JP2006089792A - Method for producing galvanized steel sheet for fuel container - Google Patents

Method for producing galvanized steel sheet for fuel container Download PDF

Info

Publication number
JP2006089792A
JP2006089792A JP2004274930A JP2004274930A JP2006089792A JP 2006089792 A JP2006089792 A JP 2006089792A JP 2004274930 A JP2004274930 A JP 2004274930A JP 2004274930 A JP2004274930 A JP 2004274930A JP 2006089792 A JP2006089792 A JP 2006089792A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
fuel container
post
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004274930A
Other languages
Japanese (ja)
Inventor
Kenichiro Matsumura
賢一郎 松村
Shinichi Suzuki
眞一 鈴木
Koichi Nishizawa
晃一 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004274930A priority Critical patent/JP2006089792A/en
Publication of JP2006089792A publication Critical patent/JP2006089792A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a galvanized steel sheet for a fuel container which can inexpensively solve the problem on various performance required for the internal side and the external side in the fuel container using galvznized steel sheet such as fuel corrosion resistance of the internal face and corrosion resistance after coating in the external face by controlling the drying conditions for a posttreatment film. <P>SOLUTION: A posttreatment film is applied onto the surface of the galvanized steel sheet by 0.1 to 2.0 g/m<SP>2</SP>as coating weight, and then is heated from the plated surface side at a heating rate of ≥20°C/s to dry the posttreatment film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明方法は、亜鉛系の燃料容器用鋼板の製造方法に関するものである。   The method of the present invention relates to a method for producing a zinc-based steel plate for a fuel container.

昨今の環境規制への動きから、有害金属を使用しない材料への市場のニーズが高まっている。自動車分野においては、燃料容器の主流の材料であった鉛−錫合金めっき鋼板(以後、ターンシートと略す)に対して、鉛レスの素材に対する要望が高い。   With the recent movement toward environmental regulations, market needs for materials that do not use hazardous metals are increasing. In the automotive field, there is a high demand for lead-free materials for lead-tin alloy-plated steel sheets (hereinafter abbreviated as turn sheets), which have been the mainstream material for fuel containers.

燃料が封入される中での内面耐食性という燃料容器の特異な要求性能に対し、自動車内外板に実績があり、コスト的にも優位な亜鉛系めっき鋼板を使用した提案が数多くなされている。(特許文献1〜6)   Many proposals have been made using galvanized steel sheets that have a proven track record for automobile interior and exterior plates and are superior in cost to the specific required performance of fuel containers, ie, internal corrosion resistance while the fuel is sealed. (Patent Documents 1 to 6)

内面耐食性は、燃料が劣化して生成した各種有機酸への耐食性能が求められる。亜鉛は通常、有機酸に容易に溶解するため、亜鉛系めっき鋼板に特別な表面処理なく裸のまま使用すると、亜鉛は急速に溶解し、ついには鋼板素地に達して、穴あきを発生させてしまう。したがって、亜鉛系材料に対しては、クロメート処理等のめっき後処理を適用することにより、有機酸を含むような劣悪な燃料においても耐食性能を十分発揮できるような材料が開発されてきた。   Corrosion resistance to various organic acids generated by deterioration of the fuel is required for the inner surface corrosion resistance. Zinc usually dissolves easily in organic acids, so if it is used on a zinc-plated steel sheet without any special surface treatment, it dissolves rapidly and eventually reaches the steel sheet substrate, causing perforation. End up. Therefore, materials that can sufficiently exhibit corrosion resistance even in poor fuels containing organic acids have been developed by applying post-plating treatment such as chromate treatment to zinc-based materials.

ただし、燃料容器の内面耐食性は、上記の劣化燃料耐食性だけで十分であるとは言えない。市場では、水抜き剤が市販されているように、結露を主原因として発生する水による燃料容器内の発錆トラブルが無視できない。したがって、燃料容器内では、発生した結露水による耐食性能も十分検討されるべきである。結露水に対する耐食性には、特許文献6で公知なように撥水性の皮膜が効果的であり、鋼板の表面はより疎水的であることは有効である。   However, it cannot be said that the above-mentioned deteriorated fuel corrosion resistance alone is sufficient for the inner surface corrosion resistance of the fuel container. In the market, as water draining agents are commercially available, rusting troubles in the fuel container due to water generated mainly due to condensation cannot be ignored. Therefore, in the fuel container, the corrosion resistance performance due to the generated condensed water should be fully examined. As known in Patent Document 6, a water-repellent film is effective for corrosion resistance against condensed water, and it is effective that the surface of the steel sheet is more hydrophobic.

