JP2006091601A - Optical isolator - Google Patents

Optical isolator Download PDF

Info

Publication number
JP2006091601A
JP2006091601A JP2004278634A JP2004278634A JP2006091601A JP 2006091601 A JP2006091601 A JP 2006091601A JP 2004278634 A JP2004278634 A JP 2004278634A JP 2004278634 A JP2004278634 A JP 2004278634A JP 2006091601 A JP2006091601 A JP 2006091601A
Authority
JP
Japan
Prior art keywords
optical isolator
polarizer
optical
faraday rotator
holding substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004278634A
Other languages
Japanese (ja)
Other versions
JP4628054B2 (en
Inventor
Noritaka Yamada
典孝 山田
Toshimichi Yasuda
俊道 安田
Gakushi Shoda
学史 庄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004278634A priority Critical patent/JP4628054B2/en
Publication of JP2006091601A publication Critical patent/JP2006091601A/en
Application granted granted Critical
Publication of JP4628054B2 publication Critical patent/JP4628054B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a surface-mounted type optical isolator small-sized and to improve optical characteristics. <P>SOLUTION: The optical isolator is constituted, by overlapping one or more planar Faraday rotators and one or more planar polarizers, by bringing mutual main surfaces into contact with each other and joining each side to a holding substrate. In addition, other materials are not interposed between the abutted main surfaces and there is an air layer in a part, and furthermore, a jointing means of the sides and the holding substrate is selected from among low melting glass, adhesives, and solder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光源から出射された光を、各種光学素子や光ファイバに結合する際に生じる戻り光を除去するために用いられる光アイソレータに関するものである。   The present invention relates to an optical isolator used for removing return light generated when light emitted from a light source is coupled to various optical elements and optical fibers.

従来、レーザーダイオード(LD)等の光源から出射した光は、各種光学素子や光ファイバに入射又は結合されるが、その入射光の一部は、各種光学素子,光ファイバを透過する際、反射や散乱を引き起こす。この反射や散乱した光の一部は光路を通し光源側に戻るが、この戻り光を遮断するための光学部品として、光アイソレータが一般的に用いられる。この種の光アイソレータは2枚の偏光子の間に、45度回転調整するファラデー回転子を設置し、これら3枚の光学素子を金属基台の実装表面に配置し、固着することによって構成されている。   Conventionally, light emitted from a light source such as a laser diode (LD) is incident on or coupled to various optical elements and optical fibers, and part of the incident light is reflected when transmitted through the various optical elements and optical fibers. Cause scattering. A part of the reflected or scattered light returns to the light source side through the optical path, and an optical isolator is generally used as an optical component for blocking the return light. This type of optical isolator is constructed by installing a Faraday rotator that rotates 45 degrees between two polarizers, and placing and fixing these three optical elements on the mounting surface of a metal base. ing.

特許文献1、2で示す表面実装型の光アイソレータの場合、図4(a)に示すように永久磁石43と光学素子として偏光子41、ファラデー回転子42とが、光軸方向に平行に並んで、一つの基板44表面上に取り付け固定されている。これら各光学素子は、光源側から偏光子41、ファラデー回転子42、偏光子41の順となるように光軸方向に並んで基板上に配置されている。光の反射を防ぐため各素子は基板の入射側側面に対し、6°から8°の角度をつけて基板に固定されている。さらに光の入射側に対空気の反射防止膜が施され、各素子間は10μmから50μmの間隔があけられている。   In the case of the surface mount type optical isolator shown in Patent Documents 1 and 2, as shown in FIG. 4A, the permanent magnet 43 and the polarizer 41 and the Faraday rotator 42 as optical elements are arranged in parallel in the optical axis direction. Thus, it is mounted and fixed on the surface of one substrate 44. These optical elements are arranged on the substrate side by side in the optical axis direction so that the polarizer 41, the Faraday rotator 42, and the polarizer 41 are arranged in this order from the light source side. In order to prevent light reflection, each element is fixed to the substrate at an angle of 6 ° to 8 ° with respect to the incident side surface of the substrate. Further, an antireflection film for air is provided on the light incident side, and an interval of 10 μm to 50 μm is provided between each element.

