JP2006088482A - Multi-point temperature control method in injection molding machine - Google Patents

Multi-point temperature control method in injection molding machine Download PDF

Info

Publication number
JP2006088482A
JP2006088482A JP2004276003A JP2004276003A JP2006088482A JP 2006088482 A JP2006088482 A JP 2006088482A JP 2004276003 A JP2004276003 A JP 2004276003A JP 2004276003 A JP2004276003 A JP 2004276003A JP 2006088482 A JP2006088482 A JP 2006088482A
Authority
JP
Japan
Prior art keywords
temperature
control method
injection molding
molding machine
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004276003A
Other languages
Japanese (ja)
Other versions
JP4537162B2 (en
Inventor
Makoto Nishizawa
誠 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2004276003A priority Critical patent/JP4537162B2/en
Publication of JP2006088482A publication Critical patent/JP2006088482A/en
Application granted granted Critical
Publication of JP4537162B2 publication Critical patent/JP4537162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-point temperature control method in an injection molding machine for suppressing the effect due to the difference of heat history on a control target by controlling the temperature rising speeds of the respective zones in the heating cylinder of the injection molding machine even if the target set temperatures of the respective zones are different to allow the temperature rising speeds to arrive at the target set temperatures at the same time. <P>SOLUTION: Sampling times of a plurality of times are provided with respect to the temperature rising speeds in the respective zones of the heating cylinder of the injection molding machine to measure the temperatures of the respective zones and the temperature rising speeds are respectively controlled by setting corrected target temperatures on the basis of the temperature results detected every time to allow the temperature rising speeds to arrive at the target temperatures arbitrarily set of the respective zones. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、射出成形機における多点温度制御装置の昇温制御方法に係り、特にそれぞれ温度調整領域(ゾーン)における設定目標温度到達時間の同期性に関する。   The present invention relates to a temperature increase control method of a multi-point temperature control apparatus in an injection molding machine, and particularly relates to the synchronism of a set target temperature arrival time in each temperature adjustment region (zone).

一般に、射出成形機には先端部分に射出ノズルが設けられた加熱筒が備えられている。この加熱筒は装填された樹脂材料を融解して射出させるために、射出ノズルまで好適する温度となるように温度調整が行われている。例えば、加熱筒を複数の温度調整領域(ゾーン)に分けて、それぞれのゾーン毎にヒータと温度センサからなる加熱制御部を設けて、多点温度制御を行っている。これらのゾーンは、3分割する例としては、メータリングゾーンに対応する前部、コンプレッションゾーンに対応する中間部及びフィードゾーンに対応する後部がある。
特開2002−361705号公報
In general, an injection molding machine is provided with a heating cylinder provided with an injection nozzle at the tip. In order to melt and inject the charged resin material, the heating cylinder is temperature-adjusted so as to have a temperature suitable for the injection nozzle. For example, the heating cylinder is divided into a plurality of temperature adjustment regions (zones), and a heating control unit including a heater and a temperature sensor is provided for each zone to perform multipoint temperature control. Examples of dividing these zones into three include a front portion corresponding to the metering zone, an intermediate portion corresponding to the compression zone, and a rear portion corresponding to the feed zone.
JP 2002-361705 A

前述した射出成形機の加熱筒は、前述した3分割されたゾーンにおける各加熱制御部により同時に昇温を開始した場合には、例えば、図6に示す昇温特性のように到達時刻ta、tb、tcのように異なっている。この到達時間の違いは、加熱される部位の熱容量の違いから温速度が異なっているためである。この到達時間の違いによる問題は、作業を途中で中断して、再度稼働を開始する際に、加熱筒の再加熱を行うと、加熱筒内部に残留する成形部材である樹脂等が高温に晒され続けられることとなり、樹脂の熱特性によっては熱分解による劣化を防止すると共に、樹脂の炭化や有毒ガスが発生する。   When the heating cylinder of the above-described injection molding machine starts temperature rising simultaneously by the respective heating control units in the above-described three divided zones, for example, arrival times ta and tb as shown in the temperature rising characteristics shown in FIG. , Tc. This difference in arrival time is because the temperature rate is different due to the difference in the heat capacity of the heated part. The problem due to the difference in arrival time is that if the heating cylinder is reheated when the operation is interrupted halfway and the operation is started again, the resin or the like that remains in the heating cylinder is exposed to a high temperature. Depending on the thermal characteristics of the resin, deterioration due to thermal decomposition is prevented and carbonization of the resin and toxic gas are generated.

