JP2006094635A - Tidal current control method of low-voltage distribution system - Google Patents

Tidal current control method of low-voltage distribution system Download PDF

Info

Publication number
JP2006094635A
JP2006094635A JP2004277358A JP2004277358A JP2006094635A JP 2006094635 A JP2006094635 A JP 2006094635A JP 2004277358 A JP2004277358 A JP 2004277358A JP 2004277358 A JP2004277358 A JP 2004277358A JP 2006094635 A JP2006094635 A JP 2006094635A
Authority
JP
Japan
Prior art keywords
low
voltage distribution
power flow
transformer
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277358A
Other languages
Japanese (ja)
Other versions
JP4471282B2 (en
Inventor
Masahiro Ishida
雅宏 石田
Gen Ueda
玄 上田
Masanori Katsuzaki
将典 勝崎
Chihiro Ishibashi
千尋 石橋
Yasuji Yamada
安二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Seisakusho KK
Chubu Electric Power Co Inc
Denso Facilities Corp
Original Assignee
Chuo Seisakusho KK
Chubu Electric Power Co Inc
Denso Facilities Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Seisakusho KK, Chubu Electric Power Co Inc, Denso Facilities Corp filed Critical Chuo Seisakusho KK
Priority to JP2004277358A priority Critical patent/JP4471282B2/en
Publication of JP2006094635A publication Critical patent/JP2006094635A/en
Application granted granted Critical
Publication of JP4471282B2 publication Critical patent/JP4471282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tidal current control method of a low-voltage distribution system that can control a tidal current between low-voltage distribution line passages connected to different transformers. <P>SOLUTION: A tidal current control device 5 constituted by forming a connecting point 14 that closes the passage of an active filter 6 at the stop of the filter that is arranged in parallel with a primary winding 12 of the series transformer 11 of the series-type active filter 6 composed a converter 8, an inverter 10, a filter 13 and the series transformer 11 is connected between the low-voltage distribution systems 3, 4, and the tidal current of each low-voltage distribution system is controlled by making a corrective current flow between the low-voltage distribution systems 3, 4 through the tidal current control device 5. The tidal current control device 5 is constituted by connecting the series-type active filter 6 and a zero-phase current suppression device 7 in series. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低圧配電系統の潮流制御方法に関するものである。   The present invention relates to a power flow control method for a low voltage distribution system.

工場構内の低圧配電系統は複数の変圧器の二次側にそれぞれ低圧配電線路を接続して構成されており、各低圧配電線路にはそれぞれ加工機械等の負荷が分散して接続されている。変圧器の容量は負荷の容量に合わせて決定されるが、従来は過負荷になる場合を考えて各配電系統ごとに余裕を持たせており、常時は照明等の極めて軽い負荷であるにも拘わらず同じ低圧配電線路に接続された大形設備のときどき生じる稼動に備えて大容量の変圧器が設けられるといったことがあった。そのため全体としては過大な設備となって利用率が低いため効率が悪く、設備コストが嵩むという問題があった。   The low-voltage distribution system in the factory premises is configured by connecting low-voltage distribution lines to the secondary sides of a plurality of transformers, and loads such as processing machines are dispersedly connected to the low-voltage distribution lines. The capacity of the transformer is determined according to the capacity of the load, but in the past, there was a margin for each distribution system considering the case of overload, and it is always very light load such as lighting etc. Regardless, large capacity transformers have been provided in preparation for the occasional operation of large equipment connected to the same low voltage distribution line. For this reason, there is a problem that the overall facility becomes excessive and the utilization rate is low, so the efficiency is low and the facility cost increases.

また急速な技術革新と商品寿命の短縮、海外企業との競争といった経済情勢から工場設備の見直しが頻繁になされて加工機械の増設や入れ替え、配置変更等が行われるようになってきている。そのため各低圧配電線路に接続される負荷が大幅に変化して設備の計画時に各変圧器に適正に配分されていた負荷がアンバランスとなり、その都度対応を迫られることとなっている。さらに大容量の負荷設備を短期間だけ稼動するというようなこともあり、その設備の稼動のために低圧配電線路の増強や変圧器の増設が必要となって設備費用が嵩むという問題があった。一方付加価値の高い仕事に重点が置かれるようになり、そうした工程の設備には無停電で送電することが強く求められるようになっている。   In addition, factories are frequently reviewed due to economic conditions such as rapid technological innovation, shortening of product life and competition with overseas companies, and the addition and replacement of processing machines and changes in layout have come to be performed. For this reason, the load connected to each low-voltage distribution line changes significantly, and the load that has been properly distributed to each transformer at the time of facility planning becomes unbalanced, and each time it is required to respond. In addition, there is a problem that a large capacity load facility is operated only for a short period of time, and it is necessary to reinforce the low voltage distribution line and increase the transformer for the operation of the facility. . On the other hand, an emphasis is placed on high value-added work, and there is a strong demand for equipment in such processes to transmit power without interruption.

例えば図11に示すように2台の定格容量3000Aの変圧器42、43の二次側にそれぞれ低圧配電線路44、45が接続されており、それらの低圧配電線路44、45にそれぞれ3000Aの負荷46と1000Aの負荷47が接続されているような工場設備において、低圧配電線路44にさらに1000Aの負荷48を増設しようとしても変圧器42が過負荷となるので増設することができなかった。この1000Aの負荷48を増設して稼動させるために従来は変圧器42を入れ替え、変圧器42から増設される1000Aの負荷までの低圧配電線路を新設する必要があった。   For example, as shown in FIG. 11, low voltage distribution lines 44 and 45 are respectively connected to secondary sides of two transformers 42 and 43 having a rated capacity of 3000 A, and a load of 3000 A is connected to each of the low voltage distribution lines 44 and 45. In a factory facility in which 46 and a 1000 A load 47 are connected, even if an attempt is made to add a 1000 A load 48 to the low-voltage distribution line 44, the transformer 42 is overloaded and cannot be added. In order to add and operate the load 48 of 1000 A, it has been necessary to replace the transformer 42 and newly install a low-voltage distribution line from the transformer 42 to the load of 1000 A added.

こうした場合、異なる変圧器に接続された低圧配電線路間に補正電流を流し、各低圧配電線路の潮流を制御することができれば、低圧配電設備の新設時に変圧器に過大な容量を持たせる必要がなくなり、負荷を増設したり大容量の負荷と入れ替えたりする場合に変圧器の増設や低圧配電線路の新設をする必要がなくなる。配電線路の潮流を制御する技術としては、例えば特許文献1に開示されているような直列型アクティブフィルタを配電線路間に接続し、配電線路間に商用周波数の補正電流を流すことにより各配電線路の潮流を制御する方法が知られている。この特許文献1に示される方法によれば、各配電線路の電流を制御することができ、配電線路の電流を平衡させることにより配電線路の電力損失を低減することができる効果がある。   In such a case, if a correction current can be passed between the low-voltage distribution lines connected to different transformers and the power flow in each low-voltage distribution line can be controlled, it is necessary to allow the transformer to have an excessive capacity when newly installing low-voltage distribution equipment. This eliminates the need to add a transformer or newly install a low-voltage distribution line when adding a load or replacing a large-capacity load. As a technique for controlling the power flow in the distribution line, for example, a series-type active filter as disclosed in Patent Document 1 is connected between the distribution lines, and each distribution line is caused to flow a commercial frequency correction current between the distribution lines. There is a known method for controlling the current flow. According to the method disclosed in Patent Document 1, it is possible to control the current of each distribution line and to reduce the power loss of the distribution line by balancing the currents of the distribution lines.