また、燃料容器が大気にさらされる以上、外面側の塗装後耐食性についても自動車のボディ同様の耐食性能が要求され、各種燃料耐食性だけでなく、塗装密着性や塗装後耐食性といった外面性能をも両立することが必須である。   In addition, as long as the fuel container is exposed to the atmosphere, the post-paint corrosion resistance on the outer surface side is required to be the same as that of the automobile body, and not only the various fuel corrosion resistance but also the external performance such as paint adhesion and post-paint corrosion resistance. It is essential to do.

各種めっき鋼板との塗装適性は、使用する塗料の性質によって大きく異なる。その塗料の性質とは、大きく溶剤系、水系に大別され、最近は、環境負荷を考慮し、特に自動車用材料では、水系の塗料が多く用いられるようになってきている。水系の塗料を用いる場合、塗料を塗布される鋼板は、水となじむことが必要であり、鋼板の表面は、親水性であることが要求される。   The coating suitability with various plated steel sheets varies greatly depending on the properties of the paint used. The properties of the paints are roughly classified into solvent-based and water-based systems. Recently, water-based paints are increasingly used especially for automobile materials in consideration of environmental load. In the case of using a water-based paint, the steel sheet to which the paint is applied must be compatible with water, and the surface of the steel sheet is required to be hydrophilic.

すなわち、環境への負荷を最大限軽減せしめるには、燃料容器の内外面では求められる性格が大きく異なり、外面の親水的な表面、内面側の疎水的な表面が必要である。この問題に対しては、もちろん、特許文献2、特許文献3、特許文献4で公知のように、皮膜種類を表裏で変えることは有効であるが、内外面の皮膜種類を変えることは生産コストの増加を強要する。また、特許文献6における水との接触角を制御する手段もあろうが、操業上の困難を強制する。   That is, in order to reduce the load on the environment to the maximum extent, the required properties are greatly different on the inner and outer surfaces of the fuel container, and a hydrophilic surface on the outer surface and a hydrophobic surface on the inner surface side are required. Of course, it is effective to change the type of film on the front and back as known in Patent Document 2, Patent Document 3, and Patent Document 4 for this problem, but changing the type of film on the inner and outer surfaces is a production cost. Compulsory increase. Further, although there is a means for controlling the contact angle with water in Patent Document 6, it imposes operational difficulties.

以上の燃料容器の内面側および外面側に要求されるさまざまな性能に対し、亜鉛系を主体とした燃料容器用材料の製造方法に関する限り、低コストでこれを可能にする製造手段を必ずしも十分評価されているとはいえない。
特開昭62−27587号公報 特開平10−265964号公報 特開平10−291278号公報 特開平10−305517号公報 特開2001−323388号公報 特開2004−169122号公報
As far as the production method of fuel container materials mainly composed of zinc is concerned with the various performances required for the inner and outer surfaces of the fuel container, the manufacturing means that enable this at a low cost are always fully evaluated. It cannot be said that it is done.
Japanese Patent Laid-Open No. 62-27587 JP-A-10-265964 JP-A-10-291278 Japanese Patent Laid-Open No. 10-305517 JP 2001-323388 A JP 2004-169122 A

本発明は上記の問題に鑑み、自動車の内外板に実績があり、コスト的にも優位な亜鉛系のめっき鋼板にて、内面の燃料耐食性、外面の塗装後耐食性など、燃料容器に要求されるさまざまな性能を、可能な限り工程コストをかけずに解決する、亜鉛系燃料容器用鋼板の製造方法、を提供するものである。   In view of the above problems, the present invention is required for a fuel container such as an inner surface fuel corrosion resistance and an outer surface corrosion resistance after coating with a zinc-based plated steel sheet that has a proven record in automobile inner and outer plates and is superior in cost. The present invention provides a method for producing a steel sheet for a zinc-based fuel container, which solves various performances without incurring process costs as much as possible.

