JP2006089594A - Electroluminescent phosphor and method for producing the same, and electroluminescent element - Google Patents

Electroluminescent phosphor and method for producing the same, and electroluminescent element Download PDF

Info

Publication number
JP2006089594A
JP2006089594A JP2004276729A JP2004276729A JP2006089594A JP 2006089594 A JP2006089594 A JP 2006089594A JP 2004276729 A JP2004276729 A JP 2004276729A JP 2004276729 A JP2004276729 A JP 2004276729A JP 2006089594 A JP2006089594 A JP 2006089594A
Authority
JP
Japan
Prior art keywords
phosphor
electroluminescent
producing
electroluminescent phosphor
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276729A
Other languages
Japanese (ja)
Inventor
Yoshio Tadakuma
芳夫 多田隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004276729A priority Critical patent/JP2006089594A/en
Publication of JP2006089594A publication Critical patent/JP2006089594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an electroluminescent phosphor capable of producing a high-luminance particle-dispersion type EL element. <P>SOLUTION: The method for producing an electroluminescent phosphor comprises the steps of firing a mixture comprising zinc sulfate, a copper compound and a halide to produce an intermediate phosphor, applying impulsive force to the intermediate phosphor to introduce a dislocation line, and re-firing the intermediate phosphor in which the dislocation line is introduced. The method for producing an electroluminescent phosphor further comprises the step of mixing at least one of the organic materials selected from carboxylic acids, mercaptans and polyethylene glycols to the phosphor after the re-firing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エレクトロルミネッセンス素子、並びにそれに用いられる電場発光蛍光体及びその製造方法に関する。   The present invention relates to an electroluminescence element, an electroluminescent phosphor used therefor, and a method for producing the same.

分散型エレクトロルミネッセンス(以下「EL」とも言う)素子は、電場発光蛍光体を電極の間に挟んだ発光素子であり、一般的には、電場発光蛍光体粉末を高誘電率のバインダー中に分散したものを、少なくとも一方が透明な二枚の電極の間に挟みこんだ構造からなり、両電極間に交流電場を引加することにより発光するものである。分散型EL素子に用いられる電場発光蛍光体粉末(EL蛍光体粉末)としては、硫化亜鉛を母体として、銅等の付活剤(発光中心として金属イオン)及び塩素等の共付活剤が添加されて製造されたものが広く知られている。しかし、この発光素子は、他の原理に基づく発光素子に比べ発光輝度が低いとい欠点があった。このため従来から種々の改良が試みられてきた。
EL蛍光体の高輝度化として、蛍光体粒子中の電子発生源の数を増やすことが考えられる。硫化亜鉛に銅を付活剤としてドープした蛍光体の場合、ボールミル、静水圧、超音波等の機械的衝撃を粒子に与えて転位線を導入し、それに引き続く焼成過程で積層欠陥にそった硫化銅の針状結晶すなわち電子発生源を形成することができる(例えば、特許文献1〜2)。したがって、衝撃を与える時間や強度を増加させるほど電子発生源の数は増加する。しかしながら、これらの衝撃は、同時に非効率過程となる欠陥を粒子内に導入しEL輝度の低下をもたらすものであった。
A dispersive electroluminescence (hereinafter also referred to as “EL”) element is a light-emitting element in which an electroluminescent phosphor is sandwiched between electrodes. Generally, an electroluminescent phosphor powder is dispersed in a binder having a high dielectric constant. In this structure, at least one of the electrodes is sandwiched between two transparent electrodes, and light is emitted by applying an alternating electric field between the two electrodes. As electroluminescent phosphor powder (EL phosphor powder) used in the dispersion type EL element, zinc sulfide as a base material, activator such as copper (metal ion as emission center) and coactivator such as chlorine are added. What has been manufactured is widely known. However, this light emitting device has a drawback in that the light emission luminance is lower than the light emitting device based on other principles. For this reason, various improvements have been attempted conventionally.
In order to increase the luminance of the EL phosphor, it is conceivable to increase the number of electron generation sources in the phosphor particles. In the case of phosphors doped with zinc sulfide as an activator, zinc sulfide is subjected to mechanical impacts such as ball mill, hydrostatic pressure, and ultrasonic waves to introduce dislocation lines, followed by sulfurization along stacking faults during the subsequent firing process. Copper needle crystals, that is, electron generation sources can be formed (for example, Patent Documents 1 and 2). Therefore, the number of electron generation sources increases as the impact time and strength increase. However, these impacts simultaneously introduce defects in the particles that become inefficient processes, resulting in a decrease in EL luminance.

一方、蛍光体粒子の表面に有機物を吸着させて表面改質を行い、蛍光体の性能を向上させる方法が幾つか報告されている。例えば、特許文献3では、官能基a(例えば、エポキシ基)を有する化合物A(例えば、カップリング剤)により蛍光体表面を処理し、次いで官能基aと反応する物質B(例えば、アミン化合物)中に分散することにより反応させ有機物をコーティングする方法が開示されている。
また、硫化亜鉛に付活剤としてマンガンをドープしたナノサイズ粒子の表面にカルボン酸を吸着させることによりフォトルミネッセンス強度が増加する現象は良く知られており、論文等でも多数報告されている。例えば、非特許文献1では、硫化亜鉛にマンガンをドープした粒径2nm蛍光体粒子表面に、ポリアクリル酸を吸着させることによりフォトルミネッセンス強度が二倍増加したことが報告されている。
しかし、上記の従来の蛍光体粒子表面に有機物を吸着させて表面改質を行う方法を非効率過程となる欠陥が導入された粒子に適応することは、導入された欠陥がEL駆動時に再結合中心となり多量の熱を放出し、有機物を分解してしまうため困難であると考えられていた。
特開昭61−296085号公報 特開平6−306355号公報 特開2002−88357号公報 トヨダら(Taro Toyoda, Alamira B. Cruz)、シン・ソリッド・フイルムス(Thin Solid Films)、438−439(2003)、132−136
On the other hand, several methods for improving the performance of phosphors by adsorbing organic substances on the surfaces of the phosphor particles to improve the surface have been reported. For example, in Patent Document 3, a substance B (for example, an amine compound) that treats the phosphor surface with a compound A (for example, a coupling agent) having a functional group a (for example, an epoxy group) and then reacts with the functional group a. A method of coating an organic substance by reacting by dispersing in is disclosed.
In addition, the phenomenon that the photoluminescence intensity is increased by adsorbing carboxylic acid on the surface of nano-sized particles doped with manganese as an activator for zinc sulfide is well known and has been reported in many papers. For example, Non-Patent Document 1 reports that the photoluminescence intensity has been doubled by adsorbing polyacrylic acid on the surface of a phosphor particle having a particle diameter of 2 nm in which zinc sulfide is doped with manganese.
However, adapting the surface modification method by adsorbing organic substances on the surface of the above-mentioned conventional phosphor particles to particles into which defects that become inefficient processes are introduced is that the introduced defects are recombined during EL driving. It was considered difficult because it released a large amount of heat at the center and decomposed organic matter.
Japanese Patent Laid-Open No. 61-296085 JP-A-6-306355 JP 2002-88357 A Toyoda et al. (Taro Toyoda, Alamira B. Cruz), Thin Solid Films, 438-439 (2003), 132-136

