JP2006093287A - Wave absorption sheet - Google Patents

Wave absorption sheet Download PDF

Info

Publication number
JP2006093287A
JP2006093287A JP2004274943A JP2004274943A JP2006093287A JP 2006093287 A JP2006093287 A JP 2006093287A JP 2004274943 A JP2004274943 A JP 2004274943A JP 2004274943 A JP2004274943 A JP 2004274943A JP 2006093287 A JP2006093287 A JP 2006093287A
Authority
JP
Japan
Prior art keywords
sheet
radio wave
graphite
wave absorption
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004274943A
Other languages
Japanese (ja)
Inventor
Akitsugu Tashiro
了嗣 田代
Atsushi Fujita
藤田  淳
Atsushi Yokoyama
敦 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004274943A priority Critical patent/JP2006093287A/en
Publication of JP2006093287A publication Critical patent/JP2006093287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wave absorption sheet which has a superior wave absorbing property regardless of a wave incident angle in a GHz radio frequency band and is light in weight and thin, and low in cost. <P>SOLUTION: The wave absorption sheet uses a binder with a dielectric constant between 2.2 and 3.2 wherein anisotropic graphite is evenly dispersed. It is preferred that the binder has a dielectric dissipation factor (tanδ) of 0.012-0.12 and has a dielectric constant of 0.012-0.12 (s/m), and expanded graphite sheet pulverized powder is used for the anisotropic graphite. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、狭域通信で使用される電波周波数GHz帯で機能する装置(例えばETC:自動料金支払いシステム:起動周波数:5.8GHz)の誤作動防止用電波吸収シートに関し、さらに詳しくは電波吸収特性、経済性及び軽量で施工性に優れる電波吸収シートに関する。   The present invention relates to a radio wave absorption sheet for preventing malfunction of a device (for example, ETC: automatic fee payment system: activation frequency: 5.8 GHz) that functions in a radio frequency GHz band used in narrow area communication, and more particularly, radio wave absorption. The present invention relates to an electromagnetic wave absorbing sheet that is excellent in characteristics, economy, light weight, and workability.

近年、5.8GHz帯、76.GHz帯の電波を利用した狭域通信(DSRC)システムの用途開発が盛んに行われ、その応用例の一つとしてETC(ノンストップ自動料金支払いシステム、起動周波数:5.8GHz)、ミリ波レーダー(起動周波数:76.5GHz)等が実用化され、ドライバーの快適な運転や安全に貢献している。   Recently, 5.8 GHz band, 76. The application development of the narrow-band communication (DSRC) system using the radio wave of GHz band is actively performed, and one of the application examples is ETC (non-stop automatic fee payment system, starting frequency: 5.8 GHz), millimeter wave radar. (Startup frequency: 76.5 GHz) has been put into practical use, contributing to comfortable driving and safety for drivers.

今後、上記システムは、一般駐車場、ドライブスルー、ガソリンスタンド等の民生分野に応用拡大することが予想されるが、ETCを含むDSRCシステムは、送受信アンテナ間における多重乱波によるシステムの誤作動が大きな問題となっており、アンテナ精度改良が進む中、多重乱波を正確に吸収する電波吸収体の開発も盛んに行われている。   In the future, the above system is expected to expand its application to consumer fields such as general parking lots, drive-throughs, and gas stations. However, DSRC systems including ETC are subject to system malfunction due to multiple turbulence between transmitting and receiving antennas. As the antenna accuracy has been improved, the development of radio wave absorbers that absorb multiple turbulences accurately has been actively conducted.

電波吸収体の性状は、使用される場所の多様化に伴い、パネルタイプ、シートタイプ、塗料タイプ等に大別できるが、現在の所ETC通過ゲート付近に設置されるパネルタイプが一般的で、一部シートが使用されている。また、ミリ波レーダー装着タイプの吸収体はシート状が多い。   The nature of the electromagnetic wave absorber can be broadly divided into panel type, sheet type, paint type, etc., with the diversification of the places where it is used, but the panel type installed near the current ETC passage gate is common, Some sheets are used. Also, millimeter wave radar-mounted absorbers are often in sheet form.

特に、現在使用されているETC用パネル型電波吸収体は、軽量化を確保するため、特許文献1に示すように、バインダーとしてウレタン樹脂を代表とする発泡型樹脂に、電波吸収材(黒鉛、磁性粉及び無機粉混合物)を混合し、軽量化と電波吸収の両立を図っている。しかしパネル型電波吸収体は、体積が大きく施工効率を著しく低下させること及び湾曲部の施工が困難であること、また強靭なカバーにより内部を保護するため、コスト高になる等の問題を抱えている。   In particular, the panel-type electromagnetic wave absorber for ETC that is currently used has a radio wave absorber (graphite, Magnetic powder and inorganic powder mixture) are mixed to achieve both weight reduction and radio wave absorption. However, the panel type electromagnetic wave absorber has problems such as large volume, significantly lowering the construction efficiency, difficult to construct the curved part, and high cost because it protects the inside with a tough cover. Yes.

