JP2006089661A - Antioxidant - Google Patents

Antioxidant Download PDF

Info

Publication number
JP2006089661A
JP2006089661A JP2004278842A JP2004278842A JP2006089661A JP 2006089661 A JP2006089661 A JP 2006089661A JP 2004278842 A JP2004278842 A JP 2004278842A JP 2004278842 A JP2004278842 A JP 2004278842A JP 2006089661 A JP2006089661 A JP 2006089661A
Authority
JP
Japan
Prior art keywords
chemical formula
xanthone
compd
derivative
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004278842A
Other languages
Japanese (ja)
Inventor
Hiroyuki Haraguchi
博行 原口
Tetsunori Yano
哲規 矢野
Hideki Tosa
秀樹 土佐
Munekazu Iinuma
宗和 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EAG KK
Original Assignee
EAG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EAG KK filed Critical EAG KK
Priority to JP2004278842A priority Critical patent/JP2006089661A/en
Publication of JP2006089661A publication Critical patent/JP2006089661A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antioxidant capable of preventing various diseases and aging, to provide a pharmaceutical composition, to provide a quasi-drug composition, to provide a cosmetic, and to provide a health food. <P>SOLUTION: This antioxidant contains at least any one of xanthone derivatives expressed by specified five formulae (formulae (2) to (5) are not shown), such as a derivative expressed by formula (1). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は抗酸化剤、医薬組成物、医薬部外品組成物、化粧品、健康食品に関するものである。   The present invention relates to an antioxidant, a pharmaceutical composition, a quasi-drug composition, a cosmetic, and a health food.

細胞内のミトコンドリアやミクロソームの電子伝達系では、一部の電子はその系より漏出し、近接する鉄などの遷移金属の酸化還元反応サイクルを起こし、酸素分子を還元しスーパーオキシドアニオンを生じる。それは引き続き様々な活性酸素(過酸化水素、ヒドロキシラジカル)を生成する(例えば、非特許文献1参照)。   In the mitochondrial or microsomal electron transport system in the cell, some electrons leak from the system and cause an oxidation-reduction reaction cycle of transition metals such as adjacent iron, reducing oxygen molecules and generating superoxide anions. It continues to produce various active oxygens (hydrogen peroxide, hydroxy radicals) (see Non-Patent Document 1, for example).

これらのラジカルは、脂質の連鎖的な過酸化反応を誘発する。脂質の過酸化は連鎖的に進行し、過酸化脂質は膜脂質を次々と破壊するため様々な疾病、発ガン・老化の原因となるという問題があった。
財団法人 東京都高齢者研究・福祉振興財団 東京都老人総合研究所ホームページ、“ミトコンドリア遺伝子と長寿”、[online]、 [2003/11/26検索]、インターネット<URL:http://www.tmig.or.jp/J_TMIG/kouenkai/koza/62koza_3.html>
These radicals induce a chain peroxidation reaction of lipids. Lipid peroxidation proceeds in a chain, and lipid peroxide destroys membrane lipids one after another, causing problems such as various diseases, carcinogenesis and aging.
Tokyo Metropolitan Geriatric Research and Welfare Foundation Tokyo Metropolitan Institute of Gerontology, “Mitochondrial Genes and Longevity”, [online], [searched on 26 November 2003], Internet <URL: http: //www.tmig .or.jp / J_TMIG / kouenkai / koza / 62koza_3.html>

そこでこの発明は、様々な疾病や老化を予防することができる抗酸化剤、医薬組成物、医薬部外品組成物、化粧品、健康食品を提供しようとするものである。   Therefore, the present invention is intended to provide an antioxidant, a pharmaceutical composition, a quasi-drug composition, a cosmetic, and a health food that can prevent various diseases and aging.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1) この発明の抗酸化剤は、下記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有することを特徴とする。
In order to solve the above problems, the present invention takes the following technical means.
(1) The antioxidant of this invention contains at least one of the xanthone derivatives represented by the following general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. It is characterized by doing.

Figure 2006089661
Figure 2006089661

Figure 2006089661
Figure 2006089661

Figure 2006089661
Figure 2006089661

Figure 2006089661
Figure 2006089661

Figure 2006089661
この抗酸化剤は前記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有するものであって、抗酸化作用を有するものであり、様々な疾病や老化を予防する内用剤や外用剤として用いることができる。
Figure 2006089661
This antioxidant contains at least one of the xanthone derivatives represented by the general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5], It has an antioxidant action and can be used as an internal preparation or an external preparation for preventing various diseases and aging.

(2) この発明の医薬組成物は、上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする。 (2) The pharmaceutical composition of the present invention contains at least one of the xanthone derivatives represented by the general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. It has an antioxidant effect.

この医薬組成物は上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有するものであって、抗酸化作用を有するものであり、様々な疾病や老化を予防する内用剤や外用剤として用いることができる。   This pharmaceutical composition contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5], It has an antioxidant action and can be used as an internal preparation or an external preparation for preventing various diseases and aging.

(3) この発明の医薬部外品組成物は、上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする。 (3) The quasi-drug composition of the present invention comprises at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. It is characterized by having an antioxidant effect.

この医薬部外品組成物は上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有するものであって、抗酸化作用を有するものであり、様々な疾病や老化を予防する内用剤や外用剤として用いることができる。   This quasi-drug composition contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. Thus, it has an antioxidant action, and can be used as an internal preparation or an external preparation for preventing various diseases and aging.

(4) この発明の化粧品は、上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする。 (4) The cosmetic of the present invention contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. It has an oxidizing action.

この化粧品は上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有するものであって、抗酸化作用を有するものであり、様々な疾病や老化を予防する外用剤として用いることができる。   This cosmetic product contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. It has an action and can be used as an external preparation for preventing various diseases and aging.

(5) この発明の健康食品は、上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする。 (5) The health food of this invention contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. It has an antioxidant effect.

この健康食品は上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有するものであって、抗酸化作用を有するものであり、様々な疾病や老化を予防する内用剤として用いることができる。   This health food contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5]. It has an oxidizing action and can be used as an internal preparation for preventing various diseases and aging.

この発明は上述のような構成であり、次の効果を有する。   The present invention is configured as described above and has the following effects.

