JP2006090635A - Electronic cold insulating storage - Google Patents

Electronic cold insulating storage Download PDF

Info

Publication number
JP2006090635A
JP2006090635A JP2004276863A JP2004276863A JP2006090635A JP 2006090635 A JP2006090635 A JP 2006090635A JP 2004276863 A JP2004276863 A JP 2004276863A JP 2004276863 A JP2004276863 A JP 2004276863A JP 2006090635 A JP2006090635 A JP 2006090635A
Authority
JP
Japan
Prior art keywords
radiator
dew condensation
box
heat
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276863A
Other languages
Japanese (ja)
Inventor
Mitsunori Taniguchi
光徳 谷口
Osao Kido
長生 木戸
Toshiaki Mamemoto
壽章 豆本
Yoshihiro Ueda
啓裕 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004276863A priority Critical patent/JP2006090635A/en
Publication of JP2006090635A publication Critical patent/JP2006090635A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the evaporation of dew condensate in an electronic cold insulating storage for evaporating to discharge the dew condensate, and to improve the heat radiating capacity of a radiator. <P>SOLUTION: The dew condensate is supplied to a passage 12 by a pump 9, and an end face 11 inclines in a gravitational direction toward a horizontal end face from a dew condensate supply part. Passages 13 for allowing the dew condensate in the gravitational direction from the end face 11 are provided on a base 7 of a radiator 6, and branch passages 14 branching from the passages 13 are provided at an inclination angle smaller than 90° in the gravitational direction. Fine passages 15 are further provided on the surfaces of fins 8. The dew condensate produced in a cooler 3 is thereby spread to the whole radiator 6 to extend a heating time. The quantity of dew condensate evaporated by heat generation of a heating surface 2b of a thermoelectric conversion device 2 can be considerably improved, and the heat radiating capacity of the radiator 6 can also be improved by radiating heat using latent heat of vaporization. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、飲食物や薬品等の物品を収納する保冷庫に関するもので、特に自動車等に搭載されるもので、冷却器や保冷庫内に生じた結露を保冷庫から流出させないで処理できるようになした保冷庫に関するものである。   The present invention relates to a refrigerator that stores articles such as food and drinks and medicines, and is particularly mounted in an automobile or the like, so that condensation generated in a cooler or refrigerator can be processed without flowing out of the refrigerator. It relates to the cold storage that was made.

従来、この種の保冷庫としては、熱伝導性に優れた材料で構成された庫内容器を熱電変換デバイスで冷却するものが一般的である(例えば、特許文献1参照)。   Conventionally, as this kind of cold storage, what cools the inner container comprised with the material excellent in heat conductivity with the thermoelectric conversion device is common (for example, refer patent document 1).

ここで、熱電変換デバイスとは、熱電素子、ペルチェ素子と呼ばれるものやトンネル効果素子、スターリング冷凍機などがあげられる。   Here, the thermoelectric conversion device includes a so-called thermoelectric element and a Peltier element, a tunnel effect element, a Stirling refrigerator, and the like.

図7は、前記特許文献1に記載された従来の冷温庫の側断面図である。図7に示すように、従来の冷温庫は、箱体20と、熱電変換デバイス21と、放熱器22と、送風装置23と、冷却器24と、結露水受け25と、排水孔26とから構成されている。前記冷却器24には、冷却器24や被冷却物28に生じた結露水を排水孔26へ導く、穴27が設けられている。   FIG. 7 is a side cross-sectional view of a conventional cool / warm chamber described in Patent Document 1. As shown in FIG. 7, the conventional cold / hot storage includes a box 20, a thermoelectric conversion device 21, a radiator 22, a blower 23, a cooler 24, a condensed water receiver 25, and a drain hole 26. It is configured. The cooler 24 is provided with a hole 27 that guides the condensed water generated in the cooler 24 and the object to be cooled 28 to the drain hole 26.

以上のように構成された冷温庫について、以下その動作を説明する。   The operation of the cold / hot storage configured as described above will be described below.

熱電変換デバイス21に通電すると、冷却面が吸熱し、冷却器24が冷却され、被冷却物28が保冷もしくは冷却される。この時、前記冷却器24や被冷却物28が箱体20内の貯蔵庫内の空気温度より低下し、さらに露点温度以下になると前記冷却器24や被冷却物28に結露が生じる。これらの結露水は、重力により、穴27を通って落下し、排水孔26から結露水受け25に溜まる。   When the thermoelectric conversion device 21 is energized, the cooling surface absorbs heat, the cooler 24 is cooled, and the object to be cooled 28 is cooled or cooled. At this time, when the cooler 24 and the object to be cooled 28 are lower than the air temperature in the storage in the box 20 and further become below the dew point temperature, dew condensation occurs on the cooler 24 and the object to be cooled 28. These condensed water falls through the hole 27 due to gravity and accumulates in the condensed water receiver 25 through the drain hole 26.

