JP2006092659A - Manufacturing method of magnetic recording medium, and magnetic recording medium - Google Patents

Manufacturing method of magnetic recording medium, and magnetic recording medium Download PDF

Info

Publication number
JP2006092659A
JP2006092659A JP2004277008A JP2004277008A JP2006092659A JP 2006092659 A JP2006092659 A JP 2006092659A JP 2004277008 A JP2004277008 A JP 2004277008A JP 2004277008 A JP2004277008 A JP 2004277008A JP 2006092659 A JP2006092659 A JP 2006092659A
Authority
JP
Japan
Prior art keywords
layer
recording
convex pattern
magnetic
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004277008A
Other languages
Japanese (ja)
Inventor
Takahiro Suwa
孝裕 諏訪
Mikiharu Hibi
幹晴 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004277008A priority Critical patent/JP2006092659A/en
Publication of JP2006092659A publication Critical patent/JP2006092659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium in which a recording layer is formed with a irregular pattern, a surface is sufficiently flat, and a good recording/reproducing property can be obtained surely, and a manufacturing method of the magnetic recording medium by which such the magnetic recording medium can be manufactured efficiently. <P>SOLUTION: A continuous recording layer of a processed body in which a conduction layer 38, a continuous recording layer, and an insulation layer are formed in this order on a substrate 22 are processed to an irregular pattern, after a recording essential element 24A is formed so that the insulation layer is left at a convex part of the irregular pattern and the conduction layer 38 is exposed at a bottom part of a concave part 26 of the irregular pattern, a non magnetic material 28 is filled in the concave part 26 using a CVD method in which the nonmagnetic material 28 of which the main component is either of tungsten or aluminum is selectively piled upon the conduction layer 38 exposed at the bottom part of the concave part 26. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、記録層が所定の凹凸パターンで形成されて記録要素が凹凸パターンの凸部として形成された磁気記録媒体の製造方法及び磁気記録媒体に関する。   The present invention relates to a method of manufacturing a magnetic recording medium in which a recording layer is formed in a predetermined concavo-convex pattern and a recording element is formed as a convex portion of the concavo-convex pattern, and the magnetic recording medium.

従来、ハードディスク等の磁気記録媒体は、記録層を構成する磁性粒子の微細化、材料の変更、ヘッド加工の微細化等の改良により著しい面記録密度の向上が図られており、今後も一層の面記録密度の向上が期待されているが、磁気ヘッドの加工限界、磁気ヘッドの記録磁界の広がりに起因する隣接トラックへの記録、再生時のクロストークなどの問題が顕在化し、従来の改良手法による面記録密度の向上は限界にきている。   Conventionally, a magnetic recording medium such as a hard disk has been remarkably improved in surface recording density by improving the fineness of magnetic particles constituting the recording layer, changing the material, miniaturizing the head processing, and the like. Improvements in surface recording density are expected, but problems such as the processing limit of the magnetic head, recording on adjacent tracks due to the expansion of the recording magnetic field of the magnetic head, and crosstalk at the time of reproduction become obvious, and the conventional improved method The improvement of the surface recording density due to is approaching the limit.

これに対し、一層の面記録密度の向上を実現可能である磁気記録媒体の候補として、記録層が凹凸パターンで形成され、記録要素が凹凸パターンの凸部として形成されたディスクリートトラックメディアや、パターンドメディアが提案されている(例えば、特許文献1参照)。尚、ハードディスク等の磁気記録媒体ではヘッド浮上高さを安定させるために、表面の平坦性が重視されるため、記録要素の間の凹部を非磁性材で充填し、記録層の表面を平坦化することが好ましい。   On the other hand, as a candidate for a magnetic recording medium that can realize a further improvement in surface recording density, a discrete track medium in which a recording layer is formed in a concavo-convex pattern and a recording element is formed as a convex part of a concavo-convex pattern, or a pattern A media has been proposed (see, for example, Patent Document 1). For magnetic recording media such as hard disks, the flatness of the surface is important in order to stabilize the flying height of the head. Therefore, the concave portions between the recording elements are filled with a nonmagnetic material to flatten the surface of the recording layer. It is preferable to do.

記録層を凹凸パターンに加工する手法としては、ドライエッチング等の加工手法を利用しうる。又、凹部に非磁性材を充填し、表面を平坦化する手法としては、スパッタリング法、IBD(Ion Beam Deposition)法等で凹凸パターンの記録層上に凹部を充填するように非磁性材を成膜してから、CMP(Chemical Mechanical Polishing)やドライエッチングで余剰の非磁性材を除去し、表面を平坦化する手法を利用しうる(例えば、特許文献2参照)。   As a method for processing the recording layer into the concavo-convex pattern, a processing method such as dry etching can be used. Further, as a method for filling the concave portion with a nonmagnetic material and flattening the surface, a nonmagnetic material is formed so as to fill the concave portion on the recording layer of the concave / convex pattern by sputtering method, IBD (Ion Beam Deposition) method or the like. After film formation, a method of removing the surplus nonmagnetic material by CMP (Chemical Mechanical Polishing) or dry etching and planarizing the surface can be used (for example, refer to Patent Document 2).

特開平9−97419号公報JP-A-9-97419 特開平12−195042号公報Japanese Patent Laid-Open No. 12-195042

しかしながら、CMP法は、nmのオーダーで加工量を制御することが困難であり、記録要素の上面の一部まで除去したり、記録要素の上に非磁性材が残存し、磁気記録媒体の特性が悪化することがある。又、CMP法は、スラリーの除去のために洗浄等に多大な時間、コストを要するという問題があった。更に、CMP法はウェットプロセスであるため、記録層を凹凸パターンに加工する工程等のドライプロセスと組合わせると、被加工体の搬送等が煩雑となり、製造工程全体の効率が低下するという問題がある。   However, in the CMP method, it is difficult to control the processing amount on the order of nm, and a part of the upper surface of the recording element is removed, or a nonmagnetic material remains on the recording element. May get worse. Further, the CMP method has a problem that it takes a lot of time and cost for cleaning and the like for removing the slurry. Furthermore, since the CMP method is a wet process, when combined with a dry process such as a process for processing the recording layer into a concavo-convex pattern, there is a problem that the conveyance of the workpiece becomes complicated and the efficiency of the entire manufacturing process is reduced. is there.

一方、ドライエッチングは、SIMS(Secondary−Ion Mass Spectrometry)による組成分析を行うことにより、nmのオーダーで加工量を制御することが可能である。又、ドライエッチングは、ドライプロセスであるのでスラリーの除去等の問題がなく、更に、記録層を凹凸パターンに加工する工程等のドライプロセスと組合わせることで生産効率の向上が可能であるが、凹凸パターンの記録層に倣って凹凸パターンで成膜される非磁性材をドライエッチングで平坦化する場合、例えば、データ領域とサーボ領域のように、記録要素の幅や凹凸パターンが異なる領域間でエッチングレートに差が生じやすく、表面を所望のレベルまで充分に平坦化できないことがあった。   On the other hand, in dry etching, the amount of processing can be controlled on the order of nm by performing composition analysis by SIMS (Secondary-Ion Mass Spectrometry). In addition, since dry etching is a dry process, there is no problem such as removal of slurry, and further, production efficiency can be improved by combining with a dry process such as a process of processing the recording layer into a concavo-convex pattern. When flattening by dry etching a nonmagnetic material that is formed in a concavo-convex pattern following the concavo-convex pattern recording layer, for example, between areas with different recording element widths and concavo-convex patterns, such as data areas and servo areas Differences in etching rates are likely to occur, and the surface may not be sufficiently planarized to a desired level.

又、CMP法やドライエッチングを用いて表面を所望のレベルまで充分に平坦化しても、磁気記録媒体の表面が静電気を帯びて異物を吸着し、この異物のために記録/再生精度が低下してしまうことがあった。   Even if the surface is sufficiently flattened to a desired level by using the CMP method or dry etching, the surface of the magnetic recording medium is charged with static electricity and adsorbs foreign matter, which reduces the recording / reproducing accuracy. There was a case.

本発明は、以上の問題点に鑑みてなされたものであって、記録層が凹凸パターンで形成され、表面が充分に平坦で良好な記録/再生特性が確実に得られる磁気記録媒体及びこのような磁気記録媒体を効率良く製造することができる磁気記録媒体の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a magnetic recording medium in which the recording layer is formed in a concavo-convex pattern, the surface is sufficiently flat, and good recording / reproducing characteristics can be reliably obtained, and such An object of the present invention is to provide a method of manufacturing a magnetic recording medium that can efficiently manufacture a magnetic recording medium.

本発明は、基板上に連続記録層が形成された被加工体の連続記録層を凹凸パターンに加工し、凹凸パターンの凸部の少なくとも上面に絶縁材が露出し、且つ、凹凸パターン凹部の底部に導電材が露出するように連続記録層を加工して記録要素を形成してから、タングステン及びアルミニウムのいずれかを主成分とする非磁性材を、凹部の底部に露出した導電材上に選択的に堆積させるCVD法を用いて、凹部に非磁性材を充填することにより、上記目的を達成するものである。   In the present invention, a continuous recording layer of a workpiece having a continuous recording layer formed on a substrate is processed into a concavo-convex pattern, the insulating material is exposed on at least the upper surface of the convex portion of the concavo-convex pattern, and the bottom portion of the concave and convex pattern recess After forming the recording element by processing the continuous recording layer so that the conductive material is exposed to the surface, select a non-magnetic material mainly composed of either tungsten or aluminum on the conductive material exposed at the bottom of the recess The above object is achieved by filling the recess with a non-magnetic material by using a CVD method of depositing automatically.

即ち、凹部に非磁性材を充填するために、従来のように凹凸パターンの記録層の上に非磁性材を一様に成膜するのではなく、非磁性材を凹部に選択的に充填するので、凹部が非磁性材で充填された被加工体の表面には、記録層の凹凸パターンが殆ど残存せず、又、凹凸パターンが形成されても、その段差は従来よりも著しく小さく抑制される。従って、その後のドライエッチング等により、表面を所望のレベルまで確実、且つ、容易に平坦化することができる。   That is, in order to fill the recess with the nonmagnetic material, the nonmagnetic material is not uniformly deposited on the recording layer of the concavo-convex pattern as in the prior art, but the nonmagnetic material is selectively filled into the recess. Therefore, the concave / convex pattern of the recording layer hardly remains on the surface of the workpiece filled with the nonmagnetic material in the concave portion, and even if the concave / convex pattern is formed, the step is suppressed to be significantly smaller than the conventional one. The Therefore, the surface can be surely and easily flattened to a desired level by subsequent dry etching or the like.

又、本発明は、記録要素の間の凹部にタングステン及びアルミニウムのいずれかを主成分とする非磁性材が充填された磁気記録媒体により、上記目的を達成するものである。   The present invention also achieves the above object by using a magnetic recording medium in which the concave portions between the recording elements are filled with a nonmagnetic material containing either tungsten or aluminum as a main component.

このように、記録要素の間の凹部に、導電性を有するタングステンやアルミニウムを充填することで、絶縁性の材料が記録要素の凹部に充填される磁気記録媒体よりも、静電気の帯電が抑制される。従って、異物等の吸着による記録/再生精度の低下を抑制することができる。   In this way, by filling the recesses between the recording elements with conductive tungsten or aluminum, electrostatic charging is suppressed compared to a magnetic recording medium in which an insulating material is filled in the recesses of the recording elements. The Accordingly, it is possible to suppress a decrease in recording / reproducing accuracy due to the adsorption of foreign matter or the like.

即ち、次のような本発明により、上記目的を達成することができる。   That is, the above-described object can be achieved by the following present invention.

