JP2006090784A - Substrate for immobilizing biosubstance - Google Patents

Substrate for immobilizing biosubstance Download PDF

Info

Publication number
JP2006090784A
JP2006090784A JP2004275057A JP2004275057A JP2006090784A JP 2006090784 A JP2006090784 A JP 2006090784A JP 2004275057 A JP2004275057 A JP 2004275057A JP 2004275057 A JP2004275057 A JP 2004275057A JP 2006090784 A JP2006090784 A JP 2006090784A
Authority
JP
Japan
Prior art keywords
film
biological material
glass
immobilized
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275057A
Other languages
Japanese (ja)
Inventor
Yuichiro Yamaguchi
雄一朗 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004275057A priority Critical patent/JP2006090784A/en
Publication of JP2006090784A publication Critical patent/JP2006090784A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for immobilizing a biosubstance capable of shielding fluorescence of a background emitted from a base body, and capable of holding densely and firmly an inexpensive and secure biosubstance used genegally, onto a metal film. <P>SOLUTION: This substrate for immobilizing the biosubstance is layered with the metal film 12, a dielectric multilayer film 13 for increasing reflected light, a glass film 14 and a biosubstance immobilizing film 15 in order on an upper face of the base body 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はDNAやRNAなどの生体物質の配列を測定するための生体物質固定化基板に関し、より詳細には蛍光検出法による生体物質検出用基板からのバックグラウンドの蛍光を遮断すると共に、測定される生体物質に修飾された蛍光体からの蛍光の利得をより大きくする方法に関し、検出感度の向上と安定化を目的とする。   The present invention relates to a biological material-immobilized substrate for measuring the arrangement of biological materials such as DNA and RNA. More specifically, the present invention blocks and measures background fluorescence from a biological material detection substrate by a fluorescence detection method. An object of the present invention is to improve and stabilize detection sensitivity with respect to a method for further increasing the gain of fluorescence from a phosphor modified with a biological substance.

DNAマイクロアレーをはじめとする生体物質固定化基板は、ガラス基体上にアミノシラン、アミノアルキルシランまたはポリ−L−リジンなどの生体固定化膜を形成した上にオリゴヌクレオチドやcDNAが被着されており、これに予め蛍光修飾した検体DNAを反応させ、その反応レベルにより変化する蛍光レベルを検出することによって核酸配列の分析が行なわれている。このため、ガラス基体から発せられるバックグラウンドの蛍光は分解能の低下の原因となる。特にDNAマイクロアレーではスタンフォード大学方式については安価ではあるが検出精度がアフィメトリックス社(Affimetrix)タイプに比較して劣るため、検出精度向上のための感度向上が必要とされている。   Biological substance-immobilized substrates such as DNA microarrays have bioimmobilized membranes such as aminosilane, aminoalkylsilane, or poly-L-lysine formed on a glass substrate, and oligonucleotides and cDNA are deposited on it. A nucleic acid sequence is analyzed by reacting a sample DNA that has been fluorescently modified in advance and detecting a fluorescence level that varies depending on the reaction level. For this reason, background fluorescence emitted from the glass substrate causes a reduction in resolution. In particular, in the DNA microarray, the Stanford University method is inexpensive, but the detection accuracy is inferior to that of the Affimetrix type, so that an improvement in sensitivity is required to improve the detection accuracy.

この対策として、アミノシラン、アミノアルキルシランまたはポリ−L−リジンなどの生体固定化膜を形成した上にガラス基体から発せられる蛍光を減衰させるためのブロッキング材や消光材を被着したりすることが検討されている。   As a countermeasure against this, it is possible to form a biological immobilization film such as aminosilane, aminoalkylsilane or poly-L-lysine and then apply a blocking material or a quenching material for attenuating the fluorescence emitted from the glass substrate. It is being considered.

例えば、下記の特許文献1には、図4に示すように、ガラス基体51の上面に検出精度向上のために消光剤54をコートすることが提案されており、また特許文献2には、図5に示すように、ガラス基体51の上面に金属膜52を形成し、この金属膜52の表面に金属と結合性の良い官能基を有する生体物質固定化膜53を形成した生体物質固定化基板が提案されている。
特開2003−84002号公報 特開2002−323498号公報
For example, as shown in FIG. 4, the following Patent Document 1 proposes that a quencher 54 is coated on the upper surface of the glass substrate 51 in order to improve the detection accuracy. As shown in FIG. 5, a biological material-immobilized substrate in which a metal film 52 is formed on the upper surface of a glass substrate 51 and a biological material-immobilized film 53 having a functional group having a good bondability with a metal is formed on the surface of the metal film 52. Has been proposed.
JP 2003-84002 A JP 2002-323498 A

しかしながら、特許文献1に示されるような、消光剤やブロッキング剤54をコートする方法は、消光剤やブロッキング剤54が透光性の有機物質のため、バックグラウンドの蛍光を完全に除去できないという問題点を有していた。また、特許文献2に示されるような、金属膜52表面に金属と結合性の良い官能基を有する生体物質固定化膜53を形成する方法は、金属膜52によりガラス基体51の蛍光を遮断できるものの、AuやPt等の高価な貴金属を用いる必要があるとともに、生体物質固定化膜53として金属と結合性のよい官能基を有する特殊な材料を用いる必要があり、比較的高価となることや、また毒性物質を用いるため、取り扱いに注意を要するという問題点を有していた。   However, the method of coating a quencher or blocking agent 54 as shown in Patent Document 1 is a problem that the background fluorescence cannot be completely removed because the quencher or blocking agent 54 is a translucent organic substance. Had a point. In addition, as shown in Patent Document 2, the method of forming the biological material fixed film 53 having a functional group having a good binding property with a metal on the surface of the metal film 52 can block the fluorescence of the glass substrate 51 by the metal film 52. However, it is necessary to use an expensive noble metal such as Au or Pt, and it is necessary to use a special material having a functional group having a good binding property to the metal as the biological material immobilization film 53, which is relatively expensive. In addition, since a toxic substance is used, there is a problem that care is required in handling.