また、施工性を向上させるためシートタイプの電波吸収体も開発され一部使用されているが、コスト高の磁性粉をバインダーに含有させるため、重量が重く厚くなり、斜め入射の電波に対する吸収量が小さいため、性能の異なるシートを何枚も重ねる必要があり、経済性及び施工性の面で完全なものはない。
特開2002−348987号公報
In addition, sheet-type radio wave absorbers have been developed and partially used to improve workability, but because they contain high-cost magnetic powder in the binder, they become heavier and thicker, and the amount of absorption against obliquely incident radio waves is increased. Therefore, it is necessary to stack a plurality of sheets having different performances, and nothing is perfect in terms of economy and workability.
JP 2002-348987 A

本発明は、電波周波数GHz帯の電波入射角度に係らず電波吸収特性に優れ、軽量で薄型であり、かつ安価な電波吸収シートを提供するものである。   The present invention provides a radio wave absorption sheet that is excellent in radio wave absorption characteristics regardless of the radio wave incident angle in the radio frequency GHz band, is light and thin, and is inexpensive.

本発明は、次のものに関する。
1.比誘電率が、2.2〜3.2の範囲のバインダーを使用し、かつバインダー中に異方性黒鉛が均一に分散してなる軽量電波吸収シート。
2.バインダーが、誘電正接(tanδ)が0.012〜0.12の範囲である項1記載の電波吸収シート。
3.バインダーが、導電率が0.012〜0.12(S/m)の範囲である項1又は2記載の電波吸収シート。
4.異方性黒鉛が、膨張黒鉛である項1記載の電波吸収シート。
5.膨張黒鉛粉が、膨張黒鉛シート粉砕粉である項4記載の電波吸収シート。
The present invention relates to the following.
1. A lightweight electromagnetic wave absorbing sheet using a binder having a relative dielectric constant of 2.2 to 3.2 and having anisotropic graphite uniformly dispersed in the binder.
2. Item 2. The radio wave absorption sheet according to Item 1, wherein the binder has a dielectric loss tangent (tan δ) in the range of 0.012 to 0.12.
3. Item 3. The radio wave absorption sheet according to item 1 or 2, wherein the binder has a conductivity in a range of 0.012 to 0.12 (S / m).
4). Item 2. The radio wave absorption sheet according to Item 1, wherein the anisotropic graphite is expanded graphite.
5. Item 5. The radio wave absorption sheet according to Item 4, wherein the expanded graphite powder is an expanded graphite sheet pulverized powder.

本発明の電波吸収シートは、電波周波数GHz帯の電波入射角度に係らず電波吸収量が大きく、安定した電波を吸収し、軽量で薄型であり、かつ安価な電波吸収シートであり、工業的に極めて好適である。   The radio wave absorption sheet of the present invention is a radio wave absorption sheet that absorbs stable radio waves, absorbs stable radio waves regardless of the radio wave incident angle in the radio frequency GHz band, is light and thin, and is inexpensive. Very suitable.

本発明は、一定範囲内の電気特性を有するバインダー中に、異方性黒鉛を均一に分散させることにより、適度に分散した異方性黒鉛が入射角度の異なる電波をそれぞれ吸収する機能分担を形成している。
本発明においては、さらに軽量化で薄型の電波吸収シートを得るものである。
なお、本発明において、異方性黒鉛としては膨張黒鉛粉を用いることが好ましい。
In the present invention, anisotropic graphite is uniformly dispersed in a binder having electrical characteristics within a certain range, thereby forming a function sharing in which moderately dispersed anisotropic graphite absorbs radio waves having different incident angles. is doing.
In the present invention, a light-weight and thin wave absorbing sheet is further obtained.
In the present invention, it is preferable to use expanded graphite powder as anisotropic graphite.

本発明に使用する膨張黒鉛粉については特に制限はないが、コストを重視するならば、原料黒鉛として天然黒鉛、人造黒鉛を使用することが好ましい。使用する黒鉛の粒径についても制限はないが、要求特性を考慮し粒径の異なる黒鉛を混合して使用することもできる。また使用する膨張黒鉛粉の形態も制限はなく、得られた膨張黒鉛粉をそのまま使用してもよく、膨張黒鉛をシート状に加工し、それを粉砕した膨張黒鉛シート粉砕粉が使用できる。   Although there is no restriction | limiting in particular about the expanded graphite powder used for this invention, If importance is attached to cost, it is preferable to use natural graphite and artificial graphite as raw material graphite. Although there is no restriction | limiting also about the particle size of the graphite to be used, The graphite from which a particle size differs can be mixed and used in consideration of a required characteristic. The form of expanded graphite powder to be used is not limited, and the obtained expanded graphite powder may be used as it is, and expanded graphite sheet pulverized powder obtained by processing expanded graphite into a sheet shape and pulverizing it can be used.