(1)基板上に導電層、連続記録層、絶縁層がこの順で形成された被加工体の前記連続記録層を凹凸パターンに加工し、該凹凸パターンの凸部に前記絶縁層が残存し、且つ、前記凹凸パターンの凹部の底部に前記導電層が露出するように、前記凹凸パターンの凸部として記録要素を形成する記録層加工工程と、CVD法により、タングステン及びアルミニウムのいずれかを主成分とする非磁性材を、前記凹部の底部に露出した前記導電層上に選択的に堆積させ、前記凹部に前記非磁性材を充填する非磁性材充填工程と、を含むことを特徴とする磁気記録媒体の製造方法。   (1) Processing the continuous recording layer of a workpiece in which a conductive layer, a continuous recording layer, and an insulating layer are formed in this order on a substrate into a concavo-convex pattern, and the insulating layer remains on the convex portion of the concavo-convex pattern And a recording layer processing step of forming a recording element as a convex portion of the concave-convex pattern so that the conductive layer is exposed at the bottom of the concave portion of the concave-convex pattern, and either CVD or tungsten is mainly used. A non-magnetic material filling step of selectively depositing a non-magnetic material as a component on the conductive layer exposed at the bottom of the concave portion and filling the concave portion with the non-magnetic material. A method of manufacturing a magnetic recording medium.

(2) (1)において、前記被加工体は、前記導電層として前記記録層加工工程における加工速度が前記記録層よりも遅いストップ膜が形成された構成であり、前記記録層加工工程において、前記凹凸パターンの凹部に前記ストップ膜が残存するように、前記ストップ膜まで前記被加工体を加工することを特徴とする磁気記録媒体の製造方法。   (2) In (1), the workpiece is a structure in which a stop film having a processing speed in the recording layer processing step slower than that of the recording layer is formed as the conductive layer. In the recording layer processing step, A method of manufacturing a magnetic recording medium, wherein the workpiece is processed up to the stop film so that the stop film remains in a recess of the concavo-convex pattern.

(3)基板上に導電性を有する連続記録層、絶縁層がこの順で形成された被加工体の前記連続記録層を凹凸パターンに加工し、該凹凸パターンの凸部に前記絶縁層が残存し、且つ、前記凹凸パターンの凹部の底部に前記連続記録層が露出するように、前記凹凸パターンの凸部として記録要素を形成する記録層加工工程と、CVD法により、タングステン及びアルミニウムのいずれかを主成分とする非磁性材を、前記凹部の底部に露出した前記連続記録層上に選択的に堆積させ、前記凹部に前記非磁性材を充填する非磁性材充填工程と、を含むことを特徴とする磁気記録媒体の製造方法。   (3) Processing the continuous recording layer of the workpiece having the conductive continuous recording layer and the insulating layer formed in this order on the substrate into a concavo-convex pattern, and the insulating layer remains on the convex portion of the concavo-convex pattern And a recording layer processing step of forming a recording element as a convex portion of the concave-convex pattern so that the continuous recording layer is exposed at the bottom of the concave portion of the concave-convex pattern, and any one of tungsten and aluminum by a CVD method. A non-magnetic material filling step of selectively depositing a non-magnetic material mainly composed of the non-magnetic material on the continuous recording layer exposed at the bottom of the concave portion and filling the concave portion with the non-magnetic material. A method of manufacturing a magnetic recording medium.

(4) (1)乃至(3)のいずれかにおいて、前記非磁性材充填工程の後に、前記記録要素上に残存する前記絶縁層を除去し、表面を平坦化する平坦化工程が設けられたことを特徴とする磁気記録媒体の製造方法。   (4) In any one of (1) to (3), a flattening step for removing the insulating layer remaining on the recording element and flattening the surface is provided after the nonmagnetic material filling step. A method of manufacturing a magnetic recording medium.

(5) (1)乃至(4)のいずれかにおいて、前記記録層加工工程と、前記非磁性材充填工程と、の間に、前記被加工体の上に絶縁膜を成膜する絶縁膜成膜工程と、前記記録要素の側面に前記絶縁膜が残存し、前記記録要素の上に前記絶縁層が残存し、且つ、前記凹凸パターン凹部の底部に前記導電層が露出するように、前記絶縁膜を部分的に除去する絶縁膜加工工程と、が設けられたことを特徴とする磁気記録媒体の製造方法。   (5) In any one of (1) to (4), an insulating film forming film is formed on the workpiece between the recording layer processing step and the nonmagnetic material filling step. The insulating step so that the insulating film remains on the side surface of the recording element, the insulating layer remains on the recording element, and the conductive layer is exposed at the bottom of the concave / convex pattern recess. And a method of manufacturing a magnetic recording medium, comprising: an insulating film processing step of partially removing the film.

(6)基板上に導電層、絶縁性の連続記録層がこの順で形成された被加工体の前記連続記録層を凹凸パターンに加工し、該凹凸パターンの凸部として記録要素を形成して該記録要素を露出させ、且つ、前記凹凸パターンの凹部の底部に前記導電層を露出させる記録層加工工程と、CVD法により、タングステン及びアルミニウムのいずれかを主成分とする非磁性材を、前記凹部の底部に露出した前記導電層上に選択的に堆積させ、前記凹部に前記非磁性材を充填する非磁性材充填工程と、を含むことを特徴とする磁気記録媒体の製造方法。   (6) Processing the continuous recording layer of the workpiece in which the conductive layer and the insulating continuous recording layer are formed in this order on the substrate into a concavo-convex pattern, and forming a recording element as a convex portion of the concavo-convex pattern A recording layer processing step for exposing the recording element and exposing the conductive layer at the bottom of the concave portion of the concavo-convex pattern, and a non-magnetic material mainly composed of tungsten or aluminum by a CVD method, And a nonmagnetic material filling step of selectively depositing on the conductive layer exposed at the bottom of the recess and filling the recess with the nonmagnetic material.

(7) (6)において、前記被加工体は、前記導電層として前記記録層加工工程における加工速度が前記記録層よりも遅いストップ膜が形成された構成であり、前記記録層加工工程において、前記凹凸パターンの凹部に前記ストップ膜が残存するように、前記ストップ膜まで前記被加工体を加工することを特徴とする磁気記録媒体の製造方法。   (7) In (6), the workpiece is a structure in which a stop film having a processing speed in the recording layer processing step slower than that of the recording layer is formed as the conductive layer. In the recording layer processing step, A method of manufacturing a magnetic recording medium, wherein the workpiece is processed up to the stop film so that the stop film remains in a recess of the concavo-convex pattern.

(8) (1)乃至(7)のいずれかにおいて、前記記録層加工工程において、イオンビームエッチングを用いて前記連続記録層を凹凸パターンに加工することを特徴とする磁気記録媒体の製造方法。   (8) The method of manufacturing a magnetic recording medium according to any one of (1) to (7), wherein, in the recording layer processing step, the continuous recording layer is processed into a concavo-convex pattern using ion beam etching.

(9)基板上に所定の凹凸パターンで形成されて記録要素が前記凹凸パターンの凸部として形成された記録層と、前記記録要素の間の凹部に充填された、タングステン及びアルミニウムのいずれかを主成分とする非磁性材と、を含むことを特徴とする磁気記録媒体。   (9) A recording layer in which a recording element is formed as a convex part of the concave / convex pattern formed on a substrate with a predetermined concave / convex pattern, and either tungsten or aluminum filled in a concave part between the recording elements. A magnetic recording medium comprising a nonmagnetic material as a main component.

(10) (9)に記載の磁気記録媒体と、該磁気記録媒体に対してデータの記録/再生を行うための磁気ヘッドと、を備えることを特徴とする磁気記録再生装置。   (10) A magnetic recording / reproducing apparatus comprising: the magnetic recording medium according to (9); and a magnetic head for recording / reproducing data on the magnetic recording medium.

尚、本出願において、「凹凸パターンで形成されて記録要素が凹凸パターンの凸部として形成された記録層」とは、連続記録層が所定のパターンで多数の記録要素に分割された記録層の他、連続記録層が所定のパターンで部分的に分割して形成され、一部が連続する記録要素で構成された記録層、又、例えば螺旋状の渦巻き形状の記録層のように、基板上の一部に連続して形成された記録層、凸部及び凹部双方が形成された連続した記録層も含む意義で用いることとする。   In the present application, the “recording layer formed with a concavo-convex pattern and the recording elements formed as convex portions of the concavo-convex pattern” means a recording layer in which a continuous recording layer is divided into a large number of recording elements in a predetermined pattern. In addition, the continuous recording layer is formed by partially dividing the recording layer into a predetermined pattern, and a part of the recording layer composed of continuous recording elements, or a spiral spiral recording layer, for example, on the substrate. It is used in the meaning including a recording layer continuously formed on a part of the recording layer and a continuous recording layer in which both convex portions and concave portions are formed.

又、本出願において「タングステンを主成分とする非磁性材」とは、全構成原子に対するタングステンの原子数の比率が90%以上の非磁性材という意義で用いることとする。「アルミニウムを主成分とする非磁性材」についても同様である。   In the present application, the term “nonmagnetic material containing tungsten as a main component” is used to mean a nonmagnetic material in which the ratio of the number of tungsten atoms to all constituent atoms is 90% or more. The same applies to “a nonmagnetic material mainly composed of aluminum”.

又、本出願において「磁気記録媒体」という用語は、情報の記録、読み取りに磁気のみを用いるハードディスク、フロッピー(登録商標)ディスク、磁気テープ等に限定されず、磁気と光を併用するMO(Magneto Optical)等の光磁気記録媒体、磁気と熱を併用する熱アシスト型の記録媒体も含む意義で用いることとする。   In addition, the term “magnetic recording medium” in the present application is not limited to a hard disk, a floppy (registered trademark) disk, a magnetic tape, or the like that uses only magnetism for recording and reading information, and MO (Magneto) using both magnetism and light. It is used in the meaning including a magneto-optical recording medium such as Optical) and a heat-assisted recording medium using both magnetism and heat.

又、本出願において「加工速度」という用語は、単位時間当たりの加工量という意義で用いることとする。   In the present application, the term “machining speed” is used to mean the machining amount per unit time.

本発明によれば、記録層が凹凸パターンで形成され、表面が充分に平坦で良好な記録/再生特性が確実に得られる磁気記録媒体を効率良く製造することができる。   According to the present invention, it is possible to efficiently manufacture a magnetic recording medium in which a recording layer is formed in a concavo-convex pattern, a surface is sufficiently flat, and good recording / reproducing characteristics can be reliably obtained.

以下、本発明の好ましい実施形態について図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1に示されるように、本発明の第1実施形態に係る磁気記録再生装置10は、磁気記録媒体12と、磁気記録媒体12に対してデータの記録/再生を行うための磁気ヘッド14と、を備えている。尚、磁気記録媒体12はチャック16に固定され、該チャック16と共に回転自在とされている。又、磁気ヘッド14は、アーム18の先端近傍に装着され、アーム18はベース20に回動自在に取付けられている。これにより、磁気ヘッド14は磁気記録媒体12の径方向に沿う円弧軌道で磁気記録媒体12の表面に近接して可動とされている。磁気記録再生装置10は、磁気記録媒体12の構成に特徴を有しており、他の構成については、本発明の理解のために特に必要とは思われないため、説明を適宜省略することとする。   As shown in FIG. 1, a magnetic recording / reproducing apparatus 10 according to a first embodiment of the present invention includes a magnetic recording medium 12, and a magnetic head 14 for recording / reproducing data on / from the magnetic recording medium 12. It is equipped with. The magnetic recording medium 12 is fixed to the chuck 16 and is rotatable with the chuck 16. The magnetic head 14 is mounted in the vicinity of the tip of the arm 18, and the arm 18 is rotatably attached to the base 20. As a result, the magnetic head 14 is movable in the vicinity of the surface of the magnetic recording medium 12 along an arc orbit along the radial direction of the magnetic recording medium 12. The magnetic recording / reproducing apparatus 10 has a feature in the configuration of the magnetic recording medium 12, and other configurations are not particularly necessary for understanding the present invention. To do.