そこで、各ゾーンにおける到達温度に到達時間が一致するように、それぞれのゾーンにおける昇温開始のタイミングをずらして昇温を行なうことも考えられている。
一方、射出成形機の多点温度制御装置においては、各ゾーンの昇温時間に関して時間的な同期を得る制御方法が提案されている。例えば、特開2002−361705号公報においては、最初に最も昇温の遅いヒータの目標温度T1に他のヒータ目標温度を合わせて一旦T1に到達させたのち、適宜温度を切り換える技術が開示されている。
In view of this, it has been considered to raise the temperature by shifting the temperature rise start timing in each zone so that the arrival time matches the arrival temperature in each zone.
On the other hand, in a multi-point temperature control apparatus for an injection molding machine, a control method for obtaining temporal synchronization with respect to the temperature rising time of each zone has been proposed. For example, Japanese Patent Application Laid-Open No. 2002-361705 discloses a technique in which the target temperature T1 of the heater whose temperature rises most slowly is first matched with another heater target temperature to reach T1, and then the temperature is switched appropriately. Yes.

この公報による方法は、各ヒータの設定目標値が同一温度である場合には好適するが、それぞれのゾーンの設定目標温度が相違した場合には、最終の到達時刻は一致させることはできない。   The method according to this publication is suitable when the set target values of the heaters are the same temperature, but when the set target temperatures of the respective zones are different, the final arrival times cannot be matched.

そこで本発明は、射出成形機の加熱筒における各ゾーンの目標設定温度が異なる場合でも、それらゾーンの昇温速度を制御することにより、同一時間に到達することで被制御体への熱履歴の相違による影響を抑制する射出成形機における多点温度制御方法を提供することを目的とする。   Therefore, the present invention controls the heat history of the controlled object by reaching the same time by controlling the heating rate of the zones even when the target set temperatures of the zones in the heating cylinder of the injection molding machine are different. An object of the present invention is to provide a multi-point temperature control method in an injection molding machine that suppresses the influence due to the difference.

本発明は上記目的を達成するために、射出成形機の複数の加熱部位にそれぞれ配置されたヒータへの通電率をそれぞれ独立に演算制御する温度調節計と、前記温度調節計に対し前記各加熱部位の温度を検出する温度検出手段と、前記各加熱部位の目標温度を指令する温度コントローラと、前記目標温度を設定し前記温度コントローラへ与える温度設定手段と、を備えた温度制御装置を用いて、前記複数の加熱部位の目標温度到達までの昇温時間が同一となるように前記温度調節計を制御する方法であって、 各ヒータによる昇温開始後の所定時刻における前記各加熱部位の目標温度と当該各部位の検出温度との偏差を演算し、その中の最大偏差に対応する部位を特定する第1の段階と、少なくとも前記特定された加熱部位における目標温度と検出温度との偏差を前記第1の段階以後の各所定時刻にて演算する第2の段階と、前記特定された加熱部位を除く他の加熱部位ごとにその目標温度から前記第2の段階で得た偏差を差し引いた温度値を当該時刻における前記各部位の修正目標値として演算し、同修正目標値を前記温度調節計に指令する第3の段階と、からなり、前記偏差がゼロとなるまで任意に定めたサンプリング時刻による前記第2、第3の段階の処理を繰り返し行うことを特徴とする射出成形機における多点温度制御方法を提供する。   In order to achieve the above object, the present invention provides a temperature controller for independently calculating and controlling energization rates to heaters respectively arranged at a plurality of heating parts of an injection molding machine, and each heating unit with respect to the temperature controller. Using a temperature control device comprising temperature detecting means for detecting the temperature of the part, a temperature controller for instructing the target temperature of each heating part, and a temperature setting means for setting the target temperature and giving it to the temperature controller And a method of controlling the temperature controller so that the heating times until the target temperatures of the plurality of heating parts are reached are the same, the targets of the heating parts at a predetermined time after the heating start by the heaters. A first step of calculating a deviation between the temperature and the detected temperature of each part and specifying a part corresponding to the maximum deviation among them; and detecting a target temperature at least in the specified heating part A second stage for calculating a deviation from the temperature at each predetermined time after the first stage, and a second stage from the target temperature for each of the other heating parts excluding the specified heating part. A temperature value obtained by subtracting the obtained deviation is calculated as a correction target value of each part at the time, and the correction target value is commanded to the temperature controller, and the deviation becomes zero. A multi-point temperature control method in an injection molding machine is provided, wherein the processes of the second and third stages are repeatedly performed at a sampling time arbitrarily determined as described above.