本発明者らは、まずは内面耐食性を発揮する皮膜について検討した。その結果、皮膜の処理、乾燥条件によって性能が異なってくることを見出した。すなわち、ゆっくりと長時間乾燥(例えば10秒以上)するならば、優れた内面性能を発揮するものの、短時間の乾燥(例えば5秒以内)では内面性能にばらつきが生じた。
次に、外面側の塗料適性、特に耐水二次密着性や外面耐食性を検討したところ、同様に短時間の乾燥では、特に耐水二次密着にばらつきが生じた。長時間の乾燥は生産速度を下げることで容易に達成できるが、それは、生産性の低下を招き、コスト増を引き起こす。
The inventors of the present invention first examined a film that exhibits internal corrosion resistance. As a result, it was found that the performance varies depending on the treatment of the film and the drying conditions. That is, if the drying is performed slowly for a long time (for example, 10 seconds or more), excellent inner surface performance is exhibited. However, if the drying is performed for a short time (for example, within 5 seconds), the inner surface performance varies.
Next, the suitability of the coating on the outer surface side, particularly the water-resistant secondary adhesion and the outer surface corrosion resistance, was examined. Long drying can be easily achieved by reducing the production rate, but this leads to a decrease in productivity and an increase in cost.

そこで、短時間の乾燥で内外面の性能を満足する手段を鋭意検討した。その結果、後処理液を塗布後、外部からの加熱ではなく、鋼板そのものを短時間で急速加熱し、めっきの表面と後処理皮膜との反応を促進して、乾燥せしめることが性能発揮に有効であることを見出した。   Therefore, intensive studies were made on means for satisfying the performance of the inner and outer surfaces by drying in a short time. As a result, after applying the post-treatment liquid, it is effective for exerting performance to heat the steel plate itself quickly in a short time, rather than externally heating, to accelerate the reaction between the plating surface and the post-treatment film and to dry it. I found out.

本発明は上記の知見に基づきなされたもので、本発明の要旨とするところは、
(1)亜鉛系めっき鋼板の上に、後処理皮膜を付着量にして0.1〜2.0g/m2 付着後、20℃/s 以上の速度で、めっき表面側から加熱昇温して後処理皮膜を乾燥せしめることを特徴とする亜鉛系燃料容器用鋼板の製造方法、
(2)20℃/s 以上の速度で、めっき表面側から加熱昇温する方法が、誘導加熱または通電加熱のいずれかであることを特徴とする前記(1)に記載の亜鉛系燃料容器用鋼板の製造方法、
(3)亜鉛系めっき鋼板が電気亜鉛めっき、溶融亜鉛めっき、鉄を25%以下含有する電気亜鉛−鉄合金電気めっき、鉄を25%以下含有する合金化溶融亜鉛めっき、ニッケルを25%以下含有する電気亜鉛−ニッケル合金めっきのいずれかであることを特徴とする前記(1)および(2)に記載の亜鉛系燃料容器用鋼板の製造方法、
(4)亜鉛系めっき鋼板の上に、第二層として鉄80%(質量%、以下同じ)以上を有する鉄−亜鉛合金めっき層あるいはニッケルめっき層のいずれかを付着量にして10g/m2 以下付与し、さらに第二層の上面に後処理皮膜を付与することを特徴とする前記(1)または(2)または(3)に記載の亜鉛系燃料容器用鋼板の製造方法、
である。
The present invention was made based on the above findings, and the gist of the present invention is as follows:
(1) After depositing 0.1 to 2.0 g / m 2 with a post-treatment film on the zinc-based plated steel sheet, the temperature is raised from the plating surface side at a rate of 20 ° C./s or more. A method for producing a steel sheet for a zinc-based fuel container, wherein the post-treatment film is dried;
(2) The method for heating a zinc-based fuel container according to (1) above, wherein the method of heating and heating from the plating surface side at a rate of 20 ° C./s or more is either induction heating or current heating. Steel plate manufacturing method,
(3) Zinc-based plated steel sheet is electrogalvanized, hot-dip galvanized, electrogalvanized-iron alloy electroplated containing 25% or less of iron, alloyed hot-dip galvanized containing 25% or less of iron, or less than 25% of nickel The method for producing a steel sheet for a zinc-based fuel container according to the above (1) and (2), wherein the zinc-nickel alloy plating is any one of
(4) On the galvanized steel sheet, 10 g / m 2 with an adhesion amount of either an iron-zinc alloy plating layer or nickel plating layer having 80% iron (mass%, the same applies hereinafter) or more as the second layer. The method for producing a steel sheet for a zinc-based fuel container according to (1), (2), or (3), characterized in that:
It is.