なお、バインダー中に、好ましいものとして使用する膨張黒鉛粉を分散させる方法として、混錬機、混合機等を使用する場合、混合時の膨張黒鉛粉破壊による電波吸収量の変化を考慮すると、強度的に優れた膨張黒鉛シート粉砕粉を使用することが好ましい。   In addition, when using a kneader, a mixer, etc. as a method of dispersing the expanded graphite powder to be used as a preferable material in the binder, considering the change in radio wave absorption due to expansion graphite powder destruction during mixing, the strength It is preferable to use an expanded graphite sheet pulverized powder that is excellent in terms of quality.

膨張黒鉛の製法については特に制限はなく、例えば原料黒鉛を、酸性物質及び酸化剤を含む溶液中に浸漬して黒鉛層間化合物を生成させる工程及び前記黒鉛層間化合物を加熱して黒鉛結晶のC軸方向を膨張させて膨張黒鉛とする工程により製造することができる。これにより膨張した黒鉛が虫状形となり複雑に絡み合った形態となる。 There is no particular limitation on the method for producing the expanded graphite. For example, the step of immersing raw graphite in a solution containing an acidic substance and an oxidizing agent to form a graphite intercalation compound, and heating the graphite intercalation compound, the C axis of the graphite crystal It can be manufactured by a process of expanding the direction to obtain expanded graphite. As a result, the expanded graphite has a worm-like shape and is intricately intertwined.

膨張黒鉛の倍率は、特に制限はないが電波吸収特性を考慮すると、100倍以上が好ましく、100倍〜500倍であることがさらに好ましい。膨張倍率が100倍未満及び500倍を超える膨張黒鉛を使用すると、電波の吸収領域が変動し易くなる傾向がある。   The magnification of the expanded graphite is not particularly limited, but is preferably 100 times or more and more preferably 100 times to 500 times in consideration of radio wave absorption characteristics. If expanded graphite having an expansion ratio of less than 100 times or more than 500 times is used, the radio wave absorption region tends to fluctuate easily.

必要に応じて、上記膨張黒鉛をさらに高い温度で熱処理し、膨張黒鉛中に含まれる不純物を除去して使用される。この膨張黒鉛粉を粉砕、分級し、所望の膨張黒鉛を分別して使用することが好ましい。
なお、膨張黒鉛粉の純度を上げて使用する場合は、高温処理などを行い使用される。
If necessary, the expanded graphite is heat-treated at a higher temperature to remove impurities contained in the expanded graphite. It is preferable to pulverize and classify the expanded graphite powder and use the desired expanded graphite separately.
When the expanded graphite powder is used with increased purity, it is used after being subjected to a high temperature treatment.

前記の原料としては特に制限はないが、天然黒鉛、キツシユ黒鉛、熱分解黒鉛等の高度に結晶が発達した黒鉛が好ましいものとして挙げられる。得られる特性と経済性のバランスを考慮すると天然黒鉛が好ましい。
用いる天然黒鉛としては、特に制限はなく、F48C(日本黒鉛(株)製の商品名)、H―50(中越黒鉛(株)製の商品名)等の市販品を用いることができる。これらは、鱗片状の粉末の形態で使用することが好ましい。
Although there is no restriction | limiting in particular as said raw material, The graphite with which the crystal | crystallization developed highly, such as natural graphite, a bush graphite, and a pyrolytic graphite, is mentioned as a preferable thing. Natural graphite is preferable in consideration of the balance between obtained characteristics and economic efficiency.
There is no restriction | limiting in particular as natural graphite to be used, Commercial products, such as F48C (brand name made from Nippon Graphite Co., Ltd.) and H-50 (brand name made from Chuetsu Graphite Co., Ltd.), can be used. These are preferably used in the form of scaly powder.

原料黒鉛の処理に用いられる酸性物質は、一般的に硫酸などの黒鉛の層間に進入して十分な膨張能力を有する酸性根(陰イオン)を発生することができるものが使用される。酸性物質の使用量については特に制限はなく、目的とする膨張倍率で決定され、例えば、黒鉛100重量部に対して100重量部〜1000重量部使用するのが好ましい。   As the acidic substance used for the processing of the raw material graphite, one that can enter an interlayer of graphite such as sulfuric acid and generate an acidic root (anion) having sufficient expansion ability is generally used. There is no restriction | limiting in particular about the usage-amount of an acidic substance, It determines with the target expansion ratio, For example, it is preferable to use 100 weight part-1000 weight part with respect to 100 weight part of graphite.

酸性物質と共に用いられる酸化剤としては、過酸化水素、過塩素酸カリウム、過マンガン酸カリウム、重クロム酸カリウム等の過酸化物、また硝酸などの酸化作用のある酸を用いることができ、良好な膨張黒鉛を得やすいという観点から過酸化水素が特に好ましい。   As the oxidizing agent used together with acidic substances, peroxides such as hydrogen peroxide, potassium perchlorate, potassium permanganate, potassium dichromate, and acids having an oxidizing action such as nitric acid can be used. Hydrogen peroxide is particularly preferred from the viewpoint of easy obtaining of expanded graphite.