一方、誘電体多層膜を用いてバックグラウンドの蛍光遮断と測定蛍光の反射を試みることも考えられるが、40層から60層の非常に多い層数が必要なため、光の吸収も大きくなって反射率が金属ほど大きくならないことや、コンタミによる不具合の発生が多くなる。   On the other hand, it is conceivable to try blocking the background fluorescence and reflecting the measured fluorescence using a dielectric multilayer film. However, since a very large number of layers from 40 layers to 60 layers is required, the light absorption also increases. The reflectance does not increase as much as that of metal, and the occurrence of defects due to contamination increases.

従って、本発明は上記問題点を鑑みて完成されたものであり、その目的は、基体から発せられるバックグラウンドの蛍光を遮断するとともに、金属膜や誘電体多層膜の反射作用により測定蛍光を高強度するとともに、一般的に用いられている安価で安全な生体物質固定化膜を反射膜上に緻密かつ強固に保持させることが可能な生体物質固定化基板を提供することを目的とする。   Therefore, the present invention has been completed in view of the above problems, and its purpose is to block background fluorescence emitted from the substrate and to enhance measurement fluorescence by the reflective action of a metal film or dielectric multilayer film. An object of the present invention is to provide a biological material-immobilized substrate that is strong and can hold a generally inexpensive and safe biological material-immobilized film on a reflective film densely and firmly.

本発明の生体物質固定化基板は、基体の上面に、金属膜、反射光増加用の誘電体多層膜、ガラス膜および生体物質固定化膜が順次積層されていることを特徴とする。   The biological material-immobilized substrate of the present invention is characterized in that a metal film, a dielectric multilayer film for increasing reflected light, a glass film, and a biological material-immobilized film are sequentially laminated on the upper surface of a base.

本発明の生体物質固定化基板において、好ましくは、前記金属膜は、Ti,Cr,Ni,Au,Ag,Pt,Rh,Al,Ni−Cr合金およびFe−Cr−Ni合金のうちの少なくとも1種を主成分とすることを特徴とする。   In the biological material-immobilized substrate of the present invention, it is preferable that the metal film is at least one of Ti, Cr, Ni, Au, Ag, Pt, Rh, Al, Ni—Cr alloy, and Fe—Cr—Ni alloy. It is characterized by having a seed as a main component.

本発明の生体物質固定化基板において、好ましくは、前記金属膜は、その上面の算術平均粗さRaが0.05μm以下であることを特徴とする。   In the biological material-immobilized substrate of the present invention, preferably, the metal film has an arithmetic average roughness Ra on the upper surface of 0.05 μm or less.

本発明の生体物質固定化基板において、好ましくは、前記誘電体多層膜は、酸化タンタル膜,酸化チタン膜,フッ化カルシウム膜,酸化ジルコニウム膜および酸化ニオブ膜のうちの少なくとも1種を主成分とすることを特徴とする。   In the biological material-immobilized substrate of the present invention, preferably, the dielectric multilayer film is mainly composed of at least one of a tantalum oxide film, a titanium oxide film, a calcium fluoride film, a zirconium oxide film, and a niobium oxide film. It is characterized by doing.

本発明の生体物質固定化基板において、好ましくは、前記誘電体多層膜を構成する誘電体膜は、その厚みが前記生体物質固定化膜に修飾される生体物質から発せられる蛍光の波長と前記誘電体膜の屈折率との積の(2n−1)/4倍(n:自然数)とされていることを特徴とする。   In the biological material-immobilized substrate of the present invention, preferably, the dielectric film constituting the dielectric multilayer film has a wavelength of fluorescence emitted from the biological material whose thickness is modified by the biological material-immobilized film and the dielectric. It is characterized by being (2n-1) / 4 times (n: natural number) of the product of the refractive index of the body film.

本発明の生体物質固定化基板において、好ましくは、前記ガラス膜は、前記金属膜の上面に成長された多数のガラス柱状体から成ることを特徴とする。   In the biological material-immobilized substrate of the present invention, preferably, the glass film is composed of a number of glass columnar bodies grown on the upper surface of the metal film.

本発明の生体物質固定化基板において、好ましくは、前記ガラス膜は、酸化珪素の含有量が70質量%以上であることを特徴とする。   In the biological material-immobilized substrate of the present invention, preferably, the glass film has a silicon oxide content of 70% by mass or more.

本発明の生体物質固定化基板において、好ましくは、前記生体物質固定化膜は、アミノ基,アルデヒド基,メルカプト基,シラン基およびカルボキシル基のうちの少なくとも1種を有していることを特徴とする。   In the biological material-immobilized substrate of the present invention, preferably, the biological material-immobilized film has at least one of an amino group, an aldehyde group, a mercapto group, a silane group, and a carboxyl group. To do.

本発明の生体物質固定化基板は、基体の上面に、金属膜、反射光増加用の誘電体多層膜、ガラス膜および生体物質固定化膜が順次積層されていることから、金属膜が基体からのバックグラウンドの蛍光を良好に遮断し、かつ、生体物質固定化膜に結合した生体物質に修飾された蛍光体から発せられる蛍光を光効率で反射させることができる。   In the biological material-immobilized substrate of the present invention, a metal film, a dielectric multilayer film for increasing reflected light, a glass film, and a biological material-immobilized film are sequentially laminated on the upper surface of the substrate. Thus, the fluorescence emitted from the phosphor modified with the biological material bound to the biological material-immobilized membrane can be reflected with light efficiency.

さらに、蛍光体から発せられた蛍光が誘電体多層膜を構成する各誘電体膜の表面や金属膜の表面で反射した反射光同士の干渉作用により、反射光を増強することができ、蛍光の検出精度をきわめて高くすることができる。   Furthermore, the reflected light can be enhanced by the interference action of the reflected light reflected by the surface of each dielectric film and the surface of the metal film constituting the dielectric multilayer film. The detection accuracy can be made extremely high.

