JP2006090866A - Analysis method for components derived from flora and fauna in material - Google Patents

Analysis method for components derived from flora and fauna in material Download PDF

Info

Publication number
JP2006090866A
JP2006090866A JP2004277228A JP2004277228A JP2006090866A JP 2006090866 A JP2006090866 A JP 2006090866A JP 2004277228 A JP2004277228 A JP 2004277228A JP 2004277228 A JP2004277228 A JP 2004277228A JP 2006090866 A JP2006090866 A JP 2006090866A
Authority
JP
Japan
Prior art keywords
animal
plant
derived
carbon dioxide
fauna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004277228A
Other languages
Japanese (ja)
Inventor
Hiromune Tashiro
裕統 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004277228A priority Critical patent/JP2006090866A/en
Publication of JP2006090866A publication Critical patent/JP2006090866A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis method for components derived from flora and fauna in a material containing substances derived from the flora and fauna capable of analyzing a large number at once in a short analysis time by a fixed method, irrespective of kinds of samples, without involving a dangerous experiment of introducing a radioactive isotope or the like. <P>SOLUTION: In the method for calculating a content of the substances derived from the flora and fauna in the material containing the substances derived from the flora and fauna, the material containing the substances derived from the flora and fauna, and the substances derived from the flora and fauna are burnt respectively to be converted into carbon dioxide, the obtained carbon dioxide is reduced to be graphitized, a<SP>14</SP>C (A) amount of the material containing the substances derived from the flora and fauna, and a<SP>14</SP>C (B) amount of the substances derived from the flora and fauna are measured by accelerator mass spectrometry, and the content of the substances derived from the flora and fauna in the material are calculated based on a ratio A/B thereof. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大気中の二酸化炭素排出規制などに関連して、炭素中性度の高いポリ乳酸などの動植物由来物質の材料中の割合を効率良く分析する方法に関するものである。   The present invention relates to a method for efficiently analyzing the ratio of materials of animal and plant origin such as polylactic acid having a high carbon neutrality in relation to the regulation of carbon dioxide emission in the atmosphere.

大気中の二酸化炭素は、環境中で同化を受け循環しているものと、化石燃料成分の燃焼で発生し増加するものに分けることができる。地球温暖化を考えた場合、化石燃料由来の二酸化炭素をできるだけ抑制して行くことが今後重要となる。そのため、合成物中の化石燃料由来の炭素と大気循環している炭素を区別して分析する方法の開発が求められてきている。   Carbon dioxide in the atmosphere can be divided into those that are circulated through assimilation in the environment and those that are generated by the combustion of fossil fuel components. In consideration of global warming, it will be important in the future to suppress carbon dioxide derived from fossil fuels as much as possible. For this reason, development of a method for distinguishing and analyzing carbon derived from fossil fuel and carbon circulating in the atmosphere in the composite has been demanded.

すなわち、近年、大気中の二酸化炭素排出規制の問題より炭素中性度と言う考え方が広まりつつある。炭素中性度とは二酸化炭素を生物圏での食物連鎖サイクル中にあるもの(循環炭素)と石油、石炭等の化石燃料由来のもの(埋蔵炭素)とに分け、材料中の循環炭素の割合が高いものは炭素中性度も高く、燃焼させて二酸化炭素にしても大気循環に戻るだけなので二酸化炭素が増加し難いと考えるものである。ポリ乳酸に代表される動植物由来物質は、この炭素中性度が高く二酸化炭素排出を考えると好適な材料である。しかしながら、このような動植物由来の高分子物質は、一般に脆性が高く材料として用いる場合、可塑性などを向上させる成分を添加して使用しなければならない。添加される成分は炭素中性度が高いものだけとは限らず、いろいろな炭素中性度の物質が使用されるため、実際に使用される材料の炭素中性度は各々異なることになる。動植物由来物質を含んだ材料が使用されればその動植物由来物質の分だけ大気中に蓄積される二酸化炭素が減ることは炭素中性度の考え方から明らかであるが、動植物由来物質の含量がわずかな材料が大量に消費されれば蓄積される二酸化炭素はかえって多くなる可能性も考えられる。よって材料中に動植物由来物質の成分がどのくらい含まれているかを簡便に測定する方法の開発が待たれている。   That is, in recent years, the idea of carbon neutrality has been spreading due to the problem of carbon dioxide emission regulations in the atmosphere. Carbon neutrality is divided into carbon dioxide in the food chain cycle in the biosphere (circulated carbon) and those derived from fossil fuels such as oil and coal (buried carbon). Those with a high carbon neutrality are high, and even if burned and carbon dioxide, it simply returns to the atmospheric circulation, so carbon dioxide is unlikely to increase. Animal and plant-derived substances represented by polylactic acid have a high carbon neutrality and are suitable materials in view of carbon dioxide emission. However, such a high molecular substance derived from animals and plants generally has high brittleness, and when used as a material, it must be used after adding a component for improving plasticity. The components to be added are not limited to those having a high carbon neutrality, and substances having various carbon neutralities are used. Therefore, the carbon neutralities of materials actually used are different. It is clear from the concept of carbon neutrality that the amount of carbon dioxide accumulated in the atmosphere is reduced by the amount of animal and plant derived substances if materials containing animal and plant derived substances are used. If a large amount of material is consumed, the accumulated carbon dioxide may increase. Therefore, development of a method for simply measuring how much a component of an animal or plant derived substance is contained in the material is awaited.