様々な疾病や老化を予防することができる抗酸化剤、医薬組成物、医薬部外品組成物、化粧品、健康食品を提供することができる。   Antioxidants, pharmaceutical compositions, quasi-drug compositions, cosmetics, and health foods that can prevent various diseases and aging can be provided.

この実施形態の抗酸化剤は、下記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有する。   The antioxidant of this embodiment contains at least one of the xanthone derivatives represented by the following general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5].

Figure 2006089661
Calopyllum inophyllum根皮のアセトン抽出物を展開溶媒としてn-hexane-EtOAc systemを用い、Si gel CCを行うことにより、7つの部分に粗分画を行った。そのn-hexane-EtOAc=3:1溶出画分より得られた粗結晶をn-hexane-acetoneで再結晶し、前記一般式〔化1〕に示されるキサントン誘導体(Caloxanthone A)を得た。
Figure 2006089661
Using an acetone extract of Calopyllum inophyllum root bark as an eluent, n-hexane-EtOAc system was used to perform Si gel CC, thereby roughly fractionating seven portions. The crude crystals obtained from the fraction eluted with n-hexane-EtOAc = 3: 1 were recrystallized with n-hexane-acetone to obtain a xanthone derivative (Caloxanthone A) represented by the above general formula [Chemical Formula 1].

Figure 2006089661
Calopyllum inophyllum根皮のアセトン抽出物を展開溶媒としてn-hexane-EtOAc systemを用い、Si gel CCを行うことにより、7つの部分に粗分画を行った。そのn-hexane-EtOAc=2:1溶出画分より得られた粗結晶をn-hexane-acetoneで再結晶し、前記一般式〔化2〕に示されるキサントン誘導体(macluraxanthone)を得た。
Figure 2006089661
Using an acetone extract of Calopyllum inophyllum root bark as an eluent, n-hexane-EtOAc system was used to perform Si gel CC, thereby roughly fractionating seven portions. The crude crystals obtained from the fraction eluted with n-hexane-EtOAc = 2: 1 were recrystallized with n-hexane-acetone to obtain a xanthone derivative (macluraxanthone) represented by the above general formula [Chemical Formula 2].

Figure 2006089661
Calopyllum inophyllum根材のn-ヘキサン抽出物より析出した粗結晶を濾別した後、濾液の濃縮物についてVLCを行い、n-hexane-EtOAc systemで溶出し、6つの分画が得られた。n-hexane-EtOAc=10:1溶出画分をn-hexaneより再結晶し、前記一般式〔化3〕に示されるキサントン誘導体(6-deoxyjacareubin(antiinflammation))を得た。
Figure 2006089661
After the crude crystals precipitated from the n-hexane extract of Calopyllum inophyllum rootstock were filtered off, the filtrate concentrate was subjected to VLC and eluted with n-hexane-EtOAc system to obtain 6 fractions. The fraction eluted with n-hexane-EtOAc = 10: 1 was recrystallized from n-hexane to obtain a xanthone derivative (6-deoxyjacareubin (antiinflammation)) represented by the above general formula [Chemical Formula 3].

Figure 2006089661
Calopyllum austroindicum心材を乾燥、粉砕し、アセトンを用いて抽出を行った。溶媒を減圧下除去し、その残査を、Si gel CC(benzene-acetone system)に付し、11の分画を得た。そのうち、3:1の分画をさらにVLC(CHCl3-MeOH system)に付し、5:1溶出画分から前記一般式〔化4〕に示されるキサントン誘導体を得た。
Figure 2006089661
Calopyllum austroindicum heartwood was dried, ground, and extracted with acetone. The solvent was removed under reduced pressure, and the residue was subjected to Si gel CC (benzene-acetone system) to obtain 11 fractions. Among these, the 3: 1 fraction was further subjected to VLC (CHCl3-MeOH system), and the xanthone derivative represented by the above general formula [Chemical Formula 4] was obtained from the 5: 1 eluted fraction.

Figure 2006089661
Calopyllum austroindicum心材を乾燥、粉砕し、ベンゼンを用いて抽出を行った。溶媒を減圧下除去し、その残査を、VLC(n-hexane-EtOAc system)に付し、9つの分画を得た。そのうち、5:1溶出分画から前記一般式〔化5〕に示されるキサントン誘導体(Jacareubin)を、再結晶を行うことによりを得た。
Figure 2006089661
Calopyllum austroindicum heartwood was dried, ground, and extracted with benzene. The solvent was removed under reduced pressure, and the residue was subjected to VLC (n-hexane-EtOAc system) to obtain 9 fractions. Among them, the xanthone derivative (Jacareubin) represented by the general formula [Chemical Formula 5] was obtained from the 5: 1 elution fraction by recrystallization.

この抗酸化剤は前記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有するものであって、抗酸化作用を有するものであり、様々な疾病や老化を予防する内用剤や外用剤として用いることができ、医薬組成物、医薬部外品組成物、化粧品、健康食品として適用することができる。   This antioxidant contains at least one of the xanthone derivatives represented by the general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5], It has an anti-oxidant action and can be used as an internal preparation or an external preparation for preventing various diseases and aging, and can be applied as a pharmaceutical composition, a quasi-drug composition, a cosmetic, and a health food. .

ここで、ミトコンドリア及びミクロソームを次のようにして調整した。   Here, mitochondria and microsomes were prepared as follows.

ラットをジエチルエーテルで麻酔死させた後、肝臓を取り出し、homogenizing medium(pH7.4)で血抜きをし、数回洗浄した。肝臓量の9倍量のhomogenizing medium(pH7.4)に懸濁し、homogenizerで細胞を破砕した。この破砕液を4℃、1,000xgで10分間遠心した。上澄みを4℃、7,000xgで10分間遠心した後、上澄みからはミクロソーム、沈殿からはミトコンドリアを調整した。   After the rats were killed by anesthesia with diethyl ether, the liver was taken out, blood was removed with a homogenizing medium (pH 7.4) and washed several times. The cells were suspended in a homogenizing medium (pH 7.4) of 9 times the amount of liver, and the cells were crushed with a homogenizer. This crushed liquid was centrifuged at 1,000 × g for 10 minutes at 4 ° C. After centrifuging the supernatant at 4 ° C. and 7,000 × g for 10 minutes, microsomes were prepared from the supernatant and mitochondria were prepared from the precipitate.

