JP2006091049A - Light quantity controller - Google Patents

Light quantity controller Download PDF

Info

Publication number
JP2006091049A
JP2006091049A JP2004272838A JP2004272838A JP2006091049A JP 2006091049 A JP2006091049 A JP 2006091049A JP 2004272838 A JP2004272838 A JP 2004272838A JP 2004272838 A JP2004272838 A JP 2004272838A JP 2006091049 A JP2006091049 A JP 2006091049A
Authority
JP
Japan
Prior art keywords
substrate
light transmission
light
adjusting device
amount adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004272838A
Other languages
Japanese (ja)
Inventor
Masaki Tagome
正樹 田米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004272838A priority Critical patent/JP2006091049A/en
Publication of JP2006091049A publication Critical patent/JP2006091049A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-efficiency light quantity controller which is made extremely thinner in shape, and improved in responsibility. <P>SOLUTION: The light quantity controller is provided with a 1st substrate having a 1st light transmissive part, a 2nd substrate having a 2nd light transmissive part, and arranged facing the 1st substrate so that the 1st light transmissive part and the 2nd light transmissive part may face each other, and opaque liquid 3 sandwiched between the 1st substrate and the 2nd substrate. The 2nd substrate is piezoelectric, and provided with electrodes 4a and 4b for exciting acoustic surface wave on the surface facing the 1st substrate of the 2nd substrate. The controller is provided with a flow-in suppressing means for suppressing the opaque liquid from flowing in between the 1st light transmissive part and the 2nd light transmissive part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、入射光量を調整することを目的とした主にカメラ等に使用される光量調整装置に関する。   The present invention relates to a light amount adjusting device mainly used for a camera or the like for the purpose of adjusting an incident light amount.

近年、カメラ付き携帯電話の急激な普及に伴って、機器の小型化、薄型化が強く要望されている。また、機器に搭載されるカメラ機能についても、カメラの付加価値の面から、絞り機能、AF(オートフォーカス)機能、光学ズーム機能、手振れ防止機能等の高機能化を求められている。しかし機器の小型化と高機能化は、おおよそトレードオフの関係にあり、これまでは携帯電話というモバイル機器の性質上、小型化が優先され、カメラ機能に関しては低機能に留まっていた。   In recent years, with the rapid spread of camera-equipped mobile phones, there is a strong demand for smaller and thinner devices. In addition, regarding camera functions mounted on devices, from the viewpoint of added value of the camera, higher functions such as an aperture function, an AF (autofocus) function, an optical zoom function, and a camera shake prevention function are required. However, miniaturization and high functionality of devices are in a trade-off relationship, and until now, miniaturization was given priority due to the nature of mobile devices such as mobile phones, and camera functions remained low.

上記高機能化の1つである絞り機能については、従来、主に機械的な絞り装置が用いられてきた。しかし、機械的絞りはそれを作動させるための機械的機構が必要であり、カメラの大型化、高コスト化、及び設計の自由度の制約等の原因となっていた。   Conventionally, mechanical diaphragm devices have been mainly used for the diaphragm function, which is one of the enhancements. However, the mechanical aperture requires a mechanical mechanism for operating the mechanical aperture, which causes the increase in size and cost of the camera and the restriction on the degree of freedom in design.

従来技術としては、電磁アクチュエータによって絞り羽根等を移動させ、光量を調整する方法がよく知られている。しかしながら、電磁アクチュエータによる絞り装置の小型化は限界に達しつつある。これらの課題を解決するために、最近、電磁アクチュエータを用いない絞り装置が多数提案されている。   As a conventional technique, a method of adjusting the light quantity by moving a diaphragm blade or the like by an electromagnetic actuator is well known. However, downsizing of the diaphragm device by the electromagnetic actuator is reaching its limit. In order to solve these problems, many aperture devices that do not use electromagnetic actuators have been recently proposed.