材料中の動植物由来物質の含有量を測定する方法としては、動植物由来物質あるいは動植物由来物質以外の物質の中どちらかを放射性同位体でラベルすることが考えられる。しかし、放射能の発生などから限られた場所で実施する他無く、導入操作や試験中、試験後の廃棄に莫大なコストがかかり現実性に乏しい。   As a method for measuring the content of animal and plant derived substances in the material, it is conceivable to label either the animal or plant derived substances or substances other than the animal or plant derived substances with a radioisotope. However, it must be carried out in a limited place because of the generation of radioactivity, etc., and the disposal after the test during the introduction operation and test is enormously costly and is not realistic.

また、14C濃度を利用した技術として、非天然系有機化合物の生分解培地存在下での生分解により生成した二酸化炭素中の14C濃度を加速器質量分析法によって測定し、その14C濃度の現代炭素の14C濃度からの減少率から非天然系有機化合物の生分解率を測定する方法(例えば、特許文献1参照)、生分解培地の存在下での非天然系有機化合物の生分解において、生分解培地中の放射性炭素同位体14C濃度を測定し、該14C濃度と現代炭素における14C濃度との差異から非天然系有機化合物の生分解率を測定する方法(例えば、特許文献2参照)が知られている。これらの技術を利用して、動植物由来物質を含む材料中の14C濃度を測定することも可能である。 Further, 14 as a technique that utilizes the C concentration, the 14 C concentration in the product was carbon dioxide by biodegradation in the presence of biodegradation medium unnatural organic compound was measured by accelerator mass spectrometry, of the 14 C concentration A method for measuring the biodegradation rate of a non-natural organic compound from the rate of decrease from the 14 C concentration of modern carbon (see, for example, Patent Document 1), in the biodegradation of a non-natural organic compound in the presence of a biodegradation medium to measure the radioactive carbon isotope 14 C concentration in the biodegradation medium, a method of measuring a biodegradation rate of a non-natural organic compound from a difference between the 14 C concentration and 14 C concentration in modern carbon (e.g., Patent documents 2) is known. Using these techniques, it is also possible to measure the 14 C concentration in materials containing animal and plant derived substances.

しかしながら、上記の特許文献1および特許文献2においては、いずれも試料を非天然系有機化合物の生分解培地存在下での生分解により生成した二酸化炭素の14C濃度を測定している。このような生分解には一般に10日以上の長時間を要し、また、試料により生分解の条件を選定する必要があることから、試行錯誤が必要となるので多数の試料の測定を短時間で行うことが不可能である。 However, in both Patent Document 1 and Patent Document 2 described above, the 14 C concentration of carbon dioxide produced by biodegradation of a sample in the presence of a biodegradation medium of a non-natural organic compound is measured. Such biodegradation generally takes a long time of 10 days or more, and since it is necessary to select biodegradation conditions depending on the sample, trial and error are required, so a large number of samples can be measured in a short time. Is impossible to do.

特開2003−185634号公報JP 2003-185634 A 特開2004−198239号公報JP 2004-198239 A

本発明は、以上のような状況から、放射性同位体を導入するなど危険な実験が伴わないで、試料の種類などによらず一定の方法で、分析時間が短く、一度に多数分析できる、動植物由来物質を含む材料中の動植物由来成分の分析方法を提供することを目的とするものである。   In the present invention, animals and plants that do not involve dangerous experiments such as the introduction of radioisotopes from the above situation, can be analyzed in large numbers at a time in a certain method, regardless of the type of sample, and the like. An object of the present invention is to provide a method for analyzing an animal or plant-derived component in a material containing a derived substance.