沈殿をhomogenizing medium(pH7.4)で懸濁して4℃、7,000xgで10分間遠心した。得られた沈殿を肝重量の0.4倍量のHEPES−NaOHで懸濁し、超音波処理(BRANSON Model 450 Sonifer)を、5秒行った。この溶液を、submitochondoriaとし、即日使用した。   The precipitate was suspended in a homogenizing medium (pH 7.4) and centrifuged at 4 ° C. and 7,000 × g for 10 minutes. The obtained precipitate was suspended in 0.4 times HEPES-NaOH of the liver weight and subjected to ultrasonic treatment (BRANSON Model 450 Sonifer) for 5 seconds. This solution was made submitochondoria and used the same day.

上澄みを4℃、105,000xgで60分間遠心し、沈殿をhomogenizing medium(pH7.4)で懸濁した後、同条件で遠心した。得られた沈殿を、肝重量の0.7倍量の100mM Tris-HCl bufferで懸濁したものをミクロソーム溶液とし、冷凍保存した。   The supernatant was centrifuged at 105,000 × g for 60 minutes at 4 ° C., and the precipitate was suspended in a homogenizing medium (pH 7.4) and then centrifuged under the same conditions. The obtained precipitate was suspended in 100 mM Tris-HCl buffer, 0.7 times the liver weight, as a microsome solution and stored frozen.

そして、以下の実施例1〜4の各試験を行った。   And each test of the following Examples 1-4 was done.

試験に供したのは図1〜図3に示す18種類のキサントン誘導体であり、このうち上記〔化1〕は図1のIYC−2に示すものであり、〔化2〕は図1のIYC−4に示すものであり、〔化3〕は図1のIYC−8に示すものであり、〔化4〕は図2のIYC−10に示すものであり、〔化5〕は図2のIYC−14に示すものである。   The 18 types of xanthone derivatives shown in FIGS. 1 to 3 were used for the test. Of these, [Chemical Formula 1] is shown in IYC-2 of FIG. 1, and [Chemical Formula 2] is IYC of FIG. -4, [Chemical Formula 3] is shown in IYC-8 in FIG. 1, [Chemical Formula 4] is shown in IYC-10 in FIG. 2, and [Chemical Formula 5] is shown in FIG. This is shown in IYC-14.

また試験結果を示す表1〜表3においてCompd.1〜Compd.18は、図1〜図3のIYC−1〜IYC−14にそれぞれ対応するものである。   In Tables 1 to 3 showing the test results, Compd.1 to Compd.18 correspond to IYC-1 to IYC-14 in FIGS.

ミトコンドリアにおける膜脂質過酸化作用の測定を行った。 We measured membrane lipid peroxidation in mitochondria.

ミトコンドリアをNADH依存性、NADPH依存性、コハク酸依存性、AsA−Fe3+によりそれぞれ過酸化させ、各キサントン誘導体の脂質過酸化抑制作用をチオルビツール酸(TBA)法で測定した。NADH依存性及びコハク酸依存性の脂質過酸化は電子伝達依存性である。 Mitochondria were each peroxidized with NADH dependence, NADPH dependence, succinic acid dependence and AsA-Fe 3+ , and the lipid peroxidation inhibitory action of each xanthone derivative was measured by the thiorubicuric acid (TBA) method. NADH-dependent and succinic acid-dependent lipid peroxidation is electron transport dependent.

(1) Fe3+―ADP存在下でNADHに依存するミトコンドリアの膜脂質過酸化
試験管にキサントン溶液(DMSO)10μl、100mM HEPES−NaOH bufferを500μl、20mM ADP (終濃度2mM)を100μl、20mM FeCl (終濃度2mM) を100μl、蒸留水を130μl、1mM rotenone (終濃度10μM)を10μl、submitochondoriaを50μlを加え37℃で5分間保温した。1mM NADH (終濃度100μM)を100μl加え反応を開始、37℃で5分間反応させた。2%BHT(2,6-Di-t-butyl-4-methylphenol)を90μl加え、反応を停止させ、15%TCA (trichloroaceticacid)-0.375% TBA(2-thiobarbituric acid)-2.5% HCl solutionを2ml加え100℃で15分間加熱し、5,000rpmで10分間遠心し、上清の535nmの吸光を測定した。
(1) Mitochondrial membrane lipid peroxidation dependent on NADH in the presence of Fe 3+ -ADP In a test tube, 10 μl of xanthone solution (DMSO), 500 μl of 100 mM HEPES-NaOH buffer, 100 μl of 20 mM ADP (final concentration 2 mM), 20 mM FeCl 3 (final concentration 2 mM) was added 100 μl, distilled water 130 μl, 1 mM rotenone (final concentration 10 μM) 10 μl and submitochondoria 50 μl were added and incubated at 37 ° C. for 5 minutes. The reaction was started by adding 100 μl of 1 mM NADH (final concentration 100 μM) and allowed to react at 37 ° C. for 5 minutes. 90 μl of 2% BHT (2,6-Di-t-butyl-4-methylphenol) was added to stop the reaction, and 2 ml of 15% TCA (trichloroaceticacid) -0.375% TBA (2-thiobarbituric acid) -2.5% HCl solution The mixture was heated at 100 ° C. for 15 minutes, centrifuged at 5,000 rpm for 10 minutes, and the absorbance of the supernatant was measured at 535 nm.

50%抑制濃度(μM)の結果を、表1の「(1)NADH―dependent」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は2.1、〔化2〕のキサントン誘導体(表中、Compd.4)は0.9、〔化3〕のキサントン誘導体(表中、Compd.8)は27.3、〔化4〕のキサントン誘導体(表中、Compd.10)は0.5、〔化5〕のキサントン誘導体(表中、Compd.14)は4.1であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。   The results of 50% inhibitory concentration (μM) are listed in the item “(1) NADH-dependent” in Table 1. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 2.1, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 0.9, and the xanthone of [Chemical Formula 3] The derivative (Compd. 8 in the table) is 27.3, the xanthone derivative (Compd. 10 in the table) is 0.5, and the xanthone derivative (Compd. 14 in the table is 4.1) is 4.1. Yes, it shows very good numerical values for xanthone derivatives having other structures.