表面実装型の光アイソレータでは各素子間の間隔をあける煩雑さを解消するために、図4(b)に示すようなラミネートチップ型光アイソレータ15のものも提案されている(特許文献3参照)。   In the surface mount type optical isolator, a laminate chip type optical isolator 15 as shown in FIG. 4B has been proposed in order to eliminate the complexity of spacing between elements (see Patent Document 3). .

光アイソレータ40はファラデー回転子42、偏光子41を光透過性が良く屈折率が制御されている光学接着剤45で接着した光アイソレータ用素子40と筒状の磁石43とからなる。ここで偏光子41は透過する光の一方向の偏波成分を吸収し、その偏波成分に直交する偏波成分を透過する機能を有し、また、ファラデー回転子42は飽和磁界強度において所定波長の光の偏波面を約45度回転する機能を有する。また2つの偏光子41は、それぞれの透過偏波方向が約45度ずれるように配置されている。
特開平10−227996号公報 特開2002−162603号公報 特開平4−338916号
The optical isolator 40 includes an optical isolator element 40 in which a Faraday rotator 42 and a polarizer 41 are bonded with an optical adhesive 45 having good light transmission and a controlled refractive index, and a cylindrical magnet 43. Here, the polarizer 41 has a function of absorbing a polarization component in one direction of transmitted light and transmitting a polarization component orthogonal to the polarization component, and the Faraday rotator 42 has a predetermined saturation magnetic field strength. It has a function of rotating the plane of polarization of light of wavelength about 45 degrees. Further, the two polarizers 41 are arranged so that their transmission polarization directions are deviated by about 45 degrees.
JP-A-10-227996 JP 2002-162603 A JP-A-4-338916

しかしながら、図4(a)に示すような平面実装型光アイソレータでは、偏光子とファラデー回転子の熱膨張差(偏光子:65×10−7/℃、ファラデー回転子:110×10−7/℃)が大きいため各素子間の間隔をあける必要があった。このため小型化が難しく、入射側からの光の反射を抑えることができなかった。さらに基板の入射側側面に対し素子の角度をつける必要があり加工工数と加工時間が掛かっていた。 However, in the planar mount optical isolator as shown in FIG. 4A, the difference in thermal expansion between the polarizer and the Faraday rotator (polarizer: 65 × 10 −7 / ° C., Faraday rotator: 110 × 10 −7 / Since the temperature (° C.) is large, it is necessary to provide a space between the elements. For this reason, miniaturization is difficult, and reflection of light from the incident side cannot be suppressed. In addition, it is necessary to set the angle of the element with respect to the incident side surface of the substrate, which takes processing man-hours and processing time.

また、平面実装型光アイソレータで光アイソレータ部分に図4(b)で示すラミネートチップ型アイソレータを使用した場合、素子間隔をあける必要がなくなり小型化が可能であるが、ファラデー回転子42の両面に板状の偏光子41を接着剤45により一体化するため接着剤45が有機系接着剤の場合は、耐湿性が劣り、特に高温高湿条件下での使用が制限される問題がある。また、長時間あるいは高出力のレーザ光中の使用では接着剤45の変質の危険があり、信頼性に問題がある。   In addition, when the laminated chip type isolator shown in FIG. 4B is used for the optical isolator portion in the surface mount type optical isolator, it is not necessary to leave an element interval, and the size can be reduced. Since the plate-like polarizer 41 is integrated by the adhesive 45, when the adhesive 45 is an organic adhesive, the moisture resistance is inferior, and there is a problem that the use under high temperature and high humidity conditions is limited. Further, when used for a long time or in a high-power laser beam, there is a risk of deterioration of the adhesive 45, and there is a problem in reliability.