本発明は、高輝度の粒子分散型EL素子、そのEL素子を製造することのできる電界発光蛍光体を提供するとともに、それらの好適な製造方法を提供することを目的である。   It is an object of the present invention to provide a high-luminance particle-dispersed EL device, an electroluminescent phosphor capable of manufacturing the EL device, and a suitable manufacturing method thereof.

本発明者らは、上記課題について、鋭意検討した結果、分散型EL素子に含まれる蛍光体粒子表面を有機物で修飾することにより、粒子表面で生じる非効率過程を軽減し、素子の低輝度を改善し得ることを見出した。本発明は、この知見に基づき為すに至ったものである。
すなわち、本発明は、
(1)硫酸亜鉛、銅化合物およびハロゲン化物を含む混合物を焼成して中間蛍光体を製造する工程と、この中間蛍光体に衝撃力を加えて転位線を導入する工程と、前記転位線を導入した中間蛍光体を再焼成する工程とを含む電場発光蛍光体の製造方法であって、さらに前記再焼成後の蛍光体に対し、カルボン酸、メルカプタン、およびポリエチレングリコールから選ばれる有機物の少なくとも1種を混合する工程を有することを特徴とする電場発光蛍光体の製造方法、
(2)前記混合される有機物がカルボン酸、およびメルカプタンのいずれか1つ、または、これらの混合物であることを特徴とする(1)項記載の電場発光蛍光体の製造方法、
(3)前記混合される有機物がポリエチレングリコールであることを特徴とする(1)項記載の電場発光蛍光体の製造方法、
(4)前記衝撃力を加えて転位線を導入する工程において、ボールミル、静水圧、および超音波から選ばれる手段を少なくとも一つ用いることを特徴とする(1)〜(3)のいずれか1項に記載の電場発光蛍光体の製造方法、
(5)(1)〜(4)のいずれか1項に記載の電場発光蛍光体の製造方法で製造されたことを特徴とする電場発光蛍光体、
(6)有機物の電場発光蛍光体表面への吸着量が飽和被覆量の10%以上であることを特徴とする(5)項記載の電場発光蛍光体、
(7)粒径が5μm〜15μmであることを特徴とする(5)または(6)項記載の電場発光蛍光体、
(8)透明導電フィルム、蛍光体層、絶縁体層および背面電極を有するエレクトロルミネッセンス素子であって、前記蛍光体層に(5)〜(7)のいずれか1項に記載の電場発光蛍光体を含有することを特徴とするエレクトロルミネッセンス素子、および、
(9)前記透明導電フィルムの表面抵抗が0.01Ω/□〜50Ω/□であり、かつ背面電極が金属で構成されていることを特徴とする(8)項に記載のエレクトロルミネッセンス素子
を提供するものである。
As a result of intensive studies on the above problems, the present inventors have modified the phosphor particle surface included in the dispersion-type EL element with an organic substance, thereby reducing inefficiency processes occurring on the particle surface and reducing the luminance of the element. I found that it can be improved. The present invention has been made based on this finding.
That is, the present invention
(1) A step of producing an intermediate phosphor by baking a mixture containing zinc sulfate, a copper compound and a halide, a step of introducing a dislocation line by applying an impact force to the intermediate phosphor, and introducing the dislocation line A process for re-firing the intermediate phosphor, and at least one organic substance selected from carboxylic acid, mercaptan, and polyethylene glycol with respect to the phosphor after re-firing. A process for producing an electroluminescent phosphor, characterized by comprising a step of mixing
(2) The method for producing an electroluminescent phosphor according to (1), wherein the organic substance to be mixed is any one of carboxylic acid and mercaptan, or a mixture thereof.
(3) The method for producing an electroluminescent phosphor according to (1), wherein the organic substance to be mixed is polyethylene glycol,
(4) In the step of introducing dislocation lines by applying the impact force, at least one means selected from a ball mill, a hydrostatic pressure, and an ultrasonic wave is used. Any one of (1) to (3) The method for producing the electroluminescent phosphor according to Item,
(5) An electroluminescent phosphor produced by the method for producing an electroluminescent phosphor according to any one of (1) to (4),
(6) The electroluminescent phosphor according to (5), wherein the amount of organic matter adsorbed on the surface of the electroluminescent phosphor is 10% or more of the saturated coating amount,
(7) The electroluminescent phosphor according to (5) or (6), wherein the particle size is 5 μm to 15 μm,
(8) An electroluminescent element having a transparent conductive film, a phosphor layer, an insulator layer, and a back electrode, wherein the electroluminescent phosphor according to any one of (5) to (7) An electroluminescence element characterized by containing, and
(9) The electroluminescent device according to (8), wherein the transparent conductive film has a surface resistance of 0.01Ω / □ to 50Ω / □, and a back electrode made of metal. To do.