Figure 2006089661
Figure 2006089661

(2) Fe3+―ADP存在下でNADPHに依存するミトコンドリアの膜脂質過酸化
試験管にキサントン10μl、100mM HEPES−NaOH bufferを500μl、20mM ADP (終濃度2mM)を100μl
、20mM FeCl(終濃度2mM)を100μl、蒸留水を140μl、submitochondoriaを50μl加え37℃で5分間保温した。1mM NADPH(終濃度100μM)を100μl加え反応を開始、37℃で15分間反応させた。(1)と同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(2) Fe 3+ -NADPH-dependent mitochondrial membrane lipid peroxidation in the presence of FeDP + In a test tube, 10 μl of xanthone, 500 μl of 100 mM HEPES-NaOH buffer, 100 μl of 20 mM ADP (final concentration 2 mM)
Then, 100 μl of 20 mM FeCl 3 (final concentration 2 mM), 140 μl of distilled water and 50 μl of submitochondoria were added, and the mixture was incubated at 37 ° C. for 5 minutes. 100 μl of 1 mM NADPH (final concentration 100 μM) was added to start the reaction, and the reaction was allowed to proceed at 37 ° C. for 15 minutes. The reaction was stopped as in (1), and the absorbance at 535 nm was measured by the TBA method.

50%抑制濃度(μM)の結果を、表1の「(2)NADPH―dependent」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は4.8、〔化2〕のキサントン誘導体(表中、Compd.4)は1.3、〔化3〕のキサントン誘導体(表中、Compd.8)は57.8、〔化4〕のキサントン誘導体(表中、Compd.10)は1.4、〔化5〕のキサントン誘導体(表中、Compd.14)は2.2であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。   The result of 50% inhibitory concentration (μM) is described in the item “(2) NADPH-dependent” in Table 1. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 4.8, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 1.3, and the xanthone of [Chemical Formula 3] The derivative (Compd. 8 in the table) is 57.8, the xanthone derivative (Compd. 10 in the table) is 1.4, and the xanthone derivative (Compd. 14 in the table) is 2.2. It shows very good numerical values for xanthone derivatives having other structures.

(3) Fe3+―ADP存在下でコハク酸に依存するミトコンドリアの膜脂質過酸化
試験管にキサントン10μl、100mM HEPES−NaOH bufferを500μl、20mM ADP(終濃度2mM)を100μl、20mM FeCl(終濃度2mM)を100μl、蒸留水を130μl、1mM antimycin(終濃度10μM)を10μl、submitochondoriaを50μl加え37℃で5分間保温した。4mM sodium succinate(終濃度400μM)を100μl加え反応を開始、37℃で60分間反応させた。(1)と同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(3) Fe 3+ -Mitochondrial membrane lipid peroxidation that depends on succinic acid in the presence of ADP Xanthone 10 μl, 100 mM HEPES-NaOH buffer 500 μl, 20 mM ADP (final concentration 2 mM) 100 μl, 20 mM FeCl 3 (final) 100 μl of concentration 2 mM), 130 μl of distilled water, 10 μl of 1 mM antimycin (final concentration 10 μM) and 50 μl of submitochondoria were added and incubated at 37 ° C. for 5 minutes. 100 μl of 4 mM sodium succinate (final concentration 400 μM) was added to start the reaction, and the reaction was carried out at 37 ° C. for 60 minutes. The reaction was stopped as in (1), and the absorbance at 535 nm was measured by the TBA method.

50%抑制濃度(μM)の結果を、表1の「(3)Succinate―dependent」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は3.7、〔化2〕のキサントン誘導体(表中、Compd.4)は1.3、〔化3〕のキサントン誘導体(表中、Compd.8)は42.8、〔化4〕のキサントン誘導体(表中、Compd.10)は1.0、〔化5〕のキサントン誘導体(表中、Compd.14)は3.0であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。   The result of 50% inhibition concentration (μM) is described in the item “(3) Succinate-dependent” in Table 1. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 3.7, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 1.3, and the xanthone of [Chemical Formula 3] The derivative (Compd. 8 in the table) is 42.8, the xanthone derivative (Compd. 10 in the table) is 1.0, and the xanthone derivative (Compd. 14 in the table is Compd. 14) is 3.0. It shows very good numerical values for xanthone derivatives having other structures.

(4)低濃度のアスコルビン酸及び鉄により生成されるヒドロキシラジカル(・OH)によるミトコンドリアの膜の脂質過酸化
試験管にキサントン10μl、100mM HEPES−NaOH buffer(pH7.4)を500μl、200mM KCl(終濃度20mM)を100μl、100μM FeSO(終濃度10μM)を100μl、蒸留水を140μl、submitochondoriaを50μl加え、反応液とした。37℃で5分間保温後、2mM AsA(ascorbic acid)(終濃度200μM)を100μl加え37℃で20分間反応させた。(1)と同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(4) Lipid peroxidation of mitochondrial membranes by hydroxy radicals (.OH) generated by low concentrations of ascorbic acid and iron In a test tube, xanthone 10 μl, 100 mM HEPES-NaOH buffer (pH 7.4) 500 μl, 200 mM KCl ( 100 μl of 100 μM FeSO 4 (final concentration of 10 μM), 140 μl of distilled water and 50 μl of submitochondoria were added to give a reaction solution. After incubating at 37 ° C. for 5 minutes, 100 μl of 2 mM AsA (ascorbic acid) (final concentration 200 μM) was added and reacted at 37 ° C. for 20 minutes. The reaction was stopped as in (1), and the absorbance at 535 nm was measured by the TBA method.

50%抑制濃度(μM)の結果を、表1の「(4)Ascorbate―induced」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は7.1、〔化2〕のキサントン誘導体(表中、Compd.4)は5.7、〔化3〕のキサントン誘導体(表中、Compd.8)は18.3、〔化4〕のキサントン誘導体(表中、Compd.10)は5.5、〔化5〕のキサントン誘導体(表中、Compd.14)は5.6であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。   The result of 50% inhibition concentration (μM) is described in the item “(4) Ascorbate-induced” in Table 1. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 7.1, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 5.7, and the xanthone of [Chemical Formula 3] The derivative (Compd. 8 in the table) is 18.3, the xanthone derivative (Compd. 10 in the table) is 5.5, and the xanthone derivative (Compd. 14 in the table) is 5.6. It shows very good numerical values for xanthone derivatives having other structures.