ところがこの特許文献1に示されるものは単一の変圧器に接続される複数の高圧配電線路を対象とし、変圧器から離れた配電線路の先の方で潮流制御することによって配電線路の電流を平準化するものであり、異なる変圧器に接続される低圧配電線路の間で潮流制御することは考慮されていない。また低圧配電系統には、高圧配電系統が非接地であるのに対し変圧器の二次側において必ず接地されているとか、変圧器の短絡インピーダンスが低いといった特質があり、特許文献1の技術を低圧配電系統に応用することができないという問題がある。
特開2002−125318号公報
However, what is shown in this Patent Document 1 is intended for a plurality of high-voltage distribution lines connected to a single transformer, and the current of the distribution line is controlled by controlling the power flow at the end of the distribution line far from the transformer. It is intended to level out, and it is not considered to control power flow between low-voltage distribution lines connected to different transformers. In addition, the low-voltage distribution system has characteristics that the high-voltage distribution system is not grounded, but is always grounded on the secondary side of the transformer, or that the short-circuit impedance of the transformer is low. There is a problem that it cannot be applied to a low voltage distribution system.
JP 2002-125318 A

本発明は上記の問題点を解決し、異なる変圧器に接続された低圧配電線路の間の潮流を制御することができる、低圧配電系統の潮流制御方法を提供するためになされたものである。   The present invention has been made to solve the above-described problems and to provide a power flow control method for a low-voltage distribution system that can control a power flow between low-voltage distribution lines connected to different transformers.

上記の課題を解決するために完成された請求項1の発明は、コンバータとインバータとフィルタと直列変圧器とからなる直列型アクティブフィルタの直列変圧器の一次巻線と並列にアクティブフィルタの停止時閉路する接点を設けて構成した潮流制御装置を低圧配電系統間に接続し、この潮流制御装置を通じて低圧配電系統間に補正電流を流すことにより各低圧配電系統の潮流を制御することを特徴とするものである。この請求項1の発明において潮流制御装置を直列型アクティブフィルタと直列に零相電流抑制装置を接続して構成したものとしたのが請求項2の発明であり、潮流制御装置と直列にヒューズを接続したのが請求項3の発明である。   The invention of claim 1 completed to solve the above-described problem is that when the active filter is stopped in parallel with the primary winding of the series transformer of the series-type active filter comprising a converter, an inverter, a filter, and a series transformer. A power flow control device configured by providing a closing contact is connected between the low-voltage distribution systems, and the power flow of each low-voltage distribution system is controlled by supplying a correction current between the low-voltage distribution systems through the power flow control device. Is. In the invention of claim 1, the power flow control device is configured by connecting a zero-phase current suppression device in series with a series-type active filter. The invention of claim 2 has a fuse in series with the power flow control device. The invention of claim 3 is connected.

同一の課題を解決するためになされた請求項4の発明は、請求項1ないし3のいずれかの発明において各低圧配電系統の負荷電流を検出し、負荷電流の低い低圧配電系統の変圧器を切り離すことを特徴とするものであり、また同一の課題を解決するためになされた請求項5の発明は、請求項1ないし3のいずれかの発明において潮流制御装置を低圧配電系統の下流部に接続し、各低圧配電系統の上流部において検出した負荷電流に基づいて補正電流を算出することを特徴とするものである。さらに同一の課題を解決するためになされた請求項6の発明は、請求項1ないし3のいずれかの発明において各低圧配電系統の変圧器の高圧側と低圧側に遮断器を設け、高圧側の遮断器の開路時に低圧側の遮断器を開路することを特徴とするものである。   The invention of claim 4 made to solve the same problem is to detect the load current of each low-voltage distribution system in any one of the inventions of claims 1 to 3, and to provide a transformer of the low-voltage distribution system having a low load current. In order to solve the same problem, the invention of claim 5 is characterized in that in the invention of any one of claims 1 to 3, the power flow control device is installed downstream of the low-voltage distribution system. The correction current is calculated based on the load current that is connected and detected in the upstream portion of each low-voltage distribution system. Further, in order to solve the same problem, the invention of claim 6 is the invention of any one of claims 1 to 3, wherein a circuit breaker is provided on the high voltage side and the low voltage side of each transformer of the low voltage distribution system. The circuit breaker on the low pressure side is opened when the circuit breaker is opened.

請求項1の発明では、低圧配電系統間に接続した潮流制御装置により低圧配電系統間で補正電流を移行させて各変圧器の負荷電流を最適に分配することができるので変圧器の損失を全体として最小とすることができる利点がある。潮流制御装置を構成するアクティブフィルタには停止時に直列変圧器の一次巻線を短絡する接点を設けたので、アクティブフィルタの停止時に低圧配電線路に電圧が加わっても主回路素子の破損を回避することができる。請求項2の発明では直列型アクティブフィルタと直列に零相電流抑制装置が接続されているので、潮流制御装置を通しての零相電流の移行が抑制され、何れかの低圧配電線路で漏電事故があった場合にその低圧配電線路を特定することが可能になる。   In the first aspect of the invention, the load current of each transformer can be optimally distributed by shifting the correction current between the low-voltage distribution systems by the power flow control device connected between the low-voltage distribution systems. There are advantages that can be minimized. The active filter that constitutes the power flow control device is provided with a contact that short-circuits the primary winding of the series transformer when the active filter is stopped, thus avoiding damage to the main circuit elements even if voltage is applied to the low-voltage distribution line when the active filter is stopped. be able to. In the invention of claim 2, since the zero-phase current suppression device is connected in series with the series-type active filter, the transition of the zero-phase current through the power flow control device is suppressed, and there is a leakage accident in any of the low-voltage distribution lines. In such a case, the low-voltage distribution line can be specified.

潮流制御装置を接続すると低圧配電系統に他の変圧器からも電流が供給され、最大短絡電流が増加することになるのでそれに合わせて遮断器等の短絡遮断容量の見直しが必要となる。こうした機器の取り替えをすることになると相当な費用を要することになるが、請求項3の発明では潮流制御装置と直列にヒューズを接続しているので事故時はヒューズにより切り離されることになり、遮断器等の機器の見直しや取り替えを必要としない利点がある。   When the power flow control device is connected, current is also supplied to the low-voltage distribution system from other transformers, and the maximum short-circuit current increases. Therefore, it is necessary to review the short-circuit breaking capacity of the circuit breaker and the like accordingly. Replacing such equipment would require considerable cost, but in the invention of claim 3, a fuse is connected in series with the power flow control device, so that in the event of an accident, it will be disconnected by the fuse and shut off. There is an advantage that it is not necessary to review or replace the device such as a vessel.