本発明の製造方法で製造された電場発光蛍光体を用いたEL素子は、高輝度で発光するという優れた効果を有する。   The EL device using the electroluminescent phosphor produced by the production method of the present invention has an excellent effect of emitting light with high luminance.

本発明の一つの実施態様は、硫酸亜鉛、銅化合物およびハロゲン化物を含む混合物を焼成して中間蛍光体を製造する工程と、この中間蛍光体に衝撃力を加えて転位線を導入する工程と、前記転位線を導入した中間蛍光体を再焼成する工程とを含む電場発光蛍光体の製造方法であって、さらに前記再焼成後の蛍光体に対し、カルボン酸、メルカプタン、およびポリエチレングリコールから選ばれる有機物の少なくとも1種を混合する工程を有する電場発光蛍光体の製造方法である。   One embodiment of the present invention includes a step of producing an intermediate phosphor by firing a mixture containing zinc sulfate, a copper compound and a halide, and a step of introducing a dislocation line by applying an impact force to the intermediate phosphor. A method of producing an electroluminescent phosphor comprising a step of re-firing the intermediate phosphor into which the dislocation lines have been introduced, wherein the phosphor after re-firing is selected from carboxylic acid, mercaptan, and polyethylene glycol And a method for producing an electroluminescent phosphor having a step of mixing at least one organic substance.

硫酸亜鉛、銅化合物およびハロゲン化物を含む混合物を焼成して中間蛍光体を製造する工程では、当業界で広く用いられている焼成法(固相法)で行なうことができる。例えば、液相法で10〜50nmの硫化亜鉛微粒子粉末(通常生粉と呼ぶ)を作成し、これを一次粒子として用い、これに銅化合物およびハロゲン化物を混入させ、900〜1300℃、30分〜10時間の第1の焼成を行い、中間蛍光体を製造することができる。   In the step of producing an intermediate phosphor by firing a mixture containing zinc sulfate, a copper compound and a halide, a firing method (solid phase method) widely used in the industry can be used. For example, a zinc sulfide fine particle powder (usually called raw powder) of 10 to 50 nm is prepared by a liquid phase method, and this is used as a primary particle, and a copper compound and a halide are mixed therein, and 900 to 1300 ° C. for 30 minutes. The intermediate phosphor can be manufactured by performing the first baking for 10 hours.

ここで用いられる銅化合物は、発光中心の付活剤として用いられるものである。化合物としては硫酸銅、硝酸銅および塩化銅等の塩類が好ましい。銅化合物の添加量は、母体の硫化亜鉛に対し銅元素として、0.01〜0.2質量%が好ましく、0.05〜0.15質量%がより好ましい。
ハロゲン化物は、共付活剤として用いられるもので、例えば、塩素化合物、臭素化合物、ヨウ素化合物が挙げられる。これらのハロゲン化物は、単独で用いても複数を組み合わせて用いてもよい。ハロゲン化物の添加量は用いる種類により異なるが、例えば、塩素化合物の場合は、母体の硫化銅に対し塩素として0.01〜0.3質量%が好ましく、0.015〜0.2質量%がより好ましい。
The copper compound used here is used as an activator for the emission center. As the compound, salts such as copper sulfate, copper nitrate and copper chloride are preferable. The addition amount of the copper compound is preferably 0.01 to 0.2% by mass and more preferably 0.05 to 0.15% by mass as a copper element with respect to the base zinc sulfide.
The halide is used as a coactivator, and examples thereof include a chlorine compound, a bromine compound, and an iodine compound. These halides may be used alone or in combination. The amount of halide added varies depending on the type used. For example, in the case of a chlorine compound, 0.01 to 0.3 mass% is preferable as chlorine with respect to the base copper sulfide, and 0.015 to 0.2 mass% is preferable. More preferred.

本発明においては、第1の焼成後の中間蛍光体に、衝撃力を加えて転位線を導入するものである。衝撃力を与える手段としてボールミル、静水圧、および超音波から選ばれる手段を少なくとも一つを用いることが好ましい。
ボールミルを用いる方法としては、例えば、直径3〜50mmのガラス容器に、衝撃を与えるための球体と中間蛍光体微粒子を混合して、回転数30〜300rpmで20〜720分衝撃を与える方法が挙げられる。
静水圧を用いる方法としては、例えば、特許第2994058号公報に記載の方法が挙げられる。
In the present invention, dislocation lines are introduced by applying an impact force to the intermediate phosphor after the first firing. It is preferable to use at least one means selected from a ball mill, a hydrostatic pressure, and an ultrasonic wave as a means for giving an impact force.
As a method using a ball mill, for example, a glass container having a diameter of 3 to 50 mm is mixed with a sphere for applying an impact and intermediate phosphor fine particles, and an impact is applied at a rotational speed of 30 to 300 rpm for 20 to 720 minutes. It is done.
Examples of the method using hydrostatic pressure include the method described in Japanese Patent No. 2999458.

次いで、衝撃力を加えられた中間蛍光体を再焼成する。この第2の焼成は、例えば、上記の第1の焼成より低温の500〜900℃で1〜9時間の加熱をする。これらの焼成により中間蛍光体内部には多くの積層欠陥が発生する。より多くの積層欠陥が中間蛍光体粒子内に含まれるように、第1の焼成と第2の焼成の条件を適宜選択することが好ましい。
その後、中間蛍光体粒子を塩酸等の酸でエッチングして表面に付着している金属酸化物を除去し、さらに表面に付着した硫化銅を、KCNで洗浄して除去し、乾燥することが好ましい。
Next, the intermediate phosphor to which the impact force is applied is refired. In the second baking, for example, heating is performed at 500 to 900 ° C., which is lower than the first baking, for 1 to 9 hours. These firings cause many stacking faults inside the intermediate phosphor. It is preferable to appropriately select the conditions for the first firing and the second firing so that more stacking faults are included in the intermediate phosphor particles.
Thereafter, the intermediate phosphor particles are etched with an acid such as hydrochloric acid to remove the metal oxide adhering to the surface, and the copper sulfide adhering to the surface is removed by washing with KCN and dried. .