酸化剤として過酸化水素を用いる場合、水溶液として用いることが好ましく、このとき、過酸化水素の濃度については特に制限はないが、20重量%〜40重量%の範囲が好ましい。その使用量についても特に制限はないが、黒鉛100重量部に対して過酸化水素として5重量部〜60重量部の範囲で配合することが好ましい。   When hydrogen peroxide is used as the oxidizing agent, it is preferably used as an aqueous solution. At this time, the concentration of hydrogen peroxide is not particularly limited, but is preferably in the range of 20 wt% to 40 wt%. Although there is no restriction | limiting in particular also about the usage-amount, It is preferable to mix | blend in 5 to 60 weight part as hydrogen peroxide with respect to 100 weight part of graphite.

酸性物質及び酸化剤は、水溶液の形態で使用することが好ましい。
酸性物質としての硫酸は、適度の濃度で使用されるが、95重量%以上の濃度のものが好ましく、濃硫酸を使用することが特に好ましい。
The acidic substance and the oxidizing agent are preferably used in the form of an aqueous solution.
Sulfuric acid as an acidic substance is used at an appropriate concentration, but is preferably 95% by weight or more, and particularly preferably concentrated sulfuric acid.

上記に示す方法で得られた酸処理黒鉛を、大量の水で洗浄して余分な酸性物質を除去し、この後、乾燥して水分を取り除くことにより、膨張黒鉛の原料である酸処理黒鉛が得られ、次いで酸処理黒鉛を、1000℃以上の温度で加熱し膨張黒鉛が得られる。   The acid-treated graphite obtained by the above method is washed with a large amount of water to remove excess acidic substances, and then dried to remove moisture, whereby the acid-treated graphite as a raw material for expanded graphite is obtained. Then, the acid-treated graphite is heated at a temperature of 1000 ° C. or higher to obtain expanded graphite.

上記の方法で得られる膨張黒鉛も本発明の電波吸収材として使用可能であるが、バインダーの混合性、混合時の黒鉛の破壊などを考慮すると、膨張黒鉛を一度シート(高密度)化して、粉砕したものを使用するのが好ましい。   Expanded graphite obtained by the above method can also be used as the radio wave absorber of the present invention, but considering the miscibility of the binder, destruction of the graphite at the time of mixing, the expanded graphite is once made into a sheet (high density), It is preferable to use a pulverized one.

膨張黒鉛をシート化する方法に特に制限はないが、一般的には上記で得た膨張黒鉛を、プレス、ロール等で圧力を加えてシート化することが好ましい。膨張黒鉛をシート化したときのシートの厚さ及び嵩密度については特に制限はないが、厚さが0.5mm〜1.5mmの範囲及び嵩密度が0.2g/cm〜1.7g/cmの範囲のものが好ましい。厚さが0.5mm未満であると粉砕工程での作業低下(ハンドリング中にシートが脆く崩れる)を招く傾向があり、1.5mmを超えると粉砕が難しくなる傾向がある。 The method for forming expanded graphite into a sheet is not particularly limited, but in general, the expanded graphite obtained above is preferably formed into a sheet by applying pressure with a press, a roll or the like. There are no particular restrictions on the thickness and bulk density of the expanded graphite sheet, but the thickness is in the range of 0.5 mm to 1.5 mm and the bulk density is 0.2 g / cm 3 to 1.7 g /. Those in the range of cm 3 are preferred. When the thickness is less than 0.5 mm, there is a tendency to cause a reduction in work in the pulverization process (the sheet breaks brittlely during handling), and when it exceeds 1.5 mm, pulverization tends to be difficult.

また、嵩密度が0.2g/cm未満であると得られる電波吸収シートの電波吸収特性が低下する傾向があり、1.7g/cmを超えると電波吸収シートの柔軟性が低下する傾向がある。
嵩密度の大きさは、加圧量、ロールギャップ等の調整により、調整することができる。また、膨張黒鉛シートの粉砕は、粗粉砕及び微粉砕により行うことが好ましく、この後、必要に応じて分級を行う。
Moreover, when the bulk density is less than 0.2 g / cm 3 , the radio wave absorption characteristics of the obtained radio wave absorption sheet tend to be lowered, and when it exceeds 1.7 g / cm 3 , the flexibility of the radio wave absorption sheet tends to be lowered. There is.
The magnitude of the bulk density can be adjusted by adjusting the amount of pressurization, the roll gap, and the like. Further, the pulverization of the expanded graphite sheet is preferably performed by coarse pulverization and fine pulverization, and thereafter, classification is performed as necessary.