また、光アイソレータ用素子40をレーザモジュールに組み込む際、光アイソレータは高温下に曝されるが、接着剤45として有機系接着剤を用いた場合はこれが分解し、気泡の発生、部材の脱落等が生じる。さらに、有機系接着剤45からのアウトガスはレーザチップやレンズなどの光学部品表面上に付着し、光学特性を劣化させる危険がある。   Further, when the optical isolator element 40 is incorporated in the laser module, the optical isolator is exposed to a high temperature. However, when an organic adhesive is used as the adhesive 45, this is decomposed, bubbles are generated, members are dropped off, etc. Occurs. Furthermore, the outgas from the organic adhesive 45 adheres to the surface of an optical component such as a laser chip or a lens, and there is a risk of deteriorating the optical characteristics.

本発明は、上記問題点に鑑みてなされたものであり、1枚以上の平板状のファラデー回転子と、1枚以上の平板状の偏光子とを、互いの主面同士を当接させて重ねるとともに、それぞれの側面を保持基板に接合して光アイソレータを構成することを特徴とするものである。   The present invention has been made in view of the above problems, and one or more flat-plate Faraday rotators and one or more flat-plate polarizers are brought into contact with each other. In addition, the optical isolator is configured by stacking and bonding each side surface to a holding substrate.

また、上記当接した主面同士の間には他材料が介在せず、一部に空気層があることを特徴とする。   Further, there is no other material between the abutting main surfaces, and there is an air layer in part.

さらに、上記側面と保持基板との接合手段は、低融点ガラス、接着剤、および半田から選ばれる少なくとも一種を用い、側面の1面または全面が上記保持基板に固定されていることを特徴とする。   Further, the joining means between the side surface and the holding substrate is at least one selected from low melting glass, adhesive, and solder, and one or all of the side surfaces are fixed to the holding substrate. .

また、上記ファラデー回転子と偏光子の両主面には、対空気の反射防止膜が施されていることを特徴とする。   Further, an antireflection film for air is applied to both main surfaces of the Faraday rotator and the polarizer.

本発明によれば、熱膨張差による各光学素子への応力を緩和させ、アイソレータの小型化と組み立て工数の少ない光アイソレータが実現する。また、光路上に樹脂がないため長期信頼性に優れ、耐光性、耐熱性、アイソレーション特性に優れた光アイソレータが実現する。   According to the present invention, it is possible to reduce the stress on each optical element due to a difference in thermal expansion, and to realize an optical isolator with a smaller isolator and fewer man-hours for assembly. In addition, since there is no resin on the optical path, an optical isolator having excellent long-term reliability and excellent light resistance, heat resistance, and isolation characteristics is realized.

本発明の光アイソレータの斜視図を図1(a)に示す。   A perspective view of the optical isolator of the present invention is shown in FIG.

本発明の光アイソレータは、偏光子11、13、ファラデー回転子12の各光学素子と直方体の永久磁石18とを平板状の保持基板14上に配置した構造を有している。素子のサイズは素子と保持基板14との接着による応力の緩和と接着強度、素子の破壊強度を考慮し、縦横ともに2mm以下であることが好ましく、素子と保持基板14との接合では素子への応力を少なくするために素子側面の1面に対してのみで固定する方が好ましい。   The optical isolator of the present invention has a structure in which optical elements of the polarizers 11 and 13 and the Faraday rotator 12 and a rectangular parallelepiped permanent magnet 18 are arranged on a flat holding substrate 14. The size of the element is preferably 2 mm or less in both length and width in consideration of relaxation of stress due to adhesion between the element and the holding substrate 14, and the breaking strength of the element. In order to reduce stress, it is preferable to fix only to one side of the element side surface.

偏光子11、13の偏光方向はファラデー回転子12を挟んで正確に45゜である必要がある。そして、直方体に成形した永久磁石18を光軸に平行に着磁して、平板上のファラデー回転子12の横に光軸に平行に並べて配置することにより所望の光アイソレータが構成される。   The polarization directions of the polarizers 11 and 13 need to be exactly 45 ° with the Faraday rotator 12 in between. A desired optical isolator is configured by magnetizing the permanent magnet 18 formed in a rectangular parallelepiped in parallel to the optical axis and arranging the permanent magnet 18 in parallel to the optical axis next to the Faraday rotator 12 on the flat plate.