以上述べたように、本発明は、燃料容器用材料に求められる内外面の独立した性能に対し、それぞれの皮膜の種類を変更したり、皮膜形成の手段を内外面に対してそれぞれ場合分けすることなく、低コストで可能にしたものであり、産業への貢献はきわめて大きい。   As described above, the present invention changes the type of each coating for the independent performance of the inner and outer surfaces required for the fuel container material, and classifies the means for forming the coating for each of the inner and outer surfaces. It has been made possible at low cost, and the contribution to the industry is extremely large.

以下、本発明について詳細に説明する。
図1は本発明の実施形態を説明する概念図であり、1は母材、2は亜鉛めっき、3は第二層のNiめっき、4は後処理層、5は伝熱方向を示す矢印を示している。母材1を加熱することで、矢印5に示すような方向で伝熱し、めっきの表面から後処理皮膜を乾燥せしめることが本発明の骨子である。
Hereinafter, the present invention will be described in detail.
FIG. 1 is a conceptual diagram illustrating an embodiment of the present invention, where 1 is a base material, 2 is galvanized, 3 is Ni plating of the second layer, 4 is a post-treatment layer, and 5 is an arrow indicating the heat transfer direction. Show. By heating the base material 1, heat is transferred in the direction as indicated by the arrow 5 to dry the post-treatment film from the plating surface.

本発明における後処理皮膜量は0.1g/m2 以上必要で、これ未満では、内外面耐食性が不足となる。また、2.0g/m2 を超えると、塗装密着性が徐々に悪化するため、上限は2.0g/m2 とする。
後処理皮膜の乾燥は鋼板温度で20℃/s以上の速度が必要である。鋼板の昇温速度が20℃/s以上を確保していれば、後処理液の昇温速度は問わない。鋼板を加熱昇温してめっき表面側から後処理皮膜を乾燥せしめることで性能が向上する理由は定かではないが、めっきの最表面での後処理皮膜の成膜速度を高めることで樹脂等の配向性や成膜性、密着性等が向上したためと推察する。
鋼板の昇温速度が20℃/sを下回ると、成膜速度が遅くなることでめっき/後処理皮膜界面での成膜が緻密に起こらず、内面側の耐食性がばらつく。上限は、特に定めないが、100℃/sを超えるような、極端な上昇速度では、後処理液が突然蒸発する突沸現象が生じ、皮膜に欠陥を生じる可能性があるため、100℃以下が好ましい。
The amount of the post-treatment film in the present invention is required to be 0.1 g / m 2 or more, and if it is less than this, the inner and outer surface corrosion resistance becomes insufficient. On the other hand, if it exceeds 2.0 g / m 2 , the coating adhesion gradually deteriorates, so the upper limit is 2.0 g / m 2 .
Drying of the post-treatment film requires a rate of 20 ° C./s or more at the steel plate temperature. The heating rate of the post-treatment liquid is not limited as long as the heating rate of the steel sheet is 20 ° C./s or more. The reason why the performance is improved by heating the steel plate to dry the post-treatment film from the plating surface side is not clear, but by increasing the film formation rate of the post-treatment film on the outermost surface of the plating, This is probably because the orientation, film-forming property, adhesion, etc. were improved.
When the temperature increase rate of the steel sheet is lower than 20 ° C./s, the film formation rate becomes slow, so that the film formation at the plating / post-treatment film interface does not occur precisely, and the corrosion resistance on the inner surface side varies. The upper limit is not particularly defined, but at an extreme rate of increase exceeding 100 ° C./s, a bumping phenomenon in which the post-treatment liquid suddenly evaporates may occur, and the film may be defective. preferable.

鋼板の最高到達温度は、特に定めるものではなく、後処理皮膜の種類に依存し、皮膜を構成する成分の分解等が起こらないような温度範囲であればなんら問題ない。ただし、鋼板の到達板温度が400℃を極端に超えると、めっき中の亜鉛と母材鋼板との合金化が進んで、めっき密着性の悪化などの懸念があるため、400℃以内が好ましく、一般的には250℃以下である。また、鋼板の最低到達温度も、特に定めるものではなく、後処理皮膜の種類に応じて選択すればよく、80℃〜150℃が一般的である。   The maximum attainable temperature of the steel sheet is not particularly defined, and depends on the type of post-treatment film, and there is no problem as long as it is in a temperature range in which decomposition of components constituting the film does not occur. However, if the ultimate temperature of the steel sheet exceeds 400 ° C., alloying between the zinc during plating and the base steel sheet proceeds, and there is a concern such as deterioration of plating adhesion. Generally, it is 250 degrees C or less. Moreover, the minimum attainment temperature of a steel plate is not specifically defined, What is necessary is just to select according to the kind of post-processing film | membrane, and 80 to 150 degreeC is common.