膨張黒鉛シート粉砕粉の平均粒径についても特に制限はないが、得られる電波吸収シートの厚さ及び電波吸収量を考慮すると、数平均粒径で20μm〜100μmの範囲が好ましく、30μm〜80μmの範囲がさらに好ましい。数平均粒径が20μm未満であると、膨張黒鉛シート粉砕粉の異方性小さくなり、目的とする電波吸収量を得ることができなくなる傾向があり、100μmを超えると場所による吸収量のバラツキが生じる傾向がある。   The average particle size of the expanded graphite sheet pulverized powder is not particularly limited, but in consideration of the thickness and the amount of radio wave absorption of the obtained radio wave absorbing sheet, the number average particle size is preferably in the range of 20 μm to 100 μm, and 30 μm to 80 μm. A range is further preferred. If the number average particle size is less than 20 μm, the anisotropy of the expanded graphite sheet pulverized powder tends to be small, and there is a tendency that the target radio wave absorption amount cannot be obtained. Tend to occur.

前記、電波吸収材として機能する異方性黒鉛と併用して使用されるバインダーは、比誘電率(実数部)が、2.2〜3.2の範囲、好ましくは2.3〜3.0の範囲内のものが必要とされ、比誘電率が上記の範囲から外れるものを使用すると、異方性黒鉛との電気特性バランスを崩し、目的とする電波吸収特性が得られない。   The binder used in combination with the anisotropic graphite functioning as a radio wave absorber has a relative dielectric constant (real part) in the range of 2.2 to 3.2, preferably 2.3 to 3.0. If a material having a relative dielectric constant deviating from the above range is used, the electrical property balance with anisotropic graphite is lost, and the desired radio wave absorption property cannot be obtained.

なお、比誘電率が上記の範囲内に入っていれば、異方性黒鉛と均一に混合でき、かつ得られる電波吸収シートが弾性を示すものであれば、種類(分子構造・分子量・溶媒使用の有無)に関係なく使用することができる。   If the relative dielectric constant falls within the above range, the type (molecular structure, molecular weight, solvent used) can be mixed uniformly with anisotropic graphite and the obtained radio wave absorbing sheet exhibits elasticity. Can be used regardless of the presence or absence).

また、本発明で使用されるバインダーは、異方性黒鉛との電気特性バランスとの関係で誘電正接(tanδ)は、0.012〜0.12の範囲が好ましく、0.01〜0.1の範囲がさらに好ましい。
さらに、比誘電率と誘電正接の値と関係のある、導電率も上記と同様異方性黒鉛との電気特性バランスとの関係で、0.012〜0.12(S/m)の範囲が好ましく、0.01〜0.1(S/m)の範囲がさらに好ましい。
In addition, the binder used in the present invention preferably has a dielectric loss tangent (tan δ) in the range of 0.012 to 0.12, in relation to the balance of electrical properties with anisotropic graphite. The range of is more preferable.
Further, the electrical conductivity, which is related to the value of the relative dielectric constant and the dielectric loss tangent, is also in the range of 0.012 to 0.12 (S / m) in the relationship with the balance of electrical characteristics with the anisotropic graphite as described above. The range of 0.01 to 0.1 (S / m) is more preferable.

上記問題を考慮すると、本発明で使用するバインダーとしては、弾性のあるバインダーを用いることが好ましい。特に安全で誰でも取り取り扱うことのできる変性高分子材料が好ましい。また必要に応じ電気特性のバランスを崩さない範囲で難燃剤を添加し、電波吸収シートを難燃化する事もできる。   Considering the above problems, it is preferable to use an elastic binder as the binder used in the present invention. Particularly preferred are modified polymer materials that are safe and can be handled by anyone. If necessary, a flame retardant can be added within a range that does not disturb the balance of electrical characteristics, and the radio wave absorbing sheet can be made flame retardant.

前記した異方性黒鉛とバインダーは、混合して均一に分散されペースト状(電波吸収ペースト)に加工して使用される。混合する方法については特に制限はなく、一般的ならいかい機や高粘度物質混合機が使用できる。また、混合時に巻き込んだ空気を排除できる装置を有した混合機を使用すれば、特性の安定化、ロット間のバラツキを低減する上で好ましい。   The above-mentioned anisotropic graphite and binder are mixed and dispersed uniformly and processed into a paste form (a radio wave absorbing paste). There is no restriction | limiting in particular about the method of mixing, A general raking machine and a high-viscosity substance mixer can be used. In addition, it is preferable to use a mixer having a device capable of removing air entrained during mixing in order to stabilize characteristics and reduce variations between lots.