磁気記録媒体12は、円板状の垂直記録型のディスクリートトラックメディアであり、図2に示されるように、基板22上に所定の凹凸パターンで形成されて記録要素24Aが凹凸パターンの凸部として形成された記録層24と、記録要素24Aの間の凹部26に充填された、W(タングステン)を主成分とする非磁性材28と、を有している。尚、記録要素24Aは、データ領域において径方向に微細な間隔の同心円状のトラック形状で形成されており、図2はこれを示す径方向に沿う側断面図である。又、記録要素24Aは、サーボ領域において所定のサーボ情報のパターンで形成されている(図示省略)。   The magnetic recording medium 12 is a disc-like perpendicular recording type discrete track medium, and as shown in FIG. 2, the recording element 24A is formed as a convex portion of the concave / convex pattern formed on the substrate 22 with a predetermined concave / convex pattern. The recording layer 24 is formed, and the nonmagnetic material 28 mainly composed of W (tungsten) is filled in the concave portions 26 between the recording elements 24A. The recording element 24A is formed in a concentric track shape with a fine interval in the radial direction in the data area, and FIG. 2 is a side sectional view along the radial direction showing this. The recording element 24A is formed in a predetermined servo information pattern in the servo area (not shown).

基板22は、記録層24側の面が鏡面研磨されている。基板22の材料としては、ガラス、NiPで被覆したAl合金、Si、Al等の非磁性材料を用いることができる。 The surface of the substrate 22 on the recording layer 24 side is mirror-polished. As a material of the substrate 22, a nonmagnetic material such as glass, NiP-coated Al alloy, Si, Al 2 O 3 or the like can be used.

記録層24は、厚さが5〜30nmである。記録層24の材料としては、CoCrPt合金等のCoCr系合金、FePt系合金、これらの積層体、SiO等の酸化物系材料の中にCoPt等の強磁性粒子をマトリックス状に含ませた材料等の保磁力が高い材料を用いることができる。又、記録層24は導電性を有している。尚、記録層24を凹凸パターンに加工する手法としては、イオンビームエッチング等のドライエッチングの手法を用いることができる。 The recording layer 24 has a thickness of 5 to 30 nm. As a material for the recording layer 24, a CoCr alloy such as a CoCrPt alloy, a FePt alloy, a laminate thereof, a material in which ferromagnetic particles such as CoPt are included in a matrix in an oxide material such as SiO 2. A material having a high coercive force, such as, can be used. The recording layer 24 has conductivity. As a method for processing the recording layer 24 into a concavo-convex pattern, a dry etching method such as ion beam etching can be used.

非磁性材28は、上記のように主成分がタングステンであり、記録層24と同様に導電性を有している。   As described above, the non-magnetic material 28 is mainly composed of tungsten, and has the same conductivity as the recording layer 24.

記録要素24A及び非磁性材28の上には保護層30、潤滑層32がこの順で形成されている。保護層30は、厚さが1〜5nmである。保護層30の材料としては、例えば、ダイヤモンドライクカーボンと呼称される硬質炭素膜等を用いることができる。尚、本出願において「ダイヤモンドライクカーボン(以下、「DLC」という)」という用語は、炭素を主成分とし、アモルファス構造であって、ビッカース硬度測定で2×10〜8×1010Pa程度の硬さを示す材料という意義で用いることとする。又、潤滑層32は、厚さが1〜2nmである。潤滑層32の材料としては、PFPE(パーフロロポリエーテル)やフォンブリン系潤滑剤等を用いることができる。 On the recording element 24A and the nonmagnetic material 28, a protective layer 30 and a lubricating layer 32 are formed in this order. The protective layer 30 has a thickness of 1 to 5 nm. As a material of the protective layer 30, for example, a hard carbon film called diamond-like carbon can be used. In the present application, the term “diamond-like carbon (hereinafter referred to as“ DLC ”)” is mainly composed of carbon, has an amorphous structure, and has a Vickers hardness measurement of about 2 × 10 9 to 8 × 10 10 Pa. It is used in the meaning of a material that exhibits hardness. The lubricating layer 32 has a thickness of 1 to 2 nm. As a material of the lubricating layer 32, PFPE (perfluoropolyether), fomblin lubricant, or the like can be used.

又、基板22及び記録層24の間には基板22側から、下地層34、軟磁性層36、配向層(導電層)38がこの順で形成されている。下地層34は、厚さが2〜40nmである。下地層34の材料としてはTa等を用いることができる。   A base layer 34, a soft magnetic layer 36, and an orientation layer (conductive layer) 38 are formed in this order from the substrate 22 side between the substrate 22 and the recording layer 24. The underlayer 34 has a thickness of 2 to 40 nm. As the material of the underlayer 34, Ta or the like can be used.

軟磁性層36は、厚さが50〜300nmである。軟磁性層36の材料としては、Fe(鉄)合金、Co(コバルト)アモルファス合金、フェライト等を用いることができる。   The soft magnetic layer 36 has a thickness of 50 to 300 nm. As a material of the soft magnetic layer 36, Fe (iron) alloy, Co (cobalt) amorphous alloy, ferrite, or the like can be used.

配向層38は、厚さが2〜40nmである。配向層38の材料としては、非磁性、且つ、導電性のCoCr合金、Cr合金、Ti、Ru、RuとTaの積層体等を用いることができる。又、配向層38の材料としては、記録層24を凹凸パターンに加工するためのイオンビームエッチング等のドライエッチングに対する加工速度が記録層24よりも遅い材料を用い、配向層38が記録層24の加工におけるストップ膜を兼ねる構成とすることが好ましい。尚、後述するように本第1実施形態では、配向層38は、後述する非磁性材28の充填工程において非磁性材28が選択的に堆積する導電層を兼ねているが、例えば、軟磁性層36を導電層として用いてもよい。又、配向層38、軟磁性層36と別体で導電層を設けてもよい。   The alignment layer 38 has a thickness of 2 to 40 nm. As the material of the alignment layer 38, a nonmagnetic and conductive CoCr alloy, Cr alloy, Ti, Ru, a laminate of Ru and Ta, or the like can be used. Further, as the material of the alignment layer 38, a material whose processing speed for dry etching such as ion beam etching for processing the recording layer 24 into a concavo-convex pattern is slower than that of the recording layer 24 is used. It is preferable to have a configuration that also serves as a stop film in processing. As will be described later, in the first embodiment, the alignment layer 38 also serves as a conductive layer on which the nonmagnetic material 28 is selectively deposited in the filling process of the nonmagnetic material 28 described later. Layer 36 may be used as a conductive layer. The conductive layer may be provided separately from the alignment layer 38 and the soft magnetic layer 36.

磁気ヘッド14は、図示しない記録ヘッド及び再生ヘッドを備えている。   The magnetic head 14 includes a recording head and a reproducing head (not shown).

次に、磁気記録再生装置10の作用について説明する。   Next, the operation of the magnetic recording / reproducing apparatus 10 will be described.

磁気記録再生装置10は、磁気記録媒体12が、記録要素24Aの間の凹部26に、導電性を有するW(タングステン)を主成分とする非磁性材28が充填されているので、凹部に絶縁性の材料が充填された磁気記録媒体よりも静電気が帯電しにくい。従って、異物等を吸着しにくく良好な記録/再生特性が確実に得られる。   In the magnetic recording / reproducing apparatus 10, since the magnetic recording medium 12 is filled with the nonmagnetic material 28 mainly composed of conductive W (tungsten) in the concave portions 26 between the recording elements 24A, the magnetic recording medium 12 is insulated from the concave portions. Static electricity is less likely to be charged than a magnetic recording medium filled with a conductive material. Therefore, good recording / reproducing characteristics can be reliably obtained that are difficult to adsorb foreign matter and the like.

又、Wは耐食性に優れ、経時的な変形や剥離が生じにくく、この点でも良好な記録/再生特性が確実に得られる。   Further, W is excellent in corrosion resistance and is less likely to be deformed or peeled off over time, so that good recording / reproducing characteristics can be reliably obtained in this respect.

更に、Wは、凹部26を充填するために従来のように凹凸パターンの記録層24の上に一様に成膜されるのではなく、後述するようにCVD法により、凹部26に選択的に充填できるので、磁気記録媒体12は、表面を所望のレベルまで充分に、確実、且つ、容易に平坦化でき、生産性が良い。   Further, W is not formed uniformly on the recording layer 24 having a concavo-convex pattern in order to fill the concave portion 26, but is selectively formed in the concave portion 26 by a CVD method as will be described later. Since the magnetic recording medium 12 can be filled, the surface of the magnetic recording medium 12 can be flattened sufficiently and surely to a desired level, and the productivity is good.

即ち、Wは、CVD法により凹部26に選択的に充填できるので、従来のように凹凸パターンの記録層上に非磁性材を一様に形成する場合に対し、製造工程における非磁性材の使用量が少なくて足り、又、平坦化工程で除去される非磁性材が従来よりも少ないので、生産性が良い。   That is, since W can be selectively filled into the concave portion 26 by the CVD method, the use of the nonmagnetic material in the manufacturing process is different from the conventional case where the nonmagnetic material is uniformly formed on the recording layer of the concave / convex pattern. A small amount is sufficient, and less non-magnetic material is removed in the flattening step than in the prior art, so productivity is good.

又、磁気記録媒体12は、記録要素24Aが、データ領域においてトラック形状で形成されているので面記録密度が高くても記録対象のトラックに隣接するトラックへの記録や再生時のクロストーク等の問題が生じにくい。   Further, since the recording element 24A is formed in a track shape in the data area of the magnetic recording medium 12, even when the surface recording density is high, recording on a track adjacent to the recording target track, crosstalk during reproduction, etc. Problems are less likely to occur.

更に、磁気記録媒体12は、記録要素24A同士が分割され、記録要素24A間の凹部36には記録層24が存在しないので凹部36からノイズが発生することがなく、この点でも良好な記録/再生特性が得られる。   Further, in the magnetic recording medium 12, the recording elements 24A are divided, and the recording layer 24 does not exist in the recesses 36 between the recording elements 24A, so that no noise is generated from the recesses 36. Reproduction characteristics can be obtained.

次に、磁気記録媒体12の製造方法について、図3のフローチャートに沿って説明する。   Next, a method for manufacturing the magnetic recording medium 12 will be described with reference to the flowchart of FIG.

まず、図4に示されるような被加工体40の出発体を作製する(S102)。具体的には、被加工体40の加工出発体は、基板22の上に、下地層34、軟磁性層36、配向層38、連続記録層42、絶縁層44、主マスク層46、副マスク層48をこの順でスパッタリング法により形成し、更にレジスト層50をスピンコート法で塗布することにより得られる。尚、ディッピング法によりレジスト層50を塗布してもよい。   First, a starting body of the workpiece 40 as shown in FIG. 4 is prepared (S102). Specifically, the processing starting body of the workpiece 40 is the base layer 34, the soft magnetic layer 36, the orientation layer 38, the continuous recording layer 42, the insulating layer 44, the main mask layer 46, and the submask on the substrate 22. The layer 48 is formed by the sputtering method in this order, and the resist layer 50 is further applied by the spin coating method. Note that the resist layer 50 may be applied by dipping.

絶縁層44は、厚さが1〜10nmである。絶縁層44の材料としては、例えば、SiO等を用いることができる。 The insulating layer 44 has a thickness of 1 to 10 nm. As a material of the insulating layer 44, for example, SiO 2 or the like can be used.

主マスク層46は、厚さが3〜50nmである。主マスク層46の材料としてはC(炭素)、DLC等を用いることができる。副マスク層48は、厚さが3〜30nmである。主マスク層46の材料としてはNi等を用いることができる。レジスト層50は、厚さが30〜300nmである。尚、レジスト層50の材料はネガ型レジストでもポジ型レジストでもよい。   The main mask layer 46 has a thickness of 3 to 50 nm. As a material of the main mask layer 46, C (carbon), DLC, or the like can be used. The sub mask layer 48 has a thickness of 3 to 30 nm. Ni or the like can be used as the material of the main mask layer 46. The resist layer 50 has a thickness of 30 to 300 nm. The material of the resist layer 50 may be a negative resist or a positive resist.

次に、ナノ・インプリント法により、レジスト層50に、記録要素24Aの形状に対応する凹凸パターンを転写し、Oガスを反応ガスとする反応性イオンビームエッチングにより、凹凸パターンの凹部の底部のレジスト層50を除去する(S104)。尚、レジスト層50を露光・現像して、レジスト層50を凹凸パターンに加工してもよい。 Next, the concavo-convex pattern corresponding to the shape of the recording element 24A is transferred to the resist layer 50 by the nano-imprint method, and the bottom of the concavo-convex pattern is formed by reactive ion beam etching using O 2 gas as a reactive gas. The resist layer 50 is removed (S104). The resist layer 50 may be exposed and developed to process the resist layer 50 into a concavo-convex pattern.