一例として、特許文献1においては、圧電体基板上に弾性表面波を励振し、圧電体基板に加圧接触された移動体を、摩擦力により移動させることにより、絞り羽根を機械的に作動させる方法が開示されている。この方法は、主な機械的機構が、電極が蒸着された圧電基板と、圧電基板に加圧接触された移動体だけであるため、これまでの電磁アクチュエータに比べて、小型化、薄型化が図れる。   As an example, in Patent Document 1, a diaphragm blade is mechanically operated by exciting a surface acoustic wave on a piezoelectric substrate and moving a moving body in pressure contact with the piezoelectric substrate by a frictional force. A method is disclosed. In this method, the main mechanical mechanisms are only the piezoelectric substrate on which the electrodes are deposited and the moving body that is in pressure contact with the piezoelectric substrate. Therefore, the method is smaller and thinner than conventional electromagnetic actuators. I can plan.

また、絞り装置の小型化を目的とした別の従来技術としては、上記のように絞り羽根に機械的機構を使用せず、遮光流体を吸引排出して、絞り装置とする方法がある。一例として特許文献2にその技術が開示されており、その要部を示す図7(a)、(b)を用いて説明する。   In addition, as another conventional technique for the purpose of downsizing the diaphragm device, there is a method in which the diaphragm blade is sucked and discharged without using a mechanical mechanism for the diaphragm blade as described above. As an example, the technique is disclosed in Patent Document 2, and will be described with reference to FIGS.

図7(a)、(b)において、3、4はレンズ、5は密閉室、6は遮光流体吸排管、9は遮光流体、10は吸排ポンプである。図7(a)において、吸排ポンプ10が遮光流体9を排出することで、レンズ3と4の間の密閉室5に遮光流体9が充填され光が遮断される。また、図7(b)において、吸排ポンプ10が遮光流体9を吸収することで、レンズ3と4の間の密閉室5内の遮光流体9が吸排ポンプ10側に後退し、光を取り込むことができる。このように、絞り羽根に機械的機構を使用しないので、絞り装置の小型化が図れる。
特開2001−255570号公報 特開平4−56934号公報
In FIGS. 7A and 7B, 3 and 4 are lenses, 5 is a sealed chamber, 6 is a light shielding fluid intake / exhaust pipe, 9 is a light shielding fluid, and 10 is an intake / exhaust pump. In FIG. 7A, the suction / exhaust pump 10 discharges the light shielding fluid 9, whereby the light shielding fluid 9 is filled in the sealed chamber 5 between the lenses 3 and 4 to block light. Further, in FIG. 7B, when the suction / discharge pump 10 absorbs the light shielding fluid 9, the light shielding fluid 9 in the sealed chamber 5 between the lenses 3 and 4 moves backward toward the suction / discharge pump 10 and takes in light. Can do. As described above, since the mechanical mechanism is not used for the aperture blade, the aperture device can be downsized.
JP 2001-255570 A JP-A-4-56934

しかし、上記従来の技術では次のような課題があった。先ず弾性表面波が励振されている圧電基板に加圧接触されている移動体を、摩擦力により移動させる方法では、圧電基板の表面粗さ等の影響のない弾性表面波を励振するためには、比較的大きな電力を電極に入力する必要があるため、全体的な効率に大きな問題点がある。また、摩擦を介して間接的に絞り羽根を作動させているため、磨耗による信頼性の問題、さらには絞り速度の動作不安定等の問題もある。   However, the above conventional techniques have the following problems. First, in the method of moving a moving body that is in pressure contact with a piezoelectric substrate on which surface acoustic waves are excited by frictional force, in order to excite surface acoustic waves that are not affected by the surface roughness of the piezoelectric substrate, etc. Since it is necessary to input relatively large electric power to the electrodes, there is a big problem in overall efficiency. Further, since the diaphragm blades are indirectly operated through friction, there are problems of reliability due to wear, and further problems such as unstable operation of the diaphragm speed.

次に遮光流体をポンプで吸排する方法では、絞り羽根等の機械的機構は削減できても、ポンプ及びポンプを駆動させる機器は必要とするので、絞り装置の搭載される機器の大幅な小型化は図れない。また、ポンプによって、遮光流体を移動させるため、応答性に問題があると思われる。   Next, in the method of sucking and discharging the shading fluid with the pump, the mechanical mechanism such as the diaphragm blades can be reduced, but the pump and the device that drives the pump are required. Can't plan. Moreover, since the light shielding fluid is moved by the pump, it seems that there is a problem in response.