本発明によれば、射出成形機の加熱筒における各ゾーンの目標設定温度が異なる場合でも、それらゾーンの昇温速度を制御することにより、同一時間に到達することで被制御体への熱履歴の相違による影響を抑制する射出成形機における多点温度制御方法を提供することができる。   According to the present invention, even when the target set temperatures of the zones in the heating cylinder of the injection molding machine are different, the heat history to the controlled body is reached by reaching the same time by controlling the temperature increase rate of the zones. It is possible to provide a multi-point temperature control method in an injection molding machine that suppresses the influence due to the difference between the two.

以下、図面を参照して本発明の実施形態について詳細に説明する。
図1は、本発明の射出成形機における多点温度制御方法について説明するための射出成形機(加熱筒)に対する多点温度制御システムの概略的な構成を示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a multipoint temperature control system for an injection molding machine (heating cylinder) for explaining a multipoint temperature control method in an injection molding machine of the present invention.

この射出成形機1においては、金型2及び加熱筒3を複数に分割した温度調整領域をゾーン13(13a,13b,13c,13d,13e)とし、これらのゾーン13のそれぞれにヒータ4(4a,4b,4c,4d,4e)及び温度センサ5(5a,5b,5c,5d,5e)を配設する。さらに射出成形機1は、個々のヒータ4を通電率制御による温度調整を行なう温度調節計6と、温度調節計6を制御して全体の温度制御を行う温度コントローラ7と、温度コントローラ7へ各ヒータ4の目標温度又は修正目標温度を設定する温度設定部8とを備えて構成される。   In this injection molding machine 1, a temperature adjustment region obtained by dividing the mold 2 and the heating cylinder 3 into a plurality of zones is defined as zones 13 (13a, 13b, 13c, 13d, 13e), and a heater 4 (4a) is provided in each of these zones 13. , 4b, 4c, 4d, 4e) and the temperature sensor 5 (5a, 5b, 5c, 5d, 5e). Further, the injection molding machine 1 includes a temperature controller 6 that adjusts the temperature of the individual heaters 4 by energization rate control, a temperature controller 7 that controls the temperature controller 6 to control the overall temperature, and a temperature controller 7. And a temperature setting unit 8 for setting the target temperature or the corrected target temperature of the heater 4.

ここで、ヒータ4としては、セラミックヒータ等の熱効率のよいヒータ部材を用いている。温度センサ5は、接触型センサであれば例えば、熱電対温度センサ等、または非接触型温度センサであれば、例えば赤外線温度センサ等を用いることができる。温度調節計6は、公知な構成であり、PID(比例、積分、微分)制御をするものに限定されるものではない。またPのみ、PIのみ、または、PDのみの組み合わせであってもよい。   Here, as the heater 4, a heater member with good thermal efficiency such as a ceramic heater is used. If the temperature sensor 5 is a contact type sensor, for example, a thermocouple temperature sensor or the like, or if it is a non-contact type temperature sensor, for example, an infrared temperature sensor or the like can be used. The temperature controller 6 has a known configuration, and is not limited to one that performs PID (proportional, integral, derivative) control. Moreover, the combination of only P, only PI, or only PD may be sufficient.