鋼板を昇温せしめる手法は鋼板側から加熱昇温する方法であれば、特に問わないが、操業の容易さ、生産性の観点から、誘導加熱方式や通電加熱方式が好ましい。鋼板そのものを急速に昇温せしめて、その熱により後処理を乾燥して皮膜形成せしめることが本発明の骨子であるから、バーナーや熱風による一般的な乾燥炉は適さない。これらの外部加熱は、20℃/s以上の鋼板の昇温速度の確保が可能だが、鋼板温度が上昇するのに先立って、後処理の液温が上昇して、めっき表面/後処理界面から乾燥ではないため、性能向上が認められない。ただし、めっき表面側から加熱昇温する設備にて所定の鋼板温度に加熱昇温した後に、さらに各種熱風型の乾燥炉を設置あるいは使用することは本発明上なんら問題ない。   The method for raising the temperature of the steel sheet is not particularly limited as long as it is a method of heating and heating from the steel sheet side, but from the viewpoint of ease of operation and productivity, an induction heating method and an electric heating method are preferable. Since it is the gist of the present invention that the steel sheet itself is rapidly heated and the post-treatment is dried by the heat to form a film, a general drying furnace using a burner or hot air is not suitable. These external heating can ensure the rate of temperature rise of the steel sheet at 20 ° C./s or more, but the temperature of the post-treatment rises before the steel plate temperature rises, and from the plating surface / post-treatment interface. Since it is not dry, no performance improvement is observed. However, there is no problem in the present invention in that various hot-air type drying furnaces are further installed or used after heating and heating to a predetermined steel plate temperature with equipment for heating and heating from the plating surface side.

後処理皮膜種は、特に限定されるものではなく、例えば皮膜を構成する成分としては、アクリル系、フェノール系、ウレタン系などの樹脂やこれらを変性したものを単独で、または、二種以上の混合で使用でき、必要に応じて複層の処理を実施してもかまわない。さらに、後処理皮膜は、処理皮膜の性能を高めたり、処理液の安定性を担保するなどの理由により、その他の樹脂成分や、シリカ、チタニア、ジルコニアなどの酸化物、六価クロム、三価クロム、その他の金属イオン、有機物成分を含んでいてもかまわない。後処理皮膜の付着方法も、限定されるものではなく、ロールコーター、エアナイフ、電解法など生産設備に応じた方法を採用することができる。   The kind of the post-treatment film is not particularly limited. For example, as a component constituting the film, an acrylic resin, a phenol resin, a urethane resin, or a modified one thereof is used alone, or two or more kinds thereof are used. It can be used in a mixed manner, and a multi-layer treatment may be carried out if necessary. Furthermore, the post-treatment film is made of other resin components, oxides such as silica, titania and zirconia, hexavalent chromium, trivalent, for the purpose of enhancing the performance of the treatment film and ensuring the stability of the treatment liquid. It may contain chromium, other metal ions, or organic components. The method for attaching the post-treatment film is not limited, and a method according to production equipment such as a roll coater, an air knife, or an electrolytic method can be employed.

母材に用いる亜鉛系めっきは溶融亜鉛めっき、合金化溶融亜鉛めっき、電気亜鉛めっき、電気亜鉛−鉄合金めっき、電気亜鉛−ニッケル合金めっきなどがその汎用性を鑑み好ましい。めっき付着量は本発明になんら影響するものではなく、例えば、自動車用途として一般的な片面あたり20〜120g/m2 の付着量を採用できる。
また、これら亜鉛系めっきの上層に、溶接性、成形性、塗装性等を改善する目的で、鉄を80%以上有する鉄−亜鉛合金めっき層や、ニッケルめっき層を付与することが出来る。
The zinc-based plating used for the base material is preferably hot dip galvanizing, alloyed hot dip galvanizing, electro galvanizing, electro zinc-iron alloy plating, electro zinc-nickel alloy plating, etc. in view of its versatility. The plating adhesion amount does not affect the present invention at all, and for example, an adhesion amount of 20 to 120 g / m 2 per one surface generally used for automobiles can be adopted.
Further, an iron-zinc alloy plating layer having 80% or more of iron or a nickel plating layer can be applied to the upper layer of these zinc-based platings for the purpose of improving weldability, formability, paintability, and the like.