次に、Arガスを加工用ガスとするイオンビームエッチングにより、凹部の底部の副マスク層48を除去する(S106)。   Next, the sub mask layer 48 at the bottom of the recess is removed by ion beam etching using Ar gas as a processing gas (S106).

次に、Oガスを反応ガスとする反応性イオンエッチングにより、凹部の底部の主マスク層46を除去する(S108)。これにより、凹部の底部に絶縁層44が露出する。 Next, the main mask layer 46 at the bottom of the recess is removed by reactive ion etching using O 2 gas as a reaction gas (S108). Thereby, the insulating layer 44 is exposed at the bottom of the recess.

次に、Arガスを加工用ガスとするイオンビームエッチングにより、凹部の底部の絶縁層44及び連続記録層42を除去し、記録要素24Aを形成する(S110)。この際、記録要素24Aの間の凹部26の底部に配向層38が露出するように、凹部の底部の連続記録層42は完全に除去する。これにより、図5に示されるように、連続記録層42が多数の記録要素24Aに分割され、記録層16が形成される。尚、記録要素24Aの上面に残存する主マスク層46は、Oガスを反応ガスとする反応性イオンエッチングにより、完全に除去する。 Next, the insulating layer 44 and the continuous recording layer 42 at the bottom of the recess are removed by ion beam etching using Ar gas as a processing gas to form the recording element 24A (S110). At this time, the continuous recording layer 42 at the bottom of the recess is completely removed so that the alignment layer 38 is exposed at the bottom of the recess 26 between the recording elements 24A. Thereby, as shown in FIG. 5, the continuous recording layer 42 is divided into a large number of recording elements 24A, and the recording layer 16 is formed. The main mask layer 46 remaining on the upper surface of the recording element 24A is completely removed by reactive ion etching using O 2 gas as a reaction gas.

イオンビームエッチングは、凹部26の底部の加工速度が、凹部26の幅に殆ど依存しないので、被加工体40の全面において、凹部26は深さが均一に形成される。尚、配向層38の材料として、記録層24を凹凸パターンに加工するためのイオンビームエッチングに対する加工速度が記録層24よりも遅い材料を用い、配向層38が記録層24の加工におけるストップ膜を兼ねる構成とすれば、一層確実に、被加工体40の全面において凹部26の深さが均一に形成され、好ましい。尚、ストップ膜である配向層38の上面が露出したところで加工を停止してもよく、配向層38を厚さ方向に部分的に除去してもよい。   In the ion beam etching, since the processing speed of the bottom of the recess 26 hardly depends on the width of the recess 26, the recess 26 is uniformly formed on the entire surface of the workpiece 40. As the material of the alignment layer 38, a material whose processing speed for ion beam etching for processing the recording layer 24 into a concavo-convex pattern is slower than that of the recording layer 24, and the alignment layer 38 serves as a stop film for processing the recording layer 24. It is preferable that the configuration also serves as the depth of the concave portion 26 is more uniformly formed on the entire surface of the workpiece 40 more reliably. The processing may be stopped when the upper surface of the alignment layer 38 serving as a stop film is exposed, or the alignment layer 38 may be partially removed in the thickness direction.

次に、CVD(Chemical Vapor Deposition)法により図6に示されるように、W(非磁性材28)を凹部26の底部に露出した配向層(導電層)38上に選択的に堆積させ、図7に示されるように、凹部26に非磁性材28を充填する(S112)。尚、非磁性材28は、その上面が記録要素24Aの上面よりも、例えば1nm程度高くなるように凹部26内に堆積させ、凹部26内を完全に充填する。   Next, as shown in FIG. 6, W (nonmagnetic material 28) is selectively deposited on the alignment layer (conductive layer) 38 exposed at the bottom of the recess 26 by a CVD (Chemical Vapor Deposition) method. 7, the recess 26 is filled with a nonmagnetic material 28 (S 112). The nonmagnetic material 28 is deposited in the recess 26 so that its upper surface is, for example, about 1 nm higher than the upper surface of the recording element 24A, and the recess 26 is completely filled.

具体的には、温度が200〜300℃、圧力が0.1Pa程度に設定されたチャンバ(図示省略)内に被加工体40を保持し、WF(6フッ化タングステン)及びSiH(水素化ケイ素)の混合ガスを供給すると、以下の化学反応が起こり、Wが配向層(導電層)38上に選択的に堆積する。 Specifically, the workpiece 40 is held in a chamber (not shown) set to a temperature of 200 to 300 ° C. and a pressure of about 0.1 Pa, and WF 6 (tungsten hexafluoride) and SiH 4 (hydrogen). When a mixed gas of silicon hydride) is supplied, the following chemical reaction occurs, and W is selectively deposited on the alignment layer (conductive layer) 38.

WF(g)+(6/n)M(s)→W(s)+(6/n)MFn(g)…(I)
2WF(g)+3SiH4(g)→2W(s)+3SiF4(g)+6H2(g)…(II)
WF 6 (g) + (6 / n) M (s) → W (s) + (6 / n) MF n (g) ... (I)
2WF 6 (g) + 3SiH 4 (g) → 2W (s) + 3SiF 4 (g) + 6H 2 (g)… (II)

尚、式(I)、(II)において、Mは配向層38の構成元素、nはMの価数を示す。又、gは気体、sは固体を示す。チャンバ内では、式(I)、(II)に示される化学反応が同時に進行するが、いずれの化学反応においても、Wは、導電性の配向層38上に選択的に堆積し、絶縁層44上には堆積しない。   In the formulas (I) and (II), M represents a constituent element of the alignment layer 38, and n represents the valence of M. G is a gas and s is a solid. In the chamber, the chemical reactions represented by the formulas (I) and (II) proceed simultaneously. In either chemical reaction, W is selectively deposited on the conductive alignment layer 38 and the insulating layer 44. Does not deposit on top.

凹部26の深さが均一であり、非磁性材28の堆積は厚さ方向に等しい速度で進行するので、被加工体40の全ての凹部26において、非磁性材28の上面は均一な高さとなる。   Since the depth of the concave portion 26 is uniform and the deposition of the nonmagnetic material 28 proceeds at the same speed in the thickness direction, the upper surface of the nonmagnetic material 28 has a uniform height in all the concave portions 26 of the workpiece 40. Become.

このように凹部26を非磁性材28で充填するために、従来のように凹凸パターンの記録層24の上に非磁性材28を一様に成膜するのではなく、非磁性材28を凹部26に選択的に充填することができるので、凹部26が非磁性材28で充填された被加工体40の表面には記録層24の凹凸パターンに倣った凹凸パターンが殆ど形成されず、又、凹凸パターンが形成されても、その段差は従来よりも著しく小さく抑制される。   In order to fill the recesses 26 with the nonmagnetic material 28 in this way, the nonmagnetic material 28 is not uniformly deposited on the recording layer 24 having a concavo-convex pattern as in the prior art. 26 can be selectively filled, so that a concave / convex pattern following the concave / convex pattern of the recording layer 24 is hardly formed on the surface of the workpiece 40 in which the concave portions 26 are filled with the nonmagnetic material 28, and Even if the concavo-convex pattern is formed, the level difference is suppressed to be significantly smaller than the conventional one.

次に、加工用ガスとしてArガスを用いたイオンビームエッチングにより、被加工体40の表面の法線に対して傾斜した方向からArのイオンビームを照射して、記録要素24A上の絶縁層44と共に余剰の非磁性材28を除去し、記録要素24A及び非磁性材28の表面を平坦化する(S114)。ここで、「余剰の非磁性材28」とは、記録要素24Aの上面を含む平面よりも上側(基板22と反対側)に存在する非磁性材28という意義で用いることとする。非磁性材充填工程(S112)において、被加工体40の表面の凹凸の段差が、従来よりも著しく小さく抑制されているので、例えば、サーボ領域とデータ領域のように、記録層24の凹凸パターンが異なる領域が存在しても、イオンビームエッチングを用いて、被加工体40の表面を所望のレベルまで効率良く、確実に平坦化することができる。   Next, an Ar ion beam is irradiated from a direction inclined with respect to the normal of the surface of the workpiece 40 by ion beam etching using Ar gas as a processing gas, and the insulating layer 44 on the recording element 24A. At the same time, the excess nonmagnetic material 28 is removed, and the surfaces of the recording element 24A and the nonmagnetic material 28 are flattened (S114). Here, the “excess nonmagnetic material 28” is used in the meaning of the nonmagnetic material 28 existing above the plane including the upper surface of the recording element 24A (the side opposite to the substrate 22). In the non-magnetic material filling step (S112), the uneven step on the surface of the workpiece 40 is suppressed to be significantly smaller than before, so that the uneven pattern of the recording layer 24 is, for example, a servo region and a data region. Even if there are different regions, the surface of the workpiece 40 can be efficiently and reliably flattened to a desired level using ion beam etching.

次に、CVD法により記録要素24A及び非磁性材28の上面に保護層30を一様に形成し(S116)、ディッピング法により保護層30の上に潤滑層32を塗布する(S118)。これにより、前記図1に示される磁気記録媒体12が完成する。   Next, the protective layer 30 is uniformly formed on the upper surfaces of the recording elements 24A and the nonmagnetic material 28 by the CVD method (S116), and the lubricating layer 32 is applied on the protective layer 30 by the dipping method (S118). Thereby, the magnetic recording medium 12 shown in FIG. 1 is completed.

次に、本発明の第2実施形態について説明する。   Next, a second embodiment of the present invention will be described.

本第2実施形態は、上記第1実施形態に対し、図8のフローチャートに示されるように、記録層加工工程(S110)と、非磁性材充填工程(S112)と、の間に、被加工体40の上に絶縁膜52を成膜する絶縁膜成膜工程(S202)と、記録要素24Aの側面に絶縁膜52が残存し、記録要素24Aの上に絶縁層44が残存し、且つ、凹凸パターン凹部の底部に配向層38が露出するように、絶縁膜52を部分的に除去する絶縁膜加工工程(S204)と、が設けられたことを特徴としている。その他は、上記第1実施形態と同じであるので説明を省略する。   In the second embodiment, as shown in the flowchart of FIG. 8, the workpiece is processed between the recording layer processing step (S110) and the non-magnetic material filling step (S112) as compared with the first embodiment. An insulating film forming step (S202) for forming the insulating film 52 on the body 40, the insulating film 52 remains on the side surface of the recording element 24A, the insulating layer 44 remains on the recording element 24A, and An insulating film processing step (S204) for partially removing the insulating film 52 is provided so that the alignment layer 38 is exposed at the bottom of the concave / convex pattern concave portion. Others are the same as those in the first embodiment, and a description thereof will be omitted.

具体的には、記録層加工工程(S110)後、スパッタリング法により、図9に示されるように、被加工体40の表面に絶縁膜52を2〜10nmの厚さに成膜する(S202)。尚、絶縁膜52の材料としてはAl(アルミナ)等を用いることができる。絶縁膜52は、(記録要素24Aの上の)絶縁層44の上、記録要素24Aの側面、及び凹部26の底部の上に一様に成膜される。 Specifically, after the recording layer processing step (S110), as shown in FIG. 9, an insulating film 52 is formed to a thickness of 2 to 10 nm on the surface of the workpiece 40 by sputtering (S202). . As the material of the insulating film 52, Al 2 O 3 (alumina) or the like can be used. The insulating film 52 is uniformly formed on the insulating layer 44 (on the recording element 24A), on the side surface of the recording element 24A, and on the bottom of the recess 26.