さらに請求項4の発明では、各低圧配電系統の負荷電流を検出し、負荷電流の低い低圧配電系統の変圧器を切り離すようにしたので、軽負荷の変圧器を励磁しておく必要がなくなり、損失を軽減することができる利点がある。請求項5の発明では、潮流制御装置を低圧配電系統の下流部に接続し、各低圧配電系統の上流部において検出した負荷電流に基づいて補正電流を算出するようにしたので、変圧器及び配電線路が負荷電流を最適に分担することができることになる。これにより1台の変圧器単独では供給できないような負荷に対しても変圧器の入れ替えや低圧配電線路の新設あるいは増設をすることなく電力を供給することができる利点がある。   Furthermore, in the invention of claim 4, since the load current of each low-voltage distribution system is detected and the transformer of the low-voltage distribution system having a low load current is disconnected, it is not necessary to excite the light load transformer, There is an advantage that loss can be reduced. In the invention of claim 5, the power flow control device is connected to the downstream part of the low-voltage distribution system, and the correction current is calculated based on the load current detected in the upstream part of each low-voltage distribution system. The line can optimally share the load current. Thus, there is an advantage that electric power can be supplied to a load that cannot be supplied by a single transformer without replacing the transformer or newly installing or adding a low-voltage distribution line.

請求項6の発明では、各低圧配電系統の変圧器の高圧側と低圧側に遮断器を設け、高圧側の遮断器の開路時に低圧側の遮断器を開路するようにしているので、変圧器の異常により保護装置が作動して高圧側の遮断器が開路すると低圧側の遮断器も開路し、異常を生じた変圧器が切り離され、変圧器が切り離された低圧配電系統には潮流制御装置を通して他の変圧器から電力が供給されることにより無停電で送電できる利点がある。また変圧器の点検を行う場合にも、高圧側の遮断器を操作して開路すれば低圧側の遮断器も開路し、負荷には無停電で送電でき、変圧器は系統から切り離された無電圧状態で安全に点検できる利点がある。   In the invention of claim 6, circuit breakers are provided on the high voltage side and the low voltage side of the transformer of each low voltage distribution system, and the circuit breaker on the low voltage side is opened when the circuit breaker on the high voltage side is opened. When the protection device is activated due to an abnormal condition and the high-voltage circuit breaker is opened, the low-voltage circuit breaker is also opened, the abnormal transformer is disconnected, and the power flow control device is installed in the low-voltage distribution system from which the transformer is disconnected. There is an advantage that power can be transmitted uninterrupted by supplying power from other transformers. In addition, when inspecting the transformer, if the circuit breaker on the high voltage side is opened by opening the circuit breaker, the circuit breaker on the low voltage side can also be opened, and the load can be transmitted uninterrupted, and the transformer is disconnected from the grid. There is an advantage that it can be safely checked in a voltage state.

次に、本発明を実施するための最良の形態について、図を参照しながら具体的に説明する。
図1は本発明の基本的な実施の形態を示す結線図であって、変圧器1、2の二次側にそれぞれ接続された低圧配電線路3、4の間に潮流制御装置5が前記ヒューズ(図示されていない)を介して直列に接続されており、潮流制御装置5は直列型アクティブフィルタ6と零相電流抑制装置7から構成されている。直列型アクティブフィルタ6は交流電源を直流に変換するコンバータ8と、コンバータ8の出力側に接続されるコンデンサ9と、コンバータ8の直流電力を交流電力に変換するインバータ10と、インバータ10の出力波形を整えて直列変圧器11の一次巻線12に送るフィルタ13とから構成されている。
Next, the best mode for carrying out the present invention will be specifically described with reference to the drawings.
FIG. 1 is a connection diagram showing a basic embodiment of the present invention. A power flow control device 5 is connected between the low-voltage distribution lines 3 and 4 connected to the secondary sides of the transformers 1 and 2, respectively. The power flow control device 5 is composed of a series-type active filter 6 and a zero-phase current suppressing device 7 (not shown). The series-type active filter 6 includes a converter 8 that converts AC power into DC, a capacitor 9 that is connected to the output side of the converter 8, an inverter 10 that converts DC power of the converter 8 into AC power, and an output waveform of the inverter 10 And a filter 13 that is sent to the primary winding 12 of the series transformer 11.

直列変圧器11の一次巻線12にはこれを短絡する電磁接触器の常閉接点14が接続されており、直列変圧器11の二次巻線15と零相電流抑制装置7とは直列に接続されて低圧配電線路3、4の間に接続されている。常閉接点14を備える電磁接触器はアクティブフィルタ6の図示しない制御装置により駆動されるものであり、コンバータ8の入力側は一方の低圧配電線路3に接続されている。零相電流抑制装置7は例えば図2に示すような、共通の鉄心16上に3個の巻線17a、17b、17cを巻回して構成されるコモンモードリアクトルとすることができ、あるいは、図3に示すような、3個の単相変圧器18a、18b、18cの二次巻線を並列接続したうえ終端インピーダンス19で終端して構成されるものとすることができる。   The primary winding 12 of the series transformer 11 is connected to a normally closed contact 14 of an electromagnetic contactor that short-circuits the secondary winding 15 of the series transformer 11 and the zero-phase current suppressing device 7 in series. Connected and connected between the low voltage distribution lines 3 and 4. The electromagnetic contactor including the normally closed contact 14 is driven by a control device (not shown) of the active filter 6, and the input side of the converter 8 is connected to one low-voltage distribution line 3. The zero-phase current suppression device 7 can be a common mode reactor configured by winding three windings 17a, 17b, and 17c on a common iron core 16 as shown in FIG. As shown in FIG. 3, the secondary windings of three single-phase transformers 18a, 18b, and 18c can be connected in parallel and terminated with a termination impedance 19.

図中20、21は変圧器1、2の一次側に設けられた遮断器で高圧配電線路22に接続されて変圧器1、2の入力側の開閉と保護とを行うものであり、変圧器1、2の異常時に遮断器20、21を開路するための保護継電器が付設されている。また変圧器1、2にも過熱等の異常を検出する保護装置が設けられており、その保護装置の動作によっても遮断器20、21が開放されるようになっている。23、24は変圧器1、2の二次側に設けられた遮断器で低圧配電線路3、4の開閉及び保護を行うものであり、過負荷、過電流のときにトリップする機構が組み込まれている。   In the figure, reference numerals 20 and 21 denote circuit breakers provided on the primary side of the transformers 1 and 2, which are connected to the high voltage distribution line 22 to open and close and protect the input side of the transformers 1 and 2. A protective relay is provided to open the circuit breakers 20 and 21 in the event of an abnormality of 1 or 2. The transformers 1 and 2 are also provided with a protection device for detecting an abnormality such as overheating, and the circuit breakers 20 and 21 are opened by the operation of the protection device. Reference numerals 23 and 24 are circuit breakers provided on the secondary side of the transformers 1 and 2 for opening / closing and protecting the low-voltage distribution lines 3 and 4 and incorporating a mechanism for tripping in the case of overload and overcurrent. ing.