本発明において用いられる鋼板は、その主体がFeであり、その他の添加元素として、C、Si、Mn、P、S、Cu、Ni、Cr、Mo、Co、Al、Nb、V、Ti、Zr、Hf、Bi、Sb、B、N、O、希土類元素、Ca、Mgの内一種または二種以上を鋼板に要求される特性に応じて含有し、さらに、Sn、As等の不可避不純物を含有するものである。また、本発明において用いられる鋼板の板厚は何ら制限されるものではなく、通常用いられている板厚、例えば0.3mm〜4mm程度のものを用いることが出来る。 次に、本発明の実施例を比較例とともにあげる。   The steel plate used in the present invention is mainly Fe, and other additive elements include C, Si, Mn, P, S, Cu, Ni, Cr, Mo, Co, Al, Nb, V, Ti, and Zr. , Hf, Bi, Sb, B, N, O, rare earth elements, Ca, Mg included in accordance with the characteristics required for the steel sheet, and inevitable impurities such as Sn and As To do. Moreover, the plate | board thickness of the steel plate used in this invention is not restrict | limited at all, The plate | board thickness normally used, for example, about 0.3 mm-4 mm, can be used. Next, the Example of this invention is given with a comparative example.

表1に亜鉛めっき種、後処理皮膜種および各処理方法、乾燥条件を記す。ベースのめっきの付着量は45g/m2 とし、さらにその上層にNiめっき層を5g/m2 付着せしめたものを母材とし、さらに後処理皮膜を付与した。後処理皮膜の乾燥は、生産性も考慮し、5秒間で実施し、5秒以内で板温250℃を超える場合は残りの乾燥時間を250℃で維持した。乾燥後、冷風にて室温まで急速冷却した。 Table 1 shows the types of galvanization, post-treatment film types, each treatment method, and drying conditions. The adhesion amount of the base plating was 45 g / m 2, and a Ni plating layer 5 g / m 2 on the upper layer was used as a base material, and a post-treatment film was further applied. In consideration of productivity, the post-treatment film was dried in 5 seconds. When the plate temperature exceeded 250 ° C. within 5 seconds, the remaining drying time was maintained at 250 ° C. After drying, it was rapidly cooled to room temperature with cold air.

これらのサンプルに対し劣化燃料耐食性、結露水耐食性、塗装密着性、塗装後耐食性を実施した。
劣化燃料耐食性および結露水耐食性は、内径50mm、深さ35mmの円筒状の成形体に、各種腐食液を封入した。劣化燃料耐食性は、蟻酸100ppm、酢酸300ppm、水1.0容量%を含有するガソリンを封入し、30℃で2ヶ月間保持した後の腐食状況 にて、◎:腐食なし、○:実用上問題ない軽微な腐食、△:部分的に腐食、×:全面にわたり腐食とした。耐結露水耐食性は、水50.0容量%を含有するガソリンを封入し、30℃で2ヶ月保持した後の腐食状況にて、◎:腐食なし、○:実用上問題ない軽微な腐食、△:部分的に腐食、×:全面にわたり腐食とした。
塗装性は、アルキドメラニン系の水系黒色塗料を20μm塗装した後、碁盤目剥離試験、耐水二次密着性試験(40℃純水、240時間浸漬後碁盤目剥離試験)を実施、◎:剥離なし、○:碁盤目の5%未満の軽度の剥離、△:碁盤目の5%を越える剥離、×:碁盤目の50%を越える剥離とした。
塗装後耐食性は、クロスカットを入れた塗装材をJASO(M609)90サイクル実施し、◎:錆幅1mm以内、○:錆幅3mm以内、△:錆幅5mm以内、×:錆幅5mm超とした。結果を表2に示す。
These samples were subjected to deteriorated fuel corrosion resistance, condensation water corrosion resistance, paint adhesion, and post-paint corrosion resistance.
As for the deteriorated fuel corrosion resistance and the dew condensation water corrosion resistance, various corrosive liquids were enclosed in a cylindrical molded body having an inner diameter of 50 mm and a depth of 35 mm. Corrosion resistance of deteriorated fuel is as follows: ◎: No corrosion, ○: Practical problem in the condition of corrosion after enclosing gasoline containing formic acid 100ppm, acetic acid 300ppm, water 1.0% by volume and holding at 30 ℃ for 2 months No minor corrosion, Δ: Partially corroded, ×: Corrosion over the entire surface. Condensation water corrosion resistance is the corrosion state after filling gasoline containing 50.0% by volume of water and holding it at 30 ° C for 2 months. ◎: No corrosion, ○: Minor corrosion with no practical problem, △ : Partially corroded, x: Corrosion over the entire surface.
Paintability is 20 μm after coating with an alkydmelanin-based water-based black paint, and then a cross-cut peel test and a water resistance secondary adhesion test (40 ° C. pure water, cross-cut peel test after 240 hours of immersion) are conducted. , ○: Mild peeling less than 5% of the grid, Δ: peeling exceeding 5% of the grid, and x: peeling exceeding 50% of the grid.
Corrosion resistance after painting is as follows: JASO (M609) 90 cycles of cross-cut coating material, ◎: rust width within 1 mm, ○: rust width within 3 mm, △: rust width within 5 mm, ×: rust width over 5 mm did. The results are shown in Table 2.