混合して得られたペーストをシート状に加工する方法についても特に制限はないが、塗工フィルムを送り出す塗工フィルム送出し装置、ペーストを塗工するためのペースト塗工装置、溶媒を乾燥するための溶媒乾燥装置、シートを巻取るためのシート巻取り装置等が一体となった連続シート製造装置を使用すれば、得られる塗工吸収シートの精度(厚み、吸収特性)が安定で、かつ低コストで電波吸収シートを製造することができるので好ましい。
なお、前記に示す連続製造装置を備えていれば、各機構の形状、寸法、熱源等に制約を受けることはない。
The method of processing the paste obtained by mixing into a sheet is not particularly limited, but a coating film feeding device for feeding the coating film, a paste coating device for coating the paste, and drying the solvent If a continuous sheet manufacturing apparatus in which a solvent drying apparatus for winding a sheet and a sheet winding apparatus for winding a sheet are integrated is used, the accuracy (thickness and absorption characteristics) of the resulting coated absorbent sheet is stable, and Since an electromagnetic wave absorption sheet can be manufactured at low cost, it is preferable.
In addition, if the continuous manufacturing apparatus shown above is provided, there will be no restrictions on the shape, dimensions, heat source, etc. of each mechanism.

最終的な電波吸収シートの形態は、前記して得られた塗工吸収シートを各電波吸収領域に合わせた厚さに積層して得られる(片面は、電波反射板となる)。塗工吸収シートの積層方法については特に制限はなく、ギャップ調整した熱ロールを使用する方法、積層した塗工吸収シート上部に均一に荷重を掛け、加熱して一体化する方法などがある   The final form of the radio wave absorption sheet is obtained by laminating the coating absorption sheet obtained as described above to a thickness corresponding to each radio wave absorption region (one side becomes a radio wave reflection plate). There are no particular restrictions on the method of laminating the coating absorbent sheet, and there are a method of using a heated roll with a gap adjusted, a method of uniformly applying a load to the top of the laminated coating absorbent sheet, and heating to integrate.

以下、実施例により本発明を説明する。
実施例1
(1)弾性バインダー(変性ポリアミドイミド樹脂)の選定
溶媒としてγ-ブチロラクトンを使用した樹脂分が46重量%の弾性バインダー(日立化成工業(株)製、商品名SN−9000CSEN)を選定した。
Hereinafter, the present invention will be described by way of examples.
Example 1
(1) Selection of Elastic Binder (Modified Polyamideimide Resin) An elastic binder (made by Hitachi Chemical Co., Ltd., trade name SN-9000CSEN) having a resin content of 46% by weight using γ-butyrolactone as a solvent was selected.

なお、弾性バインダー単独(熱処理及び溶剤なし)の電気特性は、比誘電率(実数部)が2.81、誘電正接(tanδ)が0.022及び導電率が0.02(s/m)であった。これらの電気特性の測定条件を下記に示す。
試料寸法:1mm×100mm及び300mmm
測定周波数:5.8GHz
測定方法:伝搬遅延方式CutBackタイプ
測定機器:ベクトルネットワークアナライザー アンリツ37
測定温度:25℃
The electrical properties of the elastic binder alone (no heat treatment and no solvent) are as follows: the relative permittivity (real part) is 2.81, the dielectric loss tangent (tan δ) is 0.022, and the conductivity is 0.02 (s / m). there were. The measurement conditions for these electrical characteristics are shown below.
Sample size: 1 mm x 100 mm and 300 mm
Measurement frequency: 5.8 GHz
Measuring method: Propagation delay method CutBack type Measuring instrument: Vector network analyzer Anritsu 37
Measurement temperature: 25 ° C

(2)電波吸収粉(膨張黒鉛粉)の製造
板厚が1.0mm及び嵩密度が1.0g/cmの膨張黒鉛シート(日立化成工業(株)製、商品名カーボフィットHGP−105)を粗粉砕及び微粉砕機で粉砕し、得られた粉砕粉を分級し、数平均粒径が100μmの膨張黒鉛シート粉砕粉を得た。
(2) Production of radio wave absorbing powder (expanded graphite powder) Expanded graphite sheet having a plate thickness of 1.0 mm and a bulk density of 1.0 g / cm 3 (trade name Carbofit HGP-105, manufactured by Hitachi Chemical Co., Ltd.) Were pulverized with a coarse pulverizer and a fine pulverizer, and the obtained pulverized powder was classified to obtain an expanded graphite sheet pulverized powder having a number average particle size of 100 μm.

(3)混合ペーストの製造
の弾性バインダー1000g、エポキシ樹脂(東都化成(株)製、商品名YH434L)33g、(2)で得た数平均粒径が100μmの膨張黒鉛シート粉砕粉110g及びγ-ブチロラクトン200gと少量の消泡剤を混合用乳鉢に計り取り、乳棒で軽く混ぜ合わせた。このものをさらに二軸自動混合機(石川攪拌機(株)製、型式24型)を使用し、40分間混合した。得られた混合ペーストをさらに70℃に加熱した真空乾燥機に入れ、20分間減圧し混合時に巻き込んだ空気を除去して、電波吸収シート用混合ペーストを得た。
(3) 1000 g of an elastic binder for producing a mixed paste, 33 g of an epoxy resin (product name YH434L, manufactured by Toto Kasei Co., Ltd.), 110 g of an expanded graphite sheet pulverized powder having a number average particle size of 100 μm obtained in (2) and γ − 200 g of butyrolactone and a small amount of antifoam were weighed into a mixing mortar and mixed lightly with a pestle. This was further mixed for 40 minutes using a biaxial automatic mixer (Ishikawa Stirrer, Model 24). The obtained mixed paste was further placed in a vacuum dryer heated to 70 ° C., decompressed for 20 minutes, and air entrained during mixing was removed to obtain a mixed paste for a radio wave absorbing sheet.