低圧配電線路3、4の間に前記のような構成の潮流制御装置5が接続された状態で低圧配電線路3、4にそれぞれ図示しない負荷が接続され、高圧側の遮断器20、21及び低圧側の遮断器23、24が閉路されると、図示しない負荷に電力が供給される。アクティブフィルタ6が動作していない状態で電磁接触器の常閉接点14が閉路されていれば、直列変圧器11の一次巻線12が短絡されて直列変圧器11の二次巻線15が低インピーダンスとなり、低圧配電線路3、4の間は零相電流抑制装置7により接続されることになる。これにより零相電流抑制装置7を通して正相及び逆相の電流が流れ、低圧配電線路3、4の負荷電流が平均化されることになる。ただしこの平均化の程度は、変圧器1、2のインピーダンス、零相電流抑制装置7の漏れリアクタンス、二次巻線15の残留リアクタンスの存在により充分ではない。   A load (not shown) is connected to each of the low-voltage distribution lines 3 and 4 in a state where the power flow control device 5 configured as described above is connected between the low-voltage distribution lines 3 and 4. When the circuit breakers 23 and 24 on the side are closed, power is supplied to a load (not shown). If the normally closed contact 14 of the magnetic contactor is closed while the active filter 6 is not operating, the primary winding 12 of the series transformer 11 is short-circuited and the secondary winding 15 of the series transformer 11 is low. The impedance becomes low, and the low-voltage distribution lines 3 and 4 are connected by the zero-phase current suppressing device 7. As a result, normal-phase and reverse-phase currents flow through the zero-phase current suppression device 7, and the load currents of the low-voltage distribution lines 3 and 4 are averaged. However, the degree of averaging is not sufficient due to the presence of the impedance of the transformers 1 and 2, the leakage reactance of the zero-phase current suppression device 7, and the residual reactance of the secondary winding 15.

電磁接触器の常閉接点14が開路された状態でアクティブフィルタ6を動作させれば、アクティブフィルタ6を制御することにより低圧配電線路3、4の間に流れる電流の位相、方向、大きさを制御することができる。変圧器1、2の容量が同じ場合には負荷電流を平均化させることができ、変圧器1、2の容量が異なる場合には変圧器1、2の分担割合を制御することができる。また低圧配電線路3、4のいずれかに漏電事故が発生した場合には、流れる零相電流が零相電流抑制装置7により抑制されて他の低圧配電線路4または3に流れることがないので、漏電事故の発生した低圧配電線路3または4を特定することができる。   If the active filter 6 is operated while the normally closed contact 14 of the magnetic contactor is opened, the phase, direction and magnitude of the current flowing between the low voltage distribution lines 3 and 4 can be controlled by controlling the active filter 6. Can be controlled. When the capacities of the transformers 1 and 2 are the same, the load current can be averaged, and when the capacities of the transformers 1 and 2 are different, the sharing ratio of the transformers 1 and 2 can be controlled. In addition, when a leakage accident occurs in any of the low-voltage distribution lines 3 and 4, the flowing zero-phase current is suppressed by the zero-phase current suppressing device 7 and does not flow to the other low-voltage distribution line 4 or 3. The low voltage distribution line 3 or 4 in which the electric leakage accident has occurred can be specified.

アクティブフィルタ6を動作させて潮流制御を行う場合には先ずインバータ10を0V出力モードで動作させ、電磁接触器を動作させて常閉接点14を開路し、その後インバータ10を通常の運転モードとする。アクティブフィルタ6が動作しておらず、電磁接触器の常閉接点14が閉路された状態ではコンバータ8に供給される交流電力はコンバータ8により直流に変換されてコンデンサ9に蓄えられ、インバータ10はこれを交流に変換可能な状態になる。インバータ10を0V出力モードで運転するとインバータ10を構成するブリッジ回路のプラス側3アーム又はマイナス側3アームの主回路開閉素子が同時にオンになり、これにより直列変圧器11の一次巻線12がフィルタ13を介して短絡されることになる。   When operating the active filter 6 to perform power flow control, the inverter 10 is first operated in the 0V output mode, the electromagnetic contactor is operated to open the normally closed contact 14, and then the inverter 10 is set to the normal operation mode. . When the active filter 6 is not operating and the normally closed contact 14 of the magnetic contactor is closed, the AC power supplied to the converter 8 is converted to DC by the converter 8 and stored in the capacitor 9, and the inverter 10 This can be converted into alternating current. When the inverter 10 is operated in the 0V output mode, the main circuit switching elements of the plus side 3 arm or the minus side 3 arm of the bridge circuit constituting the inverter 10 are simultaneously turned on, whereby the primary winding 12 of the series transformer 11 is filtered. 13 will be short-circuited.

アクティブフィルタ6を動作させる際にこのようなことを行うのはアクティブフィルタ6を構成する主回路素子を保護するためである。すなわちインバータ10が動作していない状態で潮流制御装置5に電圧が加わると、直列変圧器11の二次巻線15には低圧配電線路3、4をバイパスする電流が流れることになる。常閉接点14が設けられていない場合には、この電流により一次巻線12に誘起される電流がインバータ10に流入し、主回路素子により整流されてコンデンサ9を充電し、高電圧を発生して主回路素子を破損する虞がある。常閉接点14で一次巻線12を短絡することにより一次巻線12に誘起される電流がインバータ10に流入することを防ぐことができ、主回路素子の破損を回避することができる。アクティブフィルタ6による潮流制御を停止する場合にも先ずインバータ10を0V出力モードに移行し、その後電磁接触器を開放して一次巻線12を常閉接点14により短絡させる。   This is done when the active filter 6 is operated in order to protect the main circuit elements constituting the active filter 6. That is, when a voltage is applied to the power flow control device 5 while the inverter 10 is not operating, a current that bypasses the low-voltage distribution lines 3 and 4 flows in the secondary winding 15 of the series transformer 11. When the normally closed contact 14 is not provided, a current induced in the primary winding 12 by this current flows into the inverter 10 and is rectified by the main circuit element to charge the capacitor 9 to generate a high voltage. This may damage the main circuit element. By short-circuiting the primary winding 12 with the normally closed contact 14, current induced in the primary winding 12 can be prevented from flowing into the inverter 10, and damage to the main circuit element can be avoided. Even when the power flow control by the active filter 6 is stopped, the inverter 10 is first shifted to the 0 V output mode, and then the electromagnetic contactor is opened and the primary winding 12 is short-circuited by the normally closed contact 14.

図4は請求項4の発明の実施の形態を示す単線図であって、低圧配電線路3及び4には潮流制御装置5が接続されている点より下流の低圧配電線路3及び4の電流を検出する電流センサー25及び26が設けられている。電流センサー25及び26の検出信号は制御装置27に送られ、制御装置27はその検出信号により高圧側の遮断器20、21及び低圧側の遮断器23、24を制御する。低圧配電線路3の負荷電流が減少して電流センサー25の検出信号が予め設定された値以下になると電流センサー26の検出信号がチェックされ、その合計電流が変圧器2から供給可能であれば遮断器20と遮断器23が開放される。低圧配電線路3の下流の負荷には潮流制御装置5を介して変圧器2から電力が供給される。   FIG. 4 is a single line diagram showing an embodiment of the invention of claim 4, wherein the currents in the low-voltage distribution lines 3 and 4 downstream from the point where the power flow control device 5 is connected to the low-voltage distribution lines 3 and 4. Current sensors 25 and 26 for detection are provided. The detection signals of the current sensors 25 and 26 are sent to the control device 27, and the control device 27 controls the high-voltage circuit breakers 20 and 21 and the low-voltage circuit breakers 23 and 24 based on the detection signals. When the load current of the low-voltage distribution line 3 decreases and the detection signal of the current sensor 25 falls below a preset value, the detection signal of the current sensor 26 is checked, and if the total current can be supplied from the transformer 2, it is cut off The device 20 and the circuit breaker 23 are opened. Electric power is supplied to the load downstream of the low-voltage distribution line 3 from the transformer 2 via the power flow control device 5.