表2の本発明例は何れも、内面耐食性、塗装密着性、塗装後耐食性に優れた。一方、比較例1は皮膜量が大きすぎて外面性能に劣り、比較例2は、皮膜量が少なすぎて、内面性能に劣った。比較例3は乾燥の昇温速度が低すぎて樹脂が十分成膜せず、各種性能に劣った。また、温風乾燥方式を用いた比較例4では、外面性能が劣った。   All of the inventive examples in Table 2 were excellent in inner surface corrosion resistance, coating adhesion, and post-coating corrosion resistance. On the other hand, Comparative Example 1 had an excessively large coating amount and poor external surface performance, and Comparative Example 2 had an excessively small coating amount and poor internal surface performance. In Comparative Example 3, the temperature rising rate of drying was too low, and the resin was not sufficiently formed, and various performances were inferior. Moreover, in the comparative example 4 using a warm air drying system, the outer surface performance was inferior.

Figure 2006089792
Figure 2006089792

Figure 2006089792
Figure 2006089792

本発明の亜鉛系燃料容器用鋼板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the steel plate for zinc fuel containers of this invention.

符号の説明Explanation of symbols

1 母材
2 亜鉛めっき層
3 Niめっき層
4 後処理皮膜
5 電熱方向を示す矢印
DESCRIPTION OF SYMBOLS 1 Base material 2 Zinc plating layer 3 Ni plating layer 4 Post-treatment film 5 Arrow which shows electric heating direction

Claims (4)