次に、Arガスを加工用ガスとするイオンビームエッチングにより、図10中に矢印で示されるように、被加工体40の表面に対して垂直な方向からArガスを照射し、絶縁膜52を部分的に除去する(S204)。イオンビームエッチングは、表面が加工用ガスの照射方向に対して平行な部分よりも垂直に近い部分の方が加工速度が速いので、記録要素24Aの側面に絶縁膜52が残存するように、凹部26の底部の上の絶縁膜52を除去することができる。尚、(記録要素24Aの上の)絶縁層44の上の絶縁膜52は、完全に除去してもよいし、絶縁層44上に残存してもよい。   Next, Ar gas is irradiated from a direction perpendicular to the surface of the workpiece 40 by ion beam etching using Ar gas as a processing gas, as indicated by arrows in FIG. Partial removal is performed (S204). In the ion beam etching, since the processing speed is higher in the portion where the surface is perpendicular to the portion parallel to the irradiation direction of the processing gas, the concave portion is formed so that the insulating film 52 remains on the side surface of the recording element 24A. The insulating film 52 on the bottom of the 26 can be removed. The insulating film 52 on the insulating layer 44 (on the recording element 24A) may be completely removed or may remain on the insulating layer 44.

次に、上記第1実施形態と同様にCVD法により、図11に示されるように、W(非磁性材28)を凹部26の底部に露出した配向層(導電層)38上に選択的に堆積させ、図12に示されるように、凹部26に非磁性材28を充填する(S112)。   Next, as in the first embodiment, by CVD, the W (nonmagnetic material 28) is selectively formed on the alignment layer (conductive layer) 38 exposed at the bottom of the recess 26 as shown in FIG. As shown in FIG. 12, the recess 26 is filled with a nonmagnetic material 28 (S112).

導電性を有する記録要素24Aの側面が絶縁膜52で被覆されているので、Wの堆積が記録要素24Aの側面から進行することがなく、凹部26の底面から被加工体40の厚さ方向に確実に進行する。従って、非磁性材28は上面が、凹部26の底面と同様の平坦な形状に形成される。   Since the side surface of the recording element 24A having conductivity is covered with the insulating film 52, the deposition of W does not proceed from the side surface of the recording element 24A, and the thickness of the workpiece 40 is increased from the bottom surface of the recess 26. Proceed with certainty. Therefore, the top surface of the nonmagnetic material 28 is formed in the same flat shape as the bottom surface of the recess 26.

次に、本発明の第3実施形態について説明する。   Next, a third embodiment of the present invention will be described.

本第3実施形態は、上記第1及び第2実施形態に対し、非磁性材充填工程(S112)で用いるガスとして、WF及びSiHの混合ガスに代えて、WF及びHの混合ガスを用いるようにしたものである。その他は、上記第1及び第2実施形態と同じであるので説明を省略する。 The third embodiment is a mixture of WF 6 and H 2 instead of the mixed gas of WF 6 and SiH 4 as the gas used in the nonmagnetic material filling step (S112), compared to the first and second embodiments. Gas is used. Others are the same as those in the first and second embodiments, and a description thereof is omitted.

本第3実施形態では、非磁性材充填工程(S112)において、チャンバ内で以下の化学反応が起こる。   In the third embodiment, the following chemical reaction occurs in the chamber in the non-magnetic material filling step (S112).

WF(g)+3H(g)→W(s)+6HF(g)…(III) WF 6 (g) + 3H 2 (g) → W (s) + 6HF (g) ... (III)

この場合も、Wは、導電性の配向層38上に選択的に堆積し、絶縁層44には堆積しない。従って、本第3実施形態でも、上記第1及び第2実施形態と同様に、被加工体40の表面を所望のレベルまで効率良く、確実に平坦化することができる。   Again, W is selectively deposited on the conductive alignment layer 38 and not on the insulating layer 44. Therefore, also in the third embodiment, similarly to the first and second embodiments, the surface of the workpiece 40 can be efficiently and reliably flattened to a desired level.

次に、本発明の第4実施形態について説明する。   Next, a fourth embodiment of the present invention will be described.

本第4実施形態は、上記第1及び第2実施形態に対し、非磁性材28がAl(アルミニウム)を主成分とする材料であることを特徴としている。その他は、上記第1及び第2実施形態と同じであるので説明を省略する。   The fourth embodiment is characterized in that the nonmagnetic material 28 is a material containing Al (aluminum) as a main component as compared with the first and second embodiments. Others are the same as those in the first and second embodiments, and a description thereof will be omitted.

Alは、Wよりも導電性が高いので、上記第1及び第2実施形態よりも静電気の帯電を抑制する効果が高く、異物等の吸着を一層確実に防止することができる。   Since Al has higher conductivity than W, it has a higher effect of suppressing electrostatic charge than the first and second embodiments, and can more reliably prevent adsorption of foreign substances and the like.

又、AlもWと同様に耐食性に優れ、経時的な変形や剥離が生じにくく、良好な記録/再生特性が確実に得られる。   Also, Al, like W, has excellent corrosion resistance, hardly undergoes deformation and peeling over time, and good recording / reproducing characteristics can be reliably obtained.

更に、AlもWと同様に、凹部26を充填するために従来のように凹凸パターンの記録層24の上に一様に成膜されるのではなく、以下に示すようにCVD法により、凹部26に選択的に充填できるので、表面を所望のレベルまで充分に、確実、且つ、容易に平坦化でき、生産性が良い。   Further, Al, like W, is not formed uniformly on the recording layer 24 having a concavo-convex pattern to fill the concave portion 26 as in the prior art. Instead, the concave portion is formed by the CVD method as shown below. 26 can be selectively filled, the surface can be sufficiently and surely flattened to a desired level, and the productivity is good.

尚、本第4実施形態では、非磁性材充填工程(S112)で用いるガスとして、上記第1及び第2実施形態のWF及びSiHの混合ガスに代えて、Al(C(トリイソブチルアルミニウム)ガスを用いる。具体的には、温度が200〜300℃、圧力が0.1Pa程度に設定されたチャンバ(図示省略)内に被加工体40を保持し、チャンバ内にAl(Cガスを供給すると、以下の化学反応が起こり、Alが凹部26の底部に露出した配向層(導電層)38上に選択的に堆積する。 In the fourth embodiment, Al (C 4 H 9 ) is used in place of the mixed gas of WF 6 and SiH 4 in the first and second embodiments as a gas used in the nonmagnetic material filling step (S112). 3 (Triisobutylaluminum) gas is used. Specifically, the workpiece 40 is held in a chamber (not shown) set to a temperature of 200 to 300 ° C. and a pressure of about 0.1 Pa, and Al (C 4 H 9 ) 3 gas is introduced into the chamber. When supplied, the following chemical reaction occurs, and Al is selectively deposited on the alignment layer (conductive layer) 38 exposed at the bottom of the recess 26.

2Al(C4H9)3(g)→2Al(s)+3H2(g)+6C4H8(g)…(IV) 2Al (C 4 H 9 ) 3 (g) → 2Al (s) + 3H 2 (g) + 6C 4 H 8 (g)… (IV)

次に、本発明の第5実施形態について説明する。   Next, a fifth embodiment of the present invention will be described.

本第5実施形態は、上記第1実施形態に対し、図13に示されるように、磁気記録媒体60が、凸部である記録要素62A及び凹部26双方が形成された、凹凸パターンの連続した記録層62を有している。尚、非磁性材28はWを主成分とする材料でもよく、上記第4実施形態と同様にAlを主成分とする材料でもよい。又、配向層38は導電性でもよく、絶縁性でもよい。他の構成については、上記第1実施形態と同様であるので説明を省略する。   In the fifth embodiment, as shown in FIG. 13, the magnetic recording medium 60 has a continuous concave-convex pattern in which both recording elements 62A and concave portions 26, which are convex portions, are formed. A recording layer 62 is provided. The nonmagnetic material 28 may be a material mainly containing W, and may be a material mainly containing Al as in the fourth embodiment. The alignment layer 38 may be conductive or insulating. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

磁気記録媒体60も、磁気記録媒体12と同様に、導電性を有する記録要素62Aの間の凹部26に、導電性を有するW又はAlを主成分とする非磁性材28が充填されているので、凹部に絶縁性の材料が充填された磁気記録媒体よりも静電気が帯電しにくい。従って、異物等を吸着しにくく良好な記録/再生特性が確実に得られる。又、W、Alは耐食性に優れ、経時的な変形や剥離が生じにくく、この点でも良好な記録/再生特性が確実に得られる。   Similarly to the magnetic recording medium 12, the magnetic recording medium 60 is also filled with the nonmagnetic material 28 mainly composed of W or Al having conductivity in the recesses 26 between the recording elements 62A having conductivity. Static electricity is less likely to be charged than a magnetic recording medium in which a concave portion is filled with an insulating material. Therefore, good recording / reproducing characteristics can be reliably obtained that are difficult to adsorb foreign matter and the like. Further, W and Al are excellent in corrosion resistance and are less likely to be deformed or peeled off over time, and in this respect, good recording / reproducing characteristics can be reliably obtained.

又、磁気記録媒体60も、磁気記録媒体12と同様に、凹部26を充填するために、W又はAlを主成分とする材料を従来のように凹凸パターンの記録層62の上に一様に成膜するのではなく、CVD法により、凹部26に選択的に充填できるので、生産性が良い。   Similarly to the magnetic recording medium 12, the magnetic recording medium 60 is also formed by uniformly applying a material mainly composed of W or Al on the concave-convex pattern recording layer 62 in order to fill the concave portions 26. Productivity is good because the recesses 26 can be selectively filled by CVD instead of forming a film.

ここで、磁気記録媒体60の製造方法について、上記第1実施形態に係る図3のフローチャートに沿って簡単に説明しておく。尚、上記第1〜第4実施形態と同様の工程については説明を適宜省略する。   Here, a method for manufacturing the magnetic recording medium 60 will be briefly described along the flowchart of FIG. 3 according to the first embodiment. Note that description of the same steps as those in the first to fourth embodiments is omitted as appropriate.

まず、上記第1実施形態と同様に、被加工体の出発体作製工程(S102)、レジスト層加工工程(S104)、副マスク層加工工程(S106)、主マスク層加工工程(S108)を実行することにより、凹部の底部に絶縁層44が露出する。   First, as in the first embodiment, a starting body manufacturing process (S102), a resist layer processing process (S104), a sub mask layer processing process (S106), and a main mask layer processing process (S108) are executed. As a result, the insulating layer 44 is exposed at the bottom of the recess.

次に、Arガスを加工用ガスとするイオンビームエッチングにより、凹部の底部の絶縁層44を除去すると共に連続記録層42を厚さ方向に部分的に除去し、記録要素62Aを形成する(S110)。即ち、記録要素62Aの間の凹部26の底部にも連続記録層42が残存するように連続記録層42を加工する。これにより、図14に示されるように、連続記録層42が凹凸パターンに加工されて該凹凸パターンの凸部として多数の記録要素62Aが形成された、連続した記録層62が形成される。尚、記録要素62Aの上面に残存する主マスク層46は、Oガスを反応ガスとする反応性イオンエッチングにより、完全に除去する。 Next, the insulating layer 44 at the bottom of the recess is removed by ion beam etching using Ar gas as a processing gas, and the continuous recording layer 42 is partially removed in the thickness direction to form the recording element 62A (S110). ). That is, the continuous recording layer 42 is processed so that the continuous recording layer 42 remains at the bottom of the recess 26 between the recording elements 62A. As a result, as shown in FIG. 14, the continuous recording layer 42 is formed in which the continuous recording layer 42 is processed into a concavo-convex pattern and a large number of recording elements 62A are formed as convex portions of the concavo-convex pattern. The main mask layer 46 remaining on the upper surface of the recording element 62A is completely removed by reactive ion etching using O 2 gas as a reaction gas.

次に、上記第1〜第4実施形態と同様にCVD法により図15に示されるように、W又はAlを主成分とする材料(非磁性材28)を凹部26の底部に露出した記録層62上に選択的に堆積させ、図16に示されるように、凹部26に非磁性材28を充填する(S112)。   Next, as shown in FIG. 15 by the CVD method in the same manner as in the first to fourth embodiments, a recording layer in which a material mainly composed of W or Al (nonmagnetic material 28) is exposed at the bottom of the recess 26 is used. As shown in FIG. 16, the recess 26 is filled with a nonmagnetic material 28 (S112).