また、これら光学素子と永久磁石を保持基板14に固定する際には、接着剤、半田、低融点ガラスのいずれかを用いるが、半導体レーザー素子と一緒に密封されたパッケージ内での接着剤の分解物が問題となる場合は、半導体レーザー素子を劣化させる可能性の少ない半田や低融点ガラスを用いて固着することが望ましい。このため、偏光子11、13、ファラデー回転子12は透過光の通過する面を矩形とし、少なくとも直交する四つの側面の内、保持基板14に接する側面にメタライズを施し、金と錫の合金の半田により固着することが望ましい。メタライズの最表面は金であることが望ましく、四つの面及び光学面の一部に透過光の妨げにならない位置に同様にメタライズの施されていることは更に好ましい。   Further, when fixing these optical elements and permanent magnets to the holding substrate 14, any one of adhesive, solder, and low melting point glass is used, but the adhesive in the package sealed together with the semiconductor laser element is used. When the decomposed matter becomes a problem, it is desirable to fix the semiconductor laser element using solder or low melting point glass that is less likely to deteriorate the semiconductor laser element. For this reason, the polarizers 11 and 13 and the Faraday rotator 12 have a rectangular surface through which transmitted light passes, and at least four of the orthogonal side surfaces are metallized on the side surfaces in contact with the holding substrate 14 to form an alloy of gold and tin. It is desirable to fix with solder. It is desirable that the outermost surface of the metallization is gold, and it is more preferable that the metallization is similarly applied to the four surfaces and a part of the optical surface at a position where the transmitted light is not hindered.

偏光子11、13、ファラデー回転子12と永久磁石18の保持基板14への固着は別々でも良く同時でもよい。工程の短縮の観点からは同時固着が望ましく、工程の容易さの観点からは別々に行うことが良いが、別々に行う場合は、後から行う固着の際に先に固着に用いた合金よりも融点の低い合金または金属を用いるのが望ましい。   The polarizers 11 and 13, the Faraday rotator 12, and the permanent magnet 18 may be fixed to the holding substrate 14 separately or simultaneously. From the viewpoint of shortening the process, simultaneous bonding is desirable, and it is preferable to perform it separately from the viewpoint of ease of process, but in the case of performing separately, it is more than the alloy previously used for fixing in the subsequent fixing. It is desirable to use an alloy or metal with a low melting point.

本発明においては、偏光子11とファラデー回転子12、およびファラデー回転子12と偏光子13は各主面同士が当接しており、接着剤等の異種材料は存在しない。そのため、各主面間は接着されず一部に空気層を有しており、熱膨張係数による悪影響を防止できる。   In the present invention, the principal surfaces of the polarizer 11 and the Faraday rotator 12, and the Faraday rotator 12 and the polarizer 13 are in contact with each other, and there are no different materials such as an adhesive. Therefore, the main surfaces are not bonded to each other and have an air layer in part, and adverse effects due to the thermal expansion coefficient can be prevented.

ここでファラデー回転子12の両面は偏光子11および偏光子12の屈折率に対する反射防止膜が施されており、同様に偏光子12および偏光子13にも反射防止膜が施されている。通常、偏光子とファラデー回転子が密着し空気層がない場合は、偏光子、ファラデー回転子ともに反射防止膜を施す必要はないが、素子間に接着剤を使用せず完全に空気層の存在をなくすることはできないため、偏光子、ファラデー回転子とも屈折率n=1に対する反射防止膜を施す必要がある。図1に示す例においては偏光子とファラデー回転子が密着しているため、ファラデー回転子に対偏光子の反射防止膜を施すことにより、各光学素子端面からの反射を防止することができる。また、反射防止膜を構成する各層の膜厚は2μm以下とする。   Here, both surfaces of the Faraday rotator 12 are provided with an antireflection film for the refractive index of the polarizer 11 and the polarizer 12. Similarly, the polarizer 12 and the polarizer 13 are provided with an antireflection film. Normally, when the polarizer and Faraday rotator are in close contact with each other and there is no air layer, it is not necessary to apply an anti-reflective coating to both the polarizer and the Faraday rotator. Therefore, it is necessary to apply an antireflection film for the refractive index n = 1 for both the polarizer and the Faraday rotator. In the example shown in FIG. 1, since the polarizer and the Faraday rotator are in close contact with each other, reflection from the end face of each optical element can be prevented by applying an antireflection film for the polarizer to the Faraday rotator. Moreover, the film thickness of each layer which comprises an antireflection film shall be 2 micrometers or less.