このとき潮流制御装置5は常閉接点14が閉路されていれば必ずしもアクティブフィルタ6を動作させる必要はない。これにより負荷が軽いときには1台の変圧器2で運用することができ、軽負荷の変圧器1を切り離すことができるので変圧器の損失を軽減することができる。低圧配電線路4の負荷電流が減少して電流センサー26の検出信号が一定値以下になったときには同様に低圧配電線路3及び4の合計電流が変圧器1から供給可能であれば遮断器21と遮断器24が開放され、低圧配電線路4の下流の負荷には潮流制御装置5を介して変圧器1から電力が供給される。   At this time, the power flow control device 5 does not necessarily need to operate the active filter 6 as long as the normally closed contact 14 is closed. As a result, when the load is light, it can be operated with one transformer 2, and the light load transformer 1 can be disconnected, so that the loss of the transformer can be reduced. Similarly, when the load current of the low voltage distribution line 4 decreases and the detection signal of the current sensor 26 falls below a certain value, the total current of the low voltage distribution lines 3 and 4 can be supplied from the transformer 1 as well as the circuit breaker 21. The circuit breaker 24 is opened, and power is supplied to the load downstream of the low-voltage distribution line 4 from the transformer 1 via the power flow control device 5.

図5は請求項5の発明の実施の形態を示す単線図であって、潮流制御装置5は低圧配電線路3の下流の大容量負荷28が接続される点と低圧配電線路4のこれに近接する点との間に接続されている。低圧配電線路3及び4には最上流部に低圧配電線路3及び4の電流を検出する電流センサー29及び30が設けられており、電流センサー29及び30の検出信号は制御装置31に送られて低圧配電線路3の電流と低圧配電線路4の電流の差が算出される。算出された変圧器1の電流と変圧器2の電流の差のデータは通信線32を通して潮流制御装置5に送られる。このデータの伝送をデジタル信号によるシリアル通信で行えば通信線32が低コストで設置できて有利である。   FIG. 5 is a single line diagram showing an embodiment of the invention of claim 5, and the power flow control device 5 is close to the point where the large capacity load 28 downstream of the low voltage distribution line 3 is connected and the low voltage distribution line 4. Connected between the points to be. The low-voltage distribution lines 3 and 4 are provided with current sensors 29 and 30 for detecting the current of the low-voltage distribution lines 3 and 4 at the most upstream part, and the detection signals of the current sensors 29 and 30 are sent to the control device 31. The difference between the current in the low-voltage distribution line 3 and the current in the low-voltage distribution line 4 is calculated. Data on the difference between the calculated current of the transformer 1 and the current of the transformer 2 is sent to the power flow control device 5 through the communication line 32. If this data transmission is performed by serial communication using digital signals, it is advantageous that the communication line 32 can be installed at low cost.

制御装置31では変圧器1の電流と変圧器2の電流の差が算出されるのであるが、有効分と無効分がそれぞれ算出されるので、潮流制御装置5は通信線32を通してそのデータを受け取り、変圧器1、2の容量が同じ場合にはそれらの値がより低くなるように制御する。これにより低圧配電線路3の最上流部の電流と低圧配電線路4の最上流部の電流の差が小さくなり、変圧器1、2と低圧配電線路3、4は接続される大容量負荷28の電流を均等に分担することになる。したがって1台の変圧器1又は2単独では供給できないような容量の負荷28に対しても変圧器1又は2を入れ替えたり、低圧配電線路3又は4の工事をしたりすることなく電力を供給することができる。   The control device 31 calculates the difference between the current of the transformer 1 and the current of the transformer 2, but since the effective component and the invalid component are calculated, the power flow control device 5 receives the data through the communication line 32. When the capacities of the transformers 1 and 2 are the same, the values are controlled to be lower. As a result, the difference between the current in the most upstream part of the low-voltage distribution line 3 and the current in the most upstream part of the low-voltage distribution line 4 is reduced, and the transformers 1 and 2 and the low-voltage distribution line 3 and 4 are connected to the large capacity load 28 to be connected. The current will be shared equally. Therefore, power is supplied to the load 28 having a capacity that cannot be supplied by a single transformer 1 or 2 without replacing the transformer 1 or 2 or constructing the low-voltage distribution line 3 or 4. be able to.

図6は請求項6の発明の実施の形態を示す単線図であって、高圧側の遮断器20又は21が開路するとこれと連動して低圧側の遮断器23又は24が開路するように構成されている。このような構成で変圧器1又は2に異常を生じた場合には、変圧器1又は2に設けられた保護装置あるいは高圧側の遮断器20又は21に付設された保護継電器が作動し、高圧側の遮断器20又は21が開路する。これにより低圧側の遮断器23又は24も開路して変圧器1又は2が切り離されることになり、変圧器1又は2が切り離された低圧配電線路3又は4に接続された負荷には潮流制御装置5を通して変圧器2又は1から電力が供給される。   FIG. 6 is a single line diagram showing an embodiment of the invention of claim 6 and is configured such that when the high-pressure circuit breaker 20 or 21 is opened, the low-pressure circuit breaker 23 or 24 is opened in conjunction therewith. Has been. When an abnormality occurs in the transformer 1 or 2 with such a configuration, the protective device provided in the transformer 1 or 2 or the protective relay attached to the high-voltage circuit breaker 20 or 21 is activated. The circuit breaker 20 or 21 on the side is opened. As a result, the circuit breaker 23 or 24 on the low voltage side is also opened and the transformer 1 or 2 is disconnected, and power flow control is applied to the load connected to the low voltage distribution line 3 or 4 from which the transformer 1 or 2 is disconnected. Power is supplied from the transformer 2 or 1 through the device 5.

したがって低圧配電線路3又は4に接続された負荷には変圧器1又は2に異常を生じた場合にも、潮流制御装置5を通して接続される他の変圧器2又は1から電力が供給されるので無停電で送電することが可能となる。異常を生じた変圧器1又は2は完全に切り離されるので、低圧配電線路3又は4から事故電流が供給されることはない。また変圧器1又は2の点検あるいは取り替えをする場合には、高圧側の遮断器20又は21を操作して開路すれば低圧側の遮断器23又は24も開路し、負荷には無停電で送電でき、変圧器1又は2は系統から切り離された無電圧状態で安全に点検あるいは取り替えができることになる。   Therefore, even if an abnormality occurs in the transformer 1 or 2 in the load connected to the low-voltage distribution line 3 or 4, power is supplied from the other transformer 2 or 1 connected through the power flow control device 5. It is possible to transmit power without a power failure. Since the abnormal transformer 1 or 2 is completely disconnected, no fault current is supplied from the low-voltage distribution line 3 or 4. When the transformer 1 or 2 is inspected or replaced, if the circuit breaker 20 or 21 on the high voltage side is operated and opened, the circuit breaker 23 or 24 on the low voltage side is also opened, and the load is transmitted without interruption. The transformer 1 or 2 can be safely inspected or replaced in a no-voltage state disconnected from the system.