本発明者は、上記課題を解決すべく動植物由来物質を含む材料中の動植物由来成分の分析方法について検討を鋭意重ねた結果、試料を燃焼させて炭素分を全て一旦二酸化炭素に変換した後、還元してグラファイト化して加速器質量分析を行い、14C濃度を測定して、動植物由来物質の14C濃度と比較するようにすれば、上記の目的にかなうようになることを見出し、本発明に到達した。 As a result of earnestly examining the analysis method of animal and plant derived components in materials containing animal and plant derived substances to solve the above problems, the present inventors burned the sample and once converted all the carbon content into carbon dioxide, It is found that if it is reduced and graphitized, accelerator mass spectrometry is performed, and the 14 C concentration is measured and compared with the 14 C concentration of the animal or plant-derived substance, the above-mentioned purpose can be achieved. Reached.

すなわち、本発明は、以下の材料中の動植物由来成分の分析方法を提供するものである。
(1) 動植物由来物質を含む材料中の動植物由来物質の含有量を算出する方法において、動植物由来物質を含む材料と動植物由来物質を各々燃焼させて二酸化炭素に変換し、得られた二酸化炭素を還元してグラファイト化した後、加速器質量分析法により、動植物由来物質を含む材料の14C量(A)と動植物由来物質の14C量(B)を測定し、その比率(A/B)により前記材料中の動植物由来物質の含有量を算出することを特徴とする材料中の動植物由来成分の分析方法。
(2) 動植物由来物質が、発酵法で合成される高分子化合物、セルロース、澱粉、糖類、木質、皮革および毛髪から選ばれた少なくとも一種である(1)の動植物由来成分の分析方法。
(3) 動植物由来物質を含む材料中の動植物由来物質以外の物質が、化石燃料から製造された物質である(1)又は(2)の材料中の動植物由来成分の分析方法。
That is, this invention provides the analysis method of the plant and animal origin component in the following materials.
(1) In the method of calculating the content of an animal or plant derived substance in a material containing an animal or plant derived substance, the material containing the animal or plant derived substance and the animal or plant derived substance are each burned and converted into carbon dioxide, and the obtained carbon dioxide is converted into carbon dioxide. After reduction and graphitization, the 14 C content (A) of the material containing animal and plant derived substances and the 14 C content (B) of the animal and plant derived substances are measured by accelerator mass spectrometry, and the ratio (A / B) A method for analyzing an animal or plant-derived component in a material, wherein the content of the animal or plant-derived substance in the material is calculated.
(2) The method for analyzing an animal and plant-derived component according to (1), wherein the animal and plant-derived substance is at least one selected from a polymer compound synthesized by a fermentation method, cellulose, starch, sugar, wood, leather, and hair.
(3) The method for analyzing an animal or plant-derived component in the material according to (1) or (2), wherein the substance other than the animal or plant derived substance in the material containing the animal or plant derived substance is a substance produced from fossil fuel.

上記による本発明の方法は、以下のような特徴を有する。
(1)試行錯誤することなくどんな材料でも動植物由来物質の含有量を求めることができる。
(2)試料によらず同じ手法で分析することが可能である。よって自動化により短時間で多数の材料を分析することが可能である。
(3)放射性物質を導入するなどの化学合成は全く行わないので安全である。
従って、本発明により、動植物由来物質を含む材料中の動植物由来成分の分析を、低コストで、効率良く、安全に行うことができる。
The method of the present invention according to the above has the following characteristics.
(1) The content of animal and plant-derived substances can be obtained from any material without trial and error.
(2) It is possible to analyze by the same method regardless of the sample. Therefore, it is possible to analyze a large number of materials in a short time by automation.
(3) Since chemical synthesis such as introduction of radioactive substances is not performed at all, it is safe.
Therefore, according to the present invention, the analysis of animal and plant derived components in the material containing the animal and plant derived substances can be performed efficiently and safely at low cost.

本発明における材料中の動植物由来物質としては、ポリ乳酸、ポリヒドロキシ酪酸などの発酵法で合成される高分子化合物、セルロース、澱粉、グルコースなどの糖類、リグニン、木片などの木質および、皮革、毛髪などが挙げられる。本発明における動植物由来物質を含む材料は、このような動物由来物質が複数含まれたものでも良い。
また、本発明における材料中の動植物由来物質以外の物質としては、石油、石炭、天然ガスなどの化石燃料から製造された物質があり、このような物質としては、化石燃料から製造された化合物や合成樹脂などが挙げられる。
The animal and plant-derived substances in the material of the present invention include polymer compounds synthesized by fermentation methods such as polylactic acid and polyhydroxybutyric acid, saccharides such as cellulose, starch and glucose, lignin, wood such as wood fragments, leather, hair Etc. The material containing animal and plant derived substances in the present invention may contain a plurality of such animal derived substances.
In addition, the substances other than the animal and plant derived substances in the material of the present invention include substances produced from fossil fuels such as petroleum, coal, natural gas, and such substances include compounds produced from fossil fuels, Examples include synthetic resins.