次に、上記で得た電波吸収シート用混合ペーストを、塗工フィルム送出し装置、塗工幅が32cmのペースト塗工装置(ギャップロール)、長さが2mの溶媒燃焼装置を備えたトンネル型乾燥装置及び巻き取りロールを用いた製品巻取り装置を有する連続シート製造装置を使用して、ポリエチレンフィルム上に塗工して乾燥させた塗工連続吸収シートを得た。   Next, the mixed paste for a radio wave absorbing sheet obtained above is a tunnel type equipped with a coating film feeding device, a paste coating device (gap roll) having a coating width of 32 cm, and a solvent combustion device having a length of 2 m. Using a continuous sheet manufacturing apparatus having a product winding apparatus using a drying apparatus and a winding roll, a coated continuous absorbent sheet coated on a polyethylene film and dried was obtained.

(4)電波吸収シートの作製
(3)で得た塗工連続吸収シートを、30cm×30cmの寸法に切断した後、塗工フィルムを剥がし、塗工方向を上部として上記で切断した塗工吸収シート1枚を厚さが0.1mmのアルミ板に貼り、次にその上面に上記と同様に塗工方向を上部として切断した塗工吸収シートを9枚重ねて、温度120℃及びギャップ2.1mmに調整した熱ロール中を、0.5m/分のスピードで通過させ、電波吸収層の平均厚さが1.9mm及びシート密度が1.33g/cmの電波吸収シート(弾性シート)を得た。
(4) Production of radio wave absorption sheet After the coating continuous absorption sheet obtained in (3) was cut to a size of 30 cm × 30 cm, the coating film was peeled off, and the coating absorption was cut as described above with the coating direction as the upper part. One sheet is attached to an aluminum plate having a thickness of 0.1 mm, and then, nine coating absorption sheets cut with the coating direction as the upper portion are stacked on the upper surface in the same manner as described above. A radio wave absorbing sheet (elastic sheet) having a mean thickness of 1.9 mm and a sheet density of 1.33 g / cm 3 is passed through a heat roll adjusted to 1 mm at a speed of 0.5 m / min. Obtained.

比較例1
バインダーを市販のスチレン・ブタジエン・ゴム(SBR:溶媒系)に変えた以外は実施例1と同様の材料を用い、実施例1と同様の工程を経て電波吸収層の平均厚さが1.92mm及びシート密度が1.32g/cmの電波吸収シート(弾性シート)を得た。
実施例1と同様の条件で弾性バインダー単独(熱処理及び溶剤なし)の電気特性を測定したところ、比誘電率(実数部)は3.65、誘電正接(tanδ)は0.09及び導電率は0.08(s/m)であった。
なお、実施例1及び比較例1における塗工連続吸収シートを得るための作業条件を表1に示す。
Comparative Example 1
The same material as in Example 1 was used except that the binder was changed to commercially available styrene-butadiene rubber (SBR: solvent system), and the average thickness of the radio wave absorption layer was 1.92 mm through the same steps as in Example 1. And the electromagnetic wave absorption sheet | seat (elastic sheet) whose sheet density is 1.32 g / cm < 3 > was obtained.
When the electrical properties of the elastic binder alone (without heat treatment and solvent) were measured under the same conditions as in Example 1, the relative dielectric constant (real part) was 3.65, the dielectric loss tangent (tan δ) was 0.09, and the electrical conductivity was It was 0.08 (s / m).
In addition, Table 1 shows working conditions for obtaining the coated continuous absorbent sheet in Example 1 and Comparative Example 1.

Figure 2006093287
Figure 2006093287

次に、実施例1及び比較例1で得られた電波吸収シートを用い、吸収領域が5.8GHzでの電波吸収量を測定した。この結果を表2に示す。なお、電波吸収量の測定方法は、下記の通りである。   Next, using the radio wave absorption sheets obtained in Example 1 and Comparative Example 1, the radio wave absorption amount at an absorption region of 5.8 GHz was measured. The results are shown in Table 2. The method for measuring the amount of radio wave absorption is as follows.