続いて、再焼成後の蛍光体に対し、カルボン酸、メルカプタン、およびポリエチレングリコールから選ばれる有機物を少なくとも一つ混合し、蛍光体粒子を表面処理し、電場発光蛍光体を得る。ここで、カルボン酸としては、例えばポリアクリル酸、コハク酸、クエン酸、オレイン酸、リンゴ酸、マロン酸、リノール酸、リノレン酸、マレイン酸、ギ酸、酢酸、プロピオン酸、ステアリン酸、乳酸、酪酸、シュウ酸、アコニット酸、ドコサヘキサエン酸、エイコサペンタエン酸、イソフタル酸、テレフタル酸、安息香酸、ラウリン酸等が挙げられ、ポリアクリル酸、コハク酸、クエン酸が好ましい。メルカプタンとしては、例えば、プロピルメルカプタン、イソプロピルメルカプタン、n-ブチルメルカプタン、アリルメルカプタン、ベンジルメルカプタン、メルカプトコハク酸、メルカプト酢酸、メルカプトキシレン、メルカプトアニリン、メルカプトシクロヘキサン、メルカプトフェノール、3-メルカプト-1-プロパンスルホン酸、3-メルカプトプロピオン酸、α-メルカプトプロピオン酸が挙げられ、メルカプトコハク酸、メルカプト酢酸が好ましい。カルボン酸、メルカプタン、およびポリエチレングリコールは発光効率を向上させるため発熱を抑制し分解を防いでいる。   Subsequently, at least one organic material selected from carboxylic acid, mercaptan, and polyethylene glycol is mixed with the phosphor after recalcination, and the phosphor particles are surface-treated to obtain an electroluminescent phosphor. Here, as the carboxylic acid, for example, polyacrylic acid, succinic acid, citric acid, oleic acid, malic acid, malonic acid, linoleic acid, linolenic acid, maleic acid, formic acid, acetic acid, propionic acid, stearic acid, lactic acid, butyric acid Oxalic acid, aconitic acid, docosahexaenoic acid, eicosapentaenoic acid, isophthalic acid, terephthalic acid, benzoic acid, lauric acid and the like, and polyacrylic acid, succinic acid and citric acid are preferred. Examples of mercaptans include propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, allyl mercaptan, benzyl mercaptan, mercaptosuccinic acid, mercaptoacetic acid, mercaptoxylene, mercaptoaniline, mercaptocyclohexane, mercaptophenol, 3-mercapto-1-propanesulfone. Acid, 3-mercaptopropionic acid, and α-mercaptopropionic acid, and mercaptosuccinic acid and mercaptoacetic acid are preferred. Carboxylic acid, mercaptan, and polyethylene glycol suppress heat generation and prevent decomposition in order to improve luminous efficiency.

有機物を混合する方法としては、例えば、有機物の水溶液に再焼成後の中間蛍光体を投入し、室温で攪拌する方法が挙げられる。水溶液中の有機物の濃度、水溶液量、中間蛍光体の投入量、攪拌温度、攪拌時間などの処理条件は、有機物の電場発光蛍光体表面への吸着量が飽和被覆量の10%以上となるように適宜設定することが好ましい。
電場発光蛍光体粒子表面の吸着物の被覆率は10%以上が好ましく、50%以上がさらに好ましい。電場発光蛍光体粒子表面への吸着物の吸着量は例えばFTIRのC=O等のピーク強度から得ることができる。吸着物の添加量を増やしもFTIRのピーク強度が増加しなくなる添加量から飽和被覆量を求めることができる。このときのFITRのピーク強度に対して任意の添加量の場合に得られるFTIRのピーク強度の比をとることにより、被覆率を求めることができる。吸着物の被覆率が少なすぎると十分な非効率過程を軽減することができない場合がある。
Examples of the method of mixing the organic material include a method in which the re-fired intermediate phosphor is put into an organic aqueous solution and stirred at room temperature. The processing conditions such as the concentration of the organic substance in the aqueous solution, the amount of the aqueous solution, the input amount of the intermediate phosphor, the stirring temperature, and the stirring time are such that the adsorption amount of the organic substance on the surface of the electroluminescent phosphor is 10% or more of the saturated coating amount. It is preferable to set as appropriate.
The coverage of the adsorbate on the surface of the electroluminescent phosphor particles is preferably 10% or more, and more preferably 50% or more. The amount of adsorbate adsorbed on the surface of the electroluminescent phosphor particles can be obtained from the peak intensity such as C = O of FTIR, for example. The saturation coating amount can be determined from the addition amount at which the peak intensity of FTIR does not increase even when the addition amount of the adsorbate is increased. The coverage can be obtained by taking the ratio of the peak intensity of FTIR obtained in the case of an arbitrary addition amount to the peak intensity of FITR at this time. If the coverage of the adsorbate is too small, it may not be possible to reduce the inefficient process.

本発明の別の実施態様は、上記の製造方法で製造された電場発光蛍光体である。電場発光蛍光体は粒径が5μm〜30μmであることが好ましく、5μm〜15μmがさらに好ましい。粒径が大きすぎると素子の薄膜化の妨げとなり、粒径が小さすぎると再結合過程が増大し発光効率が低下する。   Another embodiment of the present invention is an electroluminescent phosphor produced by the above production method. The electroluminescent phosphor preferably has a particle size of 5 μm to 30 μm, more preferably 5 μm to 15 μm. If the particle size is too large, the thinning of the device will be hindered. If the particle size is too small, the recombination process will increase and the luminous efficiency will decrease.