ミクロソームにおける脂質過酸化作用の測定を行った。 We measured lipid peroxidation in microsomes.

ミクロソームをNADPH依存性、NADH依存性、AsA−Fe 、t−BOOH、CClにより過酸化させ、脂質過酸化抑制作用をTBA法で測定した。NADPH依存性脂質過酸化はNADPH-cytochrome-P-450 reductase依存性、NADH依存性はNADH-cytochrome breductase依存性、t−BOOH及びCClはP−依存性である。 The microsomes were peroxidized with NADPH-dependent, NADH-dependent, AsA-Fe 3 + , t-BOOH, CCl 4 and the lipid peroxidation inhibitory action was measured by the TBA method. NADPH-dependent lipid peroxidation is NADPH-cytochrome-P-450 reductase dependence, NADH dependence is NADH-cytochrome b 5 reductase dependence, and t-BOOH and CCl 4 are P-dependent.

(1)Fe3+―ADP存在下でNADPHに依存するミクロソームの脂質過酸化
試験管にキサントン10μl、100mM Tris-HCl buffer(pH7.5)を500μl、20mM ADP(終濃度2mM)を100μl、1.2mM FeCl(終濃度120μM)を100μl、蒸留水140μl、microsomeを50μlを加え、反応液とした。37℃で5分間保温後、1mM NADPH(終濃度100μM)を100μl加え、37℃で15分間反応させた。ミトコンドリアの場合と同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(1) Microsomal lipid peroxidation dependent on NADPH in the presence of Fe 3+ -ADP In a test tube, 10 μl of xanthone, 500 μl of 100 mM Tris-HCl buffer (pH 7.5), 100 μl of 20 mM ADP (final concentration 2 mM), 1.2 mM FeCl 3 (final concentration 120 μM) 100 μl, distilled water 140 μl and microsome 50 μl were added to prepare a reaction solution. After incubating at 37 ° C. for 5 minutes, 100 μl of 1 mM NADPH (final concentration 100 μM) was added and reacted at 37 ° C. for 15 minutes. The reaction was stopped as in the case of mitochondria, and the absorbance at 535 nm was measured by the TBA method.

50%抑制濃度(μM)の結果を、表2の「(5)NADPH―dependent」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は18.9、〔化2〕のキサントン誘導体(表中、Compd.4)は6.4、〔化3〕のキサントン誘導体(表中、Compd.8)は64.4、〔化4〕のキサントン誘導体(表中、Compd.10)は0.7、〔化5〕のキサントン誘導体(表中、Compd.14)は1.3であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。   The result of 50% inhibitory concentration (μM) is described in the item “(5) NADPH-dependent” in Table 2. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 18.9, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 6.4, and the xanthone of [Chemical Formula 3] The derivative (Compd. 8 in the table) is 64.4, the xanthone derivative (Compd. 10 in the table) is 0.7, and the xanthone derivative (Compd. 14 in the table) is 1.3. It shows very good numerical values for xanthone derivatives having other structures.

Figure 2006089661
Figure 2006089661

(2)Fe3+―ADP存在下でNADHに依存するミクロソームの脂質過酸化
試験管にキサントン10μL,100mM Tris-HCl buffer(pH7.5)を500μl、20mM ADP(終濃度2mM)を100μl、1.2mM FeCl(終濃度120μM)を100μl、蒸留水140μl、microsomeを50μl加え、反応液とした。37℃で5分間保温後、1mM NADH(終濃度100μM)を100μl加え37℃で60分間反応させた。同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(2) Microsomal lipid peroxidation that depends on NADH in the presence of Fe 3+ -ADP In a test tube, 10 μL of xanthone, 500 μl of 100 mM Tris-HCl buffer (pH 7.5), 100 μl of 20 mM ADP (final concentration 2 mM), 1.2 mM FeCl 3 (final concentration 120 μM) 100 μl, distilled water 140 μl and microsome 50 μl were added to prepare a reaction solution. After incubating at 37 ° C. for 5 minutes, 100 μl of 1 mM NADH (final concentration 100 μM) was added and reacted at 37 ° C. for 60 minutes. Similarly, the reaction was stopped, and absorbance at 535 nm was measured by the TBA method.

結果は、前記(1)項と同様であった。   The result was the same as the item (1).

(3)低濃度のアスコルビン酸及び鉄により生成されるヒドロキシラジカル(・OH)によるミクロソームの脂質過酸化
試験管にキサントン10μl、40mM phosphate buffer(pH6.0)を500μl、1.2mM FeCl(終濃度120μM)を100μl、900mM(終濃度90mM)KClを100μl、蒸留水を140μl、microsomeを50μl加え、反応液とした。37℃で5分間保温後5mM AsA(ascorbic acid)(終濃度500μM)を100μl加え37℃で15分間反応させた。同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(3) Microsomal lipid peroxidation by hydroxy radicals (.OH) produced by low concentrations of ascorbic acid and iron In test tubes, 10 μl of xanthone, 500 μl of 40 mM phosphate buffer (pH 6.0), 1.2 mM FeCl 3 (final concentration) 120 μM), 100 μl of 900 mM (final concentration 90 mM) KCl, 140 μl of distilled water, and 50 μl of microsome were added to prepare a reaction solution. After incubation at 37 ° C. for 5 minutes, 100 μl of 5 mM AsA (ascorbic acid) (final concentration 500 μM) was added and reacted at 37 ° C. for 15 minutes. Similarly, the reaction was stopped, and absorbance at 535 nm was measured by the TBA method.

50%抑制濃度(μM)の結果を、表2の「(7)Ascorbate―induced」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は2.4、〔化2〕のキサントン誘導体(表中、Compd.4)は1.6、〔化3〕のキサントン誘導体(表中、Compd.8)は45.7、〔化4〕のキサントン誘導体(表中、Compd.10)は0.6、〔化5〕のキサントン誘導体(表中、Compd.14)は0.7であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。   The result of 50% inhibition concentration (μM) is described in the item “(7) Ascorbate-induced” in Table 2. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 2.4, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 1.6, and the xanthone of [Chemical Formula 3] The derivative (Compd. 8 in the table) is 45.7, the xanthone derivative (Compd. 10 in the table) is 0.6, the xanthone derivative (Compd. 14 in the table) is 0.7, It shows very good numerical values for xanthone derivatives having other structures.