本発明の生体物質固定化基板において、好ましくは、金属膜は、Ti,Cr,Ni,Au,Ag,Pt,Rh,Al,Ni−Cr合金およびFe−Cr−Ni合金のうちの少なくとも1種を主成分とすることから、化学的に安定なために耐薬品性に優れているとともに、生体物質固定化膜に結合した生体物質に修飾された蛍光体から発せられる蛍光を高い反射率で反射させることができ、高い検出感度を安定に維持することができる。   In the biological material-immobilized substrate of the present invention, preferably, the metal film is at least one of Ti, Cr, Ni, Au, Ag, Pt, Rh, Al, Ni—Cr alloy, and Fe—Cr—Ni alloy. As a main component, it is chemically stable due to its chemical stability, and also reflects fluorescence emitted from a phosphor modified with a biological material bound to a biological material-immobilized membrane with high reflectance. And high detection sensitivity can be stably maintained.

本発明の生体物質固定化基板において、好ましくは、金属膜の上面の算術平均粗さRaが0.05μm以下であることから、生体物質固定化膜に結合した生体物質に修飾された蛍光体から発する蛍光の散乱反射を阻止することができ、蛍光の利得をより高めることができる。   In the biological material-immobilized substrate of the present invention, preferably, since the arithmetic average roughness Ra of the upper surface of the metal film is 0.05 μm or less, from the phosphor modified with the biological material bound to the biological material-immobilized film. Scattering and reflection of the emitted fluorescence can be prevented, and the fluorescence gain can be further increased.

本発明の生体物質固定化基板において、好ましくは、誘電体多層膜は、酸化タンタル膜,酸化チタン膜,フッ化カルシウム膜,酸化ジルコニウム膜および酸化ニオブ膜のうちの少なくとも1種を主成分とすることから、様々な蛍光波長に対応できる反射光増加用の誘電体多層膜を形成でき、また、金属層やガラス層との密着性が良好となるように表面物性を容易に制御可能である。   In the biological material-immobilized substrate of the present invention, preferably, the dielectric multilayer film is mainly composed of at least one of a tantalum oxide film, a titanium oxide film, a calcium fluoride film, a zirconium oxide film, and a niobium oxide film. Therefore, it is possible to form a dielectric multilayer film for increasing reflected light that can cope with various fluorescence wavelengths, and it is possible to easily control the surface physical properties so that the adhesion to the metal layer or the glass layer is good.

本発明の生体物質固定化基板において、好ましくは、誘電体多層膜を構成する誘電体膜の厚みが生体物質固定化膜に修飾される生体物質から発せられる蛍光の波長と誘電体膜の屈折率との積の(2n−1)/4倍(n:自然数)とされていることから、生体物質から発せられる蛍光が各誘電体膜の表面や金属膜の表面で反射した反射光同士の干渉作用による蛍光強度の増強を非常に良好に行なうことができ、高利得の測定が可能となる。   In the biological material-immobilized substrate of the present invention, preferably, the wavelength of the fluorescence emitted from the biological material whose thickness of the dielectric film constituting the dielectric multilayer film is modified to the biological material-immobilized film and the refractive index of the dielectric film (2n-1) / 4 times (n: natural number) of the product of, and interference between reflected light reflected by the surface of each dielectric film or the surface of the metal film by the fluorescence emitted from the biological material The fluorescence intensity can be enhanced very well by the action, and high gain measurement is possible.

本発明の生体物質固定化基板において、好ましくは、ガラス膜は、金属膜の上面に成長された多数のガラス柱状体から成ることから、大きな比表面積が得られるため、生体物質はより多く固着され、このため、生体物質が発する蛍光量はより多くなる。また、生体物質固定化基板の表面全面がガラスで覆われることはなく、誘電体多層膜や金属膜で反射された蛍光がガラス柱状体同士の隙間から良好に取り出されるため、ガラス膜中で光損失が生じるのを有効に抑制でき、検出精度を高めることができる。   In the biological material-immobilized substrate of the present invention, preferably, the glass film is composed of a large number of glass pillars grown on the upper surface of the metal film. For this reason, the amount of fluorescence emitted from the biological material is increased. In addition, the entire surface of the biological material-immobilized substrate is not covered with glass, and the fluorescence reflected by the dielectric multilayer film or the metal film is well taken out from the gap between the glass columnar bodies. The occurrence of loss can be effectively suppressed, and the detection accuracy can be increased.

本発明の生体物質固定化基板において、好ましくは、ガラス膜は、酸化珪素の含有量が70質量%以上であることから、透明性に優れたガラス膜を安価に形成することが可能となるとともに、従来のガラス上に用いられる生体物質固定化膜をそのまま用いることができ、特殊な官能基を有する生体物質を用いる必要はなく、材料コストを低減することができる。   In the biological material-immobilized substrate of the present invention, preferably, since the glass film has a silicon oxide content of 70% by mass or more, a glass film having excellent transparency can be formed at low cost. The biological material-immobilized membrane used on the conventional glass can be used as it is, and it is not necessary to use a biological material having a special functional group, and the material cost can be reduced.

本発明の生体物質固定化基板において、好ましくは、生体物質固定化膜は、アミノ基,アルデヒド基,メルカプト基,シラン基およびカルボキシル基のうちの少なくとも1種を有していることから、蛋白質や細胞などの生体物質の吸着性を高めることができ、より多くの生体物質を固定して検出精度を高めることができる。   In the biological material-immobilized substrate of the present invention, preferably, the biological material-immobilized film has at least one of an amino group, an aldehyde group, a mercapto group, a silane group, and a carboxyl group. The adsorptivity of biological materials such as cells can be increased, and more biological materials can be fixed to increase detection accuracy.

次に本発明の生体物質固定化基板を添付の図面に従って詳細に説明する。   Next, the biological material fixed substrate of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の生体物質固定化基板の実施の形態の一例の断面図である。図1に示すように11は基体、12は金属膜、13は反射光増加用の誘電体多層膜、14はガラス膜、15は生体物質固定化膜である。   FIG. 1 is a cross-sectional view of an example of an embodiment of a biological material fixed substrate of the present invention. As shown in FIG. 1, 11 is a substrate, 12 is a metal film, 13 is a dielectric multilayer film for increasing reflected light, 14 is a glass film, and 15 is a biological material immobilization film.

基体11はガラスや金属、セラミックス等の板であるが、これらに限定されず、表面を鏡面状に平坦化が可能であるとともに、生体物質の処理に関わる耐薬品性や耐熱耐湿性が満たされるならば何でも良い。   The substrate 11 is a plate made of glass, metal, ceramics or the like, but is not limited thereto, and the surface can be flattened into a mirror surface, and the chemical resistance and heat and humidity resistance related to the treatment of biological substances are satisfied. Anything is fine.