本発明のさらに別の実施態様は、透明導電フィルム、蛍光体層、絶縁体層および背面電極を有するエレクトロルミネッセンス素子であって、蛍光体層に上記の電場発光蛍光体を含有するエレクトロルミネッセンス素子である。   Yet another embodiment of the present invention is an electroluminescent device having a transparent conductive film, a phosphor layer, an insulator layer, and a back electrode, wherein the phosphor layer contains the electroluminescent phosphor described above. is there.

透明導電フイルムは、EL素子の透明電極として一般的に用いられる任意の材料から形成されたフイルムを用いることができる。例えば、ITO(インジウム錫酸化物)、錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸化錫などの酸化物、銀の薄膜を高屈折率層で挟んだ多層構造、ポリアニリン、ポリピロールなどのπ共役系高分子などが挙げられる。これら透明導電フイルムにはこれに櫛型あるいはグリット型等の金属細線を配置して通電性を改善することも好ましい。前記透明導電フィルムの表面抵抗は、0.01Ω/□〜50Ω/□が好ましく、0.01Ω/□〜30Ω/□がさらに好ましい。   As the transparent conductive film, a film formed of any material generally used as a transparent electrode of an EL element can be used. For example, ITO (indium tin oxide), tin-doped tin oxide, antimony-doped tin oxide, zinc-doped tin oxide and other oxides, a multilayer structure in which a silver thin film is sandwiched between high-refractive index layers, and π conjugates such as polyaniline and polypyrrole Based polymers. These transparent conductive films are preferably provided with a comb-like or grit-type fine metal wire to improve the conductivity. The surface resistance of the transparent conductive film is preferably 0.01Ω / □ to 50Ω / □, and more preferably 0.01Ω / □ to 30Ω / □.

蛍光体層には、上記の電場発光蛍光体を結合剤に分散したものを用いることができる。結合剤としては、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いることができる。これらの樹脂に、BaTiOやSrTiOなどの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。分散方法としては、ホモジナイザー、遊星型混練機、ロール混練機、超音波分析器などを用いることができる。 As the phosphor layer, a material obtained by dispersing the above electroluminescent phosphor in a binder can be used. As the binder, a polymer having a relatively high dielectric constant such as a cyanoethyl cellulose resin, or a resin such as polyethylene, polypropylene, polystyrene resin, silicone resin, epoxy resin, or vinylidene fluoride can be used. The dielectric constant can be adjusted by appropriately mixing fine particles having a high dielectric constant such as BaTiO 3 or SrTiO 3 with these resins. As a dispersion method, a homogenizer, a planetary kneader, a roll kneader, an ultrasonic analyzer, or the like can be used.

蛍光体層は、スライドコーター又はエクストルージョンコーターなどを用いて、透明電極を付設したプラスチック支持体等の上に、塗膜の乾燥膜厚が10μm以上60μm以下の範囲になるように連続的に塗布することが好ましい。このとき、蛍光体層の膜厚変動は12.5%以下が好ましく、5%以下が特に好ましい。   The phosphor layer is continuously applied on a plastic support with a transparent electrode, using a slide coater or an extrusion coater, so that the dry film thickness of the coating film is in the range of 10 μm to 60 μm. It is preferable to do. At this time, the film thickness variation of the phosphor layer is preferably 12.5% or less, particularly preferably 5% or less.

絶縁体層は、誘電体層とも呼ばれる層で、誘電率と絶縁性が高く、且つ高い誘電破壊電圧を有する材料であればあれば任意のものが用いられる。これらは金属酸化物、窒化物、硫化物から選択され、例えば、TiO,BaTiO,SrTiO,PbTiO,KNbO,PbNbO,Ta,BaTa,LiTaO,Y,Al,ZrO,AlON,ZnSなどが用いられる。これらは均一な膜として設置されても良いし、また粒子構造を有する膜として用いても良い。均一な膜の場合は、誘電膜の調製法はスパッター、真空蒸着等の気相法であっても良く、この場合の膜の厚みは通常0.1μm以上10μm以下の範囲で用いられる。絶縁体層は蛍光体層と電極の間にそれぞれ隣接することが好ましい。 The insulator layer is also referred to as a dielectric layer, and any material can be used as long as it has a high dielectric constant and insulation and has a high dielectric breakdown voltage. These are selected from metal oxides, nitrides and sulfides. For example, TiO 2 , BaTiO 3 , SrTiO 3 , PbTiO 3 , KNbO 3 , PbNbO 3 , Ta 2 O 3 , BaTa 2 O 6 , LiTaO 3 , Y 2 O 3 , Al 2 O 3 , ZrO 2 , AlON, ZnS, or the like is used. These may be installed as a uniform film, or may be used as a film having a particle structure. In the case of a uniform film, the dielectric film may be prepared by a vapor phase method such as sputtering or vacuum deposition. In this case, the thickness of the film is usually in the range of 0.1 μm to 10 μm. The insulator layer is preferably adjacent between the phosphor layer and the electrode.

光を取り出さない側の背面電極は、導電性を有する任意の材料が使用できる。例えば、金、銀、白金、銅、鉄、アルミニウムなどの金属、グラファイトのなどの中から、作成する素子の形態、作成工程の温度等により適宜選択されるが、導電性さえあれば、ITO等の透明電極を用いても良い。
本発明においては、透明導電フィルムの表面抵抗が0.01Ω/□〜50Ω/□であり、かつ背面電極が金属で構成されていることが好ましい。
また、透明導電フィルムおよび背面電極とも、導電性の上記の微粒子材料を結合剤とともに分散した導電材料含有塗布液を作成して、前述のスライドコーター又はエクストルージョンコーターを用いて塗布することもできる。
For the back electrode on the side from which light is not extracted, any material having conductivity can be used. For example, it is appropriately selected from gold, silver, platinum, copper, iron, aluminum and other metals, graphite, etc. depending on the form of the element to be created, the temperature of the production process, etc. The transparent electrode may be used.
In the present invention, it is preferable that the transparent conductive film has a surface resistance of 0.01Ω / □ to 50Ω / □, and the back electrode is made of metal.
Also, both the transparent conductive film and the back electrode can be applied using the above-described slide coater or extrusion coater by preparing a conductive material-containing coating solution in which the conductive fine particle material is dispersed together with a binder.