尚、上記第2実施形態と同様に、記録層加工工程(S110)後、絶縁膜成膜工程(S202)、絶縁膜加工工程(S204)を実行してから、非磁性材充填工程(S112)を実行してもよい。   As in the second embodiment, after the recording layer processing step (S110), the insulating film forming step (S202) and the insulating film processing step (S204) are executed, and then the nonmagnetic material filling step (S112). May be executed.

次に、上記第1実施形態と同様に、平坦化工程(S114)、保護層形成工程(S116)、潤滑層形成工程(S118)を実行することにより、前記図13に示される磁気記録媒体60が完成する。   Next, similarly to the first embodiment, the flattening step (S114), the protective layer forming step (S116), and the lubricating layer forming step (S118) are executed, thereby the magnetic recording medium 60 shown in FIG. Is completed.

尚、上記第1〜第5実施形態において、平坦化工程(S114)において記録要素24、62上の絶縁層44及び凹部26上の余剰の非磁性材28を完全に除去しているが、所望の磁気特性が得られれば、これらの一部を残存させてもよい。   In the first to fifth embodiments, the insulating layer 44 on the recording elements 24 and 62 and the surplus nonmagnetic material 28 on the recess 26 are completely removed in the planarization step (S114). If these magnetic properties are obtained, a part of them may be left.

又、上記第1〜第5実施形態において、非磁性材充填工程(S112)の後に、平坦化工程(S114)が設けられているが、非磁性材充填工程(S112)により、被加工体40の表面が所望のレベルまで充分に平坦化されていれば、平坦化工程(S114)は省略してもよい。   Moreover, in the said 1st-5th embodiment, although the planarization process (S114) is provided after the nonmagnetic material filling process (S112), the to-be-processed object 40 is carried out by the nonmagnetic material filling process (S112). If the surface is sufficiently flattened to a desired level, the flattening step (S114) may be omitted.

又、上記第1〜第5実施形態において、記録層24、62を凹凸パターンに加工するためのドライエッチングとしてArガスを用いたイオンビームエッチングが例示されているが、例えばKr(クリプトン)、Xe(キセノン)等の他の希ガスを用いたイオンビームエッチングや、CO(一酸化炭素)及びNH(アンモニア)の混合ガスを反応ガスとする反応性イオンエッチングにより、記録層24を凹凸パターンに加工してもよい。 In the first to fifth embodiments, ion beam etching using Ar gas is exemplified as dry etching for processing the recording layers 24 and 62 into a concavo-convex pattern. For example, Kr (krypton), Xe The recording layer 24 is formed into a concavo-convex pattern by ion beam etching using another rare gas such as (xenon) or reactive ion etching using a mixed gas of CO (carbon monoxide) and NH 3 (ammonia) as a reactive gas. It may be processed.

上記第1〜第4実施形態においては、このような反応性イオンエッチングを用いて記録層24を加工する場合も、配向層38の材料として、加工速度が記録層24の加工速度よりも遅い材料を用い、配向層38がストップ膜を兼ねる構成とすることで、被加工体40の全面において凹部26の深さを均一にする効果が得られる。CO及びNHの混合ガスを反応ガスとする反応性イオンエッチングを用いる場合の、ストップ膜を兼ねる配向層38の具体的な材料としては、Cr合金、Ti、Ru、Ru及びTaの積層体等を用いることができる。 In the first to fourth embodiments, even when the recording layer 24 is processed using such reactive ion etching, as the material of the alignment layer 38, a material whose processing speed is slower than the processing speed of the recording layer 24. With the configuration in which the alignment layer 38 also serves as a stop film, the effect of making the depth of the recess 26 uniform over the entire surface of the workpiece 40 can be obtained. In the case of using reactive ion etching using a mixed gas of CO and NH 3 as a reaction gas, as a specific material of the alignment layer 38 also serving as a stop film, a laminated body of Cr alloy, Ti, Ru, Ru and Ta, etc. Can be used.

又、上記第1実施形態において、配向層38の材料として、記録層24を凹凸パターンに加工するためのイオンビームエッチング等のドライエッチングに対する加工速度が記録層24よりも遅い材料を用い、配向層38が記録層24の加工におけるストップ膜を兼ねる構成とすることが好ましい旨が示されているが、第1〜第4実施形態において、配向層38と軟磁性層36との間に、配向層38と別体で、導電性を有し、且つ、記録層24を凹凸パターンに加工するためのイオンビームエッチング等のドライエッチングに対する加工速度が記録層24よりも遅い、導電層を兼ねるストップ膜を形成してもよい。   Further, in the first embodiment, as the material of the alignment layer 38, a material whose processing speed for dry etching such as ion beam etching for processing the recording layer 24 into a concavo-convex pattern is slower than that of the recording layer 24 is used. In the first to fourth embodiments, the alignment layer 38 is disposed between the alignment layer 38 and the soft magnetic layer 36. In the first to fourth embodiments, the alignment layer 38 is used as a stop film for processing the recording layer 24. 38, a stop film that also serves as a conductive layer, which is separate from the recording layer 24, has conductivity, and has a slower processing speed for dry etching such as ion beam etching for processing the recording layer 24 into a concavo-convex pattern than the recording layer 24. It may be formed.

一方、ストップ膜がなくても凹部26の深さを充分均一に加工できれば、配向層38の材料として、記録層24を凹凸パターンに加工するためのイオンビームエッチング等のドライエッチングに対する加工速度が記録層24と同等、又は記録層24よりも速い材料を用いてもよい。   On the other hand, if the depth of the concave portion 26 can be processed sufficiently even without a stop film, the processing speed for dry etching such as ion beam etching for processing the recording layer 24 into a concavo-convex pattern can be recorded as the material of the alignment layer 38. A material equivalent to the layer 24 or faster than the recording layer 24 may be used.

又、上記第1〜第5実施形態において、絶縁層44の材料としてSiOが例示され、又、絶縁膜52の材料としてAlが例示されているが、例えば、絶縁層44の材料としてAlを用い、絶縁膜52の材料としてSiOを用いてもよく、絶縁層44、絶縁膜52の材料として他の絶縁材料を用いてもよい。 In the first to fifth embodiments, SiO 2 is exemplified as the material of the insulating layer 44, and Al 2 O 3 is exemplified as the material of the insulating film 52. For example, the material of the insulating layer 44 is exemplified. Al 2 O 3 may be used, and SiO 2 may be used as the material of the insulating film 52, and other insulating materials may be used as the material of the insulating layer 44 and the insulating film 52.

又、上記第1〜第4実施形態において、配向層38の材料として導電性の材料を用い、凹部26の底部に露出した配向層38上に、非磁性材28を選択的に堆積させているが、配向層38の材料として絶縁性の材料を用い、配向層38と軟磁性層36との間に、配向層38と別体で、導電層を形成してもよい。この場合、記録層加工工程(S110)において、凹部の配向層38を完全に除去し、凹部26の底面から配向層38と別体の導電層を露出させればよい。   In the first to fourth embodiments, a conductive material is used as the material for the alignment layer 38, and the nonmagnetic material 28 is selectively deposited on the alignment layer 38 exposed at the bottom of the recess 26. However, an insulating material may be used as the material of the alignment layer 38, and the conductive layer may be formed separately from the alignment layer 38 between the alignment layer 38 and the soft magnetic layer 36. In this case, in the recording layer processing step (S110), the concave alignment layer 38 may be completely removed and the conductive layer separate from the alignment layer 38 may be exposed from the bottom surface of the concave 26.

又、上記第1〜第5実施形態において、連続記録層42の上に絶縁層44、主マスク層46、副マスク層48、レジスト層50を連続記録層42に形成し、3段階のドライエッチングで連続記録層42を分割しているが、連続記録層42を高精度で分割できれば、レジスト層、マスク層の材料、積層数、厚さ、ドライエッチングの種類等は特に限定されない。例えば、絶縁層44が主マスク層を兼ねるようにしてもよい。   In the first to fifth embodiments, an insulating layer 44, a main mask layer 46, a sub mask layer 48, and a resist layer 50 are formed on the continuous recording layer 42 on the continuous recording layer 42, and three-stage dry etching is performed. However, as long as the continuous recording layer 42 can be divided with high accuracy, the material of the resist layer and the mask layer, the number of stacked layers, the thickness, the type of dry etching, and the like are not particularly limited. For example, the insulating layer 44 may also serve as the main mask layer.

又、上記第1〜第5実施形態において、記録層24、62(連続記録層44)の材料はCoCrPt合金又はFePt合金であるが、記録層24、62の材料として、例えば、鉄族元素(Co、Fe(鉄)、Ni)を含む他の合金、これらの積層体等の他の材料を用いてもよい。   In the first to fifth embodiments, the material of the recording layers 24 and 62 (continuous recording layer 44) is a CoCrPt alloy or an FePt alloy. As the material of the recording layers 24 and 62, for example, an iron group element ( Other materials such as other alloys including Co, Fe (iron), and Ni), and laminates thereof may be used.

又、以下に示す本発明の第6実施形態のように、記録層24の材料として、酸化物、窒化物等の絶縁性の磁性材料を用いてもよい。以下、本第6実施形態による磁気記録媒体12の製造方法について簡単に説明するが、記録層加工工程(S110)、非磁性材充填工程(S112)以外の工程については、上記第1実施形態と同様であるので、説明を適宜省略することとする。尚、この第6実施形態では、磁気記録媒体記録層24が絶縁性であり、磁気記録媒体12の製造工程において、絶縁層44は不要であるので、上記第1実施形態に係る被加工体40に対し、図17に示されるような、絶縁層44が省略された被加工体70を用いる。   Further, as in the sixth embodiment of the present invention described below, an insulating magnetic material such as oxide or nitride may be used as the material of the recording layer 24. Hereinafter, the manufacturing method of the magnetic recording medium 12 according to the sixth embodiment will be briefly described. The steps other than the recording layer processing step (S110) and the nonmagnetic material filling step (S112) are the same as those in the first embodiment. Since it is the same, description will be omitted as appropriate. In the sixth embodiment, since the magnetic recording medium recording layer 24 is insulative and the insulating layer 44 is not necessary in the manufacturing process of the magnetic recording medium 12, the workpiece 40 according to the first embodiment is used. On the other hand, a workpiece 70 in which the insulating layer 44 is omitted is used as shown in FIG.

まず、第1実施形態と同様の要領で被加工体70の連続記録層42を、図18に示されるように凹凸パターンに加工し、凹凸パターンの凸部として記録要素24Aを形成して該記録要素24Aを露出させ、且つ、凹凸パターンの凹部26の底部に配向層(導電層)38を露出させる(S110)。   First, the continuous recording layer 42 of the workpiece 70 is processed into a concavo-convex pattern as shown in FIG. 18 in the same manner as in the first embodiment, and a recording element 24A is formed as a convex portion of the concavo-convex pattern to perform the recording. The element 24A is exposed, and the alignment layer (conductive layer) 38 is exposed at the bottom of the recess 26 of the uneven pattern (S110).

次に、上記第1、第3又は第4実施形態と同様の要領で、CVD法により図19に示されるように、W又はAl(非磁性材28)を凹部26の底部に露出した配向層38上に選択的に堆積させ、図20に示されるように、凹部26に非磁性材28を充填する(S112)。   Next, in the same manner as in the first, third, or fourth embodiment, an alignment layer in which W or Al (nonmagnetic material 28) is exposed at the bottom of the recess 26 as shown in FIG. As shown in FIG. 20, the recess 26 is filled with the nonmagnetic material 28 (S112).

この際、記録要素24Aが絶縁性であるので、W又はAlの堆積が記録要素24Aの側面から進行することがなく、凹部26の底面から被加工体70の厚さ方向に確実に進行する。従って、非磁性材28は上面が、凹部26の底面と同様の平坦な形状に形成される。尚、記録要素24Aの上に絶縁層が形成されていないので、絶縁層を除去する工程は不要であるが、必要に応じて、ドライエッチング等により、記録要素24A、非磁性材28の表面を平坦化してもよい。更に、上記第1実施形態と同様に、保護層30、潤滑層32を形成することにより、磁気記録媒体12が得られる。   At this time, since the recording element 24A is insulative, deposition of W or Al does not proceed from the side surface of the recording element 24A, but proceeds reliably from the bottom surface of the recess 26 in the thickness direction of the workpiece 70. Therefore, the top surface of the nonmagnetic material 28 is formed in the same flat shape as the bottom surface of the recess 26. Incidentally, since the insulating layer is not formed on the recording element 24A, the step of removing the insulating layer is not necessary. However, the surface of the recording element 24A and the nonmagnetic material 28 is removed by dry etching or the like as necessary. You may planarize. Furthermore, as in the first embodiment, the magnetic recording medium 12 can be obtained by forming the protective layer 30 and the lubricating layer 32.