動植物由来物質は一定量の14Cを含むが、化石燃料由来の物質は14Cを全く含まない。従って動植物由来物質を含む材料中の14Cを測定することで該材料中の動植物由来物質の含有量を測定することができる。
動植物由来物質は燃焼させて二酸化炭素にしても大気循環に戻るだけなので大気中の二酸化炭素が増加しにくいが、動植物由来物質以外の炭素を含む物質を燃焼させて得られた二酸化炭素は大気中に滞留して地球温暖化などの原因ともなるので、大気中の二酸化炭素排出規制対策としては動植物由来物質以外の炭素を含む物質ができるだけ少ない材料を用いることが好ましい。
Animal and plant-derived substances contain a certain amount of 14 C, while fossil fuel-derived substances do not contain 14 C at all. Therefore, by measuring 14 C in the material containing the animal and plant derived material, the content of the animal and plant derived material in the material can be measured.
Even if animal and plant-derived substances are burned and carbon dioxide returns only to the atmospheric circulation, carbon dioxide in the atmosphere is difficult to increase, but carbon dioxide obtained by burning substances containing carbon other than animal and plant-derived substances is in the atmosphere Therefore, it is preferable to use a material that contains as few carbon-containing substances as possible as a measure for controlling carbon dioxide emissions in the atmosphere.

本発明の材料中の動植物由来成分の分析方法は、動植物由来物質を含む材料と動植物由来物質を各々燃焼させて二酸化炭素に変換し、得られた二酸化炭素を還元してグラファイト化した後、加速器質量分析法により、動植物由来物質を含む材料の14C量(A)と動植物由来物質の14C量(B)を測定し、その比率(A/B)により前記材料中の動植物由来物質の含有量を求める方法である。
14Cは半減期5730年で崩壊する放射性元素で、循環大気中の二酸化炭素中の濃度はほぼ一定であることが知られている。しかしながら、その濃度は極微量であるため大気中の二酸化炭素の14C濃度に対する比率で表現した方が増減を表現しやすいので、pMCという表現を用いている。また、大気中の14C濃度は小幅ではあるが増減しているため西暦1950年の大気の14C濃度をpMC100%とする国際的取決めがなされている。この基準を用いると現在西暦2004年のpMCは110%である。
The method for analyzing the components derived from animals and plants in the material according to the present invention includes a material containing an animal and plant derived material and an animal and plant derived material that are burned and converted into carbon dioxide, and the obtained carbon dioxide is reduced and graphitized. By mass spectrometry, the 14 C amount (A) of the material containing animal and plant derived substances and the 14 C amount (B) of the animal and plant derived substances are measured, and the ratio (A / B) contains the animal and plant derived substances in the material. This is a method for obtaining the quantity.
14 C is a radioactive element that decays with a half-life of 5730 years. It is known that the concentration of carbon dioxide in the circulating atmosphere is almost constant. However, since the concentration is extremely small, the expression of pMC is used because it is easier to express the increase / decrease when expressed by the ratio of carbon dioxide in the atmosphere to the 14 C concentration. In addition, since the 14 C concentration in the atmosphere is small but increasing and decreasing, an international agreement has been made to set the 14 C concentration in the atmosphere in 1950 AD to 100% pMC. Using this criterion, the pMC for the year 2004 is 110%.