一方、放熱面では発熱し、放熱器22に熱が伝わり、送風装置23により生じた気流によって放熱器22から放熱する。この後、気流は結露水受け25上を通り、結露水を蒸発させる。
特開平6−207769号公報
On the other hand, heat is generated on the heat radiating surface, heat is transmitted to the heat radiator 22, and heat is radiated from the heat radiator 22 by the air flow generated by the blower 23. Thereafter, the airflow passes over the condensed water receiver 25 and evaporates the condensed water.
JP-A-6-207769

しかしながら、上記従来の構成では、放熱器22を通過し、温度を上昇させた気流が結露水受け25上を通過し、結露水を蒸発させるため、結露水の蒸発量は少なく、結露水量が多い場合には蒸発しきれないという課題があった。また、放熱器は、空気の顕熱変化により熱交換しているため、放熱量が小さいという課題も有していた。   However, in the above-described conventional configuration, since the airflow that has passed through the radiator 22 and increased in temperature passes over the condensed water receiver 25 and evaporates the condensed water, the amount of condensed water is small and the amount of condensed water is large. In some cases, there was a problem that it could not evaporate. Moreover, since the heat exchanger is exchanging heat by changing the sensible heat of air, it has a problem that the amount of heat radiation is small.

本発明は、従来の課題を解決するもので、結露水の蒸発量を向上させるとともに、放熱量を向上させた電子式保冷庫を提供することを目的とする。   This invention solves the conventional subject, and it aims at providing the electronic cool box which improved the evaporation amount while improving the evaporation amount of dew condensation water.

上記従来の課題を解決するために、本発明の電子式保冷庫は、箱体外に設置され結露水を収集する結露水受けとポンプとを備えたものである。   In order to solve the above-described conventional problems, an electronic cool box of the present invention includes a condensed water receiver and a pump that are installed outside the box and collects condensed water.

これによって、結露水を、放熱器の重力方向反対側端面に供給し、放熱器で直接加熱することができるとともに、結露水の蒸発潜熱を用いて放熱できる。   Thereby, the dew condensation water can be supplied to the end surface on the opposite side in the gravity direction of the radiator, and can be directly heated by the radiator, and can be radiated using the latent heat of evaporation of the dew condensation water.

また本発明は、前記放熱器の重力方向反対側端面に結露水が流れる流路を設けたもので、結露水を気流が通過しにくい放熱器背面に流すのを防ぐことができる。   Moreover, this invention provides the flow path through which dew condensation water flows in the gravity direction opposite end surface of the said heat radiator, and can prevent flowing dew condensation water on the heat radiator back surface to which an airflow does not pass easily.

本発明の電子式保冷庫は、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   The electronic cool box of the present invention can improve the heat dissipation capability of the radiator while improving the evaporation amount of condensed water.

請求項1に記載の発明は、内部に貯蔵空間を持つ箱体と、二つの伝熱面を持ち一方が吸熱面としてまた他方が発熱面として働く熱電変換デバイスと、吸熱面に熱的に接続され箱体内もしくは貯蔵空間内に設置された冷却器と、発熱面に熱的に接続された放熱器と、冷却器や貯蔵空間内に結露した結露水を箱体外へ排出する排水孔と、箱体外に設置され結露水を収集する結露水受けと、ポンプとから構成され、ポンプで結露水を結露水受けから汲み上げ結露水供給部から放熱器の重力方向反対側端面に供給するようにしたものである。   The invention described in claim 1 includes a box having a storage space inside, a thermoelectric conversion device having two heat transfer surfaces, one serving as a heat absorption surface and the other serving as a heat generation surface, and being thermally connected to the heat absorption surface. A cooler installed in the box or in the storage space, a radiator thermally connected to the heat generation surface, a drain hole for discharging condensed water condensed in the cooler or the storage space to the outside of the box, Condensed water receiver that is installed outside the box and collects condensed water and a pump. The pump pumps the condensed water from the condensed water receiver and supplies it to the end face on the opposite side of the radiator in the gravity direction from the condensed water supply. It is a thing.

かかる構成とすることにより、前記冷却器等に生じた結露水をポンプによって放熱器に供給し、放熱器の表面上で蒸発させることができ、結露水の蒸発量を向上させるとともに、結露水の蒸発潜熱を利用して放熱するため、放熱器の放熱能力を向上させることができる。   With this configuration, the condensed water generated in the cooler or the like can be supplied to the radiator by a pump and can be evaporated on the surface of the radiator, improving the evaporation amount of the condensed water and condensing water. Since heat is dissipated using the latent heat of vaporization, the heat dissipating capability of the radiator can be improved.