金属膜12は、蛍光を反射可能であるとともに、ガラス膜14との密着性がよく、耐薬品性を有する金属が用いられ、好ましくは、Ti,Cr,Ni,Au,Ag,Pt,Rh,Al,Ni−Cr合金およびFe−Cr−Ni合金のうちの少なくとも1種を主成分とするのがよい。これにより、蛍光の反射率を非常に高くすることができるとともに、ガラス膜14と金属膜12との密着性を非常に高くすることができ、さらに金属膜12は化学的に安定な金属なので金属膜12の耐薬品性を非常に高くすることができる。なお、ガラス膜14との膜密着性を良好にするため、例えば、AuやAg等の金属膜12上にTiやCr等の密着層を介してガラス膜14を密着させてもよい。   The metal film 12 is a metal that can reflect fluorescence and has good adhesion to the glass film 14 and has chemical resistance. Preferably, Ti, Cr, Ni, Au, Ag, Pt, Rh, It is preferable that at least one of Al, Ni—Cr alloy and Fe—Cr—Ni alloy is a main component. As a result, the reflectance of the fluorescence can be made very high, the adhesion between the glass film 14 and the metal film 12 can be made very high, and the metal film 12 is a chemically stable metal, so that the metal The chemical resistance of the membrane 12 can be made very high. In order to improve the film adhesion with the glass film 14, for example, the glass film 14 may be adhered to the metal film 12 such as Au or Ag via an adhesion layer such as Ti or Cr.

また、金属膜12の厚みについては、光を透過するアイランド構造から光を透過しない膜構造に成長する過程の0.05μm以上が良い。特に0.2μm程度で有れば、比較的膜密着性も高く、また、薬液の浸透による基体のガラス11のコロージョンが発生しなくなる。また、1μmを超えると、成膜方法にもよるが膜の内部応力により基体のガラス11の破壊による膜剥がれが生じやすくなるため、1μm以下の厚みがよい。   The thickness of the metal film 12 is preferably 0.05 μm or more in the process of growing from an island structure that transmits light to a film structure that does not transmit light. In particular, when the thickness is about 0.2 μm, the film adhesion is relatively high, and corrosion of the base glass 11 due to the penetration of the chemical solution does not occur. If it exceeds 1 μm, although it depends on the film forming method, film peeling due to breakage of the glass 11 of the substrate tends to occur due to internal stress of the film, so that the thickness is preferably 1 μm or less.

さらに成膜条件の選定に当たっては平滑性を考慮した成膜条件の限定が必要である。金属膜12の平滑性は基体のガラス11の平滑性も含めてRaが0.05μm以下であるのがよい。これにより、蛍光の乱反射を抑制して蛍光の利得を高めることができる。   Further, in selecting the film forming conditions, it is necessary to limit the film forming conditions in consideration of smoothness. As for the smoothness of the metal film 12, Ra is preferably 0.05 μm or less including the smoothness of the glass 11 of the substrate. Thereby, diffused reflection of fluorescence can be suppressed and the gain of fluorescence can be increased.

反射光増加用の誘電体多層膜13はいわゆる光学薄膜と呼ばれるものであり、複数の誘電体膜が多層に積層されて成る。これらの誘電体膜は、蛍光が誘電体膜の各表面や金属膜12の表面で反射した反射光同士が干渉して蛍光が増強するように膜厚が制御される。   The dielectric multilayer film 13 for increasing reflected light is a so-called optical thin film, and is formed by laminating a plurality of dielectric films. The thickness of these dielectric films is controlled so that the fluorescence is enhanced by the interference of the reflected lights reflected by the respective surfaces of the dielectric film and the surface of the metal film 12.

このような誘電体多層膜13は、酸化タンタル,酸化チタン,フッ化カルシウム,酸化ジルコニウムおよび酸化ニオブのうちの少なくとも1種を主成分とするのがよい。これにより、様々な波長の蛍光波長に対応できる誘電体多層膜13を形成可能とすることができるとともに、下地の金属膜12や表層のガラス膜14との膜密着性も改善する。また、誘電体膜の成膜速度も遅くできるため、正確な膜厚での成膜が可能である。   Such a dielectric multilayer film 13 preferably contains at least one of tantalum oxide, titanium oxide, calcium fluoride, zirconium oxide and niobium oxide as a main component. Thereby, it is possible to form the dielectric multilayer film 13 that can correspond to the fluorescence wavelengths of various wavelengths, and the film adhesion to the underlying metal film 12 and the surface glass film 14 is also improved. Further, since the film formation speed of the dielectric film can be slowed, film formation with an accurate film thickness is possible.

また、好ましくは、誘電体多層膜13を構成する誘電体膜の厚みが生体物質固定化膜15に修飾される生体物質から発せられる蛍光の波長と誘電体膜の屈折率との積の(2n−1)/4倍(n:自然数)とされているのがよい。これにより、生体物質から発せられる蛍光(生体物質に修飾された蛍光体から発せられる蛍光)が各誘電体膜の表面や金属膜12の表面で反射した反射光同士の干渉作用による蛍光の増強を非常に良好に行なうことができ、高利得の測定が可能となる。   Preferably, the thickness of the dielectric film constituting the dielectric multilayer film 13 is the product of the product of the wavelength of fluorescence emitted from the biological material modified by the biological material fixed film 15 and the refractive index of the dielectric film (2n -1) / 4 times (n: natural number). Thereby, the fluorescence emitted from the biological material (fluorescence emitted from the phosphor modified with the biological material) is enhanced by the interference action of the reflected lights reflected on the surface of each dielectric film and the surface of the metal film 12. It can be performed very well and high gain measurement is possible.