本発明の目的は、上記した従来の課題を解決し、超薄型で、高効率な、応答性に優れた光量調整装置を提供することにある。   An object of the present invention is to solve the above-described conventional problems, and to provide a light amount adjusting device that is ultra-thin, highly efficient, and excellent in responsiveness.

上記課題を解決するために、本発明の光量調整装置は、第1の光透過部を有する第1の基板と、第2の光透過部を有し、第1の光透過部と第2の光透過部とが対向するように、第1の基板に対向して配置される第2の基板と、第1の基板と第2の基板との間に挟まれた不透明液体とを有し、第2の基板は圧電性を有し、第2の基板の第1の基板に対向する側の表面に弾性表面波を励振させるための電極を有し、不透明液体が第1の基板の第1の光透過部と第2の基板の第2の光透過部との間に流入することを抑制するための流入抑制手段を有することを特徴とする。   In order to solve the above-described problems, a light amount adjustment device of the present invention includes a first substrate having a first light transmission part, a second light transmission part, and the first light transmission part and the second light transmission part. A second substrate disposed to face the first substrate so that the light transmission portion faces, and an opaque liquid sandwiched between the first substrate and the second substrate, The second substrate has piezoelectricity, and has an electrode for exciting the surface acoustic wave on the surface of the second substrate facing the first substrate, and the opaque liquid is the first substrate of the first substrate. And an inflow suppressing means for suppressing inflow between the light transmitting portion of the second substrate and the second light transmitting portion of the second substrate.

本発明によれば、電極に高周波電圧を印加し弾性表面波を励振することで、不透明液体を基板間で移動することが可能となり、超薄型な光量調整装置を提供できる。   According to the present invention, an opaque liquid can be moved between substrates by applying a high-frequency voltage to an electrode and exciting a surface acoustic wave, and an ultra-thin light amount adjusting device can be provided.

以下、本発明の光量調整装置を、好ましい実施の形態により、図面を参照して、詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a light amount adjusting device of the present invention will be described in detail according to a preferred embodiment with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1を示す光量調整装置の上面図である。
(Embodiment 1)
FIG. 1 is a top view of a light amount adjusting apparatus showing Embodiment 1 of the present invention.

図1において、圧電性を有する基板1と基板2(図示せず)との間に、不透明液体3が封入されている。光路5は、不透明液体3が存在しない場合に、外部より入射した光が透過する領域を示している。基板1と基板2のお互いに対向する側の表面には、光路5の領域内に、不透明液体3に対して撥水性を有する薄膜6が配置されている。ここで、基板1と基板2は少なくとも光路5の内側において透明性を有する。また薄膜6も透明性を有する。不透明液体3、及び、基板1と基板2との間隔は、不透明液体3の表面張力により、外部から何らかの作用が働かない限り基板1及び2内で広がらず一定の状態を保持できるように設定する。なお、好ましい基板1と基板2との間隔は、100μm以下である。また、不透明液体3としては、水銀等の遮光性に優れた材料が用いられる。   In FIG. 1, an opaque liquid 3 is sealed between a substrate 1 having piezoelectricity and a substrate 2 (not shown). An optical path 5 indicates a region through which light incident from the outside is transmitted when the opaque liquid 3 is not present. On the surface of the substrate 1 and the substrate 2 facing each other, a thin film 6 having water repellency with respect to the opaque liquid 3 is disposed in the region of the optical path 5. Here, the substrate 1 and the substrate 2 are transparent at least inside the optical path 5. The thin film 6 is also transparent. The opaque liquid 3 and the distance between the substrate 1 and the substrate 2 are set so that the surface tension of the opaque liquid 3 does not spread within the substrates 1 and 2 as long as some action is not applied from the outside and can maintain a constant state. . In addition, the preferable space | interval of the board | substrate 1 and the board | substrate 2 is 100 micrometers or less. Further, as the opaque liquid 3, a material having excellent light shielding properties such as mercury is used.