(4)CClによるp−450依存性の脂質過酸化
試験管にキサントン10μl、2unitsのglucose-6-phosphate-dehydrogenase、0.4mMEDTAを含む200mM K phosphate buffer(pH7.4)を500μl、100mM glucose-6-phosphate,disodiumsalt(終濃度10mM)を100μl、蒸留水を240μl、microsomeを50μl加え、反応液とした。37℃で2分間保温後、2M CCl(carbon tetrachloride)/EtOH(終濃度20mM)を10μl加え、さらに37℃で2分間保温後、100mM(終濃度1mM)NADPを100μl加え37℃で20分間反応させた。同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(4) p-450-dependent lipid peroxidation by CCl 4 In a test tube, 10 μl xanthone, 2 units glucose-6-phosphate-dehydrogenase, 200 mM K phosphate buffer (pH 7.4) containing 0.4 mM EDTA, 500 μl, 100 mM glucose- 100 μl of 6-phosphate, disodium salt (final concentration 10 mM), 240 μl of distilled water and 50 μl of microsome were added to prepare a reaction solution. After incubating at 37 ° C. for 2 minutes, 10 μl of 2M CCl 4 (carbon tetrachloride) / EtOH (final concentration 20 mM) was added, and further incubated at 37 ° C. for 2 minutes, and then 100 μl of 100 mM (final concentration 1 mM) NADP + was added and incubated at 37 ° C. for 20 minutes. Reacted for 1 minute. Similarly, the reaction was stopped, and absorbance at 535 nm was measured by the TBA method.

50%抑制濃度(μM)の結果を、表2の「(8)CCl―induced」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は3.3、〔化2〕のキサントン誘導体(表中、Compd.4)は2.9、〔化3〕のキサントン誘導体(表中、Compd.8)は13.5、〔化4〕のキサントン誘導体(表中、Compd.10)は3.5、〔化5〕のキサントン誘導体(表中、Compd.14)は2.3であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。 The result of 50% inhibition concentration (μM) is described in the item of “(8) CCl 4 -induced” in Table 2. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 3.3, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 2.9, and the xanthone of [Chemical Formula 3] The derivative (Compd. 8 in the table) is 13.5, the xanthone derivative of [Chem. 4] (Compd. 10 in the table) is 3.5, and the xanthone derivative of [Chem. 5] (Compd. 14 in the table) is 2.3. It shows very good numerical values for xanthone derivatives having other structures.

(5)t-BOOHによるp−450依存性の脂質過酸化
試験管にキサントン10μl、200mM K phosphate buffer(pH7.4)を500μl、蒸留水を430μl、microsome を50μl加え、反応液とした。37℃で5分間保温後、100mM t-BOOH(tert-butylhydroperooxide:終濃度10mM)を100μl加え37℃で30分間反応させた。同様に反応を停止させ、TBA法にて535nmの吸光を測定した。
(5) p-450-dependent lipid peroxidation by t-BOOH To a test tube, 10 μl of xanthone, 500 μl of 200 mM K phosphate buffer (pH 7.4), 430 μl of distilled water, and 50 μl of microsome were added to obtain a reaction solution. After incubating at 37 ° C. for 5 minutes, 100 μl of 100 mM t-BOOH (tert-butylhydroperooxide: final concentration 10 mM) was added and reacted at 37 ° C. for 30 minutes. Similarly, the reaction was stopped, and absorbance at 535 nm was measured by the TBA method.

50%抑制濃度(μM)の結果を、表2の「(9)t-BuOOH―induced」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は58.5、〔化2〕のキサントン誘導体(表中、Compd.4)は29.5、〔化4〕のキサントン誘導体(表中、Compd.10)は35.7、〔化5〕のキサントン誘導体(表中、Compd.14)は47.2であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。   The result of 50% inhibition concentration (μM) is described in the item “(9) t-BuOOH-induced” in Table 2. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 58.5, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 29.5, and the xanthone of [Chemical Formula 4] The derivative (Compd. 10 in the table) is 35.7, and the xanthone derivative (Compd. 14 in the table is 47.2) is 47.2, which shows very good numerical values for xanthone derivatives having other structures. Yes.

ラジカル除去作用の測定を行った。 The radical removal effect was measured.

(1)DPPH radical除去作用
中性ラジカルであるDPPH(diphenyl-p-picrylhydradical)ラジカルを用いて、直接的なラジカル除去作用について測定した。
(1) DPPH radical removal action Direct radical removal action was measured using DPPH (diphenyl-p-picrylhydradical) radical, which is a neutral radical.

試験管にキサントン20μl、250mM acetate buffer,pH5.5を400μl、エタノール390μl加え、37℃で5分間保温後、250μM(終濃度50μM)を200μl加え30℃で30分間反応させ、517nmで吸光を測定した。測定直後に3,000ppm BHTを30μ加え、30℃で30分間保温し、517nmでの吸光を測定した。   Add 20 μl of xanthone, 400 μl of 250 mM acetate buffer, pH 5.5 and 390 μl of ethanol to a test tube, incubate at 37 ° C for 5 minutes, add 200 μl of 250 μM (final concentration 50 μM), react at 30 ° C for 30 minutes, and measure absorbance at 517 nm did. Immediately after the measurement, 30 μm of 3,000 ppm BHT was added, the mixture was kept at 30 ° C. for 30 minutes, and the absorbance at 517 nm was measured.

50%抑制濃度(μM)の結果を、表3の「(10)CCl―induced」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は9.9、〔化2〕のキサントン誘導体(表中、Compd.4)は5.8、〔化4〕のキサントン誘導体(表中、Compd.10)は12.6、〔化5〕のキサントン誘導体(表中、Compd.14)は7.2であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。 The result of 50% inhibition concentration (μM) is described in the item “(10) CCl 4 -induced” in Table 3. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 9.9, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 5.8, and the xanthone of [Chemical Formula 4] The derivative (Compd. 10 in the table) is 12.6, and the xanthone derivative (Compd. 14 in the table) is 7.2, showing very excellent numerical values for xanthone derivatives having other structures. Yes.