そして、このような膜厚が生体物質固定化膜15に修飾される生体物質から発せられる蛍光の波長と誘電体膜の屈折率との積の(2n−1)/4倍(n:自然数)とされている誘電体膜13−1〜13−N(図2の拡大断面図参照)の層数は、比較的少ない層数では層が増えるごとにおよそ2n乗則の光の干渉作用による増強が得られるが、層数が数十層になると誘電体多層膜13の厚みが大きくなって蛍光の吸収が生じやすくなり、非効率となるので、誘電体多層膜13の厚みとしては1μm以下であるのがよい。   Then, (2n-1) / 4 times (n: natural number) of the product of the wavelength of the fluorescence emitted from the biological material modified by the biological material-immobilized film 15 and the refractive index of the dielectric film. The number of layers of the dielectric films 13-1 to 13-N (refer to the enlarged sectional view of FIG. 2) is increased by the interference action of light of about 2n power rule as the number of layers increases with a relatively small number of layers. However, when the number of layers is several tens, the thickness of the dielectric multilayer film 13 is increased and the fluorescence is easily absorbed, resulting in inefficiency. Therefore, the thickness of the dielectric multilayer film 13 is 1 μm or less. There should be.

ガラス膜14は透明質であり、かつ、蛍光の波長の吸収が無く、生体物質固定化膜15が良く固着される物質であれば何でも良い。特に生体物質に修飾される蛍光体の発光波長とガラス膜の屈折率との積の1/2の厚みであれば干渉による吸収が生じ、また、蛍光体の波長とガラス膜の屈折率の積の1/4の厚みであれば光の干渉による増強が有るために僅かな膜厚みのばらつきが蛍光強度の測定のばらつきを大きくするので蛍光波長とガラス膜14の屈折率の積の4分の1よりも小さい厚みであるのがよい。   The glass film 14 may be any material as long as it is transparent and does not absorb the fluorescence wavelength, and the biological material-immobilized film 15 is well fixed. In particular, if the thickness is half the product of the emission wavelength of the phosphor modified with the biological material and the refractive index of the glass film, absorption due to interference occurs, and the product of the wavelength of the phosphor and the refractive index of the glass film. If the thickness is ¼ of the thickness, there is an increase due to light interference, so a slight variation in the thickness of the film increases the variation in the measurement of the fluorescence intensity. Therefore, it is a quarter of the product of the fluorescence wavelength and the refractive index of the glass film 14. The thickness should be smaller than 1.

また、ガラス膜13は、成分組成としてSiOが70質量%以上含まれているのがよい。これにより、アミノアルキルシランやポリ−L−リジンなどの一般的な生体物質固定化膜15はほとんどのものが使用可能である。 Further, the glass film 13 preferably contains 70% by mass or more of SiO 2 as a component composition. As a result, almost all general biological material-immobilized membranes 15 such as aminoalkylsilane and poly-L-lysine can be used.

さらに、図3は本発明の生体物質固定化基板の実施の形態の他の例を示す部分断面図であるが、このようにガラス膜24の成膜条件を制御して、誘電体多層膜23上に隣接粒子との隙間の多い多数のガラス柱状体を成長させて成るガラス膜24とするのがよい。これにより、ガラス膜24の表面積がきわめて大きくなるため、固定化される生体物質量が飛躍的に増大して、蛍光の利得がより高まる。また、生体物質固定化基板の表面全面がガラスで覆われることはなく、誘電体多層膜23や金属膜22で反射された蛍光がガラス柱状体同士の隙間から良好に取り出されるため、ガラス膜24中で光損失が生じるのを有効に抑制でき、検出精度を高めることができる。   Further, FIG. 3 is a partial cross-sectional view showing another example of the embodiment of the biological material-immobilized substrate of the present invention. In this way, the film forming conditions of the glass film 24 are controlled, and the dielectric multilayer film 23 is controlled. It is preferable that the glass film 24 is formed by growing a large number of glass columnar bodies having many gaps between adjacent particles. Thereby, since the surface area of the glass film 24 becomes very large, the amount of the biological material to be immobilized is greatly increased, and the gain of fluorescence is further increased. In addition, the entire surface of the biological material-immobilized substrate is not covered with glass, and the fluorescence reflected by the dielectric multilayer film 23 and the metal film 22 is favorably extracted from the gap between the glass columnar bodies. It is possible to effectively suppress the occurrence of light loss and to improve the detection accuracy.

このような誘電体多層膜23の上面に成長された多数のガラス柱状体から成るガラス膜24は、例えば、低温高ガス圧力スパッタリングや斜め蒸着することによって作製される。   The glass film 24 composed of a large number of glass pillars grown on the upper surface of the dielectric multilayer film 23 is produced by, for example, low temperature high gas pressure sputtering or oblique deposition.

生体物質固定化膜5はアミノアルキルシランやポリ−L−リジン等から選ばれる。一般的にガラス基体1上に用いられる生体物質固定化膜5であれば何でも良く、アミノ基,アルデヒド基,メルカプト基,シラン基およびカルボキシル基のうちの少なくとも1種を有しているものがより好ましい。これにより、蛋白質や細胞などの生体物質の吸着性を高めることができ、より多くの生体物質を固定して検出精度を高めることができる。   The biological material immobilization film 5 is selected from aminoalkylsilane, poly-L-lysine and the like. In general, any biological material-immobilized film 5 used on the glass substrate 1 may be used, and more preferably has at least one of an amino group, an aldehyde group, a mercapto group, a silane group, and a carboxyl group. preferable. Thereby, the adsorptivity of biological substances such as proteins and cells can be enhanced, and more biological substances can be fixed to increase detection accuracy.

本発明の生体物質固定化基板の実施例を以下に説明する。   Examples of the biological material-immobilized substrate of the present invention will be described below.

基体1のガラスは硼珪酸ガラスとして26mm×76mm×1.1mmのものを準備した。   The glass of the substrate 1 was prepared as borosilicate glass having a size of 26 mm × 76 mm × 1.1 mm.

準備した硼珪酸ガラスはアルカリ脱脂を行って十分に純水洗した後、希塩酸にて中和処理を行い、十分に純水洗し、さらに希弗酸液にてガラス表面をライトエッチングして後、十分に純水洗を行った。なお、算術平均荒さRaは希弗酸の浸漬時間により制御した。乾燥はアルコール置換した後にアルコール蒸気乾燥を行った。   The prepared borosilicate glass is alkali degreased and thoroughly washed with pure water, then neutralized with dilute hydrochloric acid, sufficiently washed with pure water, and after light etching the glass surface with dilute hydrofluoric acid, The pure water was washed. The arithmetic average roughness Ra was controlled by the immersion time of dilute hydrofluoric acid. Drying was carried out with alcohol vapor after alcohol substitution.

乾燥した基体11をスパッタ装置にて上面に金属膜2を成膜した。次に、金属膜12の上面に誘電体膜多層膜13と成る2種の誘電体膜を光学薄膜用蒸着装置によって交互に成膜した。さらに、誘電体多層膜13の上面にガラス膜14としてSiO膜を所定の厚みに成膜した。この際、SiOの成膜に当たっては膜が稠密とならないように加熱温度や成膜速度および真空度について配慮した。 A metal film 2 was formed on the upper surface of the dried substrate 11 using a sputtering apparatus. Next, two types of dielectric films to be the dielectric film multilayer film 13 were alternately formed on the upper surface of the metal film 12 by an optical thin film deposition apparatus. Further, a SiO 2 film having a predetermined thickness was formed as a glass film 14 on the upper surface of the dielectric multilayer film 13. At this time, in forming the SiO 2 film, consideration was given to the heating temperature, the film forming speed, and the degree of vacuum so that the film does not become dense.

なお、誘電体層13を構成する誘電体膜の厚みは、使用する生体物質に修飾される蛍光体の蛍光波長と誘電体膜の屈折率との積の1/4倍となるようにした。   The thickness of the dielectric film constituting the dielectric layer 13 was set to ¼ times the product of the fluorescence wavelength of the phosphor modified with the biological material to be used and the refractive index of the dielectric film.

成膜の終わった基体1はRCA洗浄を行って十分に純水洗浄した後、アルコール置換し、乾燥はアルコール蒸気乾燥を行った。   After the film formation, the substrate 1 was washed with RCA and sufficiently washed with pure water, followed by substitution with alcohol, and drying was performed by alcohol vapor drying.

次に生体物質固定化膜15として3−アミノプロピルトリエトキシシラン(以下APSと略す。)のコート液を作成した。コート液は溶媒としてイソプロピルアルコール(以下IPAと略す。)を94体積%、APSを4体積%を混ぜ、その後、純水を2体積%添加して直ちに良く攪拌した後に成膜後の洗浄が終わったガラスを30秒浸漬した。その後、ガラスはIPAにて5秒のリンスを施した後、リンサードライヤーにて乾燥を行った。次にAPSの固着化を進めるために150℃にて10分間のキュアを行い、本発明の生体物質固定化基板とした。また、同様にして、他の本発明の生体物質固定化基板も作成した。   Next, a coating solution of 3-aminopropyltriethoxysilane (hereinafter abbreviated as APS) was prepared as the biological material immobilization film 15. The coating solution was mixed with 94% by volume of isopropyl alcohol (hereinafter abbreviated as IPA) and 4% by volume of APS as a solvent, and then 2% by volume of pure water was added and immediately stirred well, followed by washing after film formation. The glass was immersed for 30 seconds. Thereafter, the glass was rinsed with IPA for 5 seconds and then dried with a rinser dryer. Next, in order to advance the fixation of APS, curing was performed at 150 ° C. for 10 minutes to obtain the biological material fixed substrate of the present invention. Similarly, other biological material-immobilized substrates of the present invention were also prepared.

比較例としては硼珪酸ガラスに同様の洗浄を施した後に同様にAPSコートを行った。評価については5‘末端をCy3蛍光体にて修飾した15塩基長のオリゴDNAを用いた。オリゴDNAは0.5μMとなるように純水に溶解してスポット液とした。準備した基板にスポットした後は湿潤箱に25℃にて12時間放置してオリゴDNAを作成した基板に固定した。次にクエン酸緩衝液にて洗浄した後に純水リンスを行い、ブロー乾燥した。   As a comparative example, borosilicate glass was subjected to the same cleaning and then subjected to the same APS coating. For evaluation, a 15-base oligo DNA whose 5 'end was modified with a Cy3 phosphor was used. The oligo DNA was dissolved in pure water to a concentration of 0.5 μM to obtain a spot solution. After spotting on the prepared substrate, it was allowed to stand at 25 ° C. for 12 hours in a wet box and fixed to the substrate on which the oligo DNA was prepared. Next, it was washed with a citrate buffer, rinsed with pure water, and blow-dried.

励起波長532nmにて作成した基板をスキャニングして、蛍光強度を数値化した。なお、DNAの評価としては蛍光強度が50以上有れば可能である。また、膜密着性はテープピーリングテストを行って、膜はがれの無い物を○、少しでもはがれた物を×とした。   The substrate prepared at an excitation wavelength of 532 nm was scanned, and the fluorescence intensity was digitized. The DNA can be evaluated if the fluorescence intensity is 50 or more. Further, the film adhesion was evaluated by performing a tape peeling test, and a film having no film peeling was marked with ◯, and a film with little peeling was marked with x.

以下、表1に基づき説明する。   Hereinafter, a description will be given based on Table 1.

表1には、金属膜12の材料と厚み、誘電体多層膜13を構成する誘電体膜の材料と積層数、ガラス膜14の材料と厚み、および得られた蛍光強度と膜密着性の評価結果を示した。   Table 1 shows the evaluation of the material and thickness of the metal film 12, the material and thickness of the dielectric film constituting the dielectric multilayer film 13, the material and thickness of the glass film 14, and the obtained fluorescence intensity and film adhesion. Results are shown.

金属膜12の厚みによる影響については代表例としてCrにて評価した。厚み0.03μmでは蛍光強度は低いが0.05から0.5μmの範囲では好適な結果を得た。なお、1.0μmでは膜の内部応力のため、基体11のガラスが破損しやすかった。   The influence of the thickness of the metal film 12 was evaluated by Cr as a representative example. The fluorescence intensity is low at a thickness of 0.03 μm, but favorable results were obtained in the range of 0.05 to 0.5 μm. At 1.0 μm, the glass of the substrate 11 was easily damaged due to the internal stress of the film.

次に誘電体多層膜13の層数を変えて蛍光強度を評価した。層数の増加に従い、蛍光強度は飛躍的に向上した。   Next, the fluorescence intensity was evaluated by changing the number of layers of the dielectric multilayer film 13. As the number of layers increased, the fluorescence intensity improved dramatically.

次に金属膜12の材料を変更して調査した。各金属によって若干の差はあるが、大きな蛍光強度の劣化はなかった。   Next, the material of the metal film 12 was changed and investigated. Although there was a slight difference depending on each metal, there was no significant deterioration in fluorescence intensity.

次にガラス膜14の厚みによる影響を調査した。ガラス膜厚み0.2μmでは蛍光強度は低く、明らかな効果は得られていないが、ガラス膜厚み0.03μm以上では大きな効果が得られた。また、蛍光波長540nm前後に対して蛍光体の波長とガラス膜14の屈折率との積の1/4の厚みに相当する130nm程度の厚み以上の場合はガラス膜14の膜厚みばらつき起因と考えられる蛍光強度のばらつきが発生した。このため、ガラス膜14の厚みは測定波長の1/4以下がより好ましいことがわかった。   Next, the influence by the thickness of the glass film 14 was investigated. When the glass film thickness is 0.2 μm, the fluorescence intensity is low and no obvious effect is obtained, but when the glass film thickness is 0.03 μm or more, a large effect is obtained. Further, when the thickness is about 130 nm or more, which corresponds to ¼ of the product of the wavelength of the phosphor and the refractive index of the glass film 14 with respect to the fluorescence wavelength of around 540 nm, it is considered that the thickness of the glass film 14 varies. Variation in fluorescence intensity occurred. For this reason, it turned out that the thickness of the glass film 14 has more preferable 1/4 or less of a measurement wavelength.

次に誘電体多層膜13を酸化ニオブや酸化ジルコニウムおよびフッ化カルシウムでも調査したが同等の結果だった。

Figure 2006090784
Next, the dielectric multilayer film 13 was investigated with niobium oxide, zirconium oxide, and calcium fluoride.
Figure 2006090784

次に、以下、表2に従って説明する。   Next, description will be made according to Table 2.

表2では金属膜12の算術平均粗さRaは0.05μm以下では高い蛍光測定強度を示したがRaが0.1μmでは蛍光測定強度は大幅に低下した。表面の凹凸により蛍光が乱反射したためと考えられる。このため、算術平均粗さRaは0.05μm以下がより好ましいことがわかった。   In Table 2, when the arithmetic average roughness Ra of the metal film 12 was 0.05 μm or less, high fluorescence measurement intensity was shown, but when Ra was 0.1 μm, the fluorescence measurement intensity was greatly reduced. This is thought to be due to irregular reflection of fluorescence due to surface irregularities. For this reason, it was found that the arithmetic average roughness Ra is more preferably 0.05 μm or less.

次に多数の柱状体から成るガラス膜14については比表面積を吸着水分量を測定することにより、数値化した。鏡面状態のガラス膜の吸着水分量を1とした際、ガラス膜14が柱状化して比表面積が増加するとこれに比例して吸着水分量も増加するためである。表2によれば、比表面積が5倍、10倍になるに従って蛍光測定強度は飛躍的に大きくなった。このため、ガラス膜14は比表面積が大きくなるような柱状形状になるとより好ましいことがわかった。   Next, about the glass film 14 which consists of many columnar bodies, the specific surface area was digitized by measuring the amount of adsorption | suction moisture. This is because when the amount of adsorbed moisture in the mirror-finished glass film is 1, when the glass film 14 becomes columnar and the specific surface area increases, the amount of adsorbed water increases in proportion to this. According to Table 2, the fluorescence measurement intensity increased dramatically as the specific surface area increased 5 times or 10 times. For this reason, it turned out that it is more preferable if the glass film 14 becomes columnar shape that the specific surface area becomes large.

次にガラス膜14の材質について調査した。酸化珪素の質量が70%以上では良い結果を示したが、63%では蛍光強度が弱かったのでガラス膜の酸化珪素濃度は70質量%以上がより好ましいことがわかった。

Figure 2006090784
Next, the material of the glass film 14 was investigated. Although a good result was shown when the mass of silicon oxide was 70% or more, the fluorescence intensity was weak when 63%, and it was found that the silicon oxide concentration of the glass film was more preferably 70 mass% or more.
Figure 2006090784

表3に比較例としてガラス基板上に直接アミノアルキルシランをコートしてDNAを固定した場合の結果を示した。

Figure 2006090784
Table 3 shows the results when DNA was fixed by coating aminoalkylsilane directly on a glass substrate as a comparative example.
Figure 2006090784

なお、本発明は上述の最良の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を行うことは何等差し支えない。   Note that the present invention is not limited to the above-described best modes and examples, and various modifications may be made without departing from the scope of the present invention.

本発明の生体物質検出用基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the biological material detection board | substrate of this invention. 本発明の生体物質検出用基板の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the biological material detection board | substrate of this invention. 本発明の生体物質検出用基板の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the biological material detection board | substrate of this invention. 従来の生体物質検出用基板の断面図である。It is sectional drawing of the conventional biological material detection board | substrate. 従来の生体物質検出用基板の断面図である。It is sectional drawing of the conventional biological material detection board | substrate.

符号の説明Explanation of symbols

11,21,31:基板
12,22,32:金属膜
13,23,33:誘電体多層膜
14,24,34:ガラス膜
15,25,35:生体物質固定化膜
11, 21, 31: Substrate 12, 22, 32: Metal film 13, 23, 33: Dielectric multilayer film 14, 24, 34: Glass film
15, 25, 35: Biological material immobilization membrane

Claims (8)

基体の上面に、金属膜、反射光増加用の誘電体多層膜、ガラス膜および生体物質固定化膜が順次積層されていることを特徴とする生体物質固定化基板。 A biological material-immobilized substrate, wherein a metal film, a dielectric multilayer film for increasing reflected light, a glass film, and a biological material-immobilized film are sequentially laminated on an upper surface of a substrate. 前記金属膜は、Ti,Cr,Ni,Au,Ag,Pt,Rh,Al,Ni−Cr合金およびFe−Cr−Ni合金のうちの少なくとも1種を主成分とすることを特徴とする請求項1記載の生体物質固定化基板。 The metal film is mainly composed of at least one of Ti, Cr, Ni, Au, Ag, Pt, Rh, Al, Ni-Cr alloy and Fe-Cr-Ni alloy. 1. The biological material-immobilized substrate according to 1. 前記金属膜は、その上面の算術平均粗さRaが0.05μm以下であることを特徴とする請求項1または請求項2記載の生体物質固定化基板。 The biological material-immobilized substrate according to claim 1 or 2, wherein the metal film has an arithmetic average roughness Ra of 0.05 µm or less on an upper surface thereof. 前記誘電体多層膜は、酸化タンタル膜,酸化チタン膜,フッ化カルシウム膜,酸化ジルコニウム膜および酸化ニオブ膜のうちの少なくとも1種を主成分とすることを特徴とする請求項1乃至請求項3のいずれかに記載の生体物質固定化基板。 4. The dielectric multilayer film as a main component comprising at least one of a tantalum oxide film, a titanium oxide film, a calcium fluoride film, a zirconium oxide film, and a niobium oxide film. A biological material-immobilized substrate according to any one of the above. 前記誘電体多層膜を構成する誘電体膜は、その厚みが前記生体物質固定化膜に修飾される生体物質から発せられる蛍光の波長と前記誘電体膜の屈折率との積の(2n−1)/4倍(n:自然数)とされていることを特徴とする請求項1乃至請求項4のいずれかに記載の生体物質固定化基板。 The dielectric film constituting the dielectric multilayer film has a thickness (2n-1) of the product of the wavelength of fluorescence emitted from the biological material whose thickness is modified by the biological material-immobilized film and the refractive index of the dielectric film. The biological material-immobilized substrate according to any one of claims 1 to 4, wherein the biological material-immobilized substrate is multiplied by 4) (n: natural number). 前記ガラス膜は、前記金属膜の上面に成長された多数のガラス柱状体から成ることを特徴とする請求項1乃至請求項5のいずれかに記載の生体物質固定化基板。 6. The biological material-immobilized substrate according to claim 1, wherein the glass film is composed of a number of glass pillars grown on the upper surface of the metal film. 前記ガラス膜は、酸化珪素の含有量が70質量%以上であることを特徴とする請求項1乃至請求項6のいずれかに記載の生体物質固定化基板 The biological material fixed substrate according to any one of claims 1 to 6, wherein the glass film has a silicon oxide content of 70 mass% or more. 前記生体物質固定化膜は、アミノ基,アルデヒド基,メルカプト基,シラン基およびカルボキシル基のうちの少なくとも1種を有していることを特徴とする請求項1乃至請求項7のいずれかに記載の生体物質固定化基板。 The said biological material fixed film | membrane has at least 1 sort (s) of an amino group, an aldehyde group, a mercapto group, a silane group, and a carboxyl group, The Claim 1 thru | or 7 characterized by the above-mentioned. Biological material immobilization substrate.
JP2004275057A 2004-09-22 2004-09-22 Substrate for immobilizing biosubstance Pending JP2006090784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275057A JP2006090784A (en) 2004-09-22 2004-09-22 Substrate for immobilizing biosubstance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275057A JP2006090784A (en) 2004-09-22 2004-09-22 Substrate for immobilizing biosubstance

Publications (1)

Publication Number Publication Date
JP2006090784A true JP2006090784A (en) 2006-04-06

Family

ID=36231928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275057A Pending JP2006090784A (en) 2004-09-22 2004-09-22 Substrate for immobilizing biosubstance

Country Status (1)

Country Link
JP (1) JP2006090784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001597A1 (en) * 2009-07-02 2011-01-06 日本板硝子株式会社 Substrate for immobilizing biological substance and method for producing same
JP2012237608A (en) * 2011-05-10 2012-12-06 Canon Inc Channel device and inspection system using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001597A1 (en) * 2009-07-02 2011-01-06 日本板硝子株式会社 Substrate for immobilizing biological substance and method for producing same
JP2012237608A (en) * 2011-05-10 2012-12-06 Canon Inc Channel device and inspection system using the same
US9328380B2 (en) 2011-05-10 2016-05-03 Canon Kabushiki Kaisha Flow passage device and testing system using the same

Similar Documents

Publication Publication Date Title
Ladd et al. DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge
Zhang et al. High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area
EP1546721B2 (en) Substrates for isolating, reacting and microscopically analyzing materials
JP5131806B2 (en) Optical waveguide mode sensor with pores
JP6297065B2 (en) Low fluorescent equipment
JP2010508520A (en) Method for blocking non-specific protein binding on functionalized surfaces
US20030124733A1 (en) Sample device preservation
JP2003515740A (en) Amplification of fluorescent signal emitted from surface sample
EP1882520A1 (en) Patterned spot microarray using photocatalyst and a method of manufacturing the same
JP4244788B2 (en) Substrate on which a selective binding substance is immobilized
US7306941B2 (en) Biochemical measuring chip and measuring apparatus
Veiseh et al. Effect of silicon oxidation on long-term cell selectivity of cell-patterned Au/SiO2 platforms
Li et al. Affinity exploration of SARS-CoV-2 RBD variants to mAb-functionalized plasmonic metasurfaces for label-free immunoassay boosting
EP1610116A2 (en) Microstructured substrate having patterned thin layer, array of microstructures comprising the thin layer and methods of producing the microstructured substrate and the array of microstructures
JP2006090784A (en) Substrate for immobilizing biosubstance
JP5422841B2 (en) Determination method and determination apparatus for determining biocompatibility between biomolecules and ceramics
CN115652440B (en) Low-density aldehyde-based substrate and preparation method of low-density biochip
JP3448654B2 (en) Biochip, biochip array, and screening method using them
JP4121762B2 (en) Fluorescence detection support
JP2004279196A (en) Substrate for bio-micro-array and bio-micro-array
JP4074829B2 (en) Bio-microarray substrate and bio-microarray
WO2006090753A1 (en) Detection substrate
JP2006184023A (en) Biological substance immobilizing substrate
JP2006064599A (en) Bio-substance fixing substrate
JP4272428B2 (en) Support for the measurement of an analyte such as DNA or RNA, including a selective spectral filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02