反射防止膜の形成方法は公知の方法でよく、スパッタリング法、真空蒸着法、CVD 法等の方法で形成すればよい。なおスパッタリング法は、以下の原理により行うものである。まず、真空状態にした加工容器内で膜を付ける試料の近傍に膜の原料(ターゲット)を配置し、試料とターゲットの間に電圧をかけることで、電子やイオンを高速移動させ、ターゲットに衝突させる。ターゲットに衝突したイオンは、ターゲットの粒子をはじき飛ばす。(スパッタリング現象)はじき飛ばされた原料の粒子が試料に衝突、付着し、膜が形成される。真空蒸着では、真空状態にした加工容器内で膜を付ける試料の近傍に膜のターゲットを配置し、同様に真空状態にした加工容器内で膜を付ける試料にターゲットを対向させ、膜の原料を加熱し、蒸発、気化した原料を試料に衝突させることで膜を形成する。またCVD法は、試料を気体原料の雰囲気内におき、化学反応によって、試料表面に高純度の薄膜を形成する。   The antireflection film may be formed by a known method, such as sputtering, vacuum deposition, or CVD. The sputtering method is performed according to the following principle. First, a film material (target) is placed in the vicinity of the sample to be coated in a vacuum processing container, and a voltage is applied between the sample and the target to move electrons and ions at high speed and collide with the target. Let Ions that collide with the target repel target particles. (Sputtering phenomenon) The repelled raw material particles collide and adhere to the sample to form a film. In vacuum deposition, a film target is placed in the vicinity of a sample to be coated in a vacuumed processing vessel, and the target is opposed to the sample to be coated in a vacuumed processing vessel. A film is formed by colliding the heated, evaporated and vaporized raw material with the sample. In the CVD method, a sample is placed in an atmosphere of a gas raw material, and a high-purity thin film is formed on the sample surface by a chemical reaction.

以上説明したように、本発明では光学素子同士の接合に接着剤等の有機物は一切用いていないため耐湿性に優れた光アイソレータを得ることが出来る。   As described above, in the present invention, since no organic substance such as an adhesive is used for joining optical elements, an optical isolator excellent in moisture resistance can be obtained.

また、光アイソレータにはLD光源からの高出力光が通過するが、光学素子同士を接着剤により接合した場合は、接着剤部分が劣化し透過率が増加することにより、光アイソレータの挿入損失特性の劣化が懸念される。しかしながら本発明では、接着剤等の有機物は一切用いていないため耐光性のある光アイソレータを得ることが出来る。さらに光学素子間の一部に空気層を有することにより、熱膨張係数の違う偏光子とファラデー回転子への応力を緩和させることができる。   In addition, high output light from the LD light source passes through the optical isolator, but when the optical elements are bonded with an adhesive, the adhesive portion deteriorates and the transmittance increases, so that the insertion loss characteristic of the optical isolator increases. There is a concern about the deterioration. However, in the present invention, since no organic substance such as an adhesive is used, a light-resistant optical isolator can be obtained. Furthermore, by providing an air layer in a part between the optical elements, stress on the polarizer and the Faraday rotator having different thermal expansion coefficients can be relieved.