Figure 2006089661
Figure 2006089661

(2)スーパーオキサイドアニオン(O )除去作用
様々な活性酸素のうち特にスーパーオキシドアニオン(O )について、xanthine oxidase(XOD)で生じたO の消去作用を測定した。
(2) Superoxide anion (O 2 ) removal action Among various active oxygens, particularly the superoxide anion (O 2 ), the elimination action of O 2 produced by xanthine oxidase (XOD) was measured.

試験管にキサントン10μlに、1.1×10−3 units XOD,0.1mM EDTA,0.1%BSA(牛血清アルブミン 脂肪酸フリー)、50μM nitroblue tetrazolium(NBT)を含む100mM Na phospate buffer、pH7.8を0.5ml加え反応液とした。37℃で5分間保温後、基質として0.2mM xanthine(終濃度0.1mM)を0.5ml加え、スーパーオキシドアニオンの生成を開始した。反応20分後、6mM CuCl(終濃度200μM)を35μl加え反応を停止させ、還元されたNBTを560nmの吸光で測定した。 Add 0.5 ml of 100 mM Na phospate buffer, pH7.8 containing 1.1 x 10 -3 units XOD, 0.1 mM EDTA, 0.1% BSA (bovine serum albumin fatty acid free), 50 µM nitroblue tetrazolium (NBT) to 10 µl xanthone. It was set as the reaction liquid. After incubating at 37 ° C. for 5 minutes, 0.5 ml of 0.2 mM xanthine (final concentration 0.1 mM) was added as a substrate to start production of superoxide anion. After 20 minutes of reaction, 35 μl of 6 mM CuCl 2 (final concentration 200 μM) was added to stop the reaction, and the reduced NBT was measured by absorbance at 560 nm.

50%抑制濃度(μM)の結果を、表3の「(11)CCl―induced」の項目に記載する。この表に示されるように、〔化1〕のキサントン誘導体(表中、Compd.2)は51.8、〔化2〕のキサントン誘導体(表中、Compd.4)は5.7、〔化4〕のキサントン誘導体(表中、Compd.10)は5.2、〔化5〕のキサントン誘導体(表中、Compd.14)は6.3であり、他の構造を有するキサントン誘導体に対して非常に優れた数値を示している。 The result of 50% inhibition concentration (μM) is described in the item “(11) CCl 4 -induced” in Table 3. As shown in this table, the xanthone derivative of [Chemical Formula 1] (Compd. 2 in the table) is 51.8, the xanthone derivative of [Chemical Formula 2] (Compd. 4 in the table) is 5.7, and the xanthone of [Chemical Formula 4] The derivative (Compd. 10 in the table) is 5.2, and the xanthone derivative of [Chemical Formula 5] (Compd. 14 in the table) is 6.3, which shows very good numerical values for xanthone derivatives having other structures. Yes.

Compd.2〔化1〕のキサントン誘導体について、ミトコンドリアの過酸化と酵素活性の測定を行った。   For the xanthone derivative of Compd. 2 [Chemical Formula 1], mitochondrial peroxidation and enzyme activity were measured.

ミトコンドリアではNADH dehydrogenaseやcoenzyme Qサイクルで活性酸素が生成し、その結果NADH dehydrogenaseやcomplexIIIが酸化ストレスにより失活する。非酵素的にdihydroxyfumarate(DHF)によりヒドロキシラジカルを生じさせると、ミトコンドリアの酵素活性が低下する。これに対するキサントン誘導体の酵素活性保護作用を調べた。   In mitochondria, active oxygen is generated by NADH dehydrogenase or coenzyme Q cycle, and as a result, NADH dehydrogenase and complex III are inactivated by oxidative stress. Non-enzymatic generation of hydroxyl radicals by dihydroxyfumarate (DHF) reduces mitochondrial enzyme activity. The enzyme activity protective action of the xanthone derivative was investigated.

試験管にキサントン100μlに、50mM phosphate buffer(pH7.4)を7.7mlと1mM FeCl(終濃度100μM)と10mM ADP(終濃度1mM)をそれぞれ1mlずつ添加し、37℃でpreincubateした。5分後、30mM DHF(終濃度300μM)とミトコンドリアを100μlずつ加え、反応を開始した。30分ごとに1mlサンプリングし、そのNADH−cytochrome c reductase活性及びsuccinate-cytochrome c活性を測定した。 To 100 μl of xanthone, 7.7 ml of 50 mM phosphate buffer (pH 7.4), 1 ml of 1 mM FeCl 3 (final concentration of 100 μM) and 1 ml of 10 mM ADP (final concentration of 1 mM) were added and preincubated at 37 ° C. After 5 minutes, 30 mM DHF (final concentration 300 μM) and 100 μl of mitochondria were added to initiate the reaction. 1 ml was sampled every 30 minutes, and its NADH-cytochrome c reductase activity and succinate-cytochrome c activity were measured.

酵素活性は、1mlのサンプリング溶液に10mM NaNとcytochrome cを50mM phosphate bufferに加えた溶液950μlと2mM NADHまたは200mM succinateを66μl加え、550nmの吸光度で3分間連続測定した。これを反応開始から2時間まで連続して行った。 The enzyme activity was measured continuously for 3 minutes at an absorbance of 550 nm by adding 950 μl of a solution obtained by adding 10 mM NaN 3 and cytochrome c to 50 mM phosphate buffer and 66 μl of 2 mM NADH or 200 mM succinate to 1 ml of the sampling solution. This was continuously performed for 2 hours from the start of the reaction.

結果を、図4のジヒドロキシフマル酸によるミトコンドリア呼吸鎖の酸化障害に対する〔化2〕の効果のグラフに示す。図中(X)のDHF無添加のcontorolでは酵素は失活しない。図中(Y)にCompd.2〔化1〕のキサントン誘導体を添加すると失活を抑制し、活性が保護される。DHFで過酸化すると失活する。また、Compd.4〔化2〕のキサントン誘導体、Compd.10〔化4〕のキサントン誘導体、 Compd.14〔化5〕のキサントン誘導体には同様の保護作用が認められた。   The results are shown in the graph of the effect of [Chemical Formula 2] on the oxidative damage of the mitochondrial respiratory chain by dihydroxyfumaric acid in FIG. In the figure, the enzyme is not inactivated by the control of (X) DHF-free. When a xanthone derivative of Compd. 2 [Chemical Formula 1] is added to (Y) in the figure, the deactivation is suppressed and the activity is protected. Deoxidizes when peroxidized with DHF. The same protective action was observed for the xanthone derivative of Compd.4 [Chemical 2], the xanthone derivative of Compd.10 [Chemical 4], and the xanthone derivative of Compd.14 [Chemical 5].