前記実施の形態において、変圧器1、2の接地相を接続し一箇所で接地して零相電流を管理できるようにすれば、零相電流抑制装置7を設けることなく漏電事故の発生した低圧配電線路3または4を特定することができる。また、前記実施の形態では各低圧配電線路が別個の変圧器の二次側に接続されているが、1台の変圧器に接続された各低圧配電線路の下流部の間に潮流制御装置を接続して低圧配電線路の電流を平準化することもできる。そうした場合、接地点は1箇所であるので零相電流抑制装置7を設ける必要はない。   In the above-described embodiment, if the ground phase of the transformers 1 and 2 is connected and grounded at one place so that the zero-phase current can be managed, the low-voltage in which the leakage accident has occurred without providing the zero-phase current suppressing device The distribution line 3 or 4 can be specified. Moreover, in the said embodiment, although each low voltage distribution line is connected to the secondary side of a separate transformer, a tidal current control apparatus is provided between the downstream parts of each low voltage distribution line connected to one transformer. It can also be connected to level the current in the low voltage distribution line. In such a case, since there is only one ground point, it is not necessary to provide the zero-phase current suppressing device 7.

図7は実施例1を示す単線図であり、定格容量1500Aの変圧器1、2の二次側に低圧配電線路3、4が接続されている。変圧器1、2の一次側は遮断器20、21を介して高圧配電線路22に接続されており、変圧器1、2の二次側には遮断器23、24が設けられている。低圧配電線路3と4にはそれぞれ1200Aの負荷33と600Aの負荷34が接続されており、低圧配電線路3と4の間には潮流制御装置5が接続されている。潮流制御装置5が接続されていない状態では変圧器1、2はそれぞれ括弧内に示すように1200A、600Aの電流を供給するが、潮流制御装置5が接続された状態では潮流制御装置5によって低圧配電線路4から低圧配電線路3に300Aの補正電流が流され、変圧器1、2はともに900Aを分担することになる。このように変圧器1、2の稼働率を均等にすることができ、全体の損失を低減することができる。   FIG. 7 is a single line diagram showing the first embodiment, and the low voltage distribution lines 3 and 4 are connected to the secondary side of the transformers 1 and 2 having a rated capacity of 1500A. The primary sides of the transformers 1 and 2 are connected to the high voltage distribution line 22 via the circuit breakers 20 and 21, and the circuit breakers 23 and 24 are provided on the secondary side of the transformers 1 and 2. A load 33 of 1200 A and a load 34 of 600 A are connected to the low voltage distribution lines 3 and 4, respectively, and a power flow control device 5 is connected between the low voltage distribution lines 3 and 4. When the power flow control device 5 is not connected, the transformers 1 and 2 supply currents of 1200A and 600A, respectively, as shown in parentheses, but when the power flow control device 5 is connected, the power flow control device 5 reduces the pressure. A 300 A correction current flows from the distribution line 4 to the low-voltage distribution line 3, and both the transformers 1 and 2 share 900A. Thus, the operating rates of the transformers 1 and 2 can be made uniform, and the overall loss can be reduced.

図8は実施例2を示す単線図であり、変圧器1の定格容量が3000Aで変圧器2の定格容量が1000Aであることと、負荷33、34がともに1000Aであること以外は実施例1と同じである。潮流制御装置5が接続されていない状態では変圧器1、2はいずれも括弧内に示すように1000Aの電流を供給するが、潮流制御装置5が接続された状態では潮流制御装置5によって低圧配電線路3から低圧配電線路4に500Aの補正電流が流され、変圧器1は1500A、変圧器2は500Aを分担することになる。このように変圧器1、2はともに定格の半分の電流を分担することになって変圧器1、2の稼働率を均等にすることができ、全体の損失を低減することができる。   FIG. 8 is a single line diagram showing Example 2, except that the rated capacity of transformer 1 is 3000 A, the rated capacity of transformer 2 is 1000 A, and loads 33 and 34 are both 1000 A. Is the same. In the state where the power flow control device 5 is not connected, both the transformers 1 and 2 supply a current of 1000 A as shown in parentheses. However, in the state where the power flow control device 5 is connected, the power flow control device 5 supplies the low-voltage power distribution. A correction current of 500 A is supplied from the line 3 to the low-voltage distribution line 4, and the transformer 1 shares 1500 A and the transformer 2 shares 500 A. Thus, both the transformers 1 and 2 share the current of half of the rating, the operating rates of the transformers 1 and 2 can be made uniform, and the overall loss can be reduced.

図9は実施例3を示す単線図であり、基本的には実施例1と同じであるが、変圧器1、2の定格容量はともに3000A、負荷33は3000A、負荷34は1000Aとなっており、低圧配電線路3にはさらに1000Aの負荷35が接続されている。潮流制御装置5が接続されていない状態で負荷35が接続されていなければ、変圧器1、2はそれぞれ括弧内に示すように3000A、1000Aの電流を供給するが、負荷35を接続しようとしても変圧器1が過負荷となるので接続することができない。潮流制御装置5が接続された状態で負荷35を接続すれば、潮流制御装置5によって低圧配電線路4から低圧配電線路3に1500Aの補正電流が流され、変圧器1、2は負荷電流の合計である5000Aを半分の2500Aずつ分担することになる。   FIG. 9 is a single line diagram showing the third embodiment, which is basically the same as the first embodiment, but the rated capacities of the transformers 1 and 2 are both 3000 A, the load 33 is 3000 A, and the load 34 is 1000 A. In addition, a load 35 of 1000 A is further connected to the low-voltage distribution line 3. If the load 35 is not connected when the power flow control device 5 is not connected, the transformers 1 and 2 supply currents of 3000 A and 1000 A, respectively, as shown in parentheses. Since the transformer 1 is overloaded, it cannot be connected. If the load 35 is connected in a state where the power flow control device 5 is connected, the power flow control device 5 causes a correction current of 1500 A to flow from the low-voltage distribution line 4 to the low-voltage distribution line 3, and the transformers 1 and 2 That is, 5000A, which is a half, is shared by 2500A.

この実施例3は3000Aの負荷33に1000Aの負荷35を増設する場合であるが、3000Aの負荷33を4000Aのものと取り替える場合も同様に対応可能である。増設される負荷35あるいは取り替えられる負荷33は低圧配電線路3と潮流制御装置5の接続点に接続されることが必要であり、そうでないと低圧配電線路3に当初の容量以上の電流が流れる部分が生じる。このように負荷電流を変圧器1、2で分担することができるので、1台の変圧器1単独では供給できないような負荷33、35に対しても変圧器1の入れ替えや低圧配電線路3の新設あるいは増設をすることなく電力を供給することができる利点がある。   The third embodiment is a case where the load 35 of 1000 A is added to the load 33 of 3000 A. However, the case where the load 33 of 3000 A is replaced with a load of 4000 A can be similarly handled. The load 35 to be added or the load 33 to be replaced needs to be connected to the connection point between the low-voltage distribution line 3 and the power flow control device 5, otherwise, the current flowing in the low-voltage distribution line 3 will exceed the initial capacity. Occurs. Since the load current can be shared by the transformers 1 and 2 in this way, the transformer 1 can be replaced or the low-voltage distribution line 3 can be used for loads 33 and 35 that cannot be supplied by a single transformer 1 alone. There is an advantage that power can be supplied without newly installing or adding.