その他、本発明の素子構成において、各種保護層、フィルター層、光散乱反射層などを必要に応じて付与することができる。   In addition, in the element configuration of the present invention, various protective layers, filter layers, light scattering reflection layers, and the like can be provided as necessary.

以下、本発明を実施例に基づき、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

実施例1
硫酸銅を硫化亜鉛に対し0.11モル%添加した、平均粒子径20nmの硫化亜鉛(ZnS)粒子の乾燥粉末250gに、融剤として塩化ナトリウム(NaCl)粉末20g、塩化バリウム(BaCl.2HO)粉末42gおよび塩化マグネシウム(MgCl.2HO)粉末72.3gをアルミナ製ルツボに入れて1200℃で4時間焼成したのち、水洗を4回繰り返し、次いで、ろ過により融剤と凝集した蛍光体を取り除き、乾燥して中間蛍光体を得た。
得られた中間蛍光体5gと平均粒径0.5mmφのアルミナ製球体50gおよび平均粒径0.05mmφのジルコニア製球体5gを直径40mmφのガラス容器中に混合して、回転数100rpmにて70分間ボールミル衝撃を与えた。
その後篩を用いて球体のみを取り出し、700℃で6時間第2焼成を行った。焼成後の粒子はHOに分散・沈降、上澄み除去を行って洗浄したのち、塩酸10%液を加えて分散・沈降、上澄み除去を行い、不要な塩を除去して乾燥させた。さらに10%のKCN溶液を70℃に加熱して表面のCuイオン等を除去した。こうして得られた蛍光体(蛍光体粒子A)の平均粒径は27μmであった。
上記蛍光体粒子A3gを濃度0.1%のポリアクリル酸(平均分子量5000)水溶液30cc中に投入し、室温で60分間攪拌した。攪拌終了後、静置して蛍光体粒子を沈殿させ上澄み液を取り除いた。その後、3回同様にデカンテーションして水洗を終了し、100℃で2時間乾燥させ、電場発光蛍光体を得た。
Example 1
To 250 g of dry powder of zinc sulfide (ZnS) particles having an average particle diameter of 20 nm added with 0.11 mol% of copper sulfate to zinc sulfide, 20 g of sodium chloride (NaCl) powder as a flux, barium chloride (BaCl 2 .2H). 2 O) powder and magnesium chloride (MgCl 2 .2H 2 O) powder 72.3 g were put in an alumina crucible and fired at 1200 ° C. for 4 hours, followed by washing with water four times, followed by filtration and coagulation with the flux. The phosphor was removed and dried to obtain an intermediate phosphor.
5 g of the obtained intermediate phosphor, 50 g of alumina spheres having an average particle diameter of 0.5 mmφ, and 5 g of zirconia spheres having an average particle diameter of 0.05 mmφ were mixed in a glass container having a diameter of 40 mmφ, and 70 minutes at a rotational speed of 100 rpm. A ball mill impact was applied.
Thereafter, only the sphere was taken out using a sieve and subjected to second baking at 700 ° C. for 6 hours. The particles after calcination were washed by dispersing, settling and removing the supernatant in H 2 O, and then added with 10% hydrochloric acid to carry out dispersion, settling and removing the supernatant to remove unnecessary salts and dried. Further, a 10% KCN solution was heated to 70 ° C. to remove Cu ions and the like on the surface. The average particle size of the phosphor thus obtained (phosphor particle A) was 27 μm.
3 g of the above phosphor particles A were put into 30 cc of a polyacrylic acid (average molecular weight 5000) aqueous solution having a concentration of 0.1% and stirred at room temperature for 60 minutes. After the stirring, the mixture was allowed to stand to precipitate the phosphor particles, and the supernatant was removed. Thereafter, decantation was repeated three times to complete washing with water and dried at 100 ° C. for 2 hours to obtain an electroluminescent phosphor.

平均粒子サイズが0.5μmのBaTiO微粒子を、30wt%のシアノレジン液に分散し、誘電体層厚みが25μmになるように厚み75μmのアルミシート上に塗布し、温風乾燥機を用いて120℃で1時間乾燥した(シート1)。
上記電場発光蛍光体を、30wt%濃度のシアノレジン液に分散し、表面抵抗値が30Ω/□であるITOを塗布した透明導電性フィルム上に塗布した。温風乾燥機を用いて120℃で1時間乾燥した(シート2)。
上記シート1の誘電体層面とシート2の蛍光体層面をあわせて熱圧着した。これに電極を付けて、SiO層を有する防湿性シートで挟んで熱圧着し、EL素子を得た(試料1)。
BaTiO 3 fine particles having an average particle size of 0.5 μm are dispersed in a 30 wt% cyanoresin solution, applied onto an aluminum sheet having a thickness of 75 μm so that the dielectric layer thickness is 25 μm, and 120 mm using a hot air dryer. Drying was carried out at 1 ° C. for 1 hour (sheet 1).
The electroluminescent phosphor was dispersed in a cyanoresin solution having a concentration of 30 wt% and coated on a transparent conductive film coated with ITO having a surface resistance value of 30Ω / □. It dried at 120 degreeC for 1 hour using the warm air dryer (sheet | seat 2).
The dielectric layer surface of the sheet 1 and the phosphor layer surface of the sheet 2 were combined and thermocompression bonded. An electrode was attached to this, and sandwiched between moisture-proof sheets having a SiO 2 layer and thermocompression bonded to obtain an EL element (Sample 1).

実施例2
0.1%のポリアクリル酸水溶液30ccの代わりに0.1ccのポリアクリル酸水溶液を5cc用いて蛍光体粒子Aの表面を修飾した得られた電場発光蛍光体を用いた以外は、実施例1と全く同様な方法でEL素子を得た(試料2)。
Example 2
Example 1 except that the obtained electroluminescent phosphor obtained by modifying the surface of the phosphor particles A by using 5 cc of 0.1 cc polyacrylic acid aqueous solution instead of 30 cc of 0.1% polyacrylic acid aqueous solution was used. An EL device was obtained in the same manner as (Sample 2).