請求項2に記載の発明は、前記放熱器を、基板とこの基板に熱的に接続されたフィンとから構成したものである。   According to a second aspect of the present invention, the radiator is composed of a substrate and fins thermally connected to the substrate.

かかる構成とすることにより、前記放熱器の表面積を大きくとることができ、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   By setting it as this structure, the surface area of the said heat radiator can be taken large, and while improving the evaporation amount of condensed water, the heat dissipation capability of a heat sink can be improved.

請求項3に記載の発明は、前記放熱器の重力方向反対側端面を、結露水供給部から重力方向に傾斜させたものである。   According to a third aspect of the present invention, the end face on the opposite side in the gravitational direction of the radiator is inclined from the condensed water supply portion in the gravitational direction.

かかる構成とすることにより、前記結露水供給部から放熱器の重力方向反対側端面へ供給された結露水を、水平方向へ拡げることができ、その結果、放熱器の結露水による濡れ面積を増加させ、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   By adopting such a configuration, the dew condensation water supplied from the dew condensation water supply unit to the end surface on the opposite side in the gravitational direction of the radiator can be expanded in the horizontal direction, and as a result, the wet area of the radiator due to the dew condensation water is increased. Thus, the evaporation amount of the dew condensation water can be improved, and the heat dissipation capability of the radiator can be improved.

請求項4に記載の発明は、前記放熱器の重力方向反対側端面に、結露水が流れる流路を設けたものである。   According to a fourth aspect of the present invention, a flow path through which condensed water flows is provided on the end surface on the opposite side in the direction of gravity of the radiator.

かかる構成とすることにより、結露水を気流が通過しにくい放熱器背面に流すのを防ぐことができ、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   By adopting such a configuration, it is possible to prevent the condensed water from flowing to the back surface of the radiator where it is difficult for the airflow to pass through, thereby improving the evaporation amount of the condensed water and improving the heat dissipation capability of the radiator.

請求項5に記載の発明は、前記放熱器に重力方向反対側面から重力方向に結露水を流す流路を、前記基板のフィン接続表面上に設けたものである。   According to a fifth aspect of the present invention, a flow path for allowing condensed water to flow in the gravitational direction from the side surface opposite to the gravitational direction is provided on the fin connection surface of the substrate.

このように、結露水が重力方向に設けた流路を流れることにより、飛散させることなく、基板面上を流下させることができ、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   In this way, the condensed water flows through the flow path provided in the direction of gravity, so that it can flow down on the substrate surface without being scattered, thereby improving the evaporation amount of the condensed water and improving the heat dissipation capability of the radiator. Can be improved.

請求項6に記載の発明は、前記放熱器における基板のフィン接続表面上に、重力方向反対側面から重力方向に結露水を流す複数の流路から分岐し、重力方向に90度よりも小さい傾斜角で分岐流路を設けたものである。   The invention according to claim 6 is a system in which the condensing water is branched from a plurality of flow paths in the gravitational direction from the side opposite to the gravitational direction on the fin connection surface of the substrate in the radiator, and the inclination is smaller than 90 degrees in the gravitational direction. A branch channel is provided at a corner.

かかる構成とすることにより、結露水を飛散させることなく、基板面上を流下させるとともに、分岐流路へ流れることにより、基板の広域に結露水を供給することができ、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   By adopting such a configuration, the condensed water can be supplied to a wide area of the substrate by flowing down the substrate surface without splashing the condensed water and flowing to the branch flow path. While improving, the heat dissipation capability of a radiator can be improved.

請求項7に記載の発明は、前記放熱器のフィン表面上に、前記分岐流路から基板と反対側端面方向に向かって微細流路を設けたものである。   In a seventh aspect of the invention, a fine channel is provided on the fin surface of the radiator from the branch channel toward the end surface opposite to the substrate.

したがって、前記基板面上に設けた分岐流路により、基板面上に供給された結露水は、フィン表面上に設けた微細流路の毛細管現象によりフィン表面へと供給することができ、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   Therefore, the dew condensation water supplied on the substrate surface by the branch flow path provided on the substrate surface can be supplied to the fin surface by the capillary phenomenon of the fine flow path provided on the fin surface. It is possible to improve the heat dissipation capability of the radiator as well as the amount of evaporation.