また、金型2は、製作する物品に応じて交換されて使用される。従って、金型2に取り付けるヒータ4eは、加熱筒3の各ゾーンのヒータ4とは異なり、金型の大きさや熱の伝達特性に応じて、最適な発熱量となるヒータを取り付けてもよいし、可能であれば、大きな発熱量を持つ1つヒータを用いて適宜発熱レベルを変えて使用してもよい。これらのヒータは、後述する制御に従うように予め加熱特性等の諸特性が温度コントローラ7に登録されて適正に制御が行われる。   The mold 2 is used after being exchanged according to the article to be manufactured. Therefore, unlike the heater 4 in each zone of the heating cylinder 3, the heater 4e attached to the mold 2 may be attached with a heater that generates an optimal amount of heat according to the size of the mold and heat transfer characteristics. If possible, one heater having a large heat generation amount may be used and the heat generation level may be appropriately changed. These heaters are appropriately controlled by previously registering various characteristics such as heating characteristics in the temperature controller 7 so as to follow the control described later.

次に図2には、本実施形態における温度コントローラ7の機能制御ブロックを示し詳細に説明する。
この温度コントローラ7は、データメモリ9と、プログラムメモリ10と、中央処理装置(CPU)11と、温度調節計6及び温度設定部8と制御信号やデータをやりとりするためのインタフェース部(iF)12とで構成される。これらの各部位は、バスライン14により接続され、信号やデータの伝搬が行われている。
Next, FIG. 2 shows a functional control block of the temperature controller 7 in the present embodiment and will be described in detail.
The temperature controller 7 includes a data memory 9, a program memory 10, a central processing unit (CPU) 11, a temperature controller 6 and a temperature setting unit 8, and an interface unit (iF) 12 for exchanging control signals and data. It consists of. These parts are connected by a bus line 14, and signal and data are propagated.

これらのうち、プログラムメモリ9には、後述する多点温度制御方法を遂行するための処理プログラム(多点同時到達制御プログラム)が格納されている。データメモリ9内には、各ヒータ4に対応する設定テーブルが設けられている。この設定テーブルには、例えば、ヒータの種類、ヒータの加熱に対する設定目標温度TG1,TG2,TG3,TG4,TG5、温度センサ5により検出された各ゾーン3の現在の検出温度DT1,DT2,DT3,DT4,DT5、到達温度に達するまで昇温速度(温度変化)に対して、逐次演算を行っている演算途中データ(偏差値)、及びその演算データに従いその都度、設定される修正目標温度TG1´,TG2´,TG3´,TG4´,TG5´の各設定項目が設けられている。   Among these, the program memory 9 stores a processing program (multi-point simultaneous arrival control program) for performing a multi-point temperature control method to be described later. A setting table corresponding to each heater 4 is provided in the data memory 9. This setting table includes, for example, the type of heater, the set target temperatures TG1, TG2, TG3, TG4, TG5 for the heating of the heater, the current detected temperatures DT1, DT2, DT3 of each zone 3 detected by the temperature sensor 5. DT4, DT5, mid-calculation data (deviation value) in which sequential computation is performed on the temperature increase rate (temperature change) until reaching the ultimate temperature, and the corrected target temperature TG1 ′ set each time according to the computation data , TG2 ′, TG3 ′, TG4 ′, and TG5 ′ are provided.

次に、このように構成された多点温度制御システムにおける多点温度制御方法について説明する。ここで、図3は、プログラムメモリ9に格納される多点同時到達制御プログラムにおけるシーケンスを示すフローチャートであり、図4は、3つのヒータ4a,4b,4cの昇温の経過を例示する設定テーブル例を示し、図5は、温度センサ5により検出されたゾーン13の温度変化の一例を示す図である。ここでは、説明を分