図10は実施例4を示す単線図であり、低圧配電系統を3系統にしたものである。各配電系統の構成は実施例1と同じであって、変圧器1、2、36の二次側に低圧配電線路3、4、37が接続されており、低圧配電線路3と4の間と低圧配電線路4と37の間に潮流制御装置5、38が接続されている。図中39は変圧器36の高圧側の遮断器、40は低圧側の遮断器であり、41は低圧配電線路37に接続される負荷である。変圧器1の定格容量は3000A、変圧器2、36の定格容量は1000Aであり、低圧配電線路3、4、37にはそれぞれ1000A、800A、700Aの負荷33、34、41が接続されている。   FIG. 10 is a single line diagram showing the fourth embodiment, in which the low-voltage distribution system is divided into three systems. The configuration of each distribution system is the same as that of the first embodiment, and the low voltage distribution lines 3, 4, 37 are connected to the secondary side of the transformers 1, 2, 36, and between the low voltage distribution lines 3, 4 Tidal flow control devices 5 and 38 are connected between the low voltage distribution lines 4 and 37. In the figure, 39 is a circuit breaker on the high voltage side of the transformer 36, 40 is a circuit breaker on the low voltage side, and 41 is a load connected to the low voltage distribution line 37. The rated capacity of the transformer 1 is 3000A, the rated capacity of the transformers 2 and 36 is 1000A, and the loads 33, 34, and 41 of 1000A, 800A, and 700A are connected to the low-voltage distribution lines 3, 4, and 37, respectively. .

潮流制御装置5、38が接続されていない状態では変圧器1、2、36はそれぞれ括弧内に示すように1000A、800A、700Aの電流を供給するが、潮流制御装置5、38が接続された状態では潮流制御装置5が変圧器1から低圧配電線路4に500Aの補正電流を流し、潮流制御装置38が低圧配電線路4から低圧配電線路37に200Aの補正電流を流すことになる。このように変圧器1、2、36はいずれも定格の半分の電流を分担することになって変圧器1、2、36の稼働率を均等にすることができ、全体の損失を低減することができる。   When the power flow control devices 5 and 38 are not connected, the transformers 1, 2 and 36 supply currents of 1000 A, 800 A and 700 A, respectively, as shown in parentheses, but the power flow control devices 5 and 38 are connected. In this state, the power flow control device 5 flows a correction current of 500 A from the transformer 1 to the low voltage distribution line 4, and the power flow control device 38 flows a correction current of 200 A from the low voltage distribution line 4 to the low voltage distribution line 37. In this way, the transformers 1, 2 and 36 all share a half of the rated current, so that the operating rates of the transformers 1, 2 and 36 can be equalized, and the overall loss is reduced. Can do.

前記実施例4は低圧配電系統を3系統としたものであるが、より多数の低圧配電系統を順次潮流制御装置により接続することも可能である。これにより休日等に1台の変圧器で負荷をまかなえる場合には、1台の変圧器から各低圧配電線路に負荷電流を供給して他の変圧器を全て切り離すことができ、損失を低減することができる。また負荷に応じて運転する変圧器の数を増減することで変圧器を効率の良い状態で運転することができる。さらに設備を新設する場合や変圧器を更新する場合には、潮流制御装置により接続されている変圧器の合計の容量と負荷容量との関係を考えればよいので新設あるいは更新する変圧器は小容量のものとすることができ、設備コストを抑制できる利点がある。   Although the fourth embodiment has three low-voltage distribution systems, it is also possible to sequentially connect a larger number of low-voltage distribution systems using a power flow control device. As a result, when a load can be covered by one transformer on a holiday, etc., the load current can be supplied from one transformer to each low-voltage distribution line, and all other transformers can be disconnected, reducing loss. be able to. Moreover, the transformer can be operated in an efficient state by increasing or decreasing the number of transformers to be operated according to the load. In addition, when installing a new facility or renewing a transformer, it is only necessary to consider the relationship between the total capacity of the transformers connected by the power flow control device and the load capacity. There is an advantage that equipment costs can be reduced.

本発明の基本的な実施の形態を示す結線図である。It is a connection diagram which shows basic embodiment of this invention. 零相電流抑制装置の例を示す構成図である。It is a block diagram which shows the example of a zero phase current suppression apparatus. 零相電流抑制装置の別の例を示す構成図である。It is a block diagram which shows another example of a zero phase current suppression apparatus. 請求項4の発明の実施の形態を示す単線図である。FIG. 6 is a single line diagram showing an embodiment of the invention of claim 4. 請求項5の発明の実施の形態を示す単線図である。FIG. 6 is a single line diagram showing an embodiment of the invention of claim 5. 請求項6の発明の実施の形態を示す単線図である。It is a single line figure which shows embodiment of invention of Claim 6. 実施例1を示す単線図である。1 is a single line diagram illustrating Example 1. FIG. 実施例2を示す単線図である。6 is a single line diagram showing Example 2. FIG. 実施例3を示す単線図である。6 is a single line diagram showing Example 3. FIG. 実施例4を示す単線図である。10 is a single line diagram showing Example 4. FIG. 従来の低圧配電系統の例を示す単線図である。It is a single line figure which shows the example of the conventional low voltage power distribution system.

符号の説明Explanation of symbols

1、2 変圧器
3、4 低圧配電線路
5 潮流制御装置
6 アクティブフィルタ
7 零相電流抑制装置
8 コンバータ
9 コンデンサ
10 インバータ
11 直列変圧器
12 直列変圧器の一次巻線
13 フィルタ
14 電磁接触器の常閉接点
15 直列変圧器の二次巻線
16 鉄心
17a、17b、17c 巻線
18a、18b、18c 単相変圧器
19 終端インピーダンス
20、21 高圧側の遮断器
22 高圧配電線路
23、24 低圧側の遮断器
25、26 電流センサー
27 制御装置
28 大容量負荷
29、30 電流センサー
31 制御装置
32 通信線
33、34、35 負荷
36 変圧器
37 低圧配電線路
38 潮流制御装置
39 高圧側の遮断器
40 低圧側の遮断器
41 負荷
DESCRIPTION OF SYMBOLS 1, 2 Transformer 3, 4 Low voltage distribution line 5 Power flow control apparatus 6 Active filter 7 Zero phase current suppression apparatus 8 Converter 9 Capacitor 10 Inverter 11 Series transformer 12 Series transformer primary winding 13 Filter 14 Electromagnetic contactor usual Closed contact 15 Secondary winding of series transformer 16 Iron core 17a, 17b, 17c Winding 18a, 18b, 18c Single phase transformer 19 Termination impedance 20, 21 High voltage side circuit breaker 22 High voltage distribution line 23, 24 Low voltage side Circuit breaker 25, 26 Current sensor 27 Control device 28 Large capacity load 29, 30 Current sensor 31 Control device 32 Communication line 33, 34, 35 Load 36 Transformer 37 Low voltage distribution line 38 Power flow control device 39 High voltage side circuit breaker 40 Low pressure Side circuit breaker 41 Load