圧電性を有する基板1と基板2の、不透明液体3と接する側の表面上には、光路5の周辺に、複数の平行な直線状の電極からなる電極群4a、4b、4c、4dが配置されている。電極群4a、4b、4c、4dの個々の電極は、電極の列の1本おきに接地し、その他の電極には、所定の周波数、振幅および位相を有する交流電圧を印加する。これにより、圧電性を有する基板1と基板2の表面に弾性表面波が励振される。   Electrode groups 4a, 4b, 4c, and 4d composed of a plurality of parallel linear electrodes are arranged around the optical path 5 on the surfaces of the substrates 1 and 2 having piezoelectricity on the side in contact with the opaque liquid 3. Has been. The individual electrodes of the electrode groups 4a, 4b, 4c, and 4d are grounded at every other electrode row, and an AC voltage having a predetermined frequency, amplitude, and phase is applied to the other electrodes. Thereby, surface acoustic waves are excited on the surfaces of the substrate 1 and the substrate 2 having piezoelectricity.

なお、電極群4a、4b、4c、4dには、周波数が1〜100MHzで同位相となる交流電圧を印加することが望ましい。   In addition, it is desirable to apply to the electrode groups 4a, 4b, 4c, and 4d an alternating voltage having the same phase at a frequency of 1 to 100 MHz.

また、電極群4a、4b、4c、4dは、それぞれの電極群の個々の電極の配列方向中央部から端部へ向かうにつれて、電極交差幅が徐々に狭くなるように構成されている。なお、電極交差幅とは、個々の電極について隣接する電極との対向する部分の長さを意味する。   Further, the electrode groups 4a, 4b, 4c, and 4d are configured such that the electrode crossing width gradually decreases from the center part to the end part in the arrangement direction of the individual electrodes of each electrode group. The electrode crossing width means the length of the portion of each electrode facing the adjacent electrode.

このような構成とすることで、基板1と基板2の表面上に電極群4a、4b、4c、4dを効率良く配置することができ、さらに、不透明液体3をスムーズに光路5の中心方向に移動することが可能となる。   With such a configuration, the electrode groups 4a, 4b, 4c, and 4d can be efficiently arranged on the surfaces of the substrate 1 and the substrate 2, and the opaque liquid 3 can be smoothly moved toward the center of the optical path 5. It becomes possible to move.

次に、具体的な動作原理について、図2(a)、(b)を用いて説明する。   Next, a specific operation principle will be described with reference to FIGS.

図2(a)、(b)は、図1のA−A’における光量調整装置の断面図である。まず、図2(a)においては、電極群4a、4b、4c、4dには交流電圧が印加されておらず、圧電性を有する基板1と基板2の表面に弾性表面波が励振されていない。そのため、不透明液体3に発生する力は、表面張力のみであり、撥水性を有する薄膜6を形成した領域には存在することができず、光路5は全開放の状態となる。   2A and 2B are cross-sectional views of the light amount adjusting device taken along A-A ′ in FIG. 1. First, in FIG. 2A, no AC voltage is applied to the electrode groups 4a, 4b, 4c, and 4d, and surface acoustic waves are not excited on the surfaces of the substrate 1 and the substrate 2 having piezoelectricity. . Therefore, the force generated in the opaque liquid 3 is only the surface tension, cannot be present in the region where the thin film 6 having water repellency is formed, and the optical path 5 is fully open.

次に、図2(b)においては、電極群4a、4b、4c、4dの個々の電極には、先に説明したように、一本おきに、接地または所定の周波数、位相を有する交流電圧が印加され、圧電性を有する基板1と基板2の表面に弾性表面波が励振されている。この時、不透明液体3は、表面張力に加え、弾性表面波による圧力を受けることになり、薄膜6による撥水効果とつりあう状態まで光路5内部に移動し、光路5を透過する光量を抑制した状態となる。すなわち、電極群4a、4b、4c、4dの個々の電極に印加する交流電圧の周波数、振幅および位相等を任意に調整することで、光路5から取り込める光量を自在に調整することが可能となる。   Next, in FIG. 2 (b), as described above, every other electrode of the electrode groups 4a, 4b, 4c, and 4d is grounded or AC voltage having a predetermined frequency and phase. Is applied, and surface acoustic waves are excited on the surfaces of the substrate 1 and the substrate 2 having piezoelectricity. At this time, the opaque liquid 3 receives pressure due to the surface acoustic wave in addition to the surface tension, moves to the inside of the optical path 5 to a state that balances with the water repellent effect by the thin film 6, and suppresses the amount of light transmitted through the optical path 5. It becomes a state. That is, by arbitrarily adjusting the frequency, amplitude, phase, and the like of the alternating voltage applied to the individual electrodes of the electrode groups 4a, 4b, 4c, and 4d, the amount of light that can be taken in from the optical path 5 can be freely adjusted. .

なお、電極群4a、4b、4c、4b個々の電極に印加する交流電圧の波形については、弾性表面波を高効率に励振する上で正弦波波形が好ましいが、他の三角波波形、方形波波形及びのこぎり波形においても光量調整装置としての機能を果たすことが可能である。   Note that the AC voltage waveform applied to each electrode of the electrode groups 4a, 4b, 4c, and 4b is preferably a sine wave waveform in order to excite a surface acoustic wave with high efficiency, but other triangular wave waveforms and square wave waveforms. Even in the sawtooth waveform, it is possible to fulfill the function as the light amount adjusting device.

(実施の形態2)
次に、本発明の実施の形態2を示す光量調整装置について、図3を用いて説明する。
(Embodiment 2)
Next, a light amount adjusting device showing Embodiment 2 of the present invention will be described with reference to FIG.

図3は、本実施の形態を示す光量調整装置の断面図である。図3において、基板1と基板2の光路5の領域には、光路5の中央部に行くほど基板間隔が狭くなるように、凸部7が形成されている。   FIG. 3 is a cross-sectional view of the light amount adjusting device showing the present embodiment. In FIG. 3, a convex portion 7 is formed in the region of the optical path 5 of the substrate 1 and the substrate 2 so that the distance between the substrates becomes narrower toward the center of the optical path 5.

このような構成をすることで、光路5の領域における表面張力の大小を任意に設定することができ、実施の形態1における薄膜6と同様の効果を得ることが可能となる。   With this configuration, the surface tension in the region of the optical path 5 can be arbitrarily set, and the same effect as the thin film 6 in Embodiment 1 can be obtained.

なお、凸部7は、それが光学的なレンズの役割を果たすようにすれば、部品点数を削減でき低コスト化が実現できる。   In addition, if the convex part 7 makes it play the role of an optical lens, a number of parts can be reduced and cost reduction can be implement | achieved.

また、凸部7は、基板1又は基板2の少なくとも一方にのみ設けても同様の効果が得られる。   The same effect can be obtained even if the convex portion 7 is provided only on at least one of the substrate 1 and the substrate 2.

(実施の形態3)
次に、本発明の実施の形態3を示す光量調整装置について、図4を用いて説明する。
(Embodiment 3)
Next, a light amount adjusting apparatus showing Embodiment 3 of the present invention will be described with reference to FIG.

図4は、本実施の形態を示す光量調整装置の断面図である。図4の基板1と基板2において、基板1および基板2の内側表面の少なくとも光路5を含む部分に、基板1および基板2とは異なる材料で形成された基板8を配置している。このように構成することで、基板1および基板2の材料に関係なく、薄膜6を配置しやすいように基板8の材料を選定することが可能となる。さらに、光学的なレンズの役割を果たすための高精度の加工を施し易い材料を選定することも可能となる。   FIG. 4 is a cross-sectional view of the light amount adjusting device showing the present embodiment. In the substrate 1 and the substrate 2 of FIG. 4, a substrate 8 made of a material different from that of the substrate 1 and the substrate 2 is disposed on a portion including at least the optical path 5 on the inner surface of the substrate 1 and the substrate 2. With this configuration, the material of the substrate 8 can be selected so that the thin film 6 can be easily disposed regardless of the materials of the substrate 1 and the substrate 2. Furthermore, it is also possible to select a material that can be easily processed with high accuracy to serve as an optical lens.

(実施の形態4)
次に、本発明の実施の形態4を示す光量調整装置について、図5を用いて説明する。
(Embodiment 4)
Next, a light amount adjusting apparatus showing Embodiment 4 of the present invention will be described with reference to FIG.

図5は、本実施の形態を示す光量調整装置の上面図である。図5における構成要素は、実施の形態1を示す図1と同じである。   FIG. 5 is a top view of the light amount adjusting apparatus showing the present embodiment. The components in FIG. 5 are the same as those in FIG. 1 showing the first embodiment.

図5において、基板1または基板2の圧電性の最大となる方向をX軸とし、X軸と直交し圧電性の最小となる方向をY軸とする。このとき、X軸およびY軸に対し、それぞれ所定角度βだけずれた軸をX(β)軸とY(β)軸とした場合、X(β)軸に平行に電極群4a、4bを、Y(β)軸に平行に電極群4c、4dを配置している。なお、βとしては、30〜60度くらいが好ましい。   In FIG. 5, the direction in which the piezoelectricity of the substrate 1 or the substrate 2 is maximum is taken as the X axis, and the direction orthogonal to the X axis and having the smallest piezoelectricity is taken as the Y axis. At this time, when the X (β) axis and the Y (β) axis are respectively shifted by a predetermined angle β with respect to the X axis and the Y axis, the electrode groups 4a and 4b are parallel to the X (β) axis. Electrode groups 4c and 4d are arranged in parallel to the Y (β) axis. Β is preferably about 30 to 60 degrees.

このように構成することで、基板1または基板2を、配向方向が一方向に揃った圧電体基板としても、電極群4a、4b、4c、4dに所定の交流電圧を印加し弾性表面波を励振することで、バランス良く光路5の中心方向に不透明液体3を移動することができ、製造上のバラツキを抑えた低コストで安定な光量調整装置が可能となる。   With this configuration, even if the substrate 1 or the substrate 2 is a piezoelectric substrate with the alignment direction aligned in one direction, a predetermined AC voltage is applied to the electrode groups 4a, 4b, 4c, and 4d to generate surface acoustic waves. By exciting, the opaque liquid 3 can be moved toward the center of the optical path 5 in a well-balanced manner, and a low-cost and stable light quantity adjusting device with reduced manufacturing variations is possible.

なお、βを45度とすることで、上記効果を最大限活かすことができる。   In addition, the said effect can be fully utilized by making (beta) 45 degrees.

(実施の形態5)
次に、本発明の実施の形態5を示す光量調整装置について、図6を用いて説明する。
(Embodiment 5)
Next, a light amount adjusting apparatus showing Embodiment 5 of the present invention will be described with reference to FIG.

図6は、本発明の実施の形態5を示す光量調整装置の上面図である。図6において、基板1a、1b、1c、1dは、それぞれ圧電性を有する基板であり、圧電性の最大となる方向が矢印Pa、Pb、Pc、Pdの方向である。そして、矢印Pa、Pb、Pc、Pdの方向に対して、個々の電極が直交するように電極群4a、4b、4c、4dをそれぞれ配置している。   FIG. 6 is a top view of a light amount adjusting apparatus showing Embodiment 5 of the present invention. In FIG. 6, substrates 1a, 1b, 1c, and 1d are substrates having piezoelectricity, respectively, and directions in which the piezoelectricity is maximum are directions of arrows Pa, Pb, Pc, and Pd. The electrode groups 4a, 4b, 4c, and 4d are arranged so that the individual electrodes are orthogonal to the directions of arrows Pa, Pb, Pc, and Pd.

このような構成とすることで、実施の形態4に比較して、より高効率な光量調整装置が実現できる。   By adopting such a configuration, it is possible to realize a light amount adjusting device with higher efficiency compared to the fourth embodiment.

なお、本発明は、以上の実施の形態で述べたカメラの光量調整装置に限定されるものではなく、光量を調整する機器全てに適用される。   The present invention is not limited to the camera light amount adjusting device described in the above embodiment, and can be applied to all devices that adjust the light amount.

また、以上説明した実施の形態では、基板1と基板2の両方が圧電性を有する基板とし、それぞれに弾性表面波を発生させるための平行電極を設けたものについて説明したが、基板1、基板2の少なくとも一方は圧電性を有しない基板であっても良い。その場合、圧電性を有しない基板としては、特に限定するものでなく、無機ガラス、透明樹脂等如何なるものでも良い。   Further, in the embodiment described above, the substrate 1 and the substrate 2 are both substrates having piezoelectricity, and the parallel electrodes for generating the surface acoustic wave are provided on each substrate. At least one of 2 may be a substrate having no piezoelectricity. In that case, the substrate having no piezoelectricity is not particularly limited, and any substrate such as inorganic glass or transparent resin may be used.

本発明は、以上の実施の形態で述べたようにカメラの光量調整装置に適用される。また、カメラに限定されることなく光量を調整する機器全てに適用される。   The present invention is applied to a light amount adjusting device for a camera as described in the above embodiment. Further, the present invention is not limited to the camera and is applied to all devices that adjust the light amount.

本発明の実施の形態1を示す光量調整装置の上面図The top view of the light quantity adjustment apparatus which shows Embodiment 1 of this invention 図1のA−A’における断面図Sectional view along A-A 'in FIG. 本発明の実施の形態2を示す光量調整装置の断面図Sectional drawing of the light quantity adjustment apparatus which shows Embodiment 2 of this invention 本発明の実施の形態3を示す光量調整装置の断面図Sectional drawing of the light quantity adjustment apparatus which shows Embodiment 3 of this invention 本発明の実施の形態4を示す光量調整装置の上面図The top view of the light quantity adjustment apparatus which shows Embodiment 4 of this invention. 本発明の実施の形態5を示す光量調整装置の上面図The top view of the light quantity adjustment apparatus which shows Embodiment 5 of this invention. 従来の光量調整装置の説明図Explanatory drawing of conventional light quantity adjustment device

符号の説明Explanation of symbols

1,1a,1b,1c,1d,2 圧電性を有する基板
3 不透明液体
4a,4b,4c,4d 電極
5 光路
6 薄膜
7 凸部
8 基板
1, 1a, 1b, 1c, 1d, 2 Piezoelectric substrate 3 Opaque liquid 4a, 4b, 4c, 4d Electrode 5 Optical path 6 Thin film 7 Protruding portion 8 Substrate

Claims (8)

第1の光透過部を有する第1の基板と、
第2の光透過部を有し、前記第1の光透過部と前記第2の光透過部とが対向するように、前記第1の基板に対向して配置される第2の基板と、
前記第1の基板と前記第2の基板との間に挟まれた不透明液体とを有し、
前記第2の基板は圧電性を有し、前記第2の基板の前記第1の基板に対向する側の表面に弾性表面波を励振させるための電極を有し、
前記不透明液体が前記第1の基板の前記第1の光透過部と前記第2の基板の前記第2の光透過部との間に流入することを抑制するための流入抑制手段を有することを特徴とする光量調整装置。
A first substrate having a first light transmission part;
A second substrate having a second light transmission portion, and disposed opposite to the first substrate so that the first light transmission portion and the second light transmission portion are opposed to each other;
An opaque liquid sandwiched between the first substrate and the second substrate;
The second substrate has piezoelectricity, and has an electrode for exciting a surface acoustic wave on a surface of the second substrate facing the first substrate,
Inflow suppression means for suppressing the opaque liquid from flowing between the first light transmission part of the first substrate and the second light transmission part of the second substrate. A characteristic light amount adjusting device.
前記流入抑制手段として、前記第1の光透過部の前記第2の基板側の表面、または、前記第2の光透過部の前記第1の基板側の表面が、前記不透明液体に対して撥水性を有する請求項1に記載の光量調整装置。 As the inflow suppressing means, the surface of the first light transmission part on the second substrate side or the surface of the second light transmission part on the first substrate side is repelled against the opaque liquid. The light quantity adjusting device according to claim 1, which has water. 前記流入抑制手段として、前記第1の光透過部と前記第2の光透過部との間隔が、前記光透過部の中央部にいくにつれて狭くなっている請求項1に記載の光量調整装置。 2. The light amount adjusting device according to claim 1, wherein an interval between the first light transmission unit and the second light transmission unit is reduced as the inflow suppression unit is moved toward a central portion of the light transmission unit. 前記第1または第2の基板は、前記光透過部を構成する材料が、その他の部分と異なる材料で構成されている請求項1に記載の光量調整装置。 2. The light amount adjusting device according to claim 1, wherein the first or second substrate is made of a material that constitutes the light transmission part and is different from other parts. 前記電極は、複数の互いに平行に配置される線状電極からなる複数の電極群からなり、前記線状電極は前記基板の周辺部から前記第1および第2の光透過部の中央に向かう方向に配列している請求項1に記載の光量調整装置。 The electrode includes a plurality of electrode groups including a plurality of linear electrodes arranged in parallel to each other, and the linear electrode is directed from the peripheral portion of the substrate toward the center of the first and second light transmission portions. The light amount adjusting device according to claim 1, wherein the light amount adjusting device is arranged in an array. 前記電極は、互いに隣接する前記線状電極の対向する幅が、前記電極群における前記線状電極の配列方向中央部から端部へ向かうにつれて、徐々に狭くなる請求項5に記載の光量調整装置。 The light amount adjusting device according to claim 5, wherein the opposing width of the linear electrodes adjacent to each other is gradually narrowed from the central portion of the electrode group in the arrangement direction of the linear electrodes toward the end portion. . 前記第2の基板は、所定の方向に圧電性を有し、前記所定の方向は、前記線状電極の方向とβ(30°<β<60°)の角度で交差する請求項5に記載の光量調整装置。 The said 2nd board | substrate has piezoelectricity in a predetermined | prescribed direction, and the said predetermined | prescribed direction cross | intersects the direction of the said linear electrode at the angle of (beta) (30 degrees <beta <60 degrees). Light quantity adjustment device. 前記第2の基板は、圧電性の方向が互いに異なる複数の部分からなり、前記複数の部分のそれぞれの圧電性の方向は、前記複数の部分に配置される前記線状電極の方向と平行である請求項5に記載の光量調整装置。 The second substrate includes a plurality of portions having different piezoelectric directions, and each of the plurality of portions has a piezoelectric direction parallel to a direction of the linear electrode disposed in the plurality of portions. The light quantity adjusting device according to claim 5.
JP2004272838A 2004-09-21 2004-09-21 Light quantity controller Pending JP2006091049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004272838A JP2006091049A (en) 2004-09-21 2004-09-21 Light quantity controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004272838A JP2006091049A (en) 2004-09-21 2004-09-21 Light quantity controller

Publications (1)

Publication Number Publication Date
JP2006091049A true JP2006091049A (en) 2006-04-06

Family

ID=36232154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004272838A Pending JP2006091049A (en) 2004-09-21 2004-09-21 Light quantity controller

Country Status (1)

Country Link
JP (1) JP2006091049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064995A (en) * 2011-09-16 2013-04-11 Samsung Electronics Co Ltd Numerical aperture control unit, movable type photo-probe, video diagnostic system, depth scanning method, image detecting method, and video diagnosing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064995A (en) * 2011-09-16 2013-04-11 Samsung Electronics Co Ltd Numerical aperture control unit, movable type photo-probe, video diagnostic system, depth scanning method, image detecting method, and video diagnosing method
US9629552B2 (en) 2011-09-16 2017-04-25 Samsung Electronics Co., Ltd. Numerical aperture (NA) controlling unit, variable optical probe including the NA controlling unit, and depth scanning method using the NA controlling unit

Similar Documents

Publication Publication Date Title
US7265480B2 (en) Vibration wave linear motor and a driving method thereof
EP3604810A1 (en) Fluid control device and pump
GB2557088A (en) Blower
US7129617B2 (en) Rotary-type comb-drive actuator and variable optical attenuator using the same
KR100657002B1 (en) Electromagnetic variable focus mirror, fabrication method for the same, and operating method for the same
JPH10144975A (en) Laminated-type piezoelectric actuator and variable focus lens device
JP4512408B2 (en) Vibration wave linear motor and lens device using the same
JP2009003429A (en) Actuator
US7816839B2 (en) Ultrasonic linear motor
JP2007129295A (en) Imaging apparatus
JP4610544B2 (en) Piezoelectric drive
JP2004117833A (en) Optical attenuator, electronic equipment, and method for driving optical attenuator
US7412157B2 (en) Lens driving device
JP4616693B2 (en) Driving device and driving method thereof
JP2006091049A (en) Light quantity controller
KR20110001033A (en) Ultrasonic motor and method for manufacturing the ultrasonic motor
JP2006211892A (en) Surface acoustic wave linear motor, and surface acoustic wave linear motor package and lens driver using the same
JP2006084620A (en) Light quantity adjustment device
JP2005184084A (en) System module
JP6948102B2 (en) Linear drive, camera and electronic equipment
JP2007114748A (en) Lens module
JP2013142867A (en) Ultrasonic variable-focal length lens array and control method of the same
JP2011186073A (en) Lens drive device
JPWO2009096205A1 (en) Actuator mechanism
JP4555165B2 (en) Driving device and driving method thereof