尚、上記第1〜第6実施形態において、基板22と記録層24、62との間に下地層34、軟磁性層36、配向層38が形成されているが、記録層24、62の下の層の構成は、磁気記録媒体の種類に応じて適宜変更すればよい。例えば、下地層34、軟磁性層36、配向層38のうち一又は二の層を省略してもよい。   In the first to sixth embodiments, the underlayer 34, the soft magnetic layer 36, and the orientation layer 38 are formed between the substrate 22 and the recording layers 24, 62. The layer configuration may be changed as appropriate according to the type of the magnetic recording medium. For example, one or two of the underlayer 34, the soft magnetic layer 36, and the orientation layer 38 may be omitted.

又、上記第1〜第6実施形態において、磁気記録媒体12、60はデータ領域において記録要素24A、62Aがトラックの径方向に微細な間隔で形成された垂直記録型の磁気ディスクであるが、記録層がトラックの周方向(セクタの方向)に微細な間隔で形成された磁気ディスク、トラックの径方向及び周方向の両方向に微細な間隔で形成された磁気ディスク、記録層が螺旋形状をなす磁気ディスクの製造についても本発明は当然適用可能である。又、MO等の光磁気ディスク、磁気と熱を併用する熱アシスト型の磁気ディスク、更に、磁気テープ等ディスク形状以外の他の凹凸パターンの記録層を有する磁気記録媒体の製造に対しても本発明を適用可能である。又、面内記録型の磁気記録媒体についても本発明は適用可能である。   In the first to sixth embodiments, the magnetic recording media 12 and 60 are perpendicular recording type magnetic disks in which the recording elements 24A and 62A are formed at fine intervals in the radial direction of the track in the data area. Magnetic disk with recording layers formed at fine intervals in the track circumferential direction (sector direction), magnetic disk formed with fine intervals in both the radial and circumferential directions of the track, and the recording layer having a spiral shape The present invention is naturally applicable to the manufacture of magnetic disks. The present invention is also applicable to the manufacture of magneto-optical disks such as MO, heat-assisted magnetic disks that use both magnetism and heat, and magnetic recording media having a recording layer with other concavo-convex patterns other than the disk shape, such as magnetic tapes. The invention can be applied. The present invention can also be applied to a longitudinal recording type magnetic recording medium.

上記第2実施形態のとおり、直径が約65mmで、記録層24の分割パターンが異なる3種類の磁気記録媒体12を作製した。各試料の具体的な分割パターンを表1に示す。尚、表1中の凹部の深さは、記録層加工工程(S110)後、且つ、絶縁膜成膜工程(S202)前の、絶縁層44の上面と、凹部26の底面との厚さ方向の長さである。   As in the second embodiment, three types of magnetic recording media 12 having a diameter of about 65 mm and different division patterns of the recording layer 24 were produced. The specific division pattern of each sample is shown in Table 1. The depth of the recesses in Table 1 is the thickness direction between the top surface of the insulating layer 44 and the bottom surface of the recesses 26 after the recording layer processing step (S110) and before the insulating film formation step (S202). Is the length of

記録層24の厚さは約20nmとし、記録層24の材料はCoCr合金を用いた。又、絶縁層44の厚さは約3nmとし、絶縁層44の材料はSiOを用いた。又、絶縁膜52の厚さは約2nmとし、絶縁膜52の材料はAlを用いた。 The thickness of the recording layer 24 was about 20 nm, and the material of the recording layer 24 was a CoCr alloy. The thickness of the insulating layer 44 was about 3 nm, and the material of the insulating layer 44 was SiO 2 . The thickness of the insulating film 52 was about 2 nm, and the material of the insulating film 52 was Al 2 O 3 .

非磁性材充填工程(S112)におけるCVDの条件は、チャンバ内の圧力を約0.1Pa、被加工体40の温度を約200℃に設定した。又、WFガス及びSiHガスは流量比が1:1となるようにチャンバ内に供給した。非磁性材28は、その上面が記録要素24Aの上面よりも1nm高くなるように、約21nmの厚さに堆積させた。 The CVD conditions in the nonmagnetic material filling step (S112) were set such that the pressure in the chamber was about 0.1 Pa and the temperature of the workpiece 40 was about 200 ° C. The WF 6 gas and SiH 4 gas were supplied into the chamber so that the flow rate ratio was 1: 1. The nonmagnetic material 28 was deposited to a thickness of about 21 nm so that the upper surface thereof was 1 nm higher than the upper surface of the recording element 24A.

又、平坦化工程(S114)におけるイオンビームの照射角は、被加工体40の表面に対して約2°に設定して余剰の非磁性材28Aを除去し、記録要素24Aの上面が露出するまで平坦化した。   Further, the ion beam irradiation angle in the flattening step (S114) is set to about 2 ° with respect to the surface of the workpiece 40 to remove the excess nonmagnetic material 28A, and the upper surface of the recording element 24A is exposed. Until flattened.

平坦化工程(S114)後、AFM(Atomic Force Microscope)により、記録要素24Aの上面と非磁性材28の上面との段差を測定した。各試料の記録要素24Aの上面と非磁性材28の上面との段差の測定結果を表1に示す。   After the flattening step (S114), the step between the upper surface of the recording element 24A and the upper surface of the nonmagnetic material 28 was measured by AFM (Atomic Force Microscope). Table 1 shows the measurement results of the level difference between the upper surface of the recording element 24A and the upper surface of the nonmagnetic material 28 of each sample.

Figure 2006092659
Figure 2006092659

表1に示されるように、記録層24の分割パターンによらず、平坦化工程(S114)後の記録要素24Aの上面と非磁性材28の上面との段差はほぼ一定で、表面が所望のレベルまで充分に平坦化されていることが確認された。   As shown in Table 1, the step between the upper surface of the recording element 24A and the upper surface of the nonmagnetic material 28 after the flattening step (S114) is substantially constant regardless of the division pattern of the recording layer 24, and the surface has a desired surface. It was confirmed that the surface was sufficiently flattened to the level.

本発明は、例えば、ディスクリートトラックタイプのハードディスク等の記録層が凹凸パターンで形成された磁気記録媒体に利用することができる。   The present invention can be used, for example, in a magnetic recording medium in which a recording layer such as a discrete track type hard disk is formed in a concavo-convex pattern.

本発明の第1実施形態に係る磁気記録再生装置の構造を模式的に示す斜視図1 is a perspective view schematically showing the structure of a magnetic recording / reproducing apparatus according to a first embodiment of the invention. 前記磁気記録再生装置の磁気記録媒体の構造を模式的に示す側断面図Side sectional view schematically showing a structure of a magnetic recording medium of the magnetic recording / reproducing apparatus. 前記磁気記録媒体の製造工程の概要を示すフローチャートFlow chart showing an outline of the manufacturing process of the magnetic recording medium 前記磁気記録媒体の製造工程における被加工体の出発体の構造を模式的に示す側断面図Side sectional view schematically showing the structure of the starting body of the workpiece in the manufacturing process of the magnetic recording medium 連続記録層が分割された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with the continuous recording layer divided 凹部の底部に非磁性材が堆積した前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with a nonmagnetic material deposited on the bottom of the recess 前記凹部が前記非磁性材で充填された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece in which the recess is filled with the non-magnetic material 本発明の第2実施形態に係る磁気記録媒体の製造工程の概要を示すフローチャートThe flowchart which shows the outline | summary of the manufacturing process of the magnetic-recording medium based on 2nd Embodiment of this invention. 同磁気記録媒体の製造工程における表面に絶縁膜が成膜された被加工体を模式的に示す側断面図Side sectional view schematically showing a workpiece having an insulating film formed on the surface in the manufacturing process of the magnetic recording medium 前記絶縁膜が部分的に除去された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with the insulating film partially removed 凹部の底部に非磁性材が堆積した前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with a nonmagnetic material deposited on the bottom of the recess 前記凹部が前記非磁性材で充填された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece in which the recess is filled with the non-magnetic material 本発明の第5実施形態に係る磁気記録媒体の構造を模式的に示す側断面図Sectional drawing which shows typically the structure of the magnetic-recording medium based on 5th Embodiment of this invention 同磁気記録媒体の製造工程における、連続記録層が加工された被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of a workpiece on which a continuous recording layer is processed in the manufacturing process of the magnetic recording medium 凹部の底部に非磁性材が堆積した前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with a nonmagnetic material deposited on the bottom of the recess 前記凹部が前記非磁性材で充填された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece in which the recess is filled with the non-magnetic material 本発明の第6実施形態に係る磁気記録媒体の製造工程における被加工体の出発体の構造を模式的に示す側断面図Sectional drawing which shows typically the structure of the starting body of the to-be-processed object in the manufacturing process of the magnetic-recording medium based on 6th Embodiment of this invention 連続記録層が分割された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with the continuous recording layer divided 凹部の底部に非磁性材が堆積した前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with a nonmagnetic material deposited on the bottom of the recess 前記凹部が前記非磁性材で充填された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece in which the recess is filled with the non-magnetic material

符号の説明Explanation of symbols

10…磁気記録再生装置
12、60…磁気記録媒体
14…磁気ヘッド
16…チャック
18…アーム
20…ベース
22…基板
24、62…記録層
24A、62A…記録要素
26…凹部
28…非磁性材
30…保護層
32…潤滑層
34…下地層
36…軟磁性層
38…配向層(導電層)
40、70…被加工体
42…連続記録層
44…絶縁層
46…主マスク層
48…副マスク層
50…レジスト層
52…絶縁膜
S102…被加工体の出発体作製工程
S104…レジスト層加工工程
S106…副マスク層加工工程
S108…主マスク層加工工程
S110…記録層加工工程
S112…非磁性材充填工程
S114…平坦化工程
S116…保護層形成工程
S118…潤滑層形成工程
S202…絶縁膜成膜工程
S204…絶縁膜加工工程
DESCRIPTION OF SYMBOLS 10 ... Magnetic recording / reproducing apparatus 12, 60 ... Magnetic recording medium 14 ... Magnetic head 16 ... Chuck 18 ... Arm 20 ... Base 22 ... Substrate 24, 62 ... Recording layer 24A, 62A ... Recording element 26 ... Concave 28 ... Nonmagnetic material 30 ... Protective layer 32 ... Lubrication layer 34 ... Underlayer 36 ... Soft magnetic layer 38 ... Orientation layer (conductive layer)
40, 70: Workpiece 42: Continuous recording layer 44 ... Insulating layer 46 ... Main mask layer 48 ... Sub mask layer 50 ... Resist layer 52 ... Insulating film S102: Starting body manufacturing process of work piece S104: Resist layer processing process S106: Sub mask layer processing step S108: Main mask layer processing step S110 ... Recording layer processing step S112 ... Nonmagnetic material filling step S114 ... Planarization step S116 ... Protective layer forming step S118 ... Lubricating layer forming step S202 ... Insulating film forming Step S204 ... Insulating film processing step

Claims (10)