亜鉛系めっき鋼板の上に、後処理皮膜を付着量にして0.1〜2.0g/m2 付着後、20℃/s 以上の速度で、めっき表面側から加熱昇温して後処理皮膜を乾燥せしめることを特徴とする亜鉛系燃料容器用鋼板の製造方法。 After depositing 0.1 to 2.0 g / m 2 on the zinc-plated steel sheet, the post-treatment film is heated from the plating surface side at a rate of 20 ° C./s or higher. A method for producing a steel sheet for a zinc-based fuel container, wherein the steel is dried. 20℃/s 以上の速度で、めっき表面側から加熱昇温する方法が、誘導加熱または通電加熱のいずれかであることを特徴とする請求項1に記載の亜鉛系燃料容器用鋼板の製造方法。   The method for producing a steel sheet for a zinc-based fuel container according to claim 1, wherein the method of heating and heating from the plating surface side at a rate of 20 ° C / s or more is either induction heating or current heating. . 亜鉛系めっき鋼板が電気亜鉛めっき、溶融亜鉛めっき、鉄を25%以下含有する電気亜鉛−鉄合金電気めっき、鉄を25%以下含有する合金化溶融亜鉛めっき、ニッケルを25%以下含有する電気亜鉛−ニッケル合金めっきのいずれかであることを特徴とする請求項1および請求項2に記載の亜鉛系燃料容器用鋼板の製造方法。   Zinc-based steel sheet is electrogalvanized, hot dip galvanized, electrogalvanized-iron alloy electroplated containing 25% or less of iron, galvannealed alloy containing 25% or less of iron, electrozinc containing 25% or less of nickel The method for producing a steel sheet for a zinc-based fuel container according to claim 1 or 2, wherein the method is any one of nickel alloy plating. 亜鉛系めっき鋼板の上に、第二層として鉄80%(質量%、以下同じ)以上を有する鉄−亜鉛合金めっき層あるいはニッケルめっき層のいずれかを付着量にして10g/m2 以下付与し、さらに第二層の上面に後処理皮膜を付与することを特徴とする請求項1または請求項2または請求項3に記載の亜鉛系燃料容器用鋼板の製造方法。 On the galvanized steel sheet, 10 g / m 2 or less is applied as the second layer, with an iron-zinc alloy plating layer or nickel plating layer having 80% (mass%, the same applies hereinafter) or more of iron as the second layer. The method for producing a steel sheet for a zinc-based fuel container according to claim 1, 2 or 3, wherein a post-treatment film is further applied to the upper surface of the second layer.
JP2004274930A 2004-09-22 2004-09-22 Method for producing galvanized steel sheet for fuel container Withdrawn JP2006089792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274930A JP2006089792A (en) 2004-09-22 2004-09-22 Method for producing galvanized steel sheet for fuel container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274930A JP2006089792A (en) 2004-09-22 2004-09-22 Method for producing galvanized steel sheet for fuel container

Publications (1)

Publication Number Publication Date
JP2006089792A true JP2006089792A (en) 2006-04-06

Family

ID=36231046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274930A Withdrawn JP2006089792A (en) 2004-09-22 2004-09-22 Method for producing galvanized steel sheet for fuel container

Country Status (1)

Country Link
JP (1) JP2006089792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095874A1 (en) * 2013-12-20 2015-06-25 Jarden Zinc Products, LLC Nickel plated zinc alloys for coinage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095874A1 (en) * 2013-12-20 2015-06-25 Jarden Zinc Products, LLC Nickel plated zinc alloys for coinage
EP3082492A4 (en) * 2013-12-20 2017-08-09 Jarden Zinc Products, LLC Nickel plated zinc alloys for coinage
US10926312B2 (en) 2013-12-20 2021-02-23 Artazn Llc. Nickel plated zinc alloys for coinage

Similar Documents

Publication Publication Date Title
KR101249583B1 (en) Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
TW201641719A (en) Galvanized steel sheet
KR20150133851A (en) Aluminum-based alloy plated steel material having excellent post-coating corrosion resistance
KR20160078773A (en) Low temperature curable anti-corrosion coating composition excellent in corrosion resistance and zinc plated steel sheet using the same
JP2010208154A (en) Method of manufacturing metallic fuel vessel, and metallic fuel vessel
JP4072304B2 (en) Environmentally compatible automotive fuel container material and automotive fuel container
JP4400499B2 (en) Surface-treated steel sheet for fuel containers
JP2006089792A (en) Method for producing galvanized steel sheet for fuel container
JP3389884B2 (en) Surface treated steel sheet for fuel container and paint composition therefor
JP4213857B2 (en) Surface coating metal material
JP3835017B2 (en) Zn-plated surface-treated steel sheet for fuel containers
JP3847921B2 (en) Steel plate for high corrosion resistant fuel tank
JP3847926B2 (en) Steel plate for high corrosion resistant fuel tank
JP4704956B2 (en) Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance
JPS62230988A (en) Rust preventing steel sheet for fuel tank
JP3934762B2 (en) Steel plate for high corrosion resistant fuel tank
JP3934763B2 (en) Steel plate for high corrosion resistant fuel tank
JPH10137681A (en) Steel plate of superior molding properties for highly corrosion-resistant fuel tank
JPH06306638A (en) Steel plate for container of alcohol or alcohol-containing fuel
JPH09195871A (en) Material for gasoline fuel tank
JP4938054B2 (en) Organic coated molten Sn-Zn plated steel sheet
JPH10278172A (en) Steel panel for highly corrosion-resistant fuel tank
JPH10193507A (en) Fuel tank rust-prevention steel plate
JPH10278173A (en) Steel panel for highly corrosion-resistant fuel tank
JPH09142466A (en) Rust-proof steel plate for fuel tank

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204