測定機:キーコム株式会社製、電波吸収材料測定システム(レンズアンテナタイプフリースペース法)
ホーンアンテナ:同軸導波管変換器付WR159タイプ
測定波:円偏波
測定範囲:45MHz〜20GHz(ベクトルネットワークアナライザ)
測定周波数:5.8GHz(リターンロス)
Measuring machine: Keycom Co., Ltd., electromagnetic wave absorption material measurement system (lens antenna type free space method)
Horn antenna: WR159 type with coaxial waveguide converter Measurement wave: Circular polarization Measurement range: 45 MHz to 20 GHz (vector network analyzer)
Measurement frequency: 5.8 GHz (return loss)

Figure 2006093287
Figure 2006093287

表2に示されるように、実施例1で得た電波吸収シートは、比較例1で得た電波吸収シートに比較して大きな電波吸収量が認められた。
As shown in Table 2, the radio wave absorption sheet obtained in Example 1 showed a larger radio wave absorption amount than the radio wave absorption sheet obtained in Comparative Example 1.

Claims (5)

比誘電率が、2.2〜3.2の範囲のバインダーを使用し、かつバインダー中に異方性黒鉛が均一に分散してなる電波吸収シート。   An electromagnetic wave absorbing sheet using a binder having a relative dielectric constant of 2.2 to 3.2 and having anisotropic graphite uniformly dispersed in the binder. バインダーが、誘電正接(tanδ)が0.012〜0.12の範囲である請求項1記載の電波吸収シート。   The radio wave absorption sheet according to claim 1, wherein the binder has a dielectric loss tangent (tan δ) in a range of 0.012 to 0.12. バインダーが、導電率が0.012〜0.12(S/m)の範囲である請求項1又は2記載の電波吸収シート。   The radio wave absorption sheet according to claim 1 or 2, wherein the binder has a conductivity in a range of 0.012 to 0.12 (S / m). 異方性黒鉛が、膨張黒鉛粉である請求項1記載の電波吸収シート。   The radio wave absorption sheet according to claim 1, wherein the anisotropic graphite is expanded graphite powder. 膨張黒鉛粉が、膨張黒鉛シート粉砕粉である請求項4記載の電波吸収シート。
The radio wave absorption sheet according to claim 4, wherein the expanded graphite powder is an expanded graphite sheet pulverized powder.
JP2004274943A 2004-09-22 2004-09-22 Wave absorption sheet Pending JP2006093287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274943A JP2006093287A (en) 2004-09-22 2004-09-22 Wave absorption sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274943A JP2006093287A (en) 2004-09-22 2004-09-22 Wave absorption sheet

Publications (1)

Publication Number Publication Date
JP2006093287A true JP2006093287A (en) 2006-04-06

Family

ID=36233982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274943A Pending JP2006093287A (en) 2004-09-22 2004-09-22 Wave absorption sheet

Country Status (1)

Country Link
JP (1) JP2006093287A (en)

Similar Documents

Publication Publication Date Title
WO2011149039A1 (en) Dielectric material sheet and process for production thereof, and electromagnetic wave absorber
JP2007250823A (en) Magnetic powder for use of wave absorber, its manufacturing method, and the wave absorber
KR101458839B1 (en) Electric wave absorption sheet for near-field and manufacturing method thereof
WO2020213669A1 (en) Plate-shaped composite material
CN108780674A (en) Dielectric resin material, the dielectric resin material and circuit board with metal layer using it
Al‐Hartomy et al. Influence of graphite nanosheets on the structure and properties of PVC‐based nanocomposites
JP2010114407A (en) Mixed ferrite powder, method for manufacturing the same, and radio-wave absorber
JP2004179633A (en) Electromagnetic wave absorbing body and method for manufacturing the same
CN108822797A (en) A kind of titanium silicon-carbon composite wave-absorbing agent and the preparation method and application thereof
JP2006080352A (en) Radio-wave absorbing sheet
KR20110113999A (en) Sheet composition and sheet for shielding electromagnetic wave, and manufacturing method thereof
JP4824621B2 (en) Radio wave absorber composition, radio wave absorber, and method for producing radio wave absorber
JP2006093288A (en) Wave absorption sheet
JP2006093287A (en) Wave absorption sheet
CN114750471B (en) Graphene composite film material and preparation method and application thereof
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
Youh et al. A carbonyl iron/carbon fiber material for electromagnetic wave absorption
JP2008181905A (en) Composite magnetic body, manufacturing method thereof, circuit board using composite magnetic body, and electronic equipment using composite magnetic body
EP4152908A1 (en) Electromagnetic wave absorber and paste for forming electromagnetic wave absorber
JP2005353973A (en) Production of radio wave absorbing sheet
JP2006086422A (en) Radio wave absorbing sheet
TW202142486A (en) Composite material and method for manufacturing the same
JP2019108496A (en) Thermal conductive sheet and production method thereof
Ting et al. Microwave absorption and infrared stealth characteristics of bamboo charcoal/silver composites prepared by chemical reduction method
Bouriche et al. Smart membrane absorbing electromagnetic waves based on polyvinyl chloride/graphene composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091015

A02 Decision of refusal

Effective date: 20100226

Free format text: JAPANESE INTERMEDIATE CODE: A02