請求項8に記載の発明は、内部に貯蔵空間を持つ箱体と、二つの伝熱面を持ち一方が吸熱面としてまた他方が発熱面として働く熱電変換デバイスと、吸熱面に熱的に接続され箱体内もしくは貯蔵空間内に設置された冷却器と、発熱面に熱的に接続された放熱器と、冷却器や貯蔵空間内に結露した結露水を箱体外へ排出する排水孔と、箱体外に設置され結露水を収集する結露水受けと、噴霧器とから構成され、噴霧器で結露水を放熱器に噴霧するものである。   The invention described in claim 8 includes a box having a storage space inside, a thermoelectric conversion device having two heat transfer surfaces, one serving as a heat absorption surface and the other serving as a heat generation surface, and being thermally connected to the heat absorption surface. A cooler installed in the box or in the storage space, a radiator thermally connected to the heat generating surface, a drain hole for discharging condensed water condensed in the cooler or the storage space to the outside of the box, It is composed of a dew condensation receiver that is installed outside the box and collects dew condensation water, and a sprayer, and the sprayer sprays the dew condensation water on the radiator.

かかる構成とすることにより、結露水を放熱器に噴霧して結露水を放熱器全体に均等に供給することができ、結露水の蒸発量を向上させるとともに、放熱器の放熱能力を向上させることができる。   By adopting such a configuration, the condensed water can be sprayed onto the radiator to supply the condensed water evenly to the entire radiator, improving the evaporation amount of the condensed water and improving the heat dissipation capability of the radiator. Can do.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における電子式保冷庫の背面図であり、図2は図1のA−A線による断面図である。
(Embodiment 1)
FIG. 1 is a rear view of the electronic cool box in Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG.

図1および図2において、箱体1は、内部に貯蔵空間1aを持っており、食品や薬品等を収納することができる。また、熱電変換デバイス2は、吸熱面2aと発熱面2bを持っており、冷却器3は、前記吸熱面2aと熱的に接続されている。前記冷却器3は、箱体1内部の貯蔵空間1a内に設置されている。排水孔4は、前記冷却器3の重力方向側に設置され、この排水孔4を通って前記箱体1外に排出された結露水は、結露水受け5に溜められる。   1 and 2, the box 1 has a storage space 1a inside, and can store food, medicine, and the like. The thermoelectric conversion device 2 has an endothermic surface 2a and a heat generating surface 2b, and the cooler 3 is thermally connected to the endothermic surface 2a. The cooler 3 is installed in a storage space 1 a inside the box 1. The drain hole 4 is installed on the gravity direction side of the cooler 3, and the condensed water discharged to the outside of the box 1 through the drain hole 4 is stored in the condensed water receiver 5.

放熱器6は、基板7と、この基板7と熱的に接続され、かつ前記基板7から略垂直に設けられたフィン8とから構成されている。そして、前記基板7と発熱面2bは熱的に接続されている。また、前記放熱器6は、金属等の熱伝導率の大きい材料で作られており、成形のし易さや安価という観点から、アルミニウムやアルミニウム合金が適している。さらに、前記基板7とフィン8は一体で成形されているものがよく、アルミニウム合金を用いた押出成型品が適している。その他、グラファイト等も採用でき、より軽量で高性能化が図れる。また、前記基板7にはヒートパイプ等の冷媒の相変化を用いた高熱伝導部材を用いても良い。   The radiator 6 includes a substrate 7 and fins 8 that are thermally connected to the substrate 7 and provided substantially perpendicularly to the substrate 7. The substrate 7 and the heat generating surface 2b are thermally connected. The radiator 6 is made of a material having a high thermal conductivity such as metal, and aluminum or an aluminum alloy is suitable from the viewpoint of ease of molding and low cost. Further, the substrate 7 and the fins 8 are preferably integrally molded, and an extrusion molded product using an aluminum alloy is suitable. In addition, graphite and the like can also be adopted, and it is possible to achieve higher performance with lighter weight. The substrate 7 may be a high thermal conductive member using a phase change of a refrigerant such as a heat pipe.

図3は前記放熱器の正面図、図4は前記放熱器の上面図、図5は図3のB−B線による断面図である。次に、図3乃至図5を加えて、前記放熱器6の構成をさらに詳細に説明する。   3 is a front view of the radiator, FIG. 4 is a top view of the radiator, and FIG. 5 is a sectional view taken along line BB in FIG. Next, the configuration of the radiator 6 will be described in more detail with reference to FIGS.

ポンプ9は、前記結露水受け5から結露水を汲み上げ、結露水供給部10から前記放熱器6の重力方向反対側端面11に注水する。また、重力方向反対側端面11上には、前記放熱器6の長手方向に重力方向反対側端面流路(以下、端面流路と称す)12が設けられており、前記基板7のフィン8接続面上に重力方向反対側端面11から重力方向に流路13が設けられている。前記流路13から分岐し、重力方向に90度よりも小さい傾斜角で略八の字状に分岐流路14が設けられている。また、前記分岐流路14から前記基板7と反対側端面方向に向かって、前記フィン8表面上に微細流路15が重力方向に傾斜し設けられている。   The pump 9 pumps the dew condensation water from the dew condensation water receiver 5 and pours water from the dew condensation water supply unit 10 onto the end surface 11 on the opposite side in the gravity direction of the radiator 6. Further, on the end surface 11 on the opposite side in the gravity direction, an end surface channel on the opposite side in the gravity direction (hereinafter referred to as an end surface channel) 12 is provided in the longitudinal direction of the radiator 6. A flow path 13 is provided on the surface in the direction of gravity from the end surface 11 opposite to the direction of gravity. A branch channel 14 is provided that branches from the channel 13 and has an approximately eight shape with an inclination angle smaller than 90 degrees in the direction of gravity. Further, a fine channel 15 is provided on the surface of the fin 8 so as to be inclined in the direction of gravity from the branch channel 14 toward the end surface opposite to the substrate 7.

前記放熱器6に気流を送風する送風装置16は、前記放熱器6の上方に設置されており、反重力方向に気流が流動するように動作する。本実施の形態では送風装置16として軸流ファンを用いているが、クロスフローファンなどを用いても良い。   The blower 16 that blows the airflow to the radiator 6 is installed above the radiator 6 and operates so that the airflow flows in the antigravity direction. In the present embodiment, an axial fan is used as the blower 16, but a cross flow fan or the like may be used.

以上のように構成された電子式保冷庫について、以下その動作、作用を説明する。   The operation and action of the electronic cooler configured as described above will be described below.

熱電変換デバイス2に電流を流すことにより、冷却面2aが冷却され、冷却器3が冷却される。そして、冷却側送風装置17が動作し、貯蔵空間1a内の空気と冷却器3と熱交換させ、貯蔵空間1aを冷却する。この時、冷却器3の温度が貯蔵空間1a内の空気の露点温度以下になると、冷却器3に結露が生じる。この結露水は重力により、冷却器3の重力方向側に設置された排水孔4に収集され、貯蔵空間1a外に排出される。   By passing an electric current through the thermoelectric conversion device 2, the cooling surface 2a is cooled, and the cooler 3 is cooled. And the cooling side air blower 17 operate | moves, heat-exchanges the air in the storage space 1a, and the cooler 3, and cools the storage space 1a. At this time, if the temperature of the cooler 3 becomes equal to or lower than the dew point temperature of the air in the storage space 1a, condensation occurs in the cooler 3. This condensed water is collected by gravity into a drain hole 4 installed on the side of the cooler 3 in the direction of gravity, and discharged outside the storage space 1a.

一方、熱電変換デバイス2の発熱面2bは発熱し、前記放熱器6の基板7に熱が伝わり、フィン8に熱が拡がる。この時、前記排水孔4を通り、箱体1外に排出された結露水は、結露水受け5に収集される。さらに、ポンプ9によって重力方向反対側端面11に供給された結露水は端面流路12へと入る。重力方向反対側端面11は結露水供給部から水平方向端面に向かって重力方向に傾斜しているため、結露水は一部を流路13に分流しながら、重力により水平方向端面に向かって流れ、放熱器6の水平方向へ拡がる。   On the other hand, the heat generating surface 2 b of the thermoelectric conversion device 2 generates heat, heat is transmitted to the substrate 7 of the radiator 6, and heat spreads to the fins 8. At this time, the dew condensation water discharged from the box 1 through the drain hole 4 is collected in the dew condensation water receiver 5. Furthermore, the dew condensation water supplied to the end surface 11 opposite to the gravity direction by the pump 9 enters the end surface flow path 12. Since the end surface 11 on the opposite side in the direction of gravity is inclined in the direction of gravity from the dew condensation water supply unit toward the end surface in the horizontal direction, the dew condensation water flows toward the end surface in the horizontal direction by gravity while partly diverting to the flow path 13. The heat spreader 6 extends in the horizontal direction.

次に、流路13に分流された結露水は、前記基板7上を重力方向へと流れ、略八の字状の分岐流路14に分流され、基板7全体に拡がる。その後、分岐流路14を流れる結露水は毛細管現象と重力の作用により、前記フィン8の表面上の微細流路15へ供給され、前記フィン8全体へと拡がる。   Next, the dew condensation water divided into the flow path 13 flows in the direction of gravity on the substrate 7, is divided into a substantially eight-shaped branch flow path 14, and spreads over the entire substrate 7. Thereafter, the condensed water flowing through the branch channel 14 is supplied to the fine channel 15 on the surface of the fin 8 by the action of capillary action and gravity, and spreads over the entire fin 8.

このように、結露水は放熱器6全体へと拡がるとともに、前述した熱電デバイス2の発熱面2bの熱が放熱器6へと伝わり、結露水を加熱し、蒸発させる。さらに、放熱器側送風装置16により、反重力方向へ放熱器6内に気流を流すことにより、結露水の流下速度を小さくし、放熱器6による加熱時間を延長するとともに、気流により結露水の蒸発を促進することができる。   As described above, the dew condensation water spreads over the entire radiator 6, and the heat of the heat generating surface 2 b of the thermoelectric device 2 described above is transmitted to the radiator 6 to heat and evaporate the dew condensation water. Further, the air blower 16 on the radiator side causes the air flow to flow in the anti-gravity direction to reduce the flow rate of the dew condensation water, thereby extending the heating time by the heat dissipator 6 and the dew condensation water by the air flow. Evaporation can be promoted.

以上のように本実施の形態は、ポンプ9によって結露水が放熱器6の端面流路12に供給できる。また、前記放熱器6は、基板7とフィン8から構成され、放熱器6の重力方向反対側端面11が、結露水供給部から水平方向端面に向かって重力方向に傾斜しており、また、重力方向反対側端面11から重力方向に結露水を流す流路13を放熱器6の基板7のフィン8接続表面上に設け、さらに流路13から分岐し重力方向に90度よりも小さい傾斜角で分岐流路14を設け、また、前記基板7と反対側端面方向に向かってフィン8表面上に微細流路15を設けたものである。加えて、前記放熱器側送風装置16により、反重力方向へ放熱器6内に気流を流すようにしたものである。   As described above, in the present embodiment, the condensed water can be supplied to the end surface flow path 12 of the radiator 6 by the pump 9. Further, the radiator 6 is composed of a substrate 7 and fins 8, and the end surface 11 on the opposite side to the gravitational direction of the radiator 6 is inclined in the gravitational direction from the dew condensation water supply unit toward the horizontal end surface. A flow path 13 through which condensed water flows from the end surface 11 opposite to the gravitational direction in the gravitational direction is provided on the fin 8 connection surface of the substrate 7 of the radiator 6, and is further branched from the flow path 13 and an inclination angle smaller than 90 degrees in the gravitational direction. The branch flow path 14 is provided, and the fine flow path 15 is provided on the surface of the fin 8 toward the end surface opposite to the substrate 7. In addition, an air flow is caused to flow in the radiator 6 in the antigravity direction by the radiator-side blower 16.

これらの構成にすることにより、冷却器3で生じた結露水を放熱器6全体に拡げ、加熱時間を延長し、熱電変換デバイス2の発熱面2bの発熱で蒸発させる結露水量を大幅に向上することができるとともに、蒸発潜熱を用いて放熱することにより放熱器6の放熱能力も向上することができる。   With these configurations, the condensed water generated in the cooler 3 is spread over the entire radiator 6, the heating time is extended, and the amount of condensed water evaporated by the heat generated on the heat generating surface 2 b of the thermoelectric conversion device 2 is greatly improved. In addition, the heat dissipation capability of the radiator 6 can be improved by dissipating heat using latent heat of vaporization.

(実施の形態2)
先の実施の形態1と同一の構成のものは同一の符号を付して詳細な説明は省略する。
(Embodiment 2)
Components having the same configurations as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6は、本発明の本実施の形態2における電子式保冷庫の背面図である。   FIG. 6 is a rear view of the electronic cool box in the second embodiment of the present invention.

噴霧器18は箱体1外に設置されており、結露水受け5内の結露水を放熱器6に噴霧する。   The sprayer 18 is installed outside the box 1 and sprays the condensed water in the condensed water receiver 5 onto the radiator 6.

以上のように構成された電子式保冷庫について、以下実施の形態1と異なる動作、作用を説明する。   Regarding the electronic cooler configured as described above, operations and effects different from those of the first embodiment will be described below.

噴霧器18によって噴霧された結露水は、放熱器6全体に均一に供給され、結露水を放熱器6全体に均等に供給することができ、結露水の蒸発量を向上させるとともに、放熱器6の放熱能力を向上させることができる。   The condensed water sprayed by the sprayer 18 is uniformly supplied to the entire radiator 6, and the condensed water can be evenly supplied to the entire radiator 6, improving the evaporation amount of the condensed water and improving the amount of the radiator 6. The heat dissipation capability can be improved.

以上のように本実施の形態では、噴霧器18により、結露水を放熱器6に噴霧することにより、結露水を放熱器6に均一に供給することができ、結露水の蒸発量を向上させるとともに、放熱器6の放熱能力を向上させることができる。   As described above, in the present embodiment, the sprayer 18 sprays the dew condensation water onto the radiator 6 so that the dew condensation water can be uniformly supplied to the radiator 6 and the evaporation amount of the dew condensation water is improved. The heat dissipation capability of the radiator 6 can be improved.

以上のように、本発明にかかる電子式保冷庫は、結露水を蒸発させ排出することが可能となるので、電子式冷温庫や冷蔵庫、薬品保管庫や理化学機器等の用途にも適用できる。   As described above, the electronic cool box according to the present invention can evaporate and discharge the condensed water, and thus can be applied to uses such as an electronic cool box, a refrigerator, a chemical storage box, and a physics and chemistry instrument.

本発明の実施の形態1における電子式保冷庫の背面図The rear view of the electronic cold storage in Embodiment 1 of this invention 図1のA−A線による断面図Sectional view by the AA line of FIG. 同実施の形態1における電子式保冷庫に用いた放熱器の正面図Front view of a radiator used in the electronic cool box in the first embodiment 同電子式保冷庫に用いた放熱器の上面図Top view of the radiator used in the electronic cold storage 図3のB−B線による断面図Sectional view by the BB line of FIG. 本発明の実施の形態2における電子式保冷庫の背面図The rear view of the electronic cold storage in Embodiment 2 of this invention 従来の冷温庫の側断面図Side cross-sectional view of conventional cold storage

符号の説明Explanation of symbols

1 箱体
2 熱電変換デバイス
2a 冷却面
2b 発熱面
3 冷却器
4 排水孔
5 結露水受け
6 放熱器
7 基板
8 フィン
9 ポンプ
10 結露水供給部
11 重力方向反対側端面
12 重力方向反対側端面流路
13 流路
14 分岐流路
15 フィン表面上微細流路
16 放熱器側送風装置
18 噴霧器
DESCRIPTION OF SYMBOLS 1 Box 2 Thermoelectric conversion device 2a Cooling surface 2b Heat generating surface 3 Cooler 4 Drain hole 5 Condensation water receptacle 6 Radiator 7 Substrate 8 Fin 9 Pump 10 Condensation water supply part 11 Gravity direction opposite end surface 12 Gravity direction opposite end surface flow Road 13 Flow path 14 Branch flow path 15 Fine flow path on fin surface 16 Radiator-side air blower 18 Sprayer

Claims (8)

内部に貯蔵空間を持つ箱体と、二つの伝熱面を持ち一方が吸熱面としてまた他方が発熱面として働く熱電変換デバイスと、前記吸熱面に熱的に接続され前記箱体内もしくは前記貯蔵空間内に設置された冷却器と、前記発熱面に熱的に接続された放熱器と、前記冷却器あるいは前記貯蔵空間内に結露した結露水を前記箱体外へ排出する排水孔と、前記箱体外に設置され結露水を収集する結露水受けと、前記結露水受けから結露水を汲み上げるポンプと、前記ポンプから汲み上げられた結露水を、前記放熱器の重力方向反対側端面に供給する結露水供給部とからなる電子式保冷庫。   A box having a storage space inside, a thermoelectric conversion device having two heat transfer surfaces, one serving as a heat absorption surface and the other serving as a heat generation surface; and the box or the storage space thermally connected to the heat absorption surface A cooler installed inside, a radiator thermally connected to the heating surface, a drain hole for discharging condensed water condensed in the cooler or the storage space to the outside of the box, and the box A dew condensation receiver installed outside the body to collect dew condensation water, a pump that pumps the dew condensation water from the dew condensation water receiver, and a dew condensation that pumps the dew condensation water pumped from the pump to the end surface opposite to the gravitational direction of the radiator An electronic cooler consisting of a water supply unit. 前記放熱器を、基板と前記基板と熱的に接続されたフィンとより構成した請求項1に記載の電子式保冷庫。   The electronic cooler according to claim 1, wherein the radiator is composed of a substrate and fins that are thermally connected to the substrate. 前記放熱器を、前記重力方向反対側端面が前記結露水供給部から重力方向に傾斜する形状とした請求項2に記載の電子式保冷庫。   The electronic cooler according to claim 2, wherein the radiator has a shape in which an end surface on the opposite side in the gravity direction is inclined in the gravity direction from the condensed water supply unit. 前記放熱器の前記重力方向反対側端面に、前記結露水が流れる流路を設けた請求項2または3に記載の電子式保冷庫。   The electronic cool box according to claim 2 or 3, wherein a flow path through which the condensed water flows is provided on an end surface on the opposite side of the gravitational direction of the radiator. 前記放熱器における前記基板の前記フィン接続表面上に、前記重力方向反対側端面から重力方向に結露水を流す複数の流路を設けた請求項2から4のいずれか一項に記載の電子式保冷庫。   5. The electronic system according to claim 2, wherein a plurality of flow paths for allowing condensed water to flow in the direction of gravity from the end surface opposite to the direction of gravity are provided on the fin connection surface of the substrate in the radiator. Cold storage. 前記放熱器における前記基板の前記フィン接続表面上に、複数の前記流路から分岐し、重力方向に90度よりも小さい傾斜角で分岐流路を設けた請求項5に記載の電子式保冷庫。   6. The electronic cool box according to claim 5, wherein a branch channel is provided at an inclination angle smaller than 90 degrees in the direction of gravity on the fin connection surface of the substrate in the radiator. . 前記放熱器のフィン表面上に、前記分岐流路から前記基板と反対側端面方向に向かって微細流路を設けた請求項6に記載の電子式保冷庫。   The electronic cool box according to claim 6, wherein a fine flow path is provided on the fin surface of the radiator from the branch flow path toward the end surface on the side opposite to the substrate. 内部に貯蔵空間を持つ箱体と、二つの伝熱面を持ち一方が吸熱面としてまた他方が発熱面として働く熱電変換デバイスと、前記吸熱面に熱的に接続され前記箱体内もしくは前記貯蔵空間内に設置された冷却器と、前記発熱面に熱的に接続された放熱器と、前記冷却器あるいは前記貯蔵空間内に結露した結露水を前記箱体外へ排出する排水孔と、前記箱体外に設置され結露水を収集する結露水受けと、前記箱体外に設置した噴霧器とから構成され、前記噴霧器で前記結露水受けに収集された結露水を前記放熱器に噴霧する電子式保冷庫。   A box having a storage space inside, a thermoelectric conversion device having two heat transfer surfaces, one serving as a heat absorption surface and the other serving as a heat generation surface; and the box or the storage space thermally connected to the heat absorption surface A cooler installed inside, a radiator thermally connected to the heating surface, a drain hole for discharging condensed water condensed in the cooler or the storage space to the outside of the box, and the box An electronic type comprising a dew condensation receiver installed outside the body and collecting dew condensation water and a sprayer installed outside the box, and spraying the dew condensation water collected in the dew condensation receiver by the sprayer onto the radiator Cold storage.
JP2004276863A 2004-09-24 2004-09-24 Electronic cold insulating storage Pending JP2006090635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276863A JP2006090635A (en) 2004-09-24 2004-09-24 Electronic cold insulating storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276863A JP2006090635A (en) 2004-09-24 2004-09-24 Electronic cold insulating storage

Publications (1)

Publication Number Publication Date
JP2006090635A true JP2006090635A (en) 2006-04-06

Family

ID=36231791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276863A Pending JP2006090635A (en) 2004-09-24 2004-09-24 Electronic cold insulating storage

Country Status (1)

Country Link
JP (1) JP2006090635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181121A (en) * 2009-02-09 2010-08-19 Okamura Corp Device for evaporation of drain water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181121A (en) * 2009-02-09 2010-08-19 Okamura Corp Device for evaporation of drain water

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
KR102015917B1 (en) Cooling device using thermo-electric module
US7926553B2 (en) Cooling system for electronic devices, in particular, computers
US7007746B2 (en) Circulative cooling apparatus
WO2014157147A1 (en) Cooling apparatus
US20050121180A1 (en) Use of graphite foam materials in pumped liquid, two phase cooling, cold plates
US8297062B2 (en) Heat-dissipating device for supplying cold airflow
US7447025B2 (en) Heat dissipation device
JP4953075B2 (en) heatsink
CN108495540A (en) A kind of heat-radiating device of electric component with soaking plate
WO2017110677A1 (en) Heat exchanger and cooling tower
JP2006090635A (en) Electronic cold insulating storage
JP6825615B2 (en) Cooling system and cooler and cooling method
US20080128109A1 (en) Two-phase cooling technology for electronic cooling applications
JP2006090633A (en) Electronic cold insulating storage
JP2008218513A (en) Cooling device
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
JP5624771B2 (en) Heat pipe and heat sink with heat pipe
JP3893651B2 (en) Boiling cooling device and casing cooling device using the same
JP5934886B2 (en) Cooling device and electric vehicle equipped with the same
JPH10141807A (en) Air cooled heat dissipation apparatus
JP7450125B2 (en) heat sink
EP2363882A1 (en) Heat-dissipating device for supplying cold airflow
CN108966588B (en) Heat radiator utilizing condensed water to radiate heat
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR