JP2006089572A - Electronic equipment package and molding material therefor - Google Patents

Electronic equipment package and molding material therefor Download PDF

Info

Publication number
JP2006089572A
JP2006089572A JP2004275653A JP2004275653A JP2006089572A JP 2006089572 A JP2006089572 A JP 2006089572A JP 2004275653 A JP2004275653 A JP 2004275653A JP 2004275653 A JP2004275653 A JP 2004275653A JP 2006089572 A JP2006089572 A JP 2006089572A
Authority
JP
Japan
Prior art keywords
molding material
electronic device
weight
filler
fibrous filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004275653A
Other languages
Japanese (ja)
Inventor
Masanobu Ishizuka
賢伸 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004275653A priority Critical patent/JP2006089572A/en
Publication of JP2006089572A publication Critical patent/JP2006089572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding material for an electronic equipment package, which is capable of molding the electronic equipment package equipped with a large mechanical strength and a good appearance. <P>SOLUTION: The molding material for the electronic equipment package contains a base resis 6, a filler and an elastomer 9, wherein the base resin 6 contains polyamide and polyphenylene ether. The filler contains a long-fiber filler 7 and a short-fiber filler 8, wherein the short-fiber filler 8 has an aspect ratio smaller than that of the long-fiber filler 7. The molding material is used to mold the package 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、携帯電話やPDA(パーソナル・デジタル・アシスタント)等の電子機器の筐体の成形に用いられる電子機器筐体用成形材料及び電子機器筐体に関する。   The present invention relates to a molding material for an electronic device casing and an electronic device casing used for molding a casing of an electronic device such as a mobile phone or a PDA (Personal Digital Assistant).

近年の電子機器の薄型化に伴う筐体の薄肉化の要求から、熱可塑性樹脂の成形時には高い射出圧力や射出速度が必要とされている。また、成形材料としての熱可塑性樹脂には成形時の高い流動性と成形品の機械強度の向上が要求されている。このような状況のなかで、電子機器筐体の一般的な成形方法である射出成形においては、電気サーボや高性能アキュムレータにより、精密な制御と高速な射出が可能となってきている。一方、電子機器筐体用成形材料としては、熱可塑性樹脂にガラスやカーボン、セラミックス等の充填材を高い割合で充填したものが用いられるようになり、従来の射出成形方法では要求どおりの成形品を得ることが困難となってきている。   High injection pressure and injection speed are required at the time of molding of a thermoplastic resin because of the demand for thinning of the casing accompanying the recent thinning of electronic devices. Further, a thermoplastic resin as a molding material is required to have high fluidity during molding and to improve the mechanical strength of the molded product. Under such circumstances, in injection molding, which is a general molding method for electronic equipment casings, precise control and high-speed injection have become possible with electric servos and high-performance accumulators. On the other hand, as molding materials for electronic device casings, thermoplastic resins filled with a high proportion of fillers such as glass, carbon, ceramics, etc., have been used, and molded products as required by conventional injection molding methods It has become difficult to obtain.

一般に薄肉成形時には成形品の機械強度の低下が激しいため、ガラス繊維や炭素繊維等の繊維状充填材を成形材料に添加して強度を向上させる手法が用いられている(例えば、特許文献1参照。)。これにより充填材を添加しない場合に比較して、例えば曲げ弾性率は2〜5倍に向上する。しかし、射出成形の場合には、充填材の添加量が増加するにつれ、成形時の流動性の低下や収縮率の異方性のために、薄肉成形が困難になったり、成形品の強度低下や反り等の問題が発生することが多い。   In general, since the mechanical strength of a molded product is drastically reduced during thin-wall molding, a method of improving the strength by adding a fibrous filler such as glass fiber or carbon fiber to a molding material is used (see, for example, Patent Document 1). .) Thereby, compared with the case where a filler is not added, for example, a bending elastic modulus improves 2 to 5 times. However, in the case of injection molding, as the amount of filler added increases, thin-wall molding becomes difficult or the strength of the molded product decreases due to a decrease in fluidity during molding and anisotropy in shrinkage. Problems such as warping and warping often occur.

一方、射出成形に用いる成形材料の母材となる熱可塑性樹脂には高い流動性と寸法安定性、機械強度がより必要とされる。通常用いられるABS樹脂やポリカーボネート等のいわゆる非晶性樹脂は寸法安定性や塗装性が良い特徴を有するが、流動性が悪いことから、これらの母材樹脂に充填材を多量に混合することはできない。このため特に剛性を必要とする場合には、これらの非晶性樹脂を単体で用いることは得策ではない。例えば、ガラス繊維を約40重量%含有するポリカーボネートにて流動性試験を行うと、板厚1mm以下の成形をするのは困難であり、未充填や焼け等の不良が発生したり、十分な剛性が得られない。さらに、未充填等の不良以外に局所的な厚肉部(例えば、筐体内面のボスやリブといった機能部品)におけるヒケや、充填材が成形品表面に浮くことによる外観不良が発生しやすい。そのため充填材を多量に含有する材料は内部部品に用い、外観部品には一般に充填材の割合が20重量%未満の材料を用いるのが通例となっていた。   On the other hand, high fluidity, dimensional stability, and mechanical strength are required for a thermoplastic resin that is a base material of a molding material used for injection molding. So-called amorphous resins such as commonly used ABS resins and polycarbonates have good dimensional stability and paintability, but because of their poor fluidity, it is not possible to mix a large amount of filler with these matrix resins. Can not. For this reason, when the rigidity is particularly required, it is not a good idea to use these amorphous resins alone. For example, when a fluidity test is performed on a polycarbonate containing about 40% by weight of glass fiber, it is difficult to form a sheet with a thickness of 1 mm or less, and defects such as unfilling and burning occur, and sufficient rigidity is obtained. Cannot be obtained. Further, in addition to defects such as unfilling, sink marks in local thick portions (for example, functional parts such as bosses and ribs on the inner surface of the housing) and appearance defects due to floating of the filler on the surface of the molded product are likely to occur. For this reason, it is customary to use materials containing a large amount of filler for internal parts, and generally use materials with a filler content of less than 20% by weight for external parts.

また、ポリアミドやポリプロピレン等の結晶性樹脂では塗装性がやや悪い欠点があるが、流動性は高く、ガラス繊維を約50重量%添加した材料でも最高で板厚0.5mm程度の成形が可能であり、剛性も高い成形品が得られる。しかし、吸水性による強度低下や結晶化のバラツキによる寸法精度の低下等が薄肉成形品に悪影響を及ぼす場合もある。このため、これらの結晶性樹脂の改良のため、ポリカーボネートやポリフェニレンエーテル、ABS樹脂等の非結晶性樹脂を結晶性樹脂に混合して用いる手法、いわゆるポリマーアロイという手法にて成形品の寸法精度を改善することが提案されている(例えば、特許文献2、特許文献3参照。)
特開2003−213137号公報 特開平5−255586号公報 特開平7−102168号公報
Crystalline resins such as polyamide and polypropylene have slightly poor paintability, but they are highly fluid and can be molded to a maximum thickness of about 0.5 mm even with a material with about 50% glass fiber added. Yes, a molded product with high rigidity can be obtained. However, a decrease in strength due to water absorption or a decrease in dimensional accuracy due to variations in crystallization may adversely affect the thin molded product. For this reason, in order to improve these crystalline resins, the dimensional accuracy of the molded product is improved by a technique of using a non-crystalline resin such as polycarbonate, polyphenylene ether or ABS resin mixed with the crystalline resin, a so-called polymer alloy technique. Improvement has been proposed (see, for example, Patent Document 2 and Patent Document 3).
JP 2003-213137 A JP-A-5-255586 JP-A-7-102168

上記ポリマーアロイを用いると、薄肉の成形品を成形しても高い機械強度を確保できる。しかし、上記ポリマーアロイを用いても、成形体の局所的な厚肉部にヒケが発生して、成形品の外観性を低下させるという問題は十分には解決されない。   When the polymer alloy is used, high mechanical strength can be secured even when a thin molded product is molded. However, even when the above polymer alloy is used, the problem that sink marks are generated in a locally thick portion of the molded product and the appearance of the molded product is deteriorated cannot be sufficiently solved.

そこで、本発明は、大きな機械強度と良好な外観性とを備えた電子機器筐体を成形できる電子機器筐体用成形材料及びそれを成形した電子機器筐体を提供するものである。   Therefore, the present invention provides a molding material for an electronic device casing that can form an electronic device casing having high mechanical strength and good appearance, and an electronic device casing formed from the molding material.

本発明の電子機器筐体用成形材料は、母材樹脂と、充填材と、熱可塑性エラストマーとを含む電子機器筐体用成形材料であって、前記母材樹脂は、ポリアミドと、ポリフェニレンエーテルとを含み、前記充填材は、第1の繊維状充填材と、第2の繊維状充填材とを含み、前記第2の繊維状充填材のアスペクト比は、前記第1の繊維状充填材のアスペクト比より小さいことを特徴とする。   The molding material for an electronic device casing of the present invention is an electronic device casing molding material containing a base material resin, a filler, and a thermoplastic elastomer, and the base material resin includes polyamide, polyphenylene ether, and The filler includes a first fibrous filler and a second fibrous filler, and the aspect ratio of the second fibrous filler is that of the first fibrous filler. It is characterized by being smaller than the aspect ratio.

また、本発明の電子機器筐体は、上記電子機器筐体用成形材料を成形したものである。   The electronic device casing of the present invention is obtained by molding the molding material for the electronic device casing.

本発明の電子機器筐体用成形材料を用いることにより、大きな機械強度と良好な外観性を備えた電子機器筐体を提供できる。   By using the molding material for an electronic device casing of the present invention, an electronic device casing having high mechanical strength and good appearance can be provided.

先ず、本発明の電子機器筐体用成形材料の実施の形態を説明する。本発明の電子機器筐体用成形材料の一例は、ポリアミドとポリフェニレンエーテルとを含む母材樹脂と、充填材と、熱可塑性エラストマーとを含む電子機器筐体用成形材料である。また、上記充填材は、第1の繊維状充填材と、第2の繊維状充填材とを含み、上記第2の繊維状充填材のアスペクト比は、上記第1の繊維状充填材のアスペクト比より小さい。   First, an embodiment of the molding material for an electronic device casing of the present invention will be described. An example of the molding material for an electronic device casing of the present invention is an electronic device casing molding material containing a base resin containing polyamide and polyphenylene ether, a filler, and a thermoplastic elastomer. The filler includes a first fibrous filler and a second fibrous filler, and the aspect ratio of the second fibrous filler is an aspect ratio of the first fibrous filler. Less than the ratio.

射出成形可能な熱可塑性樹脂材料の中でも最も流動性の高いポリアミドにポリフェニレンエーテルを混合することにより、成形材料の流動性を維持しつつ、成形品に耐熱性、柔軟性及び寸法安定性を付加することができる。また、充填材を用いることにより、成形品の機械強度を高めることができる。さらに、熱可塑性エラストマーを用いることにより、充填材の添加による成形品の靭性の低下を防止できる。   Adds heat resistance, flexibility and dimensional stability to the molded product while maintaining the fluidity of the molding material by mixing polyphenylene ether with the most fluid polyamide among injection-moldable thermoplastic resin materials be able to. Moreover, the mechanical strength of a molded article can be raised by using a filler. Furthermore, by using a thermoplastic elastomer, it is possible to prevent a decrease in toughness of the molded product due to the addition of a filler.

また、上記充填材として、アスペクト比が異なる2種類の繊維状充填材を用いることにより、アスペクト比が大きな繊維状充填材の配向が、アスペクト比が小さい繊維状充填材により乱されるとともに、成形品の肉厚方向の収縮が抑制されて、成形品の局所的な厚肉部におけるヒケの発生を防止できる。   In addition, by using two types of fibrous fillers having different aspect ratios as the filler, the orientation of the fibrous filler having a large aspect ratio is disturbed by the fibrous filler having a small aspect ratio, and molding is performed. Shrinkage in the thickness direction of the product is suppressed, and the occurrence of sink marks in the locally thick part of the molded product can be prevented.

上記ポリアミドとしては、例えば、ポリアミド4、ポリアミド6、ポリアミド6,6、ポリアミド11、ポリアミド12、ポリアミド6,3、ポリアミド6,4、ポリアミド4,6、ポリアミド6/10、ポリアミド12、並びにテレフタル酸及び/又はイソフタル酸とトリメチルヘキサメチレンジアミンとから製造されたポリアミド、アジピン酸及びm−キシリレンジアミンから製造されたポリアミド、アジピン酸、アゼライン酸及び2,2−ビス−(p−アミノシクロヘキシル)プロパンから製造されたポリアミド、テレフタル酸及び4,4−ジアミノジシクロヘキシルメタンから製造されたポリアミド等が好適に使用できる。   Examples of the polyamide include polyamide 4, polyamide 6, polyamide 6,6, polyamide 11, polyamide 12, polyamide 6,3, polyamide 6,4, polyamide 4,6, polyamide 6/10, polyamide 12, and terephthalic acid. And / or polyamides made from isophthalic acid and trimethylhexamethylenediamine, polyamides made from adipic acid and m-xylylenediamine, adipic acid, azelaic acid and 2,2-bis- (p-aminocyclohexyl) propane Polyamides produced from terephthalic acid and polyamides produced from 4,4-diaminodicyclohexylmethane can be suitably used.

また、上記ポリアミドの含有量は、上記母材樹脂全体の重量割合で50重量%以上70重量%以下であることが好ましく、60重量%以上70重量%以下がより好ましい。この範囲内であれば、成形材料の流動性が高く維持できるためバリや反り等の発生を低減できるとともに、成形品の機械強度の低下も防止できるからである。   Further, the content of the polyamide is preferably 50% by weight or more and 70% by weight or less, and more preferably 60% by weight or more and 70% by weight or less in terms of the weight ratio of the whole base resin. This is because, within this range, the flowability of the molding material can be maintained high, so that the occurrence of burrs and warpage can be reduced and the mechanical strength of the molded product can be prevented from being lowered.

上記ポリフェニレンエーテルとしては、例えば、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、2,6−ジメチル−1,4−フェノール/2,3,6−トリメチル−1,4−フェノール共重合体、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2,6−ジプロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジアリル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−アリル−1,4−フェニレン)エーテル、ポリ(2,6−ジブロモ−1,4−フェニレン)エーテル、ポリ(2,6−ジクロロ−1,4−フェニレン)エーテル、ポリ(2−クロロ−6−ブロモ−1,4−フェニレン)エーテル、ポリ(2,6−ジフルオロ−1,4−フェニレン)エーテル、ポリ(2,3,6−トリメチル−1,4−フェニレン)エーテル、ポリ(2,3,5,6−テトラブロモ−1,4−フェニレン)エーテル等が好適に使用できる。   Examples of the polyphenylene ether include poly (2,6-dimethyl-1,4-phenylene) ether, 2,6-dimethyl-1,4-phenol / 2,3,6-trimethyl-1,4-phenol, and the like. Polymer, poly (2,6-diethyl-1,4-phenylene) ether, poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ) Ether, poly (2-methyl-6-propyl-1,4-phenylene) ether, poly (2,6-diallyl-1,4-phenylene) ether, poly (2-methyl-6-allyl-1,4) -Phenylene) ether, poly (2,6-dibromo-1,4-phenylene) ether, poly (2,6-dichloro-1,4-phenylene) ether, poly (2-chloro-6-butyl) Mo-1,4-phenylene) ether, poly (2,6-difluoro-1,4-phenylene) ether, poly (2,3,6-trimethyl-1,4-phenylene) ether, poly (2,3,3) 5,6-tetrabromo-1,4-phenylene) ether or the like can be preferably used.

また、上記ポリフェニレンエーテルの含有量は、上記母材樹脂全体の重量割合で30重量%以上50重量%以下であることが好ましく、30重量%以上40重量%以下がより好ましい。この範囲内であれば、成形材料の流動性を低下させることなく、成形品に耐熱性、柔軟性及び寸法安定性を十分に付加することができるからである。また、ポリフェニレンエーテルの耐熱温度は、ポリアミドの2倍以上であるため、特に成形時の高熱による成形品の変形等を抑制できる。   The content of the polyphenylene ether is preferably 30% by weight or more and 50% by weight or less, and more preferably 30% by weight or more and 40% by weight or less, based on the weight ratio of the whole base resin. This is because within this range, heat resistance, flexibility and dimensional stability can be sufficiently added to the molded product without lowering the fluidity of the molding material. Moreover, since the heat resistant temperature of polyphenylene ether is twice or more that of polyamide, it is possible to suppress deformation of the molded product due to high heat during molding.

上記第1の繊維状充填材としては、例えば、ガラス繊維、炭素繊維、金属繊維、有機繊維等を用いることができるが、成形品の耐衝撃性の向上や材料コストの観点からはガラス繊維が好ましく、成形品の剛性の向上の観点からは炭素繊維が好ましい。また、上記第1の繊維状充填材のアスペクト比は、250〜1000が好ましく、300〜650がより好ましい。この範囲内であれば成形品の機械強度の向上を図れるとともに、これらのアスペクト比の繊維状充填材の入手が容易だからである。本明細書でアスペクト比とは、繊維状充填材の直径(D)と長さ(L)との比(L/D)をいう。上記第1の繊維状充填材の含有量は、上記電子機器筐体用成形材料全体の重量割合で10重量%以上50重量%以下であることが好ましく、20重量%以上50重量%以下がより好ましい。この範囲内であれば、成形材料の流動性を維持しながら、成形品の曲げ弾性率を向上できるからである。   As the first fibrous filler, for example, glass fiber, carbon fiber, metal fiber, organic fiber, and the like can be used. From the viewpoint of improving the impact resistance of the molded product and material cost, glass fiber is used. Preferably, carbon fiber is preferable from the viewpoint of improving the rigidity of the molded product. Further, the aspect ratio of the first fibrous filler is preferably 250 to 1000, and more preferably 300 to 650. This is because within this range, the mechanical strength of the molded product can be improved, and fibrous fillers having these aspect ratios can be easily obtained. In this specification, the aspect ratio refers to the ratio (L / D) of the diameter (D) and the length (L) of the fibrous filler. The content of the first fibrous filler is preferably 10% by weight or more and 50% by weight or less, more preferably 20% by weight or more and 50% by weight or less, based on the weight ratio of the whole molding material for electronic device casing. preferable. This is because within this range, the bending elastic modulus of the molded product can be improved while maintaining the fluidity of the molding material.

上記第2の繊維状充填材としては、鉱物系の繊維状充填材が好適に使用でき、例えば、珪酸カルシウム、チタン酸カリウム、ホウ酸アルミニウム等からなる繊維状充填材を使用できる。また、上記第2の繊維状充填材のアスペクト比は、10〜200が好ましく、50〜150がより好ましい。この範囲内であれば成形品の機械強度の向上を図れるとともに、これらのアスペクト比の繊維状充填材の入手が容易だからである。上記第2の繊維状充填材の含有量は、上記電子機器筐体用成形材料全体の重量割合で5重量%以上10重量%以下であることが好ましく、7重量%以上10重量%以下がより好ましい。この範囲内であれば、成形品の成形収縮率を低下させることができるからである。   As the second fibrous filler, a mineral-based fibrous filler can be suitably used. For example, a fibrous filler made of calcium silicate, potassium titanate, aluminum borate, or the like can be used. In addition, the aspect ratio of the second fibrous filler is preferably 10 to 200, and more preferably 50 to 150. This is because within this range, the mechanical strength of the molded product can be improved, and fibrous fillers having these aspect ratios can be easily obtained. The content of the second fibrous filler is preferably 5% by weight or more and 10% by weight or less, more preferably 7% by weight or more and 10% by weight or less, based on the weight ratio of the whole molding material for electronic device casing. preferable. This is because the molding shrinkage of the molded product can be reduced within this range.

上記熱可塑性エラストマーとしては、スチレン系エラストマー、オレフィン系エラストマー等が好ましい。これらのエラストマーは、ポリアミドとの反応性が高い無水マレイン酸を添加することにより、ポリアミド中に微細に分散させることができる。特に、スチレン系エラストマーは、ポリフェニレンエーテルについても相溶性が高く、アロイ系全体に柔軟性を付与できる。また、上記熱可塑性エラストマーの含有量は、上記電子機器筐体用成形材料全体の重量割合で1重量%以上10重量%以下であることが好ましく、5重量%以上10重量%以下がより好ましい。この範囲内であれば、成形品の耐熱性を維持しつつ、耐衝撃性を向上できるからである。   As said thermoplastic elastomer, a styrene-type elastomer, an olefin-type elastomer, etc. are preferable. These elastomers can be finely dispersed in the polyamide by adding maleic anhydride having high reactivity with the polyamide. In particular, the styrene elastomer has high compatibility with polyphenylene ether, and can impart flexibility to the entire alloy system. Further, the content of the thermoplastic elastomer is preferably 1% by weight or more and 10% by weight or less, and more preferably 5% by weight or more and 10% by weight or less in terms of the weight ratio of the whole molding material for electronic device casing. This is because within this range, the impact resistance can be improved while maintaining the heat resistance of the molded product.

次に、本発明の電子機器筐体の実施の形態を説明する。本発明の電子機器筐体は、携帯電話、PDA、パーソナルコンピュータ等の電子機器、特に小型の電子機器に用いられる筐体であって、前述の実施形態で説明した電子機器筐体用成形材料を用いて成形したものである。上記電子機器筐体用成形材料を用いて筐体を成形することにより、高い機械強度を備え、さらにヒケの発生が抑制された外観性の良好な電子機器筐体を提供できる。また、本実施形態の電子機器筐体は、その厚さを0.5mm以上2mm以下としても、高い機械強度と良好な外観性を維持できる。   Next, an embodiment of the electronic device casing of the present invention will be described. The electronic device casing of the present invention is a casing used for electronic devices such as mobile phones, PDAs, and personal computers, particularly small electronic devices, and the molding material for electronic device casings described in the above embodiment is used. It was molded using. By molding the casing using the molding material for the electronic apparatus casing, it is possible to provide an electronic apparatus casing having high mechanical strength and good appearance with suppressed occurrence of sink marks. In addition, the electronic device casing of the present embodiment can maintain high mechanical strength and good appearance even when the thickness is 0.5 mm or more and 2 mm or less.

なお、本実施形態の電子機器筐体を成形する方法としては、射出成形法が用いられるが、それ以外にもトランスファ成形法(圧縮成形法)等を用いることもできる。   An injection molding method is used as a method of molding the electronic device casing of the present embodiment, but a transfer molding method (compression molding method) or the like can also be used.

続いて、図面に基づき本実施形態の電子機器筐体用成形材料を用いて成形した電子機器筐体において肉厚方向の収縮が抑制されて、成形品の局所的な厚肉部におけるヒケの発生が抑制される理由を具体的に説明する。   Subsequently, shrinkage in the thickness direction is suppressed in the electronic device casing molded using the molding material for the electronic device casing of the present embodiment based on the drawings, and the occurrence of sink marks in the locally thick part of the molded product The reason why is suppressed will be specifically described.

図1は、従来の成形材料を用いて成形した筐体の一例を示す要部断面図(A)と、本実施形態の成形材料を用いて成形した筐体の一例を示す要部断面図(B)である。図1Aでは、従来の成形材料として、ポリアミドからなる母材樹脂1にガラス繊維からなる繊維状充填材2を添加したものを用い、射出成形により従来の筐体3を成形した。図1Aにおいて、筐体3は薄肉部3aとリブ等の厚肉部3bとを備え、厚肉部3bはその内部に空洞部3cを有する。図1Aに示すように、従来の成形材料を用いた場合には、射出成形時の母材樹脂1の流れに沿って、繊維状充填材2が配向する。そのため、厚肉部3bにおいて母材樹脂1の収縮が収縮方向4a、4bに生じた場合、繊維状充填材2はこの収縮に対して抵抗とはならず、筐体3にヒケ5a、5bが発生してしまう。   FIG. 1 is a sectional view (A) of a main part showing an example of a casing molded using a conventional molding material, and a sectional view of a major part showing an example of a casing molded using the molding material of the present embodiment (A). B). In FIG. 1A, a conventional case 3 is formed by injection molding using a base material resin 1 made of polyamide to which a fibrous filler 2 made of glass fiber is added as a conventional molding material. 1A, the housing 3 includes a thin portion 3a and a thick portion 3b such as a rib, and the thick portion 3b has a hollow portion 3c therein. As shown in FIG. 1A, when a conventional molding material is used, the fibrous filler 2 is oriented along the flow of the base resin 1 at the time of injection molding. Therefore, when contraction of the base resin 1 occurs in the contraction directions 4a and 4b in the thick portion 3b, the fibrous filler 2 does not become resistant to the contraction, and sink marks 5a and 5b are formed in the housing 3. Will occur.

一方、図1Bでは、本実施形態の成形材料として、ポリアミドとポリフェニレンエーテルとからなる母材樹脂6に、ガラス繊維からなる長繊維状充填材7と、珪酸カルシウム繊維からなる短繊維状充填材8と、スチレンエラストマーからなるエラストマー9とを添加したものを用い、射出成形により本実施形態の筐体10を成形した。図1Bにおいて、筐体10は薄肉部10aとリブ等の厚肉部10bとを備え、厚肉部10bはその内部に空洞部10cを有する。図1Bに示すように、本実施形態の成形材料を用いた場合でも、射出成形時の母材樹脂6の流れに沿って、長繊維状充填材7が配向する。しかし、長繊維状充填材7の周辺には、図1Aとは異なり、短繊維状充填材8及びエラストマー9が存在する。そのため、厚肉部10bにおいて母材樹脂6の収縮が収縮方向11a、11bに生じようとしても、短繊維状充填材8及びエラストマー9により上記収縮に対して抵抗力12a、12bが生じて、筐体10にヒケが発生することを抑制することができる。   On the other hand, in FIG. 1B, as a molding material of the present embodiment, a base fiber resin 6 made of polyamide and polyphenylene ether, a long fiber filler 7 made of glass fiber, and a short fiber filler 8 made of calcium silicate fiber. And the case 10 of this embodiment was shape | molded by injection molding using what added the elastomer 9 which consists of a styrene elastomer. In FIG. 1B, the housing 10 includes a thin portion 10a and a thick portion 10b such as a rib, and the thick portion 10b has a hollow portion 10c therein. As shown in FIG. 1B, even when the molding material of this embodiment is used, the long fibrous filler 7 is oriented along the flow of the base resin 6 during the injection molding. However, unlike FIG. 1A, short fiber filler 8 and elastomer 9 exist around the long fiber filler 7. Therefore, even if shrinkage of the base resin 6 occurs in the shrinkage directions 11a and 11b in the thick wall portion 10b, the short fiber filler 8 and the elastomer 9 generate resistance forces 12a and 12b against the shrinkage. The occurrence of sink marks on the body 10 can be suppressed.

(実施例)
以下、実施例に基づき本発明を具体的に説明する。
(Example)
Hereinafter, the present invention will be specifically described based on examples.

三菱エンジニアリングプラスチックスガラス社製のポリアミド“ノバミッド”(商品名)60重量部と、旭化成ケミカルズ社製のポリフェニレンエーテル“ザイロン”(商品名)40重量部とを混合したものを母材樹脂として準備した。この母材樹脂45重量部に、日本板ガラス社製のガラス繊維(平均直径10μm、平均長さ3mm、平均アスペクト比300)40重量部、川鉄鉱業社製の珪酸カルシウム繊維(平均直径1μm、平均長さ100μm、平均アスペクト比100)10重量部、及び日本油脂社製のスチレンエラストマー“ノフアロイ”(商品名)5重量部を混合して、実施例1の成形材料を作製した。   A mixture of 60 parts by weight of polyamide “Novamid” (trade name) manufactured by Mitsubishi Engineering Plastics Glass Co., Ltd. and 40 parts by weight of polyphenylene ether “Zylon” (trade name) manufactured by Asahi Kasei Chemicals was prepared as a base resin. . To 45 parts by weight of the base resin, 40 parts by weight of glass fiber (average diameter 10 μm, average length 3 mm, average aspect ratio 300) manufactured by Nippon Sheet Glass Co., Ltd., calcium silicate fiber (average diameter 1 μm, average length) manufactured by Kawatetsu Mining Co., Ltd. The molding material of Example 1 was produced by mixing 10 parts by weight with a thickness of 100 μm and an average aspect ratio of 100) and 5 parts by weight of a styrene elastomer “NOFALOY” (trade name) manufactured by NOF Corporation.

次に、上記成形材料を用いて図2に示す二つ折りの携帯電話13の筐体を射出成形(射出温度250℃、射出圧力180MPa)により成形した。その中から携帯電話13の本体部14のボタン配置面側の筐体(縦10cm、横5cm、厚さ1mm)を本実施例の筐体サンプルとした。   Next, the housing of the folded cellular phone 13 shown in FIG. 2 was molded by injection molding (injection temperature 250 ° C., injection pressure 180 MPa) using the molding material. Among them, a casing (10 cm in length, 5 cm in width, 1 mm in thickness) on the button arrangement surface side of the main body 14 of the mobile phone 13 was used as a casing sample of this example.

(比較例1)
三菱エンジニアリングプラスチックスガラス社製のポリアミド“ノバミッド”(商品名)60重量部と、旭化成ケミカルズ社製のポリフェニレンエーテル“ザイロン”(商品名)40重量部とを混合したものを母材樹脂として準備した。この母材樹脂50重量部に、日本板ガラス社製のガラス繊維(平均直径10μm、平均長さ3mm、平均アスペクト比300)50重量部を混合して、比較例1の成形材料を作製した。この比較例1の成形材料を用いて実施例1と同様にして筐体サンプルを作製した。
(Comparative Example 1)
A mixture of 60 parts by weight of polyamide “Novamid” (trade name) manufactured by Mitsubishi Engineering Plastics Glass Co., Ltd. and 40 parts by weight of polyphenylene ether “Zylon” (trade name) manufactured by Asahi Kasei Chemicals was prepared as a base resin. . A molding material of Comparative Example 1 was prepared by mixing 50 parts by weight of the base resin with 50 parts by weight of glass fiber (average diameter 10 μm, average length 3 mm, average aspect ratio 300) manufactured by Nippon Sheet Glass. A housing sample was produced in the same manner as in Example 1 using the molding material of Comparative Example 1.

(比較例2)
三菱エンジニアリングプラスチックスガラス社製のポリアミド“ノバミッド”(商品名)60重量部と、旭化成ケミカルズ社製のポリフェニレンエーテル“ザイロン”(商品名)40重量部とを混合したものを母材樹脂として準備した。この母材樹脂50重量部に、日本板ガラス社製のガラス繊維(平均直径10μm、平均長さ3mm、平均アスペクト比300)40重量部及び日本油脂社製のスチレンエラストマー“ノフアロイ”(商品名)10重量部を混合して、比較例2の成形材料を作製した。この比較例2の成形材料を用いて実施例1と同様にして筐体サンプルを作製した。
(Comparative Example 2)
A mixture of 60 parts by weight of polyamide “Novamid” (trade name) manufactured by Mitsubishi Engineering Plastics Glass Co., Ltd. and 40 parts by weight of polyphenylene ether “Zylon” (trade name) manufactured by Asahi Kasei Chemicals was prepared as a base resin. . To 50 parts by weight of the base resin, 40 parts by weight of glass fiber (average diameter 10 μm, average length 3 mm, average aspect ratio 300) manufactured by Nippon Sheet Glass Co., Ltd. and styrene elastomer “NOFALOY” (trade name) 10 manufactured by Nippon Oil & Fats The molding material of Comparative Example 2 was produced by mixing parts by weight. Using the molding material of Comparative Example 2, a housing sample was produced in the same manner as in Example 1.

(比較例3)
三菱エンジニアリングプラスチックスガラス社製のポリアミド“ノバミッド”(商品名)60重量部と、旭化成ケミカルズ社製のポリフェニレンエーテル“ザイロン”(商品名)40重量部とを混合したものを母材樹脂として準備した。この母材樹脂50重量部に、日本板ガラス社製のガラス繊維(平均直径10μm、平均長さ3mm、平均アスペクト比300)40重量部及び川鉄鉱業社製の珪酸カルシウム繊維(平均直径1μm、平均長さ100μm、平均アスペクト比100)10重量部を混合して、比較例3の成形材料を作製した。この比較例3の成形材料を用いて実施例1と同様にして筐体サンプルを作製した。
(Comparative Example 3)
A mixture of 60 parts by weight of polyamide “Novamid” (trade name) manufactured by Mitsubishi Engineering Plastics Glass Co., Ltd. and 40 parts by weight of polyphenylene ether “Zylon” (trade name) manufactured by Asahi Kasei Chemicals was prepared as a base resin. . To 50 parts by weight of the base resin, 40 parts by weight of glass fiber (average diameter 10 μm, average length 3 mm, average aspect ratio 300) manufactured by Nippon Sheet Glass Co., Ltd. and calcium silicate fiber (average diameter 1 μm, average length) manufactured by Kawatetsu Mining Co., Ltd. The molding material of Comparative Example 3 was produced by mixing 10 parts by weight with a thickness of 100 μm and an average aspect ratio of 100). Using the molding material of Comparative Example 3, a housing sample was produced in the same manner as in Example 1.

ここで、実施例1及び比較例1〜3の成形材料の成分割合を表1に示す。表1において成分割合は、成形材料全体に対する重量割合(重量%)で示した。但し、母材樹脂におけるポリアミド(PA)とポリフェニレンエーテル(PPE)との割合(PA/PPE)は、母材樹脂全体に対するそれぞれの重量割合(重量%)で示した。   Here, the component ratios of the molding materials of Example 1 and Comparative Examples 1 to 3 are shown in Table 1. In Table 1, the component ratio is shown as a weight ratio (% by weight) with respect to the entire molding material. However, the ratio (PA / PPE) of polyamide (PA) and polyphenylene ether (PPE) in the base resin is indicated by the respective weight ratio (wt%) with respect to the entire base resin.

Figure 2006089572
Figure 2006089572

続いて、実施例1及び比較例1〜3の筐体サンプルを用いて、剛性、耐衝撃性、及び外観性を測定した。剛性は、筐体サンプルの長手方向の両端を台上に載置し、その筐体サンプルの中央部に10kgfの集中荷重を加えた際の変位量を測定した。耐衝撃性は、約100gの錘を高さ30cmから筐体サンプルの中央に落下させた際の破壊の規模(割れ長さの最大値)を測定した。外観性は、筐体サンプルの裏面に設けた高さ1mm、幅1mm、長さ3mmのリブにおける高さ方向のヒケの量を測定した。その結果を表2に示す。   Subsequently, rigidity, impact resistance, and appearance were measured using the case samples of Example 1 and Comparative Examples 1 to 3. The rigidity was measured by measuring the amount of displacement when both ends in the longitudinal direction of the housing sample were placed on a table and a concentrated load of 10 kgf was applied to the central portion of the housing sample. The impact resistance was measured by measuring the scale of destruction (maximum crack length) when a weight of about 100 g was dropped from a height of 30 cm onto the center of the housing sample. Appearance was measured by measuring the amount of sink marks in the height direction on a rib having a height of 1 mm, a width of 1 mm, and a length of 3 mm provided on the back surface of the housing sample. The results are shown in Table 2.

Figure 2006089572
Figure 2006089572

表2から、実施例1では比較例1〜3に比べて、耐衝撃性(機械強度)が大きく、外観性が良好であることが分かる。   From Table 2, it can be seen that Example 1 has higher impact resistance (mechanical strength) and better appearance than Comparative Examples 1 to 3.

次に、実施例1で用いた成形材料の各成分の最適量を検討した。具体的には、成形材料の各成分の重量割合を変化させて実施例1と同様にして筐体サンプルを成形し、筐体サンプルの曲げ弾性率、成形収縮率及びアイゾット衝撃値を測定した。その結果を図3〜図5に示す。   Next, the optimum amount of each component of the molding material used in Example 1 was examined. Specifically, a housing sample was molded in the same manner as in Example 1 while changing the weight ratio of each component of the molding material, and the bending elastic modulus, molding shrinkage rate, and Izod impact value of the housing sample were measured. The results are shown in FIGS.

図3は、ガラス繊維の添加量と曲げ弾性率との関係を示した図である。図3では、成形材料全体に対するガラス繊維の重量割合を変化させたものである。但し、ガラス繊維の重量割合の変化に応じて母材樹脂の重量割合を増減させて、母材樹脂を除く他の成分の重量割合は一定とした。また、曲げ弾性率は、インストロンジャパン社製の万能試験機“インストロン5581”(商品名)を使用して、JIS K 7055に準拠して、各筐体サンプルについて曲げ弾性率試験を行って測定した。図3から、ガラス繊維の添加量は、10重量%以上が好ましいことが分かる。但し、50重量%を超えると成形材料の流動性が低下するおそれがあるので、50重量%以下が好ましい。   FIG. 3 is a graph showing the relationship between the amount of glass fiber added and the flexural modulus. In FIG. 3, the weight ratio of the glass fiber to the whole molding material is changed. However, the weight ratio of the base material resin was increased or decreased according to the change in the weight ratio of the glass fiber, and the weight ratio of the other components excluding the base material resin was kept constant. In addition, the flexural modulus was tested for each case sample in accordance with JIS K 7055 using a universal testing machine “Instron 5581” (trade name) manufactured by Instron Japan. It was measured. FIG. 3 shows that the amount of glass fiber added is preferably 10% by weight or more. However, if it exceeds 50% by weight, the fluidity of the molding material may be lowered, so 50% by weight or less is preferable.

図4は、珪酸カルシウム繊維の添加量と成形収縮率との関係を示した図である。図4では、成形材料全体に対する珪酸カルシウム繊維の重量割合を変化させたものである。但し、珪酸カルシウム繊維の重量割合の変化に応じて母材樹脂の重量割合を増減させて、母材樹脂を除く他の成分の重量割合は一定とした。また、成形収縮率は、筐体サンプルの縦・横・厚さの寸法と、それらの寸法に対応する金型寸法から、次の式に従って求めた。   FIG. 4 is a diagram showing the relationship between the amount of calcium silicate fiber added and the molding shrinkage. In FIG. 4, the weight ratio of the calcium silicate fiber with respect to the whole molding material is changed. However, the weight ratio of the base material resin was increased or decreased according to the change in the weight ratio of the calcium silicate fiber, and the weight ratio of the other components excluding the base material resin was made constant. Further, the molding shrinkage rate was determined according to the following formula from the vertical / horizontal / thickness dimensions of the housing sample and the mold dimensions corresponding to these dimensions.

成形収縮率=(金型寸法−成形品寸法)/金型寸法
図4から、珪酸カルシウム繊維の添加量は、5重量%以上が好ましいことが分かる。但し、10重量%を超えると成形材料の流動性が低下するおそれがあるので、10重量%以下が好ましい。
Mold Shrinkage Ratio = (Mold Size−Mold Product Size) / Mold Size FIG. 4 shows that the amount of calcium silicate fiber added is preferably 5% by weight or more. However, if it exceeds 10% by weight, the fluidity of the molding material may be lowered, so 10% by weight or less is preferable.

図5は、エラストマーの添加量とアイゾット衝撃値との関係を示した図である。図5では、成形材料全体に対するエラストマーの重量割合を変化させたものである。但し、エラストマーの重量割合の変化に応じて母材樹脂の重量割合を増減させて、母材樹脂を除く他の成分の重量割合は一定とした。また、アイゾット衝撃値は、東洋精機社製のアイゾット衝撃試験機“B−121202403”(商品名)を使用して、JIS K 7110に準拠して、各筐体サンプルについてアイゾット衝撃試験を行って測定した。図5から、エラストマーの添加量は、1重量%以上が好ましいことが分かる。但し、10重量%を超えると成形材料の耐熱性が低下するおそれがあるので、10重量%以下が好ましい。   FIG. 5 is a graph showing the relationship between the amount of elastomer added and the Izod impact value. In FIG. 5, the weight ratio of the elastomer to the whole molding material is changed. However, the weight ratio of the base material resin was increased or decreased according to the change in the weight ratio of the elastomer, and the weight ratio of the other components excluding the base material resin was kept constant. Further, the Izod impact value is measured by performing an Izod impact test on each case sample in accordance with JIS K 7110 using an Izod impact tester “B-121202403” (trade name) manufactured by Toyo Seiki Co., Ltd. did. FIG. 5 shows that the amount of elastomer added is preferably 1% by weight or more. However, if it exceeds 10% by weight, the heat resistance of the molding material may be lowered, so 10% by weight or less is preferable.

以上の実施例1〜2を含む本発明の実施形態に関し、さらに以下の付記を開示する。   The following additional notes are further disclosed with respect to the embodiments of the present invention including Examples 1 and 2 above.

(付記1) 母材樹脂と、充填材と、熱可塑性エラストマーとを含む電子機器筐体用成形材料であって、
前記母材樹脂は、ポリアミドと、ポリフェニレンエーテルとを含み、
前記充填材は、第1の繊維状充填材と、第2の繊維状充填材とを含み、
前記第2の繊維状充填材のアスペクト比は、前記第1の繊維状充填材のアスペクト比より小さいことを特徴とする電子機器筐体用成形材料。
(Supplementary note 1) A molding material for an electronic device casing containing a base material resin, a filler, and a thermoplastic elastomer,
The base material resin includes polyamide and polyphenylene ether,
The filler includes a first fibrous filler and a second fibrous filler,
The molding material for an electronic device casing, wherein the aspect ratio of the second fibrous filler is smaller than the aspect ratio of the first fibrous filler.

(付記2) 前記第1の繊維状充填材のアスペクト比は、250〜1000である付記1に記載の電子機器筐体用成形材料。   (Additional remark 2) The molding material for electronic device housing | casings of Additional remark 1 whose aspect ratio of a said 1st fibrous filler is 250-1000.

(付記3) 前記第2の繊維状充填材のアスペクト比は、10〜200である付記1に記載の電子機器筐体用成形材料。   (Additional remark 3) The molding material for electronic device housing | casing of Additional remark 1 whose aspect ratio of a said 2nd fibrous filler is 10-200.

(付記4) 前記第1の繊維状充填材は、ガラス繊維及び炭素繊維から選ばれる少なくとも1つである付記1又は2に記載の電子機器筐体用成形材料。   (Additional remark 4) The said 1st fibrous filler is a molding material for electronic device housing | casing of Additional remark 1 or 2 which is at least 1 chosen from glass fiber and carbon fiber.

(付記5) 前記第2の繊維状充填材は、珪酸カルシウム、チタン酸カリウム及びホウ酸アルミニウムから選ばれる少なくとも1つである付記1又は3に記載の電子機器筐体用成形材料。   (Additional remark 5) The said 2nd fibrous filler is a molding material for electronic device housing | casing of Additional remark 1 or 3 which is at least 1 chosen from calcium silicate, potassium titanate, and aluminum borate.

(付記6) 前記第1の繊維状充填材の含有量は、前記電子機器筐体用成形材料全体の重量割合で10重量%以上50重量%以下である付記1、2又は4のいずれかに記載の電子機器筐体用成形材料。   (Additional remark 6) Content of the said 1st fibrous filler is either 10 weight% or more and 50 weight% or less in the weight ratio of the said whole molding material for electronic device housings in any one of Additional remark 1, 2 or 4 The molding material for electronic device housings as described.

(付記7) 前記第2の繊維状充填材の含有量は、前記電子機器筐体用成形材料全体の重量割合で5重量%以上10重量%以下である付記1、3又は5のいずれかに記載の電子機器筐体用成形材料。   (Additional remark 7) Content of the said 2nd fibrous filler is 5 weight% or more and 10 weight% or less in the weight ratio of the said whole molding material for electronic device housings in any one of Additional remark 1,3 or 5 The molding material for electronic device housings as described.

(付記8) 前記ポリアミドの含有量は、前記母材樹脂全体の重量割合で50重量%以上70重量%以下である付記1に記載の電子機器筐体用成形材料。   (Additional remark 8) Content of the said polyamide is the molding material for electronic device housing | casing of Additional remark 1 which is 50 to 70 weight% in the weight ratio of the said whole base resin.

(付記9) 前記ポリフェニレンエーテルの含有量は、前記母材樹脂全体の重量割合で30重量%以上50重量%以下である付記1に記載の電子機器筐体用成形材料。   (Additional remark 9) Content of the said polyphenylene ether is a molding material for electronic device housing | casing of Additional remark 1 which is 30 to 50 weight% in the weight ratio of the said whole base resin.

(付記10) 前記熱可塑性エラストマーは、スチレン系エラストマー及びオレフィン系エラストマーから選ばれる少なくとも1つである付記1に記載の電子機器筐体用成形材料。   (Additional remark 10) The said thermoplastic elastomer is a molding material for electronic device housing | casing of Additional remark 1 which is at least 1 chosen from a styrene-type elastomer and an olefin-type elastomer.

(付記11) 前記熱可塑性エラストマーの含有量は、前記電子機器筐体用成形材料全体の重量割合で1重量%以上10重量%以下である付記1又は10に記載の電子機器筐体用成形材料。   (Additional remark 11) The content of the said thermoplastic elastomer is 1 weight% or more and 10 weight% or less in the weight ratio of the said whole molding material for electronic device casings, The molding material for electronic device cases of Additional remark 1 or 10 .

(付記12) 付記1〜11のいずれかに記載の電子機器筐体用成形材料を成形した電子機器筐体。   (Additional remark 12) The electronic device housing | casing which shape | molded the molding material for electronic device housings in any one of Additional remarks 1-11.

(付記13)
前記電子機器筐体の厚さは、0.5mm以上2mm以下である付記12に記載の電子機器筐体。
(Appendix 13)
The electronic device housing according to appendix 12, wherein the thickness of the electronic device housing is 0.5 mm or more and 2 mm or less.

従来の成形材料を用いて成形した筐体の一例を示す要部断面図(A)と、本発明の実施形態の成形材料を用いて成形した筐体の一例を示す要部断面図(B)である。Sectional view (A) of relevant parts showing an example of a case molded using a conventional molding material, and sectional view (B) of relevant parts showing an example of a casing molded using the molding material of the embodiment of the present invention. It is. 実施例1の成形材料を用いて成形した携帯電話の筐体を示す正面図である。1 is a front view showing a casing of a mobile phone molded using the molding material of Example 1. FIG. ガラス繊維の添加量と曲げ弾性率との関係を示した図である。It is the figure which showed the relationship between the addition amount of glass fiber, and a bending elastic modulus. 珪酸カルシウム繊維の添加量と成形収縮率との関係を示した図である。It is the figure which showed the relationship between the addition amount of a calcium silicate fiber, and a mold shrinkage rate. エラストマーの添加量とアイゾット衝撃値との関係を示した図である。It is the figure which showed the relationship between the addition amount of an elastomer, and an Izod impact value.