本発明の方法では、先ず、動植物由来物質を含む材料と動植物由来物質を各々燃焼させて二酸化炭素に変換する。この二酸化炭素への変換は、固体試料の場合、例えば図1に示すような固体試料二酸化炭素化装置を用いて行うことができる。
図1において、先ず、動植物由来物質を含む材料や、動植物由来物質を燃焼するための空気が二酸化炭素トラップに送られ、水酸化ナトリウム(NaOH)などの塩基性物質により空気中の二酸化炭素が除去される。この二酸化炭素が除去された空気が固体試料の入った燃焼器に送られ、その燃焼ガスが塩基性物質トラップに送られる。塩基性物質トラップには硫酸などの酸性物質が入っており、固体試料の燃焼により生成した塩基性物質を除去する。続いてシリカゲルなどの脱水剤が入った脱水器を通して脱水した後、液体窒素などで冷却して固体の二酸化炭素を単離する。
単離された固体の二酸化炭素は、図2に示すような二酸化炭素還元グラファイト化装置にて、水素雰囲気中で鉄触媒などの触媒の存在下にグラファイト化される。
In the method of the present invention, first, a material containing an animal or plant-derived substance and an animal or plant-derived substance are each burned and converted to carbon dioxide. In the case of a solid sample, this conversion to carbon dioxide can be performed using, for example, a solid sample carbon dioxide generator as shown in FIG.
In FIG. 1, first, a material containing animal and plant derived substances and air for burning the animal and plant derived substances are sent to a carbon dioxide trap, and carbon dioxide in the air is removed by a basic substance such as sodium hydroxide (NaOH). Is done. The air from which the carbon dioxide has been removed is sent to a combustor containing a solid sample, and the combustion gas is sent to a basic substance trap. The basic substance trap contains an acidic substance such as sulfuric acid and removes the basic substance generated by burning the solid sample. Subsequently, after dehydrating through a dehydrator containing a dehydrating agent such as silica gel, the solid carbon dioxide is isolated by cooling with liquid nitrogen or the like.
The isolated solid carbon dioxide is graphitized in the presence of a catalyst such as an iron catalyst in a hydrogen atmosphere in a carbon dioxide reduction graphitization apparatus as shown in FIG.

液体試料の場合は、図3に示すような液体試料燃焼装置を用いて二酸化炭素への変換を行うことができる。
図3において、先ず、固体試料の場合と同様にして空気中の二酸化炭素を除去し、液体試料中に二酸化炭素が除去された空気を通過させながら、液体試料を気化し、気化した試料に着火源を与えることにより燃焼する。その燃焼ガスが塩基性物質トラップに送られ、燃焼により生成した塩基性物質を除去した後、脱水し、液体窒素などで冷却して固体の二酸化炭素を単離する。
単離された固体の二酸化炭素は、固体試料の場合と同様にしてグラファイト化される。
In the case of a liquid sample, conversion to carbon dioxide can be performed using a liquid sample combustion apparatus as shown in FIG.
In FIG. 3, first, carbon dioxide in the air is removed in the same manner as in the case of the solid sample, and the liquid sample is vaporized while passing the air from which the carbon dioxide has been removed. It burns by giving a fire source. The combustion gas is sent to a basic substance trap to remove the basic substance generated by combustion, and then dehydrated and cooled with liquid nitrogen to isolate solid carbon dioxide.
The isolated solid carbon dioxide is graphitized in the same manner as in the solid sample.

二酸化炭素還元グラファイト化装置にて得られたグラファイトは、加速器質量分析法により14C量を測定する。
動植物由来物質を含む材料中の動植物由来物質の含有量は、該材料中の14C量(A)と動植物由来物質自体の14C量(B)を測定し、その比率(A/B)により算出することができる。
The graphite obtained in the carbon dioxide reduction graphitization apparatus is measured for the amount of 14 C by accelerator mass spectrometry.
The content of the animal and plant-derived substance in the material containing the animal and plant-derived substance is determined by measuring the 14 C amount (A) in the material and the 14 C amount (B) of the animal and plant-derived substance itself, and by the ratio (A / B) Can be calculated.

以上のような固体試料二酸化炭素化装置や液体試料燃焼装置では各試料に応じた燃焼条件が選ばれる。二酸化炭素還元グラファイト化装置の触媒には鉄触媒が一般的であるが、銅触媒なども用いられる。二酸化炭素還元グラファイト化するための反応温度は、通常600〜700℃であり、水素加圧10〜50kPaで固体二酸化炭素の還元グラファイト化が行われる。
加速器質量分析法には、加速器質量分析計が用いられる。
In the solid sample carbonization apparatus and liquid sample combustion apparatus as described above, combustion conditions corresponding to each sample are selected. An iron catalyst is generally used as a catalyst for the carbon dioxide reduction graphitization apparatus, but a copper catalyst or the like is also used. The reaction temperature for carbon dioxide reduction graphitization is usually 600 to 700 ° C., and reduction graphitization of solid carbon dioxide is performed at a hydrogen pressure of 10 to 50 kPa.
An accelerator mass spectrometer is used for the accelerator mass spectrometry.