Claims (6)

コンバータとインバータとフィルタと直列変圧器とからなる直列型アクティブフィルタの直列変圧器の一次巻線と並列にアクティブフィルタの停止時閉路する接点を設けて構成した潮流制御装置を低圧配電系統間に接続し、この潮流制御装置を通じて低圧配電系統間に補正電流を流すことにより各低圧配電系統の潮流を制御することを特徴とする低圧配電系統の潮流制御方法。   Connected between low-voltage distribution systems with a power flow control device configured with a contact that closes when the active filter is stopped in parallel with the primary winding of the series transformer of the series-type active filter consisting of a converter, inverter, filter, and series transformer A power flow control method for a low-voltage distribution system, wherein the power flow of each low-voltage distribution system is controlled by supplying a correction current between the low-voltage distribution systems through the power flow control device. 潮流制御装置を直列型アクティブフィルタと直列に零相電流抑制装置を接続して構成したものとしたことを特徴とする請求項1に記載の低圧配電系統の潮流制御方法。   2. The power flow control method for a low-voltage distribution system according to claim 1, wherein the power flow control device is configured by connecting a zero-phase current suppression device in series with a series active filter. 潮流制御装置と直列にヒューズを接続したことを特徴とする請求項1又は2に記載の低圧配電系統の潮流制御方法。   The power flow control method for a low-voltage distribution system according to claim 1 or 2, wherein a fuse is connected in series with the power flow control device. 各低圧配電系統の負荷電流を検出し、負荷電流の低い低圧配電系統の変圧器を切り離すことを特徴とする請求項1ないし3のいずれかに記載の低圧配電系統の潮流制御方法。   4. The method for controlling a power flow in a low-voltage distribution system according to claim 1, wherein a load current of each low-voltage distribution system is detected and a transformer of the low-voltage distribution system having a low load current is disconnected. 潮流制御装置を低圧配電系統の下流部に接続し、各低圧配電系統の上流部において検出した負荷電流に基づいて補正電流を算出することを特徴とする請求項1ないし3に記載の低圧配電系統の潮流制御方法。   4. The low-voltage distribution system according to claim 1, wherein a power flow control device is connected to a downstream portion of the low-voltage distribution system, and a correction current is calculated based on a load current detected in an upstream portion of each low-voltage distribution system. Tidal current control method. 各低圧配電系統の変圧器の高圧側と低圧側に遮断器を設け、高圧側の遮断器の開路時に低圧側の遮断器を開路することを特徴とする請求項1ないし3に記載の低圧配電系統の潮流制御方法。
4. The low voltage distribution system according to claim 1, wherein circuit breakers are provided on the high voltage side and the low voltage side of the transformer of each low voltage distribution system, and the low voltage circuit breaker is opened when the high voltage circuit breaker is opened. System power flow control method.
JP2004277358A 2004-09-24 2004-09-24 Power flow control method for low voltage distribution system Expired - Fee Related JP4471282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277358A JP4471282B2 (en) 2004-09-24 2004-09-24 Power flow control method for low voltage distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277358A JP4471282B2 (en) 2004-09-24 2004-09-24 Power flow control method for low voltage distribution system

Publications (2)

Publication Number Publication Date
JP2006094635A true JP2006094635A (en) 2006-04-06
JP4471282B2 JP4471282B2 (en) 2010-06-02

Family

ID=36235050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277358A Expired - Fee Related JP4471282B2 (en) 2004-09-24 2004-09-24 Power flow control method for low voltage distribution system

Country Status (1)

Country Link
JP (1) JP4471282B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196118A (en) * 2011-03-01 2012-10-11 Sharp Corp Power generation system
CN104600702A (en) * 2014-12-18 2015-05-06 湖南大学 Power induction control filtering system and control method thereof
CN106505583A (en) * 2016-12-23 2017-03-15 国网浙江奉化市供电公司 A kind of platform area step voltage control method and system
CN112821403A (en) * 2021-01-09 2021-05-18 华北电力大学(保定) Single-phase or three-phase electromagnetic series-connection type power transmission line power flow control topological circuit
CN113659571A (en) * 2021-08-13 2021-11-16 云南电网有限责任公司电力科学研究院 Prediction device and method for predicting short-circuit current of power grid in-operation transformer in real time

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221795B2 (en) * 2019-05-29 2023-02-14 株式会社日立製作所 Power converter and adjustable speed pumped storage system
US11554684B2 (en) * 2021-02-17 2023-01-17 AMPLY Power, Inc. Aggregating capacity for depot charging

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196118A (en) * 2011-03-01 2012-10-11 Sharp Corp Power generation system
CN104600702A (en) * 2014-12-18 2015-05-06 湖南大学 Power induction control filtering system and control method thereof
CN106505583A (en) * 2016-12-23 2017-03-15 国网浙江奉化市供电公司 A kind of platform area step voltage control method and system
CN106505583B (en) * 2016-12-23 2020-04-21 国网浙江奉化市供电公司 Transformer area level voltage control method and system
CN112821403A (en) * 2021-01-09 2021-05-18 华北电力大学(保定) Single-phase or three-phase electromagnetic series-connection type power transmission line power flow control topological circuit
CN112821403B (en) * 2021-01-09 2023-10-03 华北电力大学(保定) Single-phase or three-phase electromagnetic series type transmission line tidal current control topological circuit
CN113659571A (en) * 2021-08-13 2021-11-16 云南电网有限责任公司电力科学研究院 Prediction device and method for predicting short-circuit current of power grid in-operation transformer in real time

Also Published As

Publication number Publication date
JP4471282B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4159546B2 (en) A system that supplies reliable power to important loads
KR101320373B1 (en) Open-phase recovery device equipped with a transformer and its installation method
US10819112B1 (en) Feeder line fault response using direct current interconnection system
KR19980018252A (en) Protective device for power receiving station
JP5094062B2 (en) Short-circuit current reduction system and short-circuit current reduction method for power transmission and distribution system
TW201944693A (en) Power supply system
US20070110111A1 (en) Power system for ultraviolet lighting
JP4471282B2 (en) Power flow control method for low voltage distribution system
KR20130044247A (en) Recovery device and method of recovery for open-phase in the power system line
RU2377630C1 (en) Stabiliser of ac voltage with elements of protection and back-up (versions)
JP4750071B2 (en) Loop power distribution system
KR102096992B1 (en) System for protective circuit of 3 phase trasnformer using single pole transformer bank for electric power transmission and transformation
EP3949055A1 (en) Feeder line fault response using direct current interconnection system
JP2020167774A (en) Protection device
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
JP6265264B2 (en) Earth leakage protection device and earth leakage protection system
JP4063224B2 (en) Overcurrent protection system
CN111740385B (en) Method for three-phase variable frequency power supply
JP4033136B2 (en) Overcurrent protection system
JP7186005B2 (en) Relay system and relay
JP2005094897A (en) Single operation prevention device
JP2023074142A (en) Transformer control device
JP2001054238A (en) Drive control for transformer
Lowsley et al. Automatic low voltage intellegent networks (ALVIN)
JP2640628B2 (en) Grid connection protection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees