JP2006090391A - Boot for constant velocity joint - Google Patents

Boot for constant velocity joint Download PDF

Info

Publication number
JP2006090391A
JP2006090391A JP2004274995A JP2004274995A JP2006090391A JP 2006090391 A JP2006090391 A JP 2006090391A JP 2004274995 A JP2004274995 A JP 2004274995A JP 2004274995 A JP2004274995 A JP 2004274995A JP 2006090391 A JP2006090391 A JP 2006090391A
Authority
JP
Japan
Prior art keywords
boot
velocity joint
constant velocity
elastic limit
high elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004274995A
Other languages
Japanese (ja)
Inventor
Shinichi Takabe
真一 高部
Hiroshi Niwa
洋 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004274995A priority Critical patent/JP2006090391A/en
Priority to PCT/JP2005/017067 priority patent/WO2006033284A1/en
Publication of JP2006090391A publication Critical patent/JP2006090391A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • F16D3/843Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
    • F16D3/845Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight, compact boot for a constant velocity joint suitable for high speed rotation. <P>SOLUTION: The boot 1 is provided with a large diameter cylinder section 2 mounted on an end of an outer ring A of the constant velocity joint, a small diameter cylinder section 3 mounted on a boot connecting section of a shaft B, and a film-shaped section 4 integrally coupling both cylinder sections 2 and 3. The boot is made from a material having a high elastic limit property, and a shape and wall-thickness of the film-shaped section 4 are set up at the basis of the high elastic limit property. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、自動車や産業機械等に用いられる等速ジョイントのブーツに関する。   The present invention relates to a constant velocity joint boot used in automobiles, industrial machines, and the like.

自動車用等の等速ジョイントは、内部に封入されたグリースの外部への漏れ防止や、等速ジョイント内部への異物侵入を防止する目的でブーツが装着される。このブーツは、等速ジョイントの外輪端部に設けられたブーツ取付部位に装着される大径円筒部と、等速ジョイントに連結されたシャフトに設けられたブーツ取付部位に装着される小径円筒部、および両円筒部を一体的に連結する蛇腹状部位から構成される。   A constant velocity joint for automobiles or the like is equipped with a boot for the purpose of preventing leakage of grease sealed inside to the outside and preventing foreign matter from entering the constant velocity joint. This boot has a large-diameter cylindrical portion that is attached to the boot attachment portion provided at the outer ring end of the constant velocity joint, and a small-diameter cylindrical portion that is attached to the boot attachment portion provided on the shaft connected to the constant velocity joint. , And a bellows-like portion that integrally connects both cylindrical portions.

等速ジョイントには、作動角を取りながら回転したり、軸方向にスライドしながら回転する機能が備わっており、その挙動に追従できるブーツの柔軟性が必要である。その柔軟性を確保するために、従来のブーツは蛇腹形状をしている(例えば、特許文献1)。
特開2001−65594号公報
The constant velocity joint has a function of rotating while taking an operating angle or rotating while sliding in the axial direction, and the flexibility of the boot that can follow the behavior is required. In order to ensure the flexibility, the conventional boot has a bellows shape (for example, Patent Document 1).
JP 2001-65594 A

近年、自動車部品等の等速ジョイントでは、軽量・コンパクト化が強く求められており、これと同様に、等速ジョイント用ブーツにおいても軽量・コンパクト化が求められる。しかし、従来の等速ジョイント用ブーツは、上記のように等速ジョイントの挙動に対応するために、蛇腹形状を成している。そのため、作動角を取ることで、山同士が接触して摩耗したり、谷部がシャフトと接することで、摩耗したりして、ブーツを早期に寿命に至らせる。あるいは、蛇腹の屈曲点である谷部や山部に応力が集中することで亀裂が発生し、ブーツを早期に寿命に至らせる場合がある。
これらを回避するために、外形の大きなブーツ設計を取ることになり、結果としてブーツ容量が大きくなり、ブーツ重量も重くなってしまったり、等速ジョイント内部に封入するグリース量が増えてグリース重量が重くなってしまうと言った課題がある。
In recent years, constant velocity joints for automobile parts and the like are strongly demanded to be lightweight and compact, and similarly, constant velocity joint boots are also required to be lightweight and compact. However, the conventional constant velocity joint boot has a bellows shape in order to cope with the behavior of the constant velocity joint as described above. Therefore, by taking the operating angle, the ridges come into contact with each other and wear, or the valleys come into contact with the shaft, so that the boots reach the end of their life early. Or a crack may generate | occur | produce when stress concentrates on the trough part and peak part which are the bending points of a bellows, and a boot may be brought to life early.
In order to avoid these problems, a boot design with a large outer shape is adopted. As a result, the boot capacity is increased, the boot weight is increased, the amount of grease enclosed in the constant velocity joint is increased, and the grease weight is increased. There is a problem that said it will be heavy.

また、ブーツのコンパクトさに欠けることから、周辺部材とのクリアランスの確保にも課題があった。さらに、ブーツの外径が大きくなってしまうことや、容積が大きいことによる封入グリース量の増加から、回転時の遠心力が大きくなることで、回転時の振れ回り量、すなわち膨張変形量(以下、回転膨張量と称す)が大きくなり、そのため干渉を生じ易くなり、最大限界回転数も抑制されると言った課題があった。   In addition, since the boot is not compact, there is a problem in securing clearance with peripheral members. Furthermore, due to the increase in the amount of grease filled due to the increase in the outer diameter of the boot and the increase in the volume, the centrifugal force during rotation increases, so that the amount of run-out during rotation, that is, the amount of expansion deformation (hereinafter referred to as the amount of expansion deformation) (Referred to as “rotational expansion amount”), so that interference is likely to occur, and the maximum limit rotational speed is suppressed.

この発明の目的は、軽量かつコンパクトで、高速回転にも適した等速ジョイント用ブーツを提供することである。   An object of the present invention is to provide a constant velocity joint boot that is lightweight and compact and suitable for high-speed rotation.

この発明の等速ジョイント用ブーツは、高弾性限特性を持つ材料が用いられ、その高弾性限特性に基づいて、ブーツの形状、肉厚が設定されたものである。
高弾性限特性に基づいたブーツ形状,肉厚の設定を行うことで、蛇腹形状を採用することなく、凹凸の少ないシンプルな断面形状で等速ジョイントの作動角の変化や、あるいはさらにスライド等の挙動に追従可能なブーツとできる。そのため膜状部の沿面長さ(すなわち、表面沿った長さ)が短くなってブーツを軽量化でき、かつコンパクト化を達成できる。このコンパクト化により、等速ジョイント内の封入グリース量を減量でき、その結果、回転膨張量を少なくできて、最大限界回転数の拡大が可能になる。また、蛇腹形状がないことから、作動角を取っても、ブーツとシャフトやブーツの外内面同士の接触が生じないものとでき、あるいは軽減でき、そのため摩耗を無くすことができる。摩耗が生じないため、耐摩耗性が要求されず、高弾性限特性を持つ材質の選定範囲が広がる。
The constant velocity joint boot of the present invention uses a material having a high elastic limit characteristic, and the shape and thickness of the boot are set based on the high elastic limit characteristic.
By setting the boot shape and wall thickness based on the high elastic limit characteristics, it is possible to change the operating angle of the constant velocity joint with a simple cross-sectional shape with few irregularities, or even slide, etc. without adopting the bellows shape The boot can follow the behavior. Therefore, the creeping length (that is, the length along the surface) of the film-like portion is shortened, so that the boot can be reduced in weight and compactness can be achieved. Due to this compactness, the amount of grease charged in the constant velocity joint can be reduced. As a result, the amount of rotational expansion can be reduced, and the maximum limit rotational speed can be increased. Further, since there is no bellows shape, even if the operating angle is taken, the contact between the boot and the shaft or the outer inner surface of the boot can be prevented or reduced, so that wear can be eliminated. Since no wear occurs, wear resistance is not required, and the selection range of materials having high elastic limit properties is expanded.

なお、上記弾性限は、弾性限度または弾性限界とも呼ばれる。また、この明細書で言う高弾性限は、その材料で製作されるブーツが蛇腹形状よりも平坦な形状であっても、つまり多数の山や谷を有する屈曲形状でなくても、等速ジョイントの挙動に追従可能なブーツとできる程度に高い弾性限のことである。   The elastic limit is also called an elastic limit or an elastic limit. In addition, the high elasticity limit in this specification means that a constant velocity joint can be used even if the boot made of the material is flatter than the bellows shape, that is, not in a bent shape having a large number of peaks and valleys. The boots can follow the behavior of the body and the elasticity limit is as high as possible.

この発明の等速ジョイント用ブーツは、具体的には、等速ジョイントの外輪端部に取付けられる大径円筒部と、等速ジョイントのシャフトのブーツ嵌合部に取付けられる小径円筒部と、上記両円筒部を一体に連結する膜状部とからなる等速ジョイント用ブーツにおいて、前記膜状部に高弾性限特性を持つ材料が用いられ、その高弾性限特性に基づいて前記膜状部の形状、肉厚が設定されたものである。
必ずしもブーツの全体が高弾性限特性を持つ必要はなく、膜状部が高弾性限特性を持つ材質であれば良い。大径円筒部および小径円筒部は高弾性限特性が必要ではなく、部分によって材質が異なるようにブーツを成形しても良い。また、膜状部等が、内外に層状に材質の異なるものとされていても良い。
Specifically, the boot for the constant velocity joint of the present invention, specifically, a large diameter cylindrical portion attached to the outer ring end portion of the constant velocity joint, a small diameter cylindrical portion attached to the boot fitting portion of the shaft of the constant velocity joint, In a constant velocity joint boot comprising a membrane-like portion integrally connecting both cylindrical portions, a material having a high elastic limit property is used for the membrane-like portion, and based on the high elastic limit property, The shape and thickness are set.
The entire boot need not necessarily have a high elastic limit property, and any material having a high elastic limit property may be used for the film-like portion. The large-diameter cylindrical portion and the small-diameter cylindrical portion do not need high elastic limit characteristics, and the boot may be formed so that the material differs depending on the portion. Further, the film-like portion and the like may be made of different materials in layers inside and outside.

前記高弾性限特性の程度は、好ましくは、ストレイン−ストレス曲線において160%以上の伸長時までのモジュラスが正の一次勾配を有する特性であり、より好ましくは250%以上である。以下の説明では、弾性限を、上記一次勾配を示す最大の伸長割合で説明する。
従来の一般的なブーツの材料では、弾性限が120%程度であるが、この程度の弾性限では、等速ジョイントの挙動に追従可能なブーツとするためには、蛇腹形状を採らざるを得ない。弾性限が160%程度以上であると、蛇腹形状とせずに、例えば円錐形等であっても、等速ジョイントの挙動に追従可能なブーツとできる。
The degree of the high elastic limit property is preferably a property in which the modulus up to 160% or more in the strain-stress curve has a positive first-order gradient, and more preferably 250% or more. In the following description, the elastic limit will be described by the maximum elongation ratio indicating the primary gradient.
In the conventional general boot material, the elastic limit is about 120%, but in order to make the boot capable of following the behavior of the constant velocity joint, it is necessary to adopt a bellows shape. Absent. If the elastic limit is about 160% or more, the boot can follow the behavior of the constant velocity joint even if it has a conical shape, for example, without the bellows shape.

この発明における他の等速ジョイント用ブーツは、等速ジョイントの外輪端部に取付けられる大径円筒部と、等速ジョイントのシャフトのブーツ嵌合部に取付けられる小径円筒部と、上記両円筒部を一体に連結する膜状部とからなる等速ジョイント用ブーツにおいて、前記膜状部に高弾性限特性を持つ材料を用い、等速ジョイントが最大作動角を取った状態で、前記膜状部とシャフトが干渉せず、またはブーツ自体の任意の2箇所における相互の接触が生じない形状としたことを特徴とする。
汎用のゴム材料には、弾性限が数百%程度のものもあるが、ブーツでは、耐熱性,耐寒性,耐疲労性,耐油性等が要求され、また従来の蛇腹状のブーツでは、さらに耐摩耗性が要求されるため、使用可能な材料の範囲が限られ、高弾性限特性を持つ材料の選定が難しい。新たに材料を開発するとしても、要求項目が多くて開発が難しい。しかし、等速ジョイントが最大作動角を取った状態で、ブーツの膜状部とシャフトが干渉せず、またはブーツ自体の任意の2箇所における相互の接触が生じない形状のブーツであれば、干渉または接触が生じることを考慮した耐摩耗性は必要ではなくなる。このため、材料の選定範囲が広がり、前記干渉や接触を生じない形状の採用が可能な高弾性限特性を持つ材料の選定、あるいはそのような材料の開発の実現が可能になる。
Other constant velocity joint boots in this invention are a large diameter cylindrical portion attached to the outer ring end of the constant velocity joint, a small diameter cylindrical portion attached to the boot fitting portion of the shaft of the constant velocity joint, and both the cylindrical portions. In a constant velocity joint boot comprising a membrane-like portion integrally connecting the membrane-like portion, a material having a high elastic limit property is used for the membrane-like portion, and the membrane-like portion takes a maximum operating angle. And the shaft do not interfere with each other, or are not in contact with each other at any two locations of the boot itself.
Some general-purpose rubber materials have an elastic limit of several hundred percent, but boots are required to have heat resistance, cold resistance, fatigue resistance, oil resistance, etc. Since wear resistance is required, the range of materials that can be used is limited, and it is difficult to select materials having high elastic limit properties. Even if new materials are developed, there are many requirements and development is difficult. However, if the constant velocity joint is at the maximum operating angle, the boot membrane and the shaft do not interfere with each other, or if the boot has a shape that does not cause mutual contact at any two locations on the boot itself, interference occurs. Or, wear resistance considering the occurrence of contact is not necessary. For this reason, the selection range of the material is expanded, and it is possible to select a material having a high elastic limit property that can adopt a shape that does not cause the interference and contact, or to realize the development of such a material.

この場合に、前記ブーツの前記膜状部の材質は、前記干渉または接触が生じることによって必要とされる耐摩耗性を有する材質であっても良いが、この程度まで優れた耐摩耗性を有しない材質であっても良い。前記耐摩耗性がない材料の中で、前記高弾性限特性を持つ材料があれば、その材料を用いれば良い。   In this case, the material of the film-like portion of the boot may be a material having wear resistance required by the occurrence of the interference or contact, but has excellent wear resistance to this extent. It may be a material that does not. If there is a material having the high elastic limit property among the materials having no wear resistance, the material may be used.

この発明の等速ジョイント用ブーツの材料選定方法は、耐熱性を選定するステップと、耐寒性を選定するステップと、耐疲労性を選定するステップと、耐油性を選定するステップと、高弾性限特性を選定するステップとを含む方法である。各ステップの順は、互いに入れ代わっても、また同時に行われても、またいずれか一つまたは複数のステップが繰り返されても良い。
この発明の材料選定方法は、等速ジョイント用ブーツの材料として、耐熱性、耐寒性、耐疲労性、耐油性、および高弾性限特性を兼ね備える材料を選定する方法である。耐摩耗性は、特に考慮しなくても良い。この材料選定方法によると、この発明の上記各構成の等速ジョイント用ブーツの材料選択が的確に行える。
The material selection method for the constant velocity joint boot of the present invention includes a step of selecting heat resistance, a step of selecting cold resistance, a step of selecting fatigue resistance, a step of selecting oil resistance, and a high elastic limit. Selecting a characteristic. The order of the steps may be interchanged with each other, may be performed simultaneously, or any one or more steps may be repeated.
The material selection method of the present invention is a method for selecting a material having heat resistance, cold resistance, fatigue resistance, oil resistance, and high elastic limit properties as a material for a constant velocity joint boot. The wear resistance need not be taken into consideration. According to this material selection method, the material selection of the constant velocity joint boot having the above-described configurations of the present invention can be performed accurately.

この発明の等速ジョイント用ブーツは、高弾性限特性に基づいて、ブーツの形状、肉厚が設定されたものであるため、軽量かつコンパクトで、封入グリース量の減量、回転膨張量の縮小が図れ、高速回転にも適したものとなる。   The constant velocity joint boot according to the present invention has a boot shape and wall thickness set based on the high elastic limit characteristics, so it is lightweight and compact, and the amount of encapsulated grease is reduced and the rotational expansion amount is reduced. It is suitable for high-speed rotation.

以下、図面に基づき、この発明の実施形態を説明する。図1および図2は、第1の実施形態を示す。この等速ジョイント用ブーツ1は、図1(a)に示すように、等速ジョイントの外輪Aの端部に取り付けられる大径円筒部2と、等達ジョイントのシャフトBのブーツ嵌合部に取り付けられる小径円筒部3と、これらの両円筒部2,3を一体に連結する筒状の膜状部4とから成る。 各円筒部2,3の取り付けは、それぞれの内周の環状突起2a,3aを、外輪Aの端部およびシャフトBのブーツ嵌合部の外周に形成されたブーツ取付用溝D1,D2に係合させて、環状の締結部材Cl,C2で固定している。
なお、大径円筒部2は、外輪Aの端部の形状が非円筒形状の場合、その形状に則した形状を成しても良いし、または、円筒状を成して外輪Aの端部との空隙に他部材を介しても良い。
外輪Aの端部形状に大径円筒部2の形状が則した形状を成す場合の、その形状は、内面が外輪Aの端部形状に沿い、外面が円筒状であっても良いし、内外面共に外輪Aの端部形状に則した非円筒形状を成しても良い。
本発明では、上述の形状も含めて「大径円筒部」と表現している。図13に上述の非円筒形状の例を示す。これはトリポードタイプの等速ジョイントに用いられる一例を記しているが、この形状に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment. As shown in FIG. 1A, the constant velocity joint boot 1 includes a large diameter cylindrical portion 2 attached to the end of the outer ring A of the constant velocity joint, and a boot fitting portion of the shaft B of the equal joint. A small-diameter cylindrical portion 3 to be attached and a cylindrical film-like portion 4 that integrally connects both the cylindrical portions 2 and 3. The cylindrical portions 2 and 3 are attached by engaging the annular protrusions 2a and 3a on the inner periphery with the boot mounting grooves D1 and D2 formed on the end of the outer ring A and the outer periphery of the boot fitting portion of the shaft B. These are fixed by annular fastening members Cl and C2.
In addition, when the shape of the end part of the outer ring A is a non-cylindrical shape, the large diameter cylindrical part 2 may form a shape according to the shape, or may form a cylindrical shape and the end part of the outer ring A Other members may be interposed in the gap.
When the shape of the large-diameter cylindrical portion 2 conforms to the end shape of the outer ring A, the inner surface may be along the end shape of the outer ring A, and the outer surface may be cylindrical. Both the outer surfaces may have a non-cylindrical shape conforming to the end shape of the outer ring A.
In the present invention, it is expressed as a “large-diameter cylindrical portion” including the above-described shape. FIG. 13 shows an example of the non-cylindrical shape described above. This is an example used for a tripod type constant velocity joint, but it is not limited to this shape.

なお、このブーツ1が装着される等速ジョイントは、シャフトBのブーツ嵌合部の外径が、外輪Aの端部の外径の0.2〜0.4倍、作動角を取らない状態での外輪Aの端部とシャフトBのブーツ嵌合部の間の距離が、外輪Aの端部の外径の0.3〜0.9倍であり、シャフトBが軸方向にスライドしない固定型のものである。   The constant velocity joint to which the boot 1 is attached is such that the outer diameter of the boot fitting portion of the shaft B is 0.2 to 0.4 times the outer diameter of the end portion of the outer ring A and does not take an operating angle. The distance between the end portion of the outer ring A and the boot fitting portion of the shaft B is 0.3 to 0.9 times the outer diameter of the end portion of the outer ring A, and the shaft B does not slide in the axial direction. Of the type.

この等速ジョイント用ブーツ1は、全体、または少なくとも膜状部4が高弾性限特性を持つ弾性体材料で形成され、その高弾性限特性に基づいて、形状および肉厚が設定されたものである。この等速ジョイント用ブーツ1の形状は、高弾性限特性に基づき、蛇腹形状のような凹凸を持たないシンプルな断面形状とされており、この実施形態では、膜状部4が、両円筒部2,3の互いに対向する端部どうしを直線的につなぐ円錐台形状に形成されている。   This constant velocity joint boot 1 is formed entirely or at least with a film-like portion 4 of an elastic material having a high elastic limit characteristic, and has a shape and thickness set based on the high elastic limit characteristic. is there. The constant velocity joint boot 1 has a simple cross-sectional shape having no irregularities such as a bellows shape based on a high elastic limit characteristic. In this embodiment, the film-like portion 4 includes both cylindrical portions. It is formed in a truncated cone shape that linearly connects two and three mutually facing ends.

ここで言う高弾性限特性は、ストレイン−ストレス曲線において、大きな伸長時までのモジュラスが正の一次勾配を有する特性のことである。上記「大きな伸長時」は、数値的に示せば、例えば160%以上の伸長時であり、より好ましくは250%以上である。
上記高弾性限特性を等速ジョイント用ブーツ1の構成との関係で特定すると、その材料で製作されるブーツ1が蛇腹形状よりも平坦な形状であっても、つまり多数の山や谷を有する屈曲形状でなくても、等速ジョイント1の挙動に追従可能なブーツとできる程度に高い弾性限を持つ特性のことである。
The high elastic limit characteristic referred to here is a characteristic in which the modulus up to a large extension has a positive first-order gradient in the strain-stress curve. The above-mentioned “at the time of large extension” is, for example, at the time of extension of 160% or more, and more preferably 250% or more, in numerical terms.
When the high elastic limit characteristic is specified in relation to the configuration of the constant velocity joint boot 1, even if the boot 1 made of the material is flatter than the bellows shape, that is, it has a large number of peaks and valleys. Even if it is not a bent shape, it is a characteristic that has a high elastic limit to the extent that it can be a boot that can follow the behavior of the constant velocity joint 1.

図1(b)は、等速ジョイントが最大の作動角となったときの状態を示す。この状態においても、膜状部4は、両円筒部2,3が接近した側で外側に撓み、両円筒部2,3が離れた側で伸びるように変形して、等遮ジョイントの挙動に追従できるようになっている。つまり、等速ジョイントが最大作動角を取った状態で、膜状部4とシャフトBとが干渉せず、またブーツ1自体の任意の2箇所における相互の接触が生じない形状となっている。ここで、膜状部4の弾性限が高いほど、等速ジョイントの大きな作動角に追従できる。等速ジョイントの諸寸法が前述した範囲にある場合、例えば、膜状部4を弾性限が160%以上の材料で形成すれば、等速ジョイントが45deg以上の大きい作動角を取ったときにも追従できる。   FIG. 1B shows a state when the constant velocity joint has the maximum operating angle. Even in this state, the film-like portion 4 bends outward on the side where the cylindrical portions 2 and 3 are close to each other and deforms so as to extend on the side where the cylindrical portions 2 and 3 are apart from each other. It can be followed. In other words, in a state where the constant velocity joint takes the maximum operating angle, the membrane portion 4 and the shaft B do not interfere with each other, and the boot 1 itself does not contact each other at any two locations. Here, the higher the elastic limit of the membrane-like part 4 is, the larger the operating angle of the constant velocity joint can be followed. When the dimensions of the constant velocity joint are in the above-described range, for example, if the film-like portion 4 is formed of a material having an elastic limit of 160% or more, the constant velocity joint also takes a large operating angle of 45 degrees or more. Can follow.

この構成のように、ブーツ1の形状,肉厚を高弾性限特性に基づいて設定すると、従来のブーツにある蛇腹形状を持たなくても良いため、ブーツ1が他の部位と接触することがなくなる。そのため、接触による摩耗が発生せず、したがって材料の耐摩耗性を緩和させても、ブーツ1を実用的に使用可能なものとできる。耐摩耗性の要件が緩和されるため、材料の選定範囲が広がり、その分、高弾性限特性を持つ材料の選定範囲が広がる。   If the shape and thickness of the boot 1 are set on the basis of the high elastic limit characteristics as in this configuration, the boot 1 may come into contact with other parts because it does not have to have the bellows shape of the conventional boot. Disappear. Therefore, wear due to contact does not occur. Therefore, even if the wear resistance of the material is reduced, the boot 1 can be used practically. Since the requirement for wear resistance is relaxed, the selection range of materials is expanded, and accordingly, the selection range of materials having high elastic limit properties is expanded.

ブーツ1の形状や肉厚を決定する際には、(1) 耐熱性、(2) 耐寒性、(3) 耐疲労性、(4) 耐油性、を考慮して選定して行くが、この実施形態では(5) 高弾性限特性を加えて選定を行う。従来必要とされていた耐摩耗性の選定は不要となる。   When deciding the shape and thickness of the boot 1, select it considering (1) heat resistance, (2) cold resistance, (3) fatigue resistance, and (4) oil resistance. In the embodiment, (5) selection is made by adding high elastic limit characteristics. The selection of wear resistance, which has been conventionally required, becomes unnecessary.

図13は、ブーツ1の材料選定方法の一例を示す。この選定方法は、耐熱性を選定するステップ(S1)と、耐寒性を選定するステップ(S2)と、耐疲労性を選定するステップ(S3)と、耐油性を選定するステップ(S4)と、高弾性限特性を選定するステップ(S5)とを含む方法である。各ステップ(S1)〜(S5)の順は、互いに入れ代わっても、また同時に行われても良く、またいずれか一つまたは複数のステップ(S1)〜(S5)が繰り返されても良い。   FIG. 13 shows an example of a material selection method for the boot 1. This selection method includes a step of selecting heat resistance (S1), a step of selecting cold resistance (S2), a step of selecting fatigue resistance (S3), a step of selecting oil resistance (S4), Selecting a high elastic limit property (S5). The order of the steps (S1) to (S5) may be interchanged with each other, may be performed simultaneously, or any one or a plurality of steps (S1) to (S5) may be repeated.

上記材質の他に、ブーツ1の材料に要求される特性としては、引張り破断強度がある。引張り破断強度は3〜40MPa、好ましくは5〜30MPaである。さらには、その材料の100×72h×10%圧縮時における圧縮永久歪みが80%以下であることが好ましい。これらの材質を備えるブーツ1の材料は、熱可塑性エラストマーであり、ポリエステル系、ポリウレタン系、ポリアミド系のいずれかであることが好ましい。これらの材料によるブーツ1の成形は、射出成形、圧縮成形、またはブロー成形、または射出や圧縮とブローとの複合的な成形によって行われる。また、ブーツ1は、ラミネート法等のように層状に複数の材料で形成しても良い。   In addition to the above materials, the properties required for the material of the boot 1 include tensile breaking strength. The tensile strength at break is 3 to 40 MPa, preferably 5 to 30 MPa. Furthermore, it is preferable that the compression set when the material is compressed by 100 × 72 h × 10% is 80% or less. The material of the boot 1 provided with these materials is a thermoplastic elastomer, and is preferably any one of polyester, polyurethane, and polyamide. The boot 1 is formed of these materials by injection molding, compression molding, or blow molding, or a combination of injection, compression, and blow. The boot 1 may be formed of a plurality of materials in a layered manner, such as a laminating method.

図2ないし図6は、それぞれ図1と共に前述した第1の実施形態において、一部を変形した変形例を示す。これら図2〜図6の例、および図7以降の各例において、特に説明する事項の他は、第1の実施形態と同様である。   2 to 6 show modifications in which a part of the first embodiment described above with reference to FIG. 1 is modified. In the examples of FIGS. 2 to 6 and each of the examples in FIG.

図2は、ブーツ1の肉厚を部位によって変化させた変形例を示す。図2(a)は、大径円筒部2側を厚くした例で、大径円筒部2側の剛性が高まることにより、回転膨張量の低減が図れる。一方、図2(b)は、小径円筒部3側を厚くした例で、相対的に大径円筒部2側の柔軟性が向上して、回転時の膜状部4の変形が円滑に行われるようになる。   FIG. 2 shows a modification in which the thickness of the boot 1 is changed depending on the part. FIG. 2A is an example in which the large-diameter cylindrical portion 2 side is thickened, and the rotational expansion amount can be reduced by increasing the rigidity of the large-diameter cylindrical portion 2 side. On the other hand, FIG. 2B is an example in which the small-diameter cylindrical portion 3 side is thickened, and the flexibility on the relatively large-diameter cylindrical portion 2 side is relatively improved, so that the deformation of the membrane-like portion 4 during rotation is smoothly performed. Will come to be.

図3(a), (b), (c)は、それぞれ膜状部4の大径円筒部2の近傍の外面、内面または内外両面に、周方向に延びる環状リブ5を設けた例である。これらの各例では、環状リブ5を設けた部位の剛性が高まり、作動角を取ったときに、図1(b)で示した膜状部4のたわみ変形がより安定するようになる。また、回転膨張量の低減も図れる。   FIGS. 3A, 3B and 3C are examples in which annular ribs 5 extending in the circumferential direction are provided on the outer surface, the inner surface or both the inner and outer surfaces of the membrane-like portion 4 in the vicinity of the large-diameter cylindrical portion 2, respectively. . In each of these examples, the rigidity of the portion where the annular rib 5 is provided increases, and the deflection deformation of the film-like portion 4 shown in FIG. 1B becomes more stable when the operating angle is taken. Also, the amount of rotational expansion can be reduced.

図4(a)、(b)、(c)は、それぞれ膜状部4の外面、内面または内外両面に、図3で示したのと同様の環状リブ5を複数設けた例であり、作動角を取ったときの膜状部4のたわみ変形がさらに安定し、回転膨張量も一層少なくなる。   4 (a), 4 (b), and 4 (c) are examples in which a plurality of annular ribs 5 similar to those shown in FIG. 3 are provided on the outer surface, the inner surface, or both the inner and outer surfaces of the film-like portion 4, respectively. The bending deformation of the film-like portion 4 when the corner is taken is further stabilized, and the rotational expansion amount is further reduced.

図5(a)、(b)は、それぞれ膜状部4の外面または内面に、軸方向に沿って延びる直線状リブ6を複数設けた例、図6(a)、(b)は、それぞれ膜状部4の外面または内面に、図5のリブ6よりも幅の広い直線状リブ7を周方向に連続的に設けた例である。なお、図示は省略するが、膜状部の内外両面に直線状リブを設けることもできる。直線状リブ6,7を設けることにより、膜状部4の全体の剛性を高めて、回転時に作用する振れ力による不規則な変形を抑えることができる。   5 (a) and 5 (b) are examples in which a plurality of linear ribs 6 extending along the axial direction are provided on the outer surface or the inner surface of the film-like portion 4, respectively, and FIGS. 6 (a) and 6 (b) respectively. This is an example in which linear ribs 7 wider than the ribs 6 in FIG. 5 are continuously provided in the circumferential direction on the outer surface or inner surface of the film-like portion 4. In addition, although illustration is abbreviate | omitted, a linear rib can also be provided in the inner and outer surfaces of a film-like part. By providing the linear ribs 6 and 7, it is possible to increase the overall rigidity of the film-like portion 4 and to suppress irregular deformation due to a deflection force acting during rotation.

なお、上述した図1ないし図6の各例は、そのうちのいくつかを複合して適用することもできる。また、これらの各例のブーツは、予め引張力をかけた状態で作動角がない状態の等逮ジョイントに装着することにより、作動角を取ったときの膜状部4のたわみ変形を安定させることができる。   1 to 6 described above can be applied in combination of some of them. In addition, the boots of these examples stabilize the deflection deformation of the film-like portion 4 when the working angle is taken by attaching the boot to the equal arrest joint in the state where the working force is not applied in the state where the tensile force is applied in advance. be able to.

図7ないし図9は、それぞれこの発明のさらに他の実施形態を示す。これらの実施形態では、膜状部4の断面形状を、山部を一つだけ有し、谷部がないものとしている。膜状部4をこのような形状に形成することによっても、作動角を取ったときの膜状部4のたわみ変形を安定させることができる。   7 to 9 show still other embodiments of the present invention. In these embodiments, the cross-sectional shape of the film-like portion 4 is assumed to have only one peak and no valley. By forming the film-like part 4 in such a shape, it is possible to stabilize the deformation of the film-like part 4 when the operating angle is taken.

図7(a)は、膜状部4の大径円筒部2の近傍に山部を設けた例であり、この山部を若干大きくした変形例が図7(b)である。図7(c)は、膜状部4の山部を大径円筒部2側から小径円筒部3側にかけてなだらかに形成した例であり、この山部の形状をシャフト径の細い等速ジョイントに装着されるブーツ1に適用した例が図7(d)である。   FIG. 7A shows an example in which a crest is provided in the vicinity of the large-diameter cylindrical portion 2 of the membrane-like portion 4, and FIG. 7B shows a modified example in which the crest is slightly enlarged. FIG. 7 (c) is an example in which the crest of the film-like portion 4 is gently formed from the large-diameter cylindrical portion 2 side to the small-diameter cylindrical portion 3 side, and the shape of this crest portion is changed to a constant velocity joint with a thin shaft diameter. FIG. 7D shows an example applied to the boot 1 to be attached.

図8(a)は、図7(d)で示した例に対して、大径円筒部2側を厚くして剛性を高めることにより回転膨張量の低減を図ったもので、作動角を取った状態の膜状部4のたわみ変形(図8(b)参照)をより安定させることもできる。なお、この例や図7の各例に対して、図2ないし図6の各実施形態で説明した他の肉厚分布やリブの形成を適用することもできる。   FIG. 8A shows a reduction in the rotational expansion amount by increasing the rigidity by increasing the thickness of the large-diameter cylindrical portion 2 with respect to the example shown in FIG. It is also possible to further stabilize the bending deformation (see FIG. 8B) of the film-like portion 4 in the stagnation state. It should be noted that other wall thickness distributions and rib formation described in the embodiments of FIGS. 2 to 6 can be applied to this example and each example of FIG.

図9は、図7(b)の例に対して、膜状部4の全体に小刻みな波形を形成して、膜状部4の剛性を一様に高めることにより、たわみ変形の安定化と回転膨張量の低減を図ったものである。なお、このような膜状部4の全体への小刻みな波形の形成は、図7の他の例や図1ないし図6の例にも適用できる。   FIG. 9 shows the stabilization of the flexural deformation by forming a small waveform on the whole film-like part 4 and uniformly increasing the rigidity of the film-like part 4 with respect to the example of FIG. 7B. This is intended to reduce the amount of rotational expansion. It should be noted that such a small waveform formation on the entire film-like portion 4 can also be applied to the other examples of FIG. 7 and the examples of FIGS.

図10は、さらに他の実施形態を示す。この実施形態は、シャフトBが軸方向にスライドするスライド型等速ジョイントに装着されるブーツ1を最もコンパクトに設計したものである。ここで、スライド型等速ジョイントの作動角は、一般に固定型に比べて小さく設定されているが、ブーツ1はシャフトBのスライドにも追従して弾性変形することが可能なものとする必要がある。同図の例において、膜状部4は高弾性限特性を持つ材料で形成して、シャフトBのスライド量が20mm以上で15deg以上の角度を取れるようにすることが望ましい。   FIG. 10 shows yet another embodiment. In this embodiment, the boot 1 attached to a slide type constant velocity joint in which the shaft B slides in the axial direction is designed to be the most compact. Here, the operating angle of the slide type constant velocity joint is generally set smaller than that of the fixed type, but the boot 1 needs to be able to elastically deform following the slide of the shaft B. is there. In the example shown in the figure, it is desirable that the film-like portion 4 is made of a material having a high elastic limit characteristic so that the slide amount of the shaft B is 20 mm or more and an angle of 15 deg or more can be obtained.

図11は、さらに他の実施形態を示す。この実施形態では、膜状部4の断面形状を、中央部に谷部を一つだけ設け、その両側に山部を設けたものとしている。膜状部4をこのような形状に形成することにより、剛性が高まってたわみ変形の安定化と回転膨張量の低減が図れる。ここで、谷部の径を小径側の山部の径の90%以上とすれば、谷部の応力集中を十分に緩和でき、作動角を取ったときの山部どうしの接触も生じにくい。   FIG. 11 shows still another embodiment. In this embodiment, the cross-sectional shape of the film-like portion 4 is such that only one trough is provided at the center and peaks are provided on both sides thereof. By forming the film-like portion 4 in such a shape, the rigidity is increased, the deflection deformation can be stabilized, and the rotational expansion amount can be reduced. Here, when the diameter of the trough is 90% or more of the diameter of the crest on the small diameter side, the stress concentration in the trough can be sufficiently relaxed, and the crests are less likely to contact each other when the operating angle is taken.

図12は、さらに他の実施形態を示す。この実施形態は、図12(a)に示すように、膜状部4の断面形状を、中央部で絞られたもの、すなわち、中央部になだらかな谷部を一つだけ設けたものとしている。これにより、図1ないし図6の各例に比べて、ブーツ1内容積が小さくなり、ブーツ1内のグリース量が減少して回転膨張量の低減が図れる。   FIG. 12 shows still another embodiment. In this embodiment, as shown in FIG. 12 (a), the cross-sectional shape of the film-like portion 4 is narrowed at the central portion, that is, only one gentle valley portion is provided at the central portion. . Thereby, compared with each example of FIG. 1 thru | or FIG. 6, the internal volume of the boot 1 becomes small, the amount of grease in the boot 1 reduces, and reduction of rotational expansion amount can be aimed at.

図12(b)〜(d)は、それぞれ図12(a)の変形例である。このうち、図12(b)は、膜状部4の大径円筒部2の近傍を増肉してたわみ変形を安定化させ、さらに小径円筒部3の近傍を増肉して回転膨張量の低減を図ったものである。   12 (b) to 12 (d) are modifications of FIG. 12 (a). Among these, FIG. 12 (b) shows that the vicinity of the large-diameter cylindrical portion 2 of the film-like portion 4 is thickened to stabilize the deflection deformation, and further, the vicinity of the small-diameter cylindrical portion 3 is thickened to increase the rotational expansion amount. This is a reduction.

図12(c)は膜状部4の変曲点の外面に環状リブ5を設けた例、図12(d)は膜状部4の小径円筒部3側の外面に螺旋状リブ8を設けた例で、いずれも、膜状部4の剛生を高め、たわみ変形の安定化と回転膨張量の低減を図っている。なお、これらのリブ5,8は、膜状部4の内面または内外両面に設けることもできる。また、環状リブ5は図4の実施形態で説明したように複数設けてもよいし、螺旋状リブ8は大径円筒部2側に設けてもよい。さらに、各種リブを併用してもよいし、螺旋状リブ8を図1および図2に示した各例に適用することもできる。   FIG. 12C shows an example in which an annular rib 5 is provided on the outer surface of the inflection point of the membrane-like portion 4, and FIG. 12D shows a spiral rib 8 provided on the outer surface of the membrane-like portion 4 on the small diameter cylindrical portion 3 side. In each of the examples, the rigidity of the film-like portion 4 is increased, the deflection deformation is stabilized, and the rotational expansion amount is reduced. These ribs 5 and 8 can also be provided on the inner surface or both inner and outer surfaces of the film-like portion 4. Further, a plurality of the annular ribs 5 may be provided as described in the embodiment of FIG. 4, and the spiral rib 8 may be provided on the large-diameter cylindrical portion 2 side. Further, various ribs may be used in combination, and the spiral rib 8 can be applied to each example shown in FIGS.

上述した各実施形態のブーツは、いずれの例でも、膜状部4の形状がシンプルで、その断面形状を直線状に延ばしたときの長さが、両円筒部の互いに対向する端部どうしを結ぶ直線の長さの1.8倍以下(第1の実施形態では、ほぼ1.0倍)となっている。これにより、確実にブーツをコンパクト化、軽量化することができ、回転膨張量を減少させて、高速回転に適したものとすることができる。また、膜状部4どうしおよび膜状部4とシャフトBとが接触する可能性が少ないため、膜状部4がほとんど摩耗せず、ブーツ寿命を延長することもできる。   In any of the above-described boots according to the embodiments, the shape of the film-like portion 4 is simple, and the length when the cross-sectional shape is extended linearly is the length between the opposite ends of both cylindrical portions. The length of the connecting straight line is 1.8 times or less (approximately 1.0 times in the first embodiment). As a result, the boot can be reliably made compact and light, and the amount of rotational expansion can be reduced, making it suitable for high-speed rotation. In addition, since there is little possibility that the membrane portions 4 and the membrane portion 4 and the shaft B are in contact with each other, the membrane portion 4 is hardly worn and the boot life can be extended.

(a)は第1の実施形態の等速ジョイント用ブーツの縦断面図、(b)は同図(a)のブーツの使用状態の一例を示す縦断面図である。(A) is a longitudinal cross-sectional view of the boot for constant velocity joints of 1st Embodiment, (b) is a longitudinal cross-sectional view which shows an example of the use condition of the boot of the same figure (a). (a),(b)は、それぞれ図1のブーツの変形例を示す縦断面図である。(A), (b) is a longitudinal cross-sectional view which shows the modification of the boot of FIG. 1, respectively. (a)〜(c)は、それぞれ図1のブーツの別の変形例の縦断面図である。(A)-(c) is a longitudinal cross-sectional view of another modification of the boot of FIG. 1, respectively. (a)〜(c)は、それぞれ図1のブーツの別の変形例の縦断面図である。(A)-(c) is a longitudinal cross-sectional view of another modification of the boot of FIG. 1, respectively. (a),(b)は、それぞれ図1のブーツの別の変形例のシャフト側から見た側面図である。(A), (b) is the side view seen from the shaft side of another modification of the boot of FIG. 1, respectively. (a),(b)は、それぞれ図1のブーツの別の変形例のシャフト側から見た側面図である。(A), (b) is the side view seen from the shaft side of another modification of the boot of FIG. 1, respectively. (a)はさらに他の実施形態のブーツの縦断面図、(b)〜(d)は同図(a)の変形例の縦断面図である。(A) is the longitudinal cross-sectional view of the boot of other embodiment, (b)-(d) is a longitudinal cross-sectional view of the modification of the figure (a). (a)は図7(d)のブーツの変形例の縦断面図、(b)は同図(a)のブーツの使用状態の一例を示す縦断面図である。(A) is a longitudinal cross-sectional view of the modified example of the boot of FIG.7 (d), (b) is a longitudinal cross-sectional view which shows an example of the use condition of the boot of the same figure (a). 図7(b)のブーツの変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the boot of FIG.7 (b). さらに他の実施形態のブーツの縦断面図である。It is a longitudinal cross-sectional view of the boot of other embodiment. さらに他の実施形態のブーツの縦断面図である。It is a longitudinal cross-sectional view of the boot of other embodiment. (a)さらに他の実施形態のブーツの縦断面図、(b)〜(d)はそれぞれ同図(a)の変形例の縦断面図である。(A) The longitudinal cross-sectional view of the boot of other embodiment, (b)-(d) is a longitudinal cross-sectional view of the modification of the figure (a), respectively. (a),(b)は、それぞれ図1のブーツの大径円筒部2が非円筒形状を成す場合の形状例の外輪側から見た側面図である。(A), (b) is the side view seen from the outer ring | wheel side of the example of a shape in case the large diameter cylindrical part 2 of the boot of FIG. 1 comprises a non-cylindrical shape, respectively. 材料選定方法を示す流れ図である。It is a flowchart which shows a material selection method.

符号の説明Explanation of symbols

1…ブーツ
2…大径円筒部
3…小径円筒部
4…膜状部
DESCRIPTION OF SYMBOLS 1 ... Boot 2 ... Large diameter cylindrical part 3 ... Small diameter cylindrical part 4 ... Membrane-like part

Claims (6)

高弾性限特性を持つ材料が用いられ、その高弾性限特性に基づいて、形状、肉厚が設定された等速ジョイント用ブーツ。   A constant-velocity joint boot that uses a material with high elastic limit properties, and whose shape and thickness are set based on the high elastic limit properties. 等速ジョイントの外輪端部に取付けられる大径円筒部と、等速ジョイントのシャフトのブーツ嵌合部に取付けられる小径円筒部と、上記両円筒部を一体に連結する膜状部とからなる等速ジョイント用ブーツにおいて、前記膜状部に高弾性限特性を持つ材料が用いられ、その高弾性限特性に基づいて前記膜状部の形状、肉厚が設定されたものである等速ジョイント用ブーツ。   A large-diameter cylindrical portion attached to the outer ring end portion of the constant velocity joint, a small-diameter cylindrical portion attached to the boot fitting portion of the shaft of the constant velocity joint, and a membrane-like portion that integrally connects the two cylindrical portions. In a fast joint boot, a material having a high elastic limit property is used for the membrane-like portion, and the shape and thickness of the membrane-like portion are set based on the high elastic limit property. boots. 請求項1または請求項2において、前記高弾性限特性として、ストレイン−ストレス曲線において160%以上の伸長状態までのモジュラスが正の一次勾配を有する特性を持つ等速ジョイント用ブーツ。   The constant velocity joint boot according to claim 1 or 2, wherein the high elastic limit characteristic has a characteristic in which a modulus up to an elongation state of 160% or more in the strain-stress curve has a positive primary gradient. 等速ジョイントの外輪端部に取付けられる大径円筒部と、等速ジョイントのシャフトのブーツ嵌合部に取付けられる小径円筒部と、上記両円筒部を一体に連結する膜状部とからなる等速ジョイント用ブーツにおいて、前記膜状部に高弾性限特性を持つ材料を用い、等速ジョイントが最大作動角を取った状態で、前記膜状部とシャフトが干渉せず、またはブーツ自体の任意の2箇所における相互の接触が生じない形状としたことを特徴とする等速ジョイント用ブーツ。   A large-diameter cylindrical portion attached to the outer ring end portion of the constant velocity joint, a small-diameter cylindrical portion attached to the boot fitting portion of the shaft of the constant velocity joint, and a membrane-like portion that integrally connects the two cylindrical portions. In a fast joint boot, a material having a high elastic limit property is used for the membrane-like portion, and the membrane-like portion and the shaft do not interfere with each other in a state where the constant velocity joint takes a maximum operating angle or the boot itself is arbitrary. A constant velocity joint boot characterized by having a shape in which mutual contact does not occur at the two locations. 請求項4において、膜状部の材料が、上記干渉または接触が生じることによって必要とされる耐摩耗特性を有しない材質である等速ジョイント用ブーツ。   5. The constant velocity joint boot according to claim 4, wherein the material of the film-like portion is a material that does not have the wear resistance required by the occurrence of the interference or contact. 耐熱性を選定するステップと、耐寒性を選定するステップと、耐疲労性を選定するステップと、耐油性を選定するステップと、高弾性限特性を選定するステップとを含む等速ジョイント用ブーツの材料選定方法。   A constant velocity joint boot comprising a step for selecting heat resistance, a step for selecting cold resistance, a step for selecting fatigue resistance, a step for selecting oil resistance, and a step for selecting high elastic limit characteristics. Material selection method.
JP2004274995A 2004-09-22 2004-09-22 Boot for constant velocity joint Pending JP2006090391A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004274995A JP2006090391A (en) 2004-09-22 2004-09-22 Boot for constant velocity joint
PCT/JP2005/017067 WO2006033284A1 (en) 2004-09-22 2005-09-15 Boot for constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274995A JP2006090391A (en) 2004-09-22 2004-09-22 Boot for constant velocity joint

Publications (1)

Publication Number Publication Date
JP2006090391A true JP2006090391A (en) 2006-04-06

Family

ID=36090045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274995A Pending JP2006090391A (en) 2004-09-22 2004-09-22 Boot for constant velocity joint

Country Status (2)

Country Link
JP (1) JP2006090391A (en)
WO (1) WO2006033284A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574617B2 (en) * 2014-07-25 2017-02-21 Dana Automotive Systems Group, Llc Constant velocity joint boot assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1437130A (en) * 1920-07-14 1922-11-28 Logan B Chandler Boot and valve
DE2346837C3 (en) * 1973-09-18 1979-11-15 Volkswagenwerk Ag, 3180 Wolfsburg Sealing sleeve made of elastic material
JPS60193620A (en) * 1984-03-15 1985-10-02 Toyo Tire & Rubber Co Ltd Joint boot molded body of thermoplastic polyester elastomer
DE3641393C1 (en) * 1986-12-04 1988-03-17 Daimler Benz Ag Bellows
JPH071494A (en) * 1992-04-24 1995-01-06 Ntn Corp Joint boot
JPH10299789A (en) * 1997-04-25 1998-11-10 Ntn Corp Flexible boot for constant velocity joint
JP2000351889A (en) * 1999-04-06 2000-12-19 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition and joint boot made thereof

Also Published As

Publication number Publication date
WO2006033284A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP5230977B2 (en) Silicone boot for constant velocity universal joint and constant velocity universal joint
JP4527581B2 (en) Constant velocity universal joint with boots
JP2006090391A (en) Boot for constant velocity joint
JP4794867B2 (en) Constant velocity universal joint with boots
EP3597953A1 (en) Boot for constant velocity universal joints
JP4832837B2 (en) Constant velocity universal boots
WO2006085418A1 (en) Constant velocity universal joint and boot for the same
JP2008240818A (en) Boot for constant velocity universal joint
JP4527578B2 (en) Constant velocity universal joint and constant velocity universal joint boot
JP2012041969A (en) Boot for constant velocity universal joint and constant velocity universal joint
JP4652098B2 (en) Drive shaft
JP2006242245A (en) Boot for constant velocity joint
JP4657897B2 (en) Seal structure
JP5188897B2 (en) Constant velocity universal joint boot and constant velocity universal joint
JP2006258122A (en) Slide type constant velocity universal joint
WO2019058796A1 (en) Ball joint and dust cover
JP5183960B2 (en) Constant velocity universal boots
JP6899299B2 (en) Dust cover
JP2007146932A (en) Boot for uniform speed universal joint
JP2023086367A (en) Joint boot
JP2007032761A (en) Resin boot for constant velocity universal joint
JP2005233398A (en) Boot
JP2015137682A (en) Constant velocity joint boot
JP2009275758A (en) Constant velocity universal joint boot
JP2007155003A (en) Constant velocity universal joint boot