本発明の分析方法は次のような特徴があり、動植物由来物質を含む材料中の動植物由来成分の分析を効率良く、安全に行うことができる。
(1)試料を燃焼させ全て一旦二酸化炭素に変換するため試料の種類によらず、同じ方法で測定可能である。
(2)二酸化炭素を還元しグラファイトにした後、加速器質量分析により14C量を測定する。この14C量から試料中の動植物由来物質割合が炭素モル比として得られる。二酸化炭素の還元は一定の方法で行うことができるので自動化が可能である。更に加速器質量分析は一度に多数の試料を測定することができるので、短時間に多数の試料を分析することが可能である。
(3)放射性化合物14Cの量を測定するが、最大でも天然存在量(12Cの1兆分の一以下)を超えることは起こり得ないので全く安全な手法である。
The analysis method of the present invention has the following characteristics, and can efficiently and safely analyze the components derived from animals and plants in materials containing the materials derived from animals and plants.
(1) Since the sample is burned and converted into carbon dioxide once, it can be measured by the same method regardless of the type of sample.
(2) After reducing carbon dioxide to graphite, the amount of 14 C is measured by accelerator mass spectrometry. From this amount of 14 C, the proportion of animal and plant derived substances in the sample is obtained as the carbon molar ratio. Since the reduction of carbon dioxide can be performed by a certain method, it can be automated. Furthermore, since accelerator mass spectrometry can measure a large number of samples at a time, it is possible to analyze a large number of samples in a short time.
(3) Although the amount of radioactive compound 14 C is measured, it is a completely safe technique because it is impossible to exceed the natural abundance (less than 1 trillionth of 12 C) at the maximum.

次に、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
なお、各実施例において、14C量は前述のpMCで表現した。また、加速器質量分析計として、米国NEC製:Model 9SDH−2;3.0MV;Tandem Pelletronを用いた。
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.
In each example, the amount of 14 C was expressed by the aforementioned pMC. As an accelerator mass spectrometer, Model 9SDH-2; 3.0MV; Tandem Pelletron manufactured by NEC, USA was used.

実施例1
動植物由来物質を含む材料としてポリ乳酸とポリカーボネートの組成物(ポリ乳酸21質量%、ポリカーボネート79質量%)を用いた。この物質1.00gを図1に示す装置により二酸化炭素を除いた200ml/分の乾燥空気を用い850℃で酸化処理し、酸処理と脱水を行い二酸化炭素として単離した。図2に示す装置を用い、1.00mgの純鉄(アルドリッチ製99.9+%粉末)を触媒として加え、真空脱気(0.1Pa)した。ここに単離した二酸化炭素を0℃で10kPa(装置容量は25mlであるので約1ミリモル)導入した。さらに水素を0℃で30kPa(水素分圧として20kPa、約2ミリモル)まで加えた。容器を密封し650℃で還元グラファイト化を行った。グラファイト化した試料を鉄触媒と共に加速器質量分析を行い、14C量を測定した。ポリ乳酸とポリカーボネートの14C量もそれぞれ測定した。ポリ乳酸とポリカーボネートの混合比から計算される材料の組成(ポリ乳酸の質量%)と、14C量の測定値から計算される材料の組成〔動植物由来物質(ポリ乳酸)の質量%〕とを第1表に示す。
Example 1
A composition comprising polylactic acid and polycarbonate (21% by mass of polylactic acid, 79% by mass of polycarbonate) was used as a material containing animal and plant-derived substances. 1.00 g of this substance was oxidized at 850 ° C. using 200 ml / min of dry air excluding carbon dioxide with the apparatus shown in FIG. 1, and was isolated as carbon dioxide by acid treatment and dehydration. Using the apparatus shown in FIG. 2, 1.00 mg of pure iron (99.9 +% powder made by Aldrich) was added as a catalyst, and vacuum deaeration (0.1 Pa) was performed. Carbon dioxide isolated here was introduced at 0 ° C. at 10 kPa (approx. 1 mmol since the apparatus capacity was 25 ml). Further, hydrogen was added at 0 ° C. to 30 kPa (20 kPa as a hydrogen partial pressure, about 2 mmol). The vessel was sealed and reduced graphitization was performed at 650 ° C. The graphitized sample was subjected to accelerator mass spectrometry together with an iron catalyst, and the amount of 14 C was measured. The 14 C amounts of polylactic acid and polycarbonate were also measured. The composition of the material (mass% of polylactic acid) calculated from the mixing ratio of polylactic acid and polycarbonate, and the composition of the material (mass% of animal and plant derived substances (polylactic acid)) calculated from the measured value of 14 C amount. It shows in Table 1.

