotrophic factor (BDNF). . (1) in FIGS. 5 and 6 are micrographs showing the brains of comparative rats, and (2) in FIGS. 5 and 6 are micrographs showing the brains of rats subjected to varying potential stimulation with a spherical metal conductor. It is.
As a result of histological observation of the isolated brain, it was confirmed that GFAP and brain-derived neurotrophic factor increased extensively in the stimulating brain. That is, it has been clarified that the cell depolarization generation method using the variable magnetic field caused the spread suppression in the brain.

一方、同じくラットを用いた実験系により、局所塩化カリウムの注入を用いて誘導した48時間にわたる連続的拡延性抑制(拡延性抑制は、電位的刺激の他、化学的刺激による細胞膜脱分極でも生じさせることが可能である)が、通常の成長発達後のラット前頭葉側脳室壁下層での幼若神経細胞数を急激に増加させること、また、通常は存在しない脳内の他の部位、即ち基底核部や脳皮質内において広範囲に多数の新生神経細胞が出現することを見出している。   On the other hand, the experimental system using rats was also used for 48 hours of continuous spreading suppression induced by local potassium chloride injection (spreading suppression occurred not only by potential stimulation but also by cell membrane depolarization by chemical stimulation. Abruptly increases the number of juvenile neurons in the rat frontal lobe subventricular wall after normal growth and development, and other parts of the brain that are not normally present, i.e. It has been found that a large number of new neurons appear in the basal ganglia and brain cortex.

本発明に係る生体内局所膜電位制御方法及び神経機能回復方法は、安全に、しかも意図した膜電位の変化を局所にて生じさせることが可能であり、生体内における直流電位上の変化を伴う現象、すなわち、中枢神経活動、神経伝達、骨格筋の収縮或いは弛緩、心筋の収縮或いは弛緩、消化管におけるぜん動運動、各種括約筋の収縮或いは弛緩等の制御手段あるいは、刺激手段として応用することができる。
本発明に係る生体内局所膜電位制御装置及び神経機能回復装置は、一過性可逆的細胞脱分極刺激を用いた連続的な拡延性抑制を生じさせることが可能であり、その結果、脳由来神経栄養因子の産生を高め、神経細胞を新生させることができる。
また本発明に係る神経機能回復装置は、アルツハイマー病、パーキンソン病、ハンチントン病、脊髄小脳変性症、筋萎縮性側索硬化症などの神経変性疾患或いはその他の原因による脳機能低下などの治療装置として用いることができる。また、各種ストレスに対する脳の抵抗性を高めるため、様々な脳神経損傷・障害の軽減装置として利用することができる。さらに一過性可逆的細胞脱分極又は拡延性抑制の産生は脳神経細胞或いはその他の細胞を新たに産生させるため、脳梗塞や外傷などによって揖傷を受けた脳或いはその他の臓器の機能回復装置や臓器再生装置として利用することができる。
The in vivo local membrane potential control method and nerve function recovery method according to the present invention can safely and yet cause an intended change in membrane potential locally, accompanied by a change in DC potential in vivo. It can be applied as a control means or stimulation means for phenomena such as central nervous activity, nerve transmission, contraction or relaxation of skeletal muscle, contraction or relaxation of myocardium, peristaltic movement in the digestive tract, contraction or relaxation of various sphincters .
The in vivo local membrane potential control device and nerve function recovery device according to the present invention can cause continuous spread suppression using transient reversible cell depolarization stimulation, and as a result, derived from the brain. It is possible to increase the production of neurotrophic factors and to regenerate nerve cells.
The nerve function recovery device according to the present invention is a therapeutic device for neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar degeneration, amyotrophic lateral sclerosis, or other causes of brain function decline. Can be used. Moreover, in order to increase the resistance of the brain to various stresses, it can be used as a device for reducing various cranial nerve damages / disorders. Furthermore, the production of transient reversible cell depolarization or spreading suppression newly produces cranial nerve cells or other cells, so that the function recovery device for brain or other organs that have been contusioned by cerebral infarction or trauma, etc. It can be used as an organ regeneration device.