符号の説明Explanation of symbols

1 母材樹脂
2 繊維状充填材
3 筐体
3a 薄肉部
3b 厚肉部
3c 空洞部
4a、4b 収縮方向
5a、5b ヒケ
6 母材樹脂
7 長繊維状充填材
8 短繊維状充填材
9 エラストマー
10 筐体
10a 薄肉部
10b 厚肉部
10c 空洞部
11a、11b 収縮方向
12a、12b 抵抗力
13 携帯電話
14 筐体サンプル
DESCRIPTION OF SYMBOLS 1 Base material resin 2 Fibrous filler 3 Housing | casing 3a Thin part 3b Thick part 3c Cavity part 4a, 4b Shrinkage direction 5a, 5b Sink 6 Base material resin 7 Long fibrous filler 8 Short fibrous filler 9 Elastomer 10 Case 10a Thin portion 10b Thick portion 10c Hollow portions 11a, 11b Shrinkage directions 12a, 12b Resistance 13 Mobile phone 14 Case sample

Claims (5)

母材樹脂と、充填材と、熱可塑性エラストマーとを含む電子機器筐体用成形材料であって、
前記母材樹脂は、ポリアミドと、ポリフェニレンエーテルとを含み、
前記充填材は、第1の繊維状充填材と、第2の繊維状充填材とを含み、
前記第2の繊維状充填材のアスペクト比は、前記第1の繊維状充填材のアスペクト比より小さいことを特徴とする電子機器筐体用成形材料。
A molding material for an electronic device casing containing a base material resin, a filler, and a thermoplastic elastomer,
The base material resin includes polyamide and polyphenylene ether,
The filler includes a first fibrous filler and a second fibrous filler,
The molding material for an electronic device casing, wherein the aspect ratio of the second fibrous filler is smaller than the aspect ratio of the first fibrous filler.
前記第1の繊維状充填材は、ガラス繊維及び炭素繊維から選ばれる少なくとも1つである請求項1に記載の電子機器筐体用成形材料。   2. The molding material for an electronic device casing according to claim 1, wherein the first fibrous filler is at least one selected from glass fibers and carbon fibers. 前記第2の繊維状充填材は、珪酸カルシウム、チタン酸カリウム及びホウ酸アルミニウムから選ばれる少なくとも1つである請求項1に記載の電子機器筐体用成形材料。   2. The molding material for an electronic device casing according to claim 1, wherein the second fibrous filler is at least one selected from calcium silicate, potassium titanate, and aluminum borate. 前記熱可塑性エラストマーは、スチレン系エラストマー及びオレフィン系エラストマーから選ばれる少なくとも1つである請求項1に記載の電子機器筐体用成形材料。   The molding material for an electronic device casing according to claim 1, wherein the thermoplastic elastomer is at least one selected from a styrene elastomer and an olefin elastomer. 請求項1〜4のいずれかに記載の電子機器筐体用成形材料を成形した電子機器筐体。
The electronic device housing which shape | molded the molding material for electronic device housings in any one of Claims 1-4.
JP2004275653A 2004-09-22 2004-09-22 Electronic equipment package and molding material therefor Pending JP2006089572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275653A JP2006089572A (en) 2004-09-22 2004-09-22 Electronic equipment package and molding material therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275653A JP2006089572A (en) 2004-09-22 2004-09-22 Electronic equipment package and molding material therefor

Publications (1)

Publication Number Publication Date
JP2006089572A true JP2006089572A (en) 2006-04-06

Family

ID=36230856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275653A Pending JP2006089572A (en) 2004-09-22 2004-09-22 Electronic equipment package and molding material therefor

Country Status (1)

Country Link
JP (1) JP2006089572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088363A (en) * 2006-10-04 2008-04-17 Mitsui Chemicals Inc Aliphatic polyester-based resin composition and molded product thereof
WO2011016536A1 (en) * 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101452A (en) * 1986-10-20 1988-05-06 Mitsubishi Petrochem Co Ltd Resin composition and production thereof
JPH0565410A (en) * 1991-08-16 1993-03-19 Mitsubishi Gas Chem Co Inc Polyamide resin composition
JP2004083792A (en) * 2002-08-28 2004-03-18 Kuraray Co Ltd Thermoplastic resin composition
JP2004107576A (en) * 2002-09-20 2004-04-08 Kuraray Co Ltd Polyamide composition
JP2005298545A (en) * 2004-04-06 2005-10-27 Asahi Kasei Chemicals Corp Method for producing electroconductive resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101452A (en) * 1986-10-20 1988-05-06 Mitsubishi Petrochem Co Ltd Resin composition and production thereof
JPH0565410A (en) * 1991-08-16 1993-03-19 Mitsubishi Gas Chem Co Inc Polyamide resin composition
JP2004083792A (en) * 2002-08-28 2004-03-18 Kuraray Co Ltd Thermoplastic resin composition
JP2004107576A (en) * 2002-09-20 2004-04-08 Kuraray Co Ltd Polyamide composition
JP2005298545A (en) * 2004-04-06 2005-10-27 Asahi Kasei Chemicals Corp Method for producing electroconductive resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088363A (en) * 2006-10-04 2008-04-17 Mitsui Chemicals Inc Aliphatic polyester-based resin composition and molded product thereof
WO2011016536A1 (en) * 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
CN102575098A (en) * 2009-08-07 2012-07-11 宇部兴产株式会社 Conductive resin composition
JP5605364B2 (en) * 2009-08-07 2014-10-15 宇部興産株式会社 Conductive resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition

Similar Documents

Publication Publication Date Title
TWI653292B (en) Molded part for use in a portable electronic device
JP6276692B2 (en) Housing for portable electronics
WO2007138743A1 (en) Polyamide resin composition and molded article
WO2014065519A1 (en) Polycarbonate resin composition
JP2009155478A5 (en)
WO2007083751A1 (en) Diaphragm for electro-acoustic transducer
TW201531522A (en) Toughened polyarylene sulfide composition
JP4990601B2 (en) Diaphragm for electroacoustic transducer and film for the diaphragm
WO2020004597A1 (en) Resin metal composite body and method for producing same
JP2006089572A (en) Electronic equipment package and molding material therefor
JP5127198B2 (en) Speaker diaphragm
TWI625227B (en) Metal resin composite formed body and manufacturing method thereof
JP5098155B2 (en) Phenolic resin molding material for damping material and damping material formed by molding the same
US20070072997A1 (en) Peripheral component for audio equipment
KR20160117652A (en) Heat conductive polyamide resin composition and molded article using thereof
JP2004083792A (en) Thermoplastic resin composition
US20030018134A1 (en) Molding material for oa machine parts with improved vibration damping properties
CN111278893B (en) Sulfonated polyamide polymer blends and corresponding articles
WO2000042108A1 (en) Polyarylene sulfide resin composition
CN101845577B (en) Aluminium-magnesium alloy for interior material and exterior material
JP2000007904A (en) Molded article for oa equipment parts with excellent damping property
JP5004867B2 (en) Resin composition and optical disk pickup chassis using the same
CN101375631A (en) Diaphragm for electro-acoustic transducer
JP4360698B2 (en) Molded body for OA equipment parts with excellent vibration damping
JP2008004595A (en) Coil molding and linear motor for vacuum using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100805