様々な疾病や老化を予防することができ、抗酸化剤、医薬組成物、医薬部外品組成物、化粧品、健康食品など種々の用途に適用することができる。   It can prevent various diseases and aging, and can be applied to various uses such as antioxidants, pharmaceutical compositions, quasi-drug compositions, cosmetics, and health foods.

試験に供したキサントン誘導体(IYC−1〜IYC−8)の構造を説明する図。The figure explaining the structure of the xanthone derivative (IYC-1 to IYC-8) used for the test. 試験に供したキサントン誘導体(IYC−9〜IYC−16)の構造を説明する図。The figure explaining the structure of the xanthone derivative (IYC-9-IYC-16) used for the test. 試験に供したキサントン誘導体(IYC−17〜IYC−18)の構造を説明する図。The figure explaining the structure of the xanthone derivative (IYC-17-IYC-18) used for the test. ジヒドロキシフマル酸によるミトコンドリア呼吸鎖の酸化障害に対する〔化2〕の効果を示すグラフ。The graph which shows the effect of [Chemical Formula 2] with respect to the oxidative damage of the mitochondrial respiratory chain by dihydroxy fumarate.

Claims (5)

下記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有することを特徴とする抗酸化剤。
Figure 2006089661
Figure 2006089661
Figure 2006089661
Figure 2006089661
Figure 2006089661
An antioxidant comprising at least one of xanthone derivatives represented by the following general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5].
Figure 2006089661
Figure 2006089661
Figure 2006089661
Figure 2006089661
Figure 2006089661
上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする医薬組成物。 It contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5], and has an antioxidant effect. Pharmaceutical composition. 上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする医薬部外品組成物。 It contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5], and has an antioxidant effect. Quasi-drug composition. 上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする化粧品。 It contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5], and has an antioxidant effect. Cosmetics. 上記一般式〔化1〕、〔化2〕、〔化3〕、〔化4〕、〔化5〕で示されるキサントン誘導体のうち少なくともいずれかを含有し抗酸化作用を有することを特徴とする健康食品。 It contains at least one of the xanthone derivatives represented by the above general formulas [Chemical Formula 1], [Chemical Formula 2], [Chemical Formula 3], [Chemical Formula 4], and [Chemical Formula 5], and has an antioxidant effect. healthy food.
JP2004278842A 2004-09-27 2004-09-27 Antioxidant Withdrawn JP2006089661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278842A JP2006089661A (en) 2004-09-27 2004-09-27 Antioxidant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278842A JP2006089661A (en) 2004-09-27 2004-09-27 Antioxidant

Publications (1)

Publication Number Publication Date
JP2006089661A true JP2006089661A (en) 2006-04-06

Family

ID=36230944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278842A Withdrawn JP2006089661A (en) 2004-09-27 2004-09-27 Antioxidant

Country Status (1)

Country Link
JP (1) JP2006089661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155393A1 (en) * 2007-06-20 2008-12-24 Centre National De La Recherche Scientifique (Cnrs) Use of oxygenated heterocycles chosen from xanthones and biflavonoids for the preparation of a composition intended to act as an anti-coccidial agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155393A1 (en) * 2007-06-20 2008-12-24 Centre National De La Recherche Scientifique (Cnrs) Use of oxygenated heterocycles chosen from xanthones and biflavonoids for the preparation of a composition intended to act as an anti-coccidial agent
FR2917621A1 (en) * 2007-06-20 2008-12-26 Centre Nat Rech Scient USE OF OXYGENIC HETEROCYCLES SELECTED AMONG XANTHONES AND BIFLAVONOIDS FOR THE PREPARATION OF A COMPOSITION INTENDED TO ACT AS AN ANTI-COCCIDIAN AGENT

Similar Documents

Publication Publication Date Title
Bentinger et al. The antioxidant role of coenzyme Q
Hogg et al. Nitric oxide and lipid peroxidation
Haraguchi et al. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata
Suto et al. Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism
Huet et al. Oxidative stress and endothelial dysfunction during sepsis
Kontogiorgis et al. Antiinflammatory and antioxidant evaluation of novel coumarin derivatives
Nogueira et al. Antioxidant parameters and lipid peroxidation in salivary glands of streptozotocin-induced diabetic rats
Haraguchi et al. Antioxidative constituents in Heterotheca inuloides
Hussain et al. Manganese scavenges superoxide and hydroxyl radicals: an in vitro study in rats
Schlorff et al. Dose and time dependent effects of ethanol on antioxidant system in rat testes
Lee et al. Hypocholesterolemic and antioxidant properties of 3-(4-hydroxyl) propanoic acid derivatives in high-cholesterol fed rats
Park et al. Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects
Souabni et al. trans Arachidonic acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components
Lee et al. Inactivation of NADP+-dependent isocitrate dehydrogenase by reactive oxygen species
Yousuf et al. Effect of diallyldisulphide on an antioxidant enzyme system in Candida species
Yang et al. Anti-lipid peroxidative effect of an extract of the stems of Kadsura heteroclita and its major constituent, kadsurin, in mice
Laitonjam Natural antioxidants (NAO) of plants acting as scavengers of free radicals
Er et al. Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats
Otsu et al. An abortive apoptotic pathway induced by singlet oxygen is due to the suppression of caspase activation
Hristova et al. Oxidative stress and cardiovascular diseases
Fang et al. Ebselen: A thioredoxin reductase-dependent catalyst for α-tocopherol quinone reduction
Orellana et al. Effects of chronic ethanol consumption on extramitochondrial fatty acid oxidation and ethanol metabolism by rat kidney
Tziveleka et al. Antioxidant potential of natural and synthesised polyprenylated hydroquinones
Kuo et al. Enhanced antioxidant activity of Monascus pilosus fermented products by addition of ginger to the medium
JP2006089661A (en) Antioxidant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204