本発明に係る生体内局所膜電位制御装置の概略を示すブロック図である。It is a block diagram which shows the outline of the in-vivo local membrane potential control apparatus which concerns on this invention. (a)及び(b)は、変動電位変換手段の部分断面図である。(A) And (b) is a fragmentary sectional view of a fluctuation potential conversion means. 変動電位変換手段を生体に配置する状態を示した図である。変動電位変換手段は、頭骨に穿孔されて設けられた孔部内に、硬膜と接するように配置されている。It is the figure which showed the state which arrange | positions a fluctuation potential conversion means to a biological body. The variable potential converting means is disposed in contact with the dura mater in a hole provided by being drilled in the skull. 変動電位変換手段を生体に配置する状態を示した図である。変動電位変換手段は、頭皮表面に配置されており、この変動電位変換手段にはリード線が設けられており、このリード線が硬膜と接するように配置されている。It is the figure which showed the state which arrange | positions a fluctuation potential conversion means to a biological body. The variable potential converting means is arranged on the scalp surface, and the variable potential converting means is provided with a lead wire, and the lead wire is arranged so as to be in contact with the dura mater. グリア線維性酸性蛋白質(GFAP)の観察に使用したラットの脳の顕微鏡写真であり、(1)は比較対照のラットの脳を示す顕微鏡写真であり、(2)は球形金属導電体で変動電位刺激を繰り返し与えたラットの脳を示す顕微鏡写真である。It is a micrograph of a rat brain used for observation of glial fibrillary acidic protein (GFAP), (1) is a micrograph showing the brain of a comparative rat, and (2) is a spherical metal conductor with a variable potential. It is a microscope picture which shows the brain of the rat which gave irritation | stimulation repeatedly. 脳由来神経栄養因子(BDNF)の観察に使用したラットの脳の顕微鏡写真であり、(1)は比較対照のラットの脳を示す顕微鏡写真であり、(2)が球形金属導電体で変動電位刺激を繰り返し与えたラットの脳を示す顕微鏡写真である。It is the microscope picture of the brain of the rat used for observation of a brain origin neurotrophic factor (BDNF), (1) is a microscope picture which shows the brain of the rat of a comparison control, (2) is a spherical metal conductor, and is a fluctuation potential. It is a microscope picture which shows the brain of the rat which gave irritation | stimulation repeatedly.

符号の説明Explanation of symbols

10 生体内局所膜電位制御装置
11 電気信号生成手段
11a 電源部
11b 制御部
11c 出力部
12 変動磁場生成手段
13 変動電位変換手段
13a 導電体
13b 絶縁体
13c リード線
B 脳
a 頭皮
b 頭骨
c 硬膜
d くも膜
e くも膜下腔
f 軟膜
g 大脳皮質
DESCRIPTION OF SYMBOLS 10 In-vivo local membrane potential control apparatus 11 Electric signal generation means 11a Power supply part 11b Control part 11c Output part 12 Fluctuation magnetic field generation means 13 Fluctuation potential conversion means 13a Conductor 13b Insulator 13c Lead wire B Brain a Scalp b Skull c Dura d Arachnoid e Subarachnoid space f Luffy coat g Cerebral cortex

Claims (12)

生体内に留置した導電体に電位変動を生じさせ、それにより生体内局所における膜電位を制御することを特徴とする生体内局所膜電位制御方法。   A method for controlling a local membrane potential in a living body, wherein a potential fluctuation is caused in a conductor placed in the living body, thereby controlling a membrane potential in a local area in the living body. 生体内に留置した導電体に電位変動を生じさせ、それにより生体内局所における膜電位を制御することを特徴とする神経機能回復方法。   A method for recovering a nerve function, characterized by causing a potential fluctuation to occur in a conductor placed in a living body, thereby controlling a membrane potential in a local area in the living body. 電流の供給により変動磁場を生成する変動磁場生成手段と、該変動磁場生成手段に電流を供給する電流供給部と、該変動磁場生成手段によって生成された変動磁場を変動電位に変換して生体に変動電位刺激を与える変動電位変換手段と、を含み、
前記変動電位変換手段は、前記電流供給部からの電流供給によって前記変動磁場生成手段が生成した変動磁場を生体内局所において変動電位に変換して、該変動電位を生体に与えて、可逆的細胞脱分極又は伝播性抑制を生じさせることを特徴とする生体内局所膜電位制御装置。
Fluctuating magnetic field generating means for generating a fluctuating magnetic field by supplying current, a current supply unit for supplying current to the fluctuating magnetic field generating means, and converting the fluctuating magnetic field generated by the fluctuating magnetic field generating means to a fluctuating potential to a living body A variable potential conversion means for applying a variable potential stimulus,
The fluctuation potential converting means converts the fluctuation magnetic field generated by the fluctuation magnetic field generation means by current supply from the current supply section into a fluctuation potential locally in the living body, gives the fluctuation potential to the living body, and reversible cells. An in-vivo local membrane potential controller characterized by causing depolarization or propagation suppression.
前記変動磁場生成手段が生成する変動磁場が、パルス磁場であることを特徴とする請求項3に記載の生体内局所膜電位制御装置。   The in-vivo local membrane potential control apparatus according to claim 3, wherein the fluctuating magnetic field generated by the fluctuating magnetic field generating means is a pulsed magnetic field. 前記変動磁場生成手段が生成する変動磁場が、周波数1〜3000Hz、パルス幅0.0001〜10000ms、平均磁場強度0.1〜100Tであることを特徴とする請求項3又は4に記載の生体内局所膜電位制御装置。   The in vivo body according to claim 3 or 4, wherein the fluctuating magnetic field generated by the fluctuating magnetic field generating means has a frequency of 1 to 3000 Hz, a pulse width of 0.0001 to 10000 ms, and an average magnetic field strength of 0.1 to 100T. Local membrane potential control device. 前記変動電位変換手段が、導電体を含むことを特徴とする請求項3乃至5のいずれかに記載の生体内局所膜電位制御装置。   The in-vivo local membrane potential control apparatus according to any one of claims 3 to 5, wherein the variable potential conversion means includes a conductor. 前記導電体の表面の一部又は全面が絶縁体によって覆われていることを特徴とする請求項6に記載の生体内局所膜電位制御装置。   The in-vivo local membrane potential control apparatus according to claim 6, wherein a part or the entire surface of the conductor is covered with an insulator. 電流の供給により変動磁場を生成する変動磁場生成手段と、該変動磁場生成手段に電流を供給する電流供給部と、該変動磁場生成手段によって生成された変動磁場を変動電位に変換して生体に変動電位刺激を与える変動電位変換手段と、を含み、
前記変動電位変換手段は、前記電流供給部からの電流供給によって前記変動磁場生成手段が生成した変動磁場を生体内局所において変動電位に変換して、該変動電位を生体に与えて、可逆的細胞脱分極又は伝播性抑制を生じさせることを特徴とする神経機能回復装置。
Fluctuating magnetic field generating means for generating a fluctuating magnetic field by supplying current, a current supply unit for supplying current to the fluctuating magnetic field generating means, and converting the fluctuating magnetic field generated by the fluctuating magnetic field generating means to a fluctuating potential to a living body A variable potential conversion means for applying a variable potential stimulus,
The fluctuation potential converting means converts the fluctuation magnetic field generated by the fluctuation magnetic field generation means by current supply from the current supply section into a fluctuation potential locally in the living body, gives the fluctuation potential to the living body, and reversible cells. A nerve function recovery device characterized by causing depolarization or propagating suppression.
前記変動磁場生成手段が生成する変動磁場が、パルス磁場であることを特徴とする請求項8に記載の神経機能回復装置。   9. The nerve function recovery apparatus according to claim 8, wherein the fluctuation magnetic field generated by the fluctuation magnetic field generation means is a pulse magnetic field. 前記変動磁場生成手段が生成する変動磁場が、周波数1〜3000Hz、パルス幅0.0001〜10000ms、平均磁場強度0.1〜100Tであることを特徴とする請求項8又は9に記載の神経機能回復装置。   The neural function according to claim 8 or 9, wherein the fluctuation magnetic field generated by the fluctuation magnetic field generation means has a frequency of 1 to 3000 Hz, a pulse width of 0.0001 to 10000 ms, and an average magnetic field strength of 0.1 to 100T. Recovery device. 前記変動電位変換手段が、導電体を含むことを特徴とする請求項8乃至10のいずれかに記載の神経機能回復装置。   The nerve function recovery apparatus according to claim 8, wherein the variable potential conversion means includes a conductor. 前記導電体の表面の一部又は全面が絶縁体によって覆われていることを特徴とする請求項11に記載の神経機能回復装置。
The nerve function recovery apparatus according to claim 11, wherein a part or the entire surface of the conductor is covered with an insulator.
JP2004282082A 2004-09-28 2004-09-28 In vivo local membrane potential control device and nerve function recovery device Active JP4613285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282082A JP4613285B2 (en) 2004-09-28 2004-09-28 In vivo local membrane potential control device and nerve function recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282082A JP4613285B2 (en) 2004-09-28 2004-09-28 In vivo local membrane potential control device and nerve function recovery device

Publications (2)

Publication Number Publication Date
JP2006094940A true JP2006094940A (en) 2006-04-13
JP4613285B2 JP4613285B2 (en) 2011-01-12

Family

ID=36235325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282082A Active JP4613285B2 (en) 2004-09-28 2004-09-28 In vivo local membrane potential control device and nerve function recovery device

Country Status (1)

Country Link
JP (1) JP4613285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056414A1 (en) * 2006-11-08 2008-05-15 Medical Appliance Co., Ltd. Neurotrophic factor production accelerating apparatus
CN102008782B (en) * 2006-11-08 2014-11-26 株式会社P·曼德 Neurotrophic factor production promoting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066162A2 (en) * 2002-02-07 2003-08-14 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a change in a neural-function of a patient

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066162A2 (en) * 2002-02-07 2003-08-14 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a change in a neural-function of a patient

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056414A1 (en) * 2006-11-08 2008-05-15 Medical Appliance Co., Ltd. Neurotrophic factor production accelerating apparatus
US8562506B2 (en) 2006-11-08 2013-10-22 P-Mind Co., Ltd. Neurotrophic factor production promoting device
CN102008782B (en) * 2006-11-08 2014-11-26 株式会社P·曼德 Neurotrophic factor production promoting device
US8951183B2 (en) 2006-11-08 2015-02-10 P-Mind Co., Ltd. Neurotrophic factor production promoting device

Also Published As

Publication number Publication date
JP4613285B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US20230093826A1 (en) Devices, systems and methods for the treatment of neurological disorders and neuropsychiatric disorders
US10238862B2 (en) Extracranial implantable devices, systems and methods for the treatment of medical disorders
US9597498B2 (en) Apparatus and method for stimulation of biological tissue
JP2023014177A (en) Devices for treatment of medical disorders
US8932195B2 (en) Process and apparatus for improving neuronal performance
EP2747728B1 (en) Systems for stimulating cellular function in tissue
JP2007501067A (en) Apparatus and method for applying neural stimulation to patient
US20110230939A1 (en) System for diagnosing and treatment of diabetic symptoms
JP4613285B2 (en) In vivo local membrane potential control device and nerve function recovery device
Freire et al. The effect of neurostimulation in depression
Kamakari et al. Non-invasive Electrical Brain Modulation: A New Avenue for Treatment?
Current et al. Non-invasive Electrical Brain Modulation: A New Avenue for Treatment?
Lozano et al. Epidural and subdural stimulation
WO2006035622A1 (en) In vivo nerve nutrition factor producing method using alternating high potential and in vivo nerve nutrition factor producing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350