実施例3
有機物として0.1%のポリアクリル酸水溶液30ccの代わりに0.1%のポリエチレングリコール(平均分子量20000)水溶液を50cc用いて蛍光体粒子Aの表面を修飾した他は、実施例1と全く同様の方法でEL素子を得た(試料3)
Example 3
Except that 30 cc of 0.1% polyacrylic acid aqueous solution was used as an organic substance and 50 cc of 0.1% polyethylene glycol (average molecular weight 20000) aqueous solution was used to modify the surface of phosphor particles A, exactly the same as Example 1. The EL element was obtained by the method of (Sample 3)

実施例4
有機物として0.1%のポリアクリル酸水溶液30ccの代わりに0.1%のコハク酸水溶液30ccを用いて蛍光体粒子Aの表面を修飾した他は、実施例2と全く同様の方法でEL素子を得た(試料4)
Example 4
An EL device was produced in the same manner as in Example 2, except that 30 cc of 0.1% succinic acid aqueous solution was used instead of 30 cc of 0.1% polyacrylic acid aqueous solution as the organic substance, and the surface of phosphor particles A was modified. (Sample 4)

実施例5
有機物として0.1%のポリアクリル酸水溶液30ccの代わりに0.1%のメルカプトコハク酸水溶液40ccを用いて蛍光体粒子Aの表面を修飾した他は、実施例2と全く同様の方法でEL素子を得た(試料5)
Example 5
The surface of the phosphor particles A was modified by using 40 cc of a 0.1% mercaptosuccinic acid aqueous solution instead of 30 cc of a 0.1% polyacrylic acid aqueous solution as an organic substance. Device was obtained (Sample 5)

実施例6
実施例1において、蛍光体粒子Aをアパーチャー15μmのメッシュに通すことにより平均粒径14μmの蛍光体粒子Bを得た。
蛍光体粒子Aに代えて、蛍光体粒子Bを用いた以外は実施例1と全く同様な方法でEL素子を得た(試料6)。
Example 6
In Example 1, phosphor particles B having an average particle diameter of 14 μm were obtained by passing the phosphor particles A through a mesh having an aperture of 15 μm.
An EL device was obtained in the same manner as in Example 1 except that the phosphor particles B were used in place of the phosphor particles A (Sample 6).

比較例1
10%のKCN処理を行い余分なCuを取り除いて乾燥させた後は、蛍光体粒子Aに一切の表面処理を行わなかった以外は、実施例1と同様な方法でEL素子を得た(試料7)。
Comparative Example 1
After performing 10% KCN treatment to remove excess Cu and drying, an EL device was obtained in the same manner as in Example 1 except that no surface treatment was applied to the phosphor particles A (sample) 7).

比較例2
ポリアクリル酸(平均粒径5000)の代わりにポリアクリル酸Na(平均分子量5000)を用いた以外は実施例2と全く同様な方法でEL素子を得た(試料8)。
Comparative Example 2
An EL device was obtained in the same manner as in Example 2 except that polyacrylic acid Na (average molecular weight 5000) was used instead of polyacrylic acid (average particle size 5000) (Sample 8).

試験例
得られた試料1〜8に、1kHz−100Vの交流電圧を印加し、輝度を測定した。結果を表1に示す。また、有機物の被覆率をFTIRのC=Oのピーク強度から求めた。
Test Example An alternating voltage of 1 kHz to 100 V was applied to the obtained samples 1 to 8, and the luminance was measured. The results are shown in Table 1. Further, the organic coverage was determined from the peak intensity of C = O of FTIR.

Figure 2006089594
Figure 2006089594

表1に示されるように、用いた蛍光体粒子の表面への有機物の被覆のない比較例1や本発明で規定する以外の有機物で被覆された比較例に比べ、本発明の実施例はいずれもEL素子の輝度が高いものとなった。さらに有機物の被覆率が100%の実施例では、いずれも比較例比べEL素子の輝度が90cd/m以上高く、優れた発光特性を示した。
さらに、粒径が15μm以下の蛍光体粒子を用いた試料6は、同様に有機物で吸着された粒径が15μmを超える蛍光体粒子を用いた試料1に比べ輝度が55cd/m高く、より一層優れた発光特性を示した。
As shown in Table 1, compared to Comparative Example 1 in which the surface of the phosphor particles used was not coated with an organic substance and Comparative Examples coated with an organic substance other than that defined in the present invention, the examples of the present invention Also, the luminance of the EL element was high. Further, in all examples in which the coverage of the organic matter was 100%, the luminance of the EL element was 90 cd / m 2 or more higher than the comparative example, and excellent light emission characteristics were exhibited.
Furthermore, the sample 6 using phosphor particles having a particle size of 15 μm or less has a luminance of 55 cd / m 2 higher than that of the sample 1 using phosphor particles having a particle size of more than 15 μm adsorbed by an organic substance. Even better emission characteristics were exhibited.

Claims (9)