基板上に導電層、連続記録層、絶縁層がこの順で形成された被加工体の前記連続記録層を凹凸パターンに加工し、該凹凸パターンの凸部に前記絶縁層が残存し、且つ、前記凹凸パターンの凹部の底部に前記導電層が露出するように、前記凹凸パターンの凸部として記録要素を形成する記録層加工工程と、CVD法により、タングステン及びアルミニウムのいずれかを主成分とする非磁性材を、前記凹部の底部に露出した前記導電層上に選択的に堆積させ、前記凹部に前記非磁性材を充填する非磁性材充填工程と、を含むことを特徴とする磁気記録媒体の製造方法。   Processing the continuous recording layer of the workpiece in which the conductive layer, the continuous recording layer, and the insulating layer are formed in this order on the substrate into a concavo-convex pattern, and the insulating layer remains on the convex portion of the concavo-convex pattern; and A recording layer processing step of forming a recording element as a convex portion of the concave-convex pattern so that the conductive layer is exposed at the bottom of the concave portion of the concave-convex pattern, and a CVD method, with tungsten or aluminum as a main component. A magnetic recording medium comprising: a nonmagnetic material filling step of selectively depositing a nonmagnetic material on the conductive layer exposed at a bottom of the concave portion and filling the concave portion with the nonmagnetic material. Manufacturing method. 請求項1において、
前記被加工体は、前記導電層として前記記録層加工工程における加工速度が前記記録層よりも遅いストップ膜が形成された構成であり、前記記録層加工工程において、前記凹凸パターンの凹部に前記ストップ膜が残存するように、前記ストップ膜まで前記被加工体を加工することを特徴とする磁気記録媒体の製造方法。
In claim 1,
The workpiece has a structure in which a stop film having a processing speed in the recording layer processing step slower than that of the recording layer is formed as the conductive layer. In the recording layer processing step, the stop is provided in the concave portion of the concavo-convex pattern. A method of manufacturing a magnetic recording medium, wherein the workpiece is processed up to the stop film so that the film remains.
基板上に導電性を有する連続記録層、絶縁層がこの順で形成された被加工体の前記連続記録層を凹凸パターンに加工し、該凹凸パターンの凸部に前記絶縁層が残存し、且つ、前記凹凸パターンの凹部の底部に前記連続記録層が露出するように、前記凹凸パターンの凸部として記録要素を形成する記録層加工工程と、CVD法により、タングステン及びアルミニウムのいずれかを主成分とする非磁性材を、前記凹部の底部に露出した前記連続記録層上に選択的に堆積させ、前記凹部に前記非磁性材を充填する非磁性材充填工程と、を含むことを特徴とする磁気記録媒体の製造方法。   Processing the continuous recording layer of the workpiece in which the conductive continuous recording layer and the insulating layer are formed in this order on the substrate into a concavo-convex pattern, and the insulating layer remains on the convex portion of the concavo-convex pattern; and A recording layer processing step for forming a recording element as a convex portion of the concave-convex pattern so that the continuous recording layer is exposed at the bottom of the concave portion of the concave-convex pattern, and a main component of either tungsten or aluminum by a CVD method A non-magnetic material filling step of selectively depositing the non-magnetic material on the continuous recording layer exposed at the bottom of the concave portion and filling the concave portion with the non-magnetic material. A method of manufacturing a magnetic recording medium. 請求項1乃至3のいずれかにおいて、
前記非磁性材充填工程の後に、前記記録要素上に残存する前記絶縁層を除去し、表面を平坦化する平坦化工程が設けられたことを特徴とする磁気記録媒体の製造方法。
In any one of Claims 1 thru | or 3,
A method of manufacturing a magnetic recording medium, comprising a step of flattening a surface by removing the insulating layer remaining on the recording element after the nonmagnetic material filling step.
請求項1乃至4のいずれかにおいて、
前記記録層加工工程と、前記非磁性材充填工程と、の間に、前記被加工体の上に絶縁膜を成膜する絶縁膜成膜工程と、前記記録要素の側面に前記絶縁膜が残存し、前記記録要素の上に前記絶縁層が残存し、且つ、前記凹凸パターン凹部の底部に前記導電層が露出するように、前記絶縁膜を部分的に除去する絶縁膜加工工程と、が設けられたことを特徴とする磁気記録媒体の製造方法。
In any one of Claims 1 thru | or 4,
Between the recording layer processing step and the non-magnetic material filling step, an insulating film forming step for forming an insulating film on the workpiece, and the insulating film remains on the side surface of the recording element And an insulating film processing step of partially removing the insulating film so that the insulating layer remains on the recording element and the conductive layer is exposed at the bottom of the concave and convex pattern recesses. A method for producing a magnetic recording medium, characterized in that:
基板上に導電層、絶縁性の連続記録層がこの順で形成された被加工体の前記連続記録層を凹凸パターンに加工し、該凹凸パターンの凸部として記録要素を形成して該記録要素を露出させ、且つ、前記凹凸パターンの凹部の底部に前記導電層を露出させる記録層加工工程と、CVD法により、タングステン及びアルミニウムのいずれかを主成分とする非磁性材を、前記凹部の底部に露出した前記導電層上に選択的に堆積させ、前記凹部に前記非磁性材を充填する非磁性材充填工程と、を含むことを特徴とする磁気記録媒体の製造方法。   The recording element having a conductive layer and an insulating continuous recording layer formed in this order on a substrate is processed into a concavo-convex pattern, and a recording element is formed as a convex portion of the concavo-convex pattern. And a recording layer processing step for exposing the conductive layer to the bottom of the concave portion of the concave / convex pattern, and a nonmagnetic material containing either tungsten or aluminum as a main component by a CVD method. And a nonmagnetic material filling step of selectively depositing on the conductive layer exposed to the surface and filling the recess with the nonmagnetic material. 請求項6において、
前記被加工体は、前記導電層として前記記録層加工工程における加工速度が前記記録層よりも遅いストップ膜が形成された構成であり、前記記録層加工工程において、前記凹凸パターンの凹部に前記ストップ膜が残存するように、前記ストップ膜まで前記被加工体を加工することを特徴とする磁気記録媒体の製造方法。
In claim 6,
The workpiece has a structure in which a stop film having a processing speed in the recording layer processing step slower than that of the recording layer is formed as the conductive layer. In the recording layer processing step, the stop is provided in the concave portion of the concavo-convex pattern. A method of manufacturing a magnetic recording medium, wherein the workpiece is processed up to the stop film so that the film remains.
請求項1乃至7のいずれかにおいて、
前記記録層加工工程において、イオンビームエッチングを用いて前記連続記録層を凹凸パターンに加工することを特徴とする磁気記録媒体の製造方法。
In any one of Claims 1 thru | or 7,
In the recording layer processing step, the continuous recording layer is processed into a concavo-convex pattern by using ion beam etching.
基板上に所定の凹凸パターンで形成されて記録要素が前記凹凸パターンの凸部として形成された記録層と、前記記録要素の間の凹部に充填された、タングステン及びアルミニウムのいずれかを主成分とする非磁性材と、を含むことを特徴とする磁気記録媒体。   A recording layer in which a recording element is formed in a predetermined concavo-convex pattern on the substrate and the recording element is formed as a convex part of the concavo-convex pattern, and one of tungsten and aluminum filled in the concave part between the recording elements as a main component And a non-magnetic material. 請求項9に記載の磁気記録媒体と、該磁気記録媒体に対してデータの記録/再生を行うための磁気ヘッドと、を備えることを特徴とする磁気記録再生装置。   10. A magnetic recording / reproducing apparatus comprising: the magnetic recording medium according to claim 9; and a magnetic head for recording / reproducing data on / from the magnetic recording medium.
JP2004277008A 2004-09-24 2004-09-24 Manufacturing method of magnetic recording medium, and magnetic recording medium Pending JP2006092659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277008A JP2006092659A (en) 2004-09-24 2004-09-24 Manufacturing method of magnetic recording medium, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277008A JP2006092659A (en) 2004-09-24 2004-09-24 Manufacturing method of magnetic recording medium, and magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2006092659A true JP2006092659A (en) 2006-04-06

Family

ID=36233486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277008A Pending JP2006092659A (en) 2004-09-24 2004-09-24 Manufacturing method of magnetic recording medium, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2006092659A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301732A (en) * 2006-05-08 2007-11-22 Canon Inc Mold manufacturing method
KR100859552B1 (en) * 2006-03-01 2008-09-22 가부시키가이샤 히타치세이사쿠쇼 Patterened media and method for manufacturing the same
JP2009169993A (en) * 2008-01-10 2009-07-30 Fuji Electric Device Technology Co Ltd Method of manufacturing patterned magnetic recording medium
JP2010192011A (en) * 2009-02-16 2010-09-02 Fuji Electric Device Technology Co Ltd Method for manufacturing magnetic recording medium
JP2010198728A (en) * 2010-04-01 2010-09-09 Toshiba Corp Method of manufacturing magnetic recording medium
US8318331B2 (en) 2006-11-21 2012-11-27 Kabushiki Kaisha Toshiba Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
US8652338B2 (en) 2007-09-26 2014-02-18 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
US8717710B2 (en) 2012-05-08 2014-05-06 HGST Netherlands, B.V. Corrosion-resistant bit patterned media (BPM) and discrete track media (DTM) and methods of production thereof
KR101410958B1 (en) * 2007-09-18 2014-06-23 시게이트 테크놀로지 엘엘씨 Patterned magnetic recording media and method of manufacturing the same
US8840955B2 (en) 2008-10-23 2014-09-23 Fuji Electric Co., Ltd. Magnetic recording medium and method of manufacturing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859552B1 (en) * 2006-03-01 2008-09-22 가부시키가이샤 히타치세이사쿠쇼 Patterened media and method for manufacturing the same
JP2007301732A (en) * 2006-05-08 2007-11-22 Canon Inc Mold manufacturing method
US8318331B2 (en) 2006-11-21 2012-11-27 Kabushiki Kaisha Toshiba Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
KR101410958B1 (en) * 2007-09-18 2014-06-23 시게이트 테크놀로지 엘엘씨 Patterned magnetic recording media and method of manufacturing the same
US8652338B2 (en) 2007-09-26 2014-02-18 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
JP2009169993A (en) * 2008-01-10 2009-07-30 Fuji Electric Device Technology Co Ltd Method of manufacturing patterned magnetic recording medium
US8840955B2 (en) 2008-10-23 2014-09-23 Fuji Electric Co., Ltd. Magnetic recording medium and method of manufacturing same
JP2010192011A (en) * 2009-02-16 2010-09-02 Fuji Electric Device Technology Co Ltd Method for manufacturing magnetic recording medium
JP2010198728A (en) * 2010-04-01 2010-09-09 Toshiba Corp Method of manufacturing magnetic recording medium
US8717710B2 (en) 2012-05-08 2014-05-06 HGST Netherlands, B.V. Corrosion-resistant bit patterned media (BPM) and discrete track media (DTM) and methods of production thereof
US9275670B2 (en) 2012-05-08 2016-03-01 HGST Netherlands B.V. Methods of production for corrosion-resistant bit patterned media (BPM) and discrete track media (DTM)

Similar Documents

Publication Publication Date Title
US7682711B2 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and manufacturing method of magnetic recording medium
JP4071787B2 (en) Method for manufacturing magnetic recording medium
US7482070B2 (en) Magnetic recording medium
JP3881370B2 (en) Method for filling concave / convex pattern with concave / convex pattern and method for manufacturing magnetic recording medium
JP2006012332A (en) Dry etching method, method of manufacturing magnetic recording medium, and magnetic recording medium
US20050186357A1 (en) Method for manufacturing magnetic recording medium
US20090067092A1 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
JP4032050B2 (en) Magnetic recording medium and method for manufacturing the same
JP2006092659A (en) Manufacturing method of magnetic recording medium, and magnetic recording medium
JP2006216105A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
JP4745307B2 (en) Magnetic recording medium and method for manufacturing magnetic recording medium
JP2005071542A (en) Manufacturing method of magnetic recording medium
US8298691B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US8124255B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
JP4475147B2 (en) Method for manufacturing magnetic recording medium
US20100302682A1 (en) Magnetic Recording Media Having Recording Regions and Separation Regions That Have Different Lattice Constants and Manufacturing Methods Thereof
JP3848672B2 (en) Magnetic recording medium and method for manufacturing the same
WO2006011611A1 (en) Method of producing a magnetic recording medium
JP2005235356A (en) Manufacturing method of magnetic recording medium
JP2009104681A (en) Method for manufacturing magnetic recording medium
US20090168244A1 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
CN102349103A (en) Method for manufacturing magnetic recording medium, and magnetic recording and reproducing device
JP2006318648A (en) Method for filling recessed section in irregular pattern, and manufacturing method of magnetic recording medium
US20090242508A1 (en) Method for manufacturing magnetic recording medium
JP5321479B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070815

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110