さらに、光アイソレータをレーザモジュールに組み込む場合の固定方法としては、半田の溶融固着、またはYAGレーザによる固定、さらには熱硬化型の接着剤を用いた接合などが考えられるが、いずれの場合も光アイソレータは高温下に曝されることになる。しかしながら本発明では、接着剤等の有機物は一切用いていないため、高温下に於いても樹脂の劣化は生じず、耐熱性のある光アイソレータを得ることが出来る。   Furthermore, as a fixing method when the optical isolator is incorporated in the laser module, fusion of solder or fixing by a YAG laser, or bonding using a thermosetting adhesive can be considered. The isolator is exposed to high temperatures. However, in the present invention, since no organic substance such as an adhesive is used, the resin does not deteriorate even at high temperatures, and a heat-resistant optical isolator can be obtained.

本発明の実施例として図1に示した光アイソレータを試作し、特性の評価を行った。各部品と構成について以下に説明する。   As an example of the present invention, the optical isolator shown in FIG. 1 was prototyped and the characteristics were evaluated. Each component and configuration will be described below.

偏光子は、コーニング社製のポーラコア(製品名)を用い、サイズは11mm角で厚み0.2mmのものを、互いの透過偏波方向は45°ずらして光学調整の後に、1mm角に切り出した。ファラデー回転子のサイズは11mm角で厚み0.45mmのものを、1mm角に切り出した。飽和磁界強度中における偏波回転角は45.0°であった。いずれも波長1.55μmの光に対して動作する素子であり、偏光子とファラデー回転子の両面には対空気(n=1)の反射防止膜が施されている。   A polar core (product name) manufactured by Corning Inc. was used as the polarizer, and the size was 11 mm square and the thickness was 0.2 mm. . A Faraday rotator having a size of 11 mm square and a thickness of 0.45 mm was cut into 1 mm square. The polarization rotation angle in the saturation magnetic field strength was 45.0 °. Both are elements that operate with respect to light having a wavelength of 1.55 μm, and antireflection films for air (n = 1) are provided on both surfaces of the polarizer and the Faraday rotator.

このようにして作製した光アイソレータの特性を測定した結果、すべての光アイソレータは、挿入損失が0.3dB以下、アイソレーションが40dB以上の良好で均一な特性を有することを確認した。   As a result of measuring the characteristics of the optical isolator thus fabricated, it was confirmed that all the optical isolators had good and uniform characteristics with an insertion loss of 0.3 dB or less and an isolation of 40 dB or more.

以上の試作により、工数の削減が実現し、かつ長期安定性に優れ、樹脂フリーの光アイソレータが実現した。   With the above trial production, man-hours were reduced, and long-term stability and resin-free optical isolators were realized.

一方、従来の平面実装型光アイソレータでは偏光子11、13とファラデー回転子12の間には隙間を空けて固定しているが、この隙間が無くても反射率の劣化はなく問題ないことを実験と計算にて確認を行った。   On the other hand, in the conventional surface mount type optical isolator, the polarizers 11 and 13 and the Faraday rotator 12 are fixed with a gap, but even if this gap is not present, the reflectance is not deteriorated and there is no problem. This was confirmed by experiments and calculations.

図2(a)に実験方法を示す。フェルール(先端はフラット、角度無し)22にファイバ23を固定し、偏光子24をその先に接着固定した。接着した偏光子24の両面には対空気の反射防止膜が施されている。さらに両面に対空気の反射防止膜が施されているファラデー回転子25を偏光子24の上に載せてプレシジョンリフレクトメータ21にて反射のピークが有るか確認し、ファラデー回転子25を偏光子24での反射が46〜49dB程度と対空気の反射防止膜レベルの特性を示し、反射特性に影響を及ぼさないことを確認した。図2(b)が偏光子24のみを載せて計測した結果で、図2(c)が偏光子24の上にファラデー回転子25を載せたときの結果である。   FIG. 2A shows the experimental method. A fiber 23 was fixed to a ferrule (tip is flat, no angle) 22, and a polarizer 24 was bonded and fixed to the tip. An antireflection film for air is applied to both surfaces of the bonded polarizer 24. Further, a Faraday rotator 25 having anti-air anti-reflection coatings on both sides is placed on the polarizer 24, and it is confirmed by the precision reflectometer 21 whether there is a reflection peak, and the Faraday rotator 25 is connected to the polarizer 24. The reflection on the surface was about 46 to 49 dB, indicating the characteristics of the antireflection film level against the air, and it was confirmed that the reflection characteristics were not affected. FIG. 2B shows the result of measurement with only the polarizer 24 placed thereon, and FIG. 2C shows the result when the Faraday rotator 25 is placed on the polarizer 24.