実施例2
動植物由来物質を含む材料としてポリ乳酸とポリカーボネートの組成物(ポリ乳酸73質量%、ポリカーボネート27質量%)を用い、実施例1と同様に行った。ポリ乳酸とポリカーボネートの混合比から計算される材料の組成と、14C量の測定値から計算される材料の組成とを第1表に示す。
混合組成から計算される材料の組成と、14C量の測定値から計算される材料の組成は非常に近い値を示しており、動植物由来物質を含む材料の組成は、動植物由来物質を含む材料の14C量の測定値と、動植物由来物質(ポリ乳酸)の14C量の測定値の比率から得られることが分かる。
Example 2
It carried out similarly to Example 1 using the composition (polylactic acid 73 mass%, polycarbonate 27 mass%) of polylactic acid and a polycarbonate as a material containing an animal and plant origin substance. Table 1 shows the composition of the material calculated from the mixing ratio of polylactic acid and polycarbonate, and the composition of the material calculated from the measured value of 14 C content.
The composition of the material calculated from the mixed composition and the composition of the material calculated from the measured value of the 14 C amount are very close, and the composition of the material including the animal and plant derived substances is the material including the animal and plant derived substances. and measurements of 14 C the amount of, is can be seen that from the ratio of the measured value of 14 C the amount of animal and plant-derived materials (polylactic acid).

Figure 2006090866
Figure 2006090866

固体試料の場合の動植物由来物質を含む材料または動植物由来物質を燃焼させて二酸化炭素に変換し、固体の二酸化炭素を単離する、固体試料二酸化炭素化装置の一例の説明図である。It is explanatory drawing of an example of the solid sample carbonization apparatus which burns the material containing the animal and plant origin substance in the case of a solid sample, or animal and plant origin substance, converts into carbon dioxide, and isolates solid carbon dioxide. 単離された固体の二酸化炭素をグラファイト化する二酸化炭素還元グラファイト化装置の一例の説明図である。It is explanatory drawing of an example of the carbon dioxide reduction | restoration graphitization apparatus which graphitizes the isolated solid carbon dioxide. 液体試料の場合の動植物由来物質を含む材料または動植物由来物質を燃焼させて二酸化炭素に変換し、固体の二酸化炭素を単離する、液体試料燃焼装置の一例の説明図である。It is explanatory drawing of an example of the liquid sample combustion apparatus which burns the material containing the animal and plant origin substance in the case of a liquid sample, or animal and plant origin substance, converts it into a carbon dioxide, and isolates a solid carbon dioxide.

Claims (3)

動植物由来物質を含む材料中の動植物由来物質の含有量を算出する方法において、動植物由来物質を含む材料と動植物由来物質を各々燃焼させて二酸化炭素に変換し、得られた二酸化炭素を還元してグラファイト化した後、加速器質量分析法により、動植物由来物質を含む材料の14C量(A)と動植物由来物質の14C量(B)を測定し、その比率(A/B)により前記材料中の動植物由来物質の含有量を算出することを特徴とする材料中の動植物由来成分の分析方法。 In the method of calculating the content of animal and plant derived substances in the material containing animal and plant derived substances, the material containing animal and plant derived substances and the animal and plant derived substances are each burned and converted to carbon dioxide, and the obtained carbon dioxide is reduced. After graphitization, 14C amount (A) of the material containing animal and plant derived substances and 14C amount (B) of the animal and plant derived substances are measured by accelerator mass spectrometry, and the ratio (A / B) A method for analyzing an animal or plant-derived component in a material, wherein the content of the animal or plant-derived substance is calculated. 動植物由来物質が、発酵法で合成される高分子化合物、セルロース、澱粉、糖類、木質、皮革および毛髪から選ばれた少なくとも一種である請求項1に記載の材料中の動植物由来成分の分析方法。   The method for analyzing animal and plant-derived components in a material according to claim 1, wherein the animal and plant-derived substance is at least one selected from a polymer compound synthesized by a fermentation method, cellulose, starch, sugar, wood, leather and hair. 動植物由来物質を含む材料中の動植物由来物質以外の物質が、化石燃料から製造された物質である請求項1又は2に記載の材料中の動植物由来成分の分析方法。

The method for analyzing an animal or plant-derived component in a material according to claim 1 or 2, wherein a substance other than the animal or plant derived substance in the material containing the animal or plant derived substance is a substance produced from a fossil fuel.