硫酸亜鉛、銅化合物およびハロゲン化物を含む混合物を焼成して中間蛍光体を製造する工程と、この中間蛍光体に衝撃力を加えて転位線を導入する工程と、前記転位線を導入した中間蛍光体を再焼成する工程とを含む電場発光蛍光体の製造方法であって、さらに前記再焼成後の蛍光体に対し、カルボン酸、メルカプタン、およびポリエチレングリコールから選ばれる有機物の少なくとも1種を混合する工程を有することを特徴とする電場発光蛍光体の製造方法。   A step of producing an intermediate phosphor by firing a mixture containing zinc sulfate, a copper compound and a halide; a step of introducing a dislocation line by applying an impact force to the intermediate phosphor; and an intermediate fluorescence having the dislocation line introduced And a step of re-sintering the body, wherein the phosphor after re-sintering is mixed with at least one organic material selected from carboxylic acid, mercaptan, and polyethylene glycol. A process for producing an electroluminescent phosphor, comprising a step. 前記混合される有機物がカルボン酸、およびメルカプタンのいずれか1つ、または、これらの混合物であることを特徴とする請求項1記載の電場発光蛍光体の製造方法。   2. The method for producing an electroluminescent phosphor according to claim 1, wherein the organic substance to be mixed is any one of carboxylic acid and mercaptan, or a mixture thereof. 前記混合される有機物がポリエチレングリコールであることを特徴とする請求項1記載の電場発光蛍光体の製造方法。   The method for producing an electroluminescent phosphor according to claim 1, wherein the organic substance to be mixed is polyethylene glycol. 前記衝撃力を加えて転位線を導入する工程において、ボールミル、静水圧、および超音波から選ばれる手段を少なくとも一つ用いることを特徴とする請求項1〜3のいずれか1項に記載の電場発光蛍光体の製造方法。   The electric field according to any one of claims 1 to 3, wherein at least one means selected from a ball mill, a hydrostatic pressure, and an ultrasonic wave is used in the step of introducing a dislocation line by applying the impact force. Manufacturing method of light-emitting phosphor. 請求項1〜4のいずれか1項に記載の電場発光蛍光体の製造方法で製造されたことを特徴とする電場発光蛍光体。   An electroluminescent phosphor produced by the method for producing an electroluminescent phosphor according to claim 1. 有機物の電場発光蛍光体表面への吸着量が飽和被覆量の10%以上であることを特徴とする請求項5記載の電場発光蛍光体。   6. The electroluminescent phosphor according to claim 5, wherein the amount of organic matter adsorbed on the surface of the electroluminescent phosphor is 10% or more of the saturated coating amount. 粒径が5μm〜15μmであることを特徴とする請求項5または6記載の電場発光蛍光体。   The electroluminescent phosphor according to claim 5 or 6, wherein the particle size is 5m to 15m. 透明導電フィルム、蛍光体層、絶縁体層および背面電極を有するエレクトロルミネッセンス素子であって、前記蛍光体層に請求項5〜7のいずれか1項に記載の電場発光蛍光体を含有することを特徴とするエレクトロルミネッセンス素子。   It is an electroluminescent element which has a transparent conductive film, a fluorescent substance layer, an insulator layer, and a back electrode, Comprising: The electroluminescent fluorescent substance of any one of Claims 5-7 is contained in the said fluorescent substance layer. An electroluminescent element characterized. 前記透明導電フィルムの表面抵抗が0.01Ω/□〜50Ω/□であり、かつ背面電極が金属で構成されていることを特徴とする請求項8に記載のエレクトロルミネッセンス素子。   9. The electroluminescent device according to claim 8, wherein the transparent conductive film has a surface resistance of 0.01Ω / □ to 50Ω / □, and the back electrode is made of metal.
JP2004276729A 2004-09-24 2004-09-24 Electroluminescent phosphor and method for producing the same, and electroluminescent element Pending JP2006089594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276729A JP2006089594A (en) 2004-09-24 2004-09-24 Electroluminescent phosphor and method for producing the same, and electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276729A JP2006089594A (en) 2004-09-24 2004-09-24 Electroluminescent phosphor and method for producing the same, and electroluminescent element

Publications (1)

Publication Number Publication Date
JP2006089594A true JP2006089594A (en) 2006-04-06

Family

ID=36230878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276729A Pending JP2006089594A (en) 2004-09-24 2004-09-24 Electroluminescent phosphor and method for producing the same, and electroluminescent element

Country Status (1)

Country Link
JP (1) JP2006089594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010408A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
JP2015129250A (en) * 2013-12-06 2015-07-16 日亜化学工業株式会社 Fluoride phosphor and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010408A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
JP2015129250A (en) * 2013-12-06 2015-07-16 日亜化学工業株式会社 Fluoride phosphor and method for producing the same

Similar Documents

Publication Publication Date Title
WO2005087892A1 (en) Field-emission phosphor, its manufacturing method, and field-emission device
US20050189518A1 (en) Method of producing a fluorescent particle
JP2004131583A (en) El phosphor powder and el fluorescence element
WO2006093095A1 (en) Dispersion-type electroluminescent element
JP2006232920A (en) Method for producing core/shell particle
JP2006089594A (en) Electroluminescent phosphor and method for producing the same, and electroluminescent element
JPH11256150A (en) Electroluminescent fluorescent substance, its production and el panel
JP2004137354A (en) Electroluminescent fluorescent substance
JP2005306713A (en) Method of producing inorganic semiconductor- or phosphor-primary particle and inorganic semiconductor- or phosphor-primary particle
JP2006188692A (en) Electroluminescent phosphor
US7326366B2 (en) Method of producing inorganic semiconductor-or phosphor-primary particle and inorganic semiconductor-or phosphor-primary particle
JP2010215787A (en) Inorganic phosphor particle and distributed electroluminescence element using the same
JP2005036214A (en) Fluorescent material, manufacturing method therefor and electroluminescent element having fluorescent material
JP2010257961A (en) Dispersion-type electroluminescent element
JP5197641B2 (en) Dispersion-type inorganic EL device and manufacturing method thereof
JP2006097028A (en) Single-component, yellow light-emitting electroluminescent fluorophor
JP5197653B2 (en) Dispersion-type inorganic EL element, manufacturing method thereof, and manufacturing apparatus of inorganic EL light emitting layer
JP2006032100A (en) Inorganic dispersion type electroluminescent element
JP2005339924A (en) Manufacturing method of electroluminescence emission board
JP2005272798A (en) Method of producing phosphor particle
JP2008210780A (en) Dispersion-type electroluminescence element and method of manufacturing the same
JP2005158332A (en) Manufacturing method for el surface light emitting sheet
JP2006008451A (en) Method for producing inorganic semiconductor primary particle
JP2005281451A (en) Electroluminescent element and production method of phosphor particulate
JP2005264108A (en) Production method for el phosphor particle, and el phosphor powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061206