次に計算にて確認を行った。計算は多層膜の反射を元に、反射膜の反射率を計算した。図3に薄膜の干渉について示す。図3の面1が図2(a)のフェルール22と偏光子24の間となり、図3の面2が図2(a)の偏光子24とファラデー回転子25の間となる。それぞれの反射防止膜の設計は表1の通りとし、成膜方法は一般的な真空蒸着法で行った。この設計により強度反射率の計算を行い、0.00%となることを確認した。   Next, it confirmed by calculation. In the calculation, the reflectance of the reflective film was calculated based on the reflection of the multilayer film. FIG. 3 shows the interference of the thin film. 3 is between the ferrule 22 and the polarizer 24 in FIG. 2A, and the surface 2 in FIG. 3 is between the polarizer 24 and the Faraday rotator 25 in FIG. The design of each antireflection film was as shown in Table 1, and the film formation method was performed by a general vacuum deposition method. With this design, the intensity reflectance was calculated and confirmed to be 0.00%.

以上のように、対空気の反射防止膜が施されている2枚の光学素子の面を密着させ空気層を無くしても、空気層がある場合と同じ特性が得られるということになった。

Figure 2006091601
As described above, even if the surfaces of the two optical elements on which the antireflection film for air is applied are brought into close contact with each other and the air layer is eliminated, the same characteristics as those obtained when the air layer is present can be obtained.
Figure 2006091601

(a)は本発明の光アイソレータの実施形態を示す斜視図、(b)は側面図である。(A) is a perspective view which shows embodiment of the optical isolator of this invention, (b) is a side view. (a)は偏光子、ファラデー回転子間の隙間をなくした場合の反射特性を確認する実験装置を示す図、(b)、(c)はその結果を示す図である。(A) is a figure which shows the experimental apparatus which confirms the reflective characteristic at the time of eliminating the clearance gap between a polarizer and a Faraday rotator, (b), (c) is a figure which shows the result. 薄膜の干渉を説明するための図である。It is a figure for demonstrating the interference of a thin film. (a)は従来の平面実装型光アイソレータを示す斜視図、(b)は従来のラミネートチップ型アイソレータを示す斜視図である。(A) is a perspective view which shows the conventional planar mounting type optical isolator, (b) is a perspective view which shows the conventional laminated chip type isolator.

符号の説明Explanation of symbols

10:光アイソレータ用素子
11、13、24、41:偏光子
12、25、42:ファラデー回転子
14、44:基板
15、45:接着剤
16:反射防止膜
17:空気層
18、43:永久磁石
21:プレシジョンリフレクトメータ
22:フェルール
23:ファイバ
10: Optical isolator elements 11, 13, 24, 41: Polarizers 12, 25, 42: Faraday rotator 14, 44: Substrate 15, 45: Adhesive 16: Antireflection film 17: Air layers 18, 43: Permanent Magnet 21: Precision reflectometer 22: Ferrule 23: Fiber

Claims (4)