JP2004277228A 2004-09-24 2004-09-24 Analysis method for components derived from flora and fauna in material Pending JP2006090866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277228A JP2006090866A (en) 2004-09-24 2004-09-24 Analysis method for components derived from flora and fauna in material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277228A JP2006090866A (en) 2004-09-24 2004-09-24 Analysis method for components derived from flora and fauna in material

Publications (1)

Publication Number Publication Date
JP2006090866A true JP2006090866A (en) 2006-04-06

Family

ID=36231997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277228A Pending JP2006090866A (en) 2004-09-24 2004-09-24 Analysis method for components derived from flora and fauna in material

Country Status (1)

Country Link
JP (1) JP2006090866A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126861A (en) * 2007-11-28 2009-06-11 Teijin Fibers Ltd Method for discriminating aromatic carbonyl compound
KR20160066860A (en) * 2014-12-03 2016-06-13 조승연 Method for tagging substrates using radioisotope for checking dating and identifying authenticity
WO2021006226A1 (en) * 2019-07-05 2021-01-14 積水化学工業株式会社 Method for determining origin of carbon source of chemical substance
JP2021179432A (en) * 2020-05-13 2021-11-18 浙江大学Zhejiang University Graphitization device, sample collecting and preparing system, and sample collecting and preparing method
KR20210144046A (en) * 2020-05-21 2021-11-30 한국과학기술연구원 Method for measuring residual amount of hazardous substances in samples using trace amounts of 14c labeled hazardous substances

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126861A (en) * 2007-11-28 2009-06-11 Teijin Fibers Ltd Method for discriminating aromatic carbonyl compound
KR20160066860A (en) * 2014-12-03 2016-06-13 조승연 Method for tagging substrates using radioisotope for checking dating and identifying authenticity
WO2021006226A1 (en) * 2019-07-05 2021-01-14 積水化学工業株式会社 Method for determining origin of carbon source of chemical substance
CN114072669A (en) * 2019-07-05 2022-02-18 积水化学工业株式会社 Method for discriminating source of carbon raw material of chemical substance
US20220334093A1 (en) * 2019-07-05 2022-10-20 Sekisui Chemical Co., Ltd. Method for determining origin of carbon source of chemical substance
EP3995825A4 (en) * 2019-07-05 2023-08-02 Sekisui Chemical Co., Ltd. Method for determining origin of carbon source of chemical substance
CN114072669B (en) * 2019-07-05 2024-04-05 积水化学工业株式会社 Method for discriminating source of carbon raw material of chemical substance
JP2021179432A (en) * 2020-05-13 2021-11-18 浙江大学Zhejiang University Graphitization device, sample collecting and preparing system, and sample collecting and preparing method
KR20210144046A (en) * 2020-05-21 2021-11-30 한국과학기술연구원 Method for measuring residual amount of hazardous substances in samples using trace amounts of 14c labeled hazardous substances
KR102432469B1 (en) * 2020-05-21 2022-08-17 한국과학기술연구원 Method for measuring residual amount of hazardous substances in samples using trace amounts of 14c labeled hazardous substances

Similar Documents

Publication Publication Date Title
Naisse et al. Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil
De Jong et al. TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors
López-González et al. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass
Szwaja et al. A torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products
López-González et al. Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses
Quesada‐Plata et al. Activated carbons prepared through H3PO4‐assisted hydrothermal carbonisation from biomass wastes: porous texture and electrochemical performance
Chouchene et al. Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration
Tran et al. Development of a biomass torrefaction process integrated with oxy-fuel combustion
Encinar et al. Catalytic pyrolysis of exhausted olive oil waste
Dayton et al. Direct observation of alkali vapor release during biomass combustion and gasification. 2. Black liquor combustion at 1100 C
Florin et al. High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia
Lestinsky et al. Wood pyrolysis using aspen plus simulation and industrially applicable model
Lakkaraju et al. Formate to Oxalate: A Crucial Step for the Conversion of Carbon Dioxide into Multi‐carbon Compounds
Whitely et al. Multi-utilization of chicken litter as a biomass source. Part II. Pyrolysis
El-Sayed et al. Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques
Pielsticker et al. Influence of biomass torrefaction parameters on fast pyrolysis products under flame-equivalent conditions
JP2006090866A (en) Analysis method for components derived from flora and fauna in material
JP5105957B2 (en) Method for measuring plant-derived ethanol content in automobile fuel
Leiva‐Suárez et al. Soil amendment with sewage sludge‐derived chars increases C‐sequestration potential and provides N and P for plant growth during a second cropping period with Lolium perenne
Zhao et al. Removal of sulfur dioxide from flue gas using the sludge sodium humate
Nath et al. An investigation of thermal decomposition behavior and combustion parameter of pellets from wheat straw and additive blends by thermogravimetric analysis
Otero et al. Simultaneous thermogravimetric-mass spectrometric study on the co-combustion of coal and sewage sludges
Uzun et al. Thermogravimetric pyrolysis of walnut shell an assessment of kinetic modeling
Risoluti et al. On-line thermally induced evolved gas analysis: an update—Part 1: EGA-MS
JP2009128283A (en) Method for discriminating glycol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302