1枚以上の平板状のファラデー回転子と、1枚以上の平板状の偏光子とを、互いの主面同士を当接させて重ねるとともに、それぞれの側面を保持基板に接合してなる光アイソレータ。 An optical isolator formed by stacking one or more flat Faraday rotators and one or more flat polarizers with their principal surfaces in contact with each other and bonding each side surface to a holding substrate. . 上記当接した主面同士の間には他材料が介在せず、一部に空気層があることを特徴とする請求項1記載の光アイソレータ。 2. The optical isolator according to claim 1, wherein no other material is interposed between the abutting main surfaces, and there is an air layer in part. 上記側面と保持基板との接合手段は、低融点ガラス、接着剤、および半田から選ばれる少なくとも一種を用い、側面の一部または全面が上記保持基板に固定されていることを特徴とする請求項1又は2記載の光アイソレータ。 The bonding means between the side surface and the holding substrate is at least one selected from low-melting glass, an adhesive, and solder, and a part or the entire surface of the side surface is fixed to the holding substrate. The optical isolator according to 1 or 2. 上記ファラデー回転子と偏光子の両主面には、対空気の反射防止膜が施されていることを特徴とする請求項1〜3のいずれかに記載の光アイソレータ。 The optical isolator according to any one of claims 1 to 3, wherein an antireflection film for air is applied to both main surfaces of the Faraday rotator and the polarizer.
JP2004278634A 2004-09-27 2004-09-27 Optical isolator Expired - Fee Related JP4628054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278634A JP4628054B2 (en) 2004-09-27 2004-09-27 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278634A JP4628054B2 (en) 2004-09-27 2004-09-27 Optical isolator

Publications (2)

Publication Number Publication Date
JP2006091601A true JP2006091601A (en) 2006-04-06
JP4628054B2 JP4628054B2 (en) 2011-02-09

Family

ID=36232641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278634A Expired - Fee Related JP4628054B2 (en) 2004-09-27 2004-09-27 Optical isolator

Country Status (1)

Country Link
JP (1) JP4628054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109687A (en) * 2011-03-04 2011-06-29 北京交通大学 Optical isolator and machining method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020253A (en) * 1996-07-04 1998-01-23 Shin Etsu Chem Co Ltd Optical isolator
JP2000075244A (en) * 1998-08-31 2000-03-14 Kyocera Corp Optical isolator
JP2003255269A (en) * 2002-02-27 2003-09-10 Kyocera Corp Optical isolator
JP2003255137A (en) * 2001-12-26 2003-09-10 Okano Electric Wire Co Ltd Optical component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020253A (en) * 1996-07-04 1998-01-23 Shin Etsu Chem Co Ltd Optical isolator
JP2000075244A (en) * 1998-08-31 2000-03-14 Kyocera Corp Optical isolator
JP2003255137A (en) * 2001-12-26 2003-09-10 Okano Electric Wire Co Ltd Optical component
JP2003255269A (en) * 2002-02-27 2003-09-10 Kyocera Corp Optical isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109687A (en) * 2011-03-04 2011-06-29 北京交通大学 Optical isolator and machining method thereof

Also Published As

Publication number Publication date
JP4628054B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US8115998B2 (en) In-line optical isolator
KR20040104694A (en) Optical isolators and methods of manufacturing using direct bonding
JP2008107760A (en) Optical filter with optical isolator function and optical transmission/reception module with the same
JP4628054B2 (en) Optical isolator
JP2008310068A (en) In-line optical isolator
WO2017187886A1 (en) Optical isolator
JPH08146351A (en) Element for optical isolator and its production
US8830578B2 (en) Optical isolator element and optical module using the same
JP2006309190A (en) Optical isolator and optical module using same
JP3500250B2 (en) Elements for optical isolators
JP2003255269A (en) Optical isolator
JP3570869B2 (en) Optical isolator element and method of manufacturing the same
JP2020194149A (en) Optical element, manufacturing method thereof, optical isolator, and optical transmission device
JP2004354646A (en) Optical isolator and its assembly method
JP2023005437A (en) Optical element and manufacturing method therefor, optical isolator, and optical transmission device
JP2003322826A (en) Optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JPH03179317A (en) Faraday rotor for optical isolator and metallizing method thereof
JP4443212B2 (en) Method for manufacturing optical isolator element
JP2022006506A (en) Optical device, manufacturing method therefor, optical isolator, and optical transmission device
JP2006098493A (en) Compound optical component and optical isolator element
JP3688865B2 (en) Method for manufacturing device for optical isolator
JP2001125043A (en) Optical isolator
JPH0933859A (en) Optical isolator and manufacture of its optical element
JPH11183842A (en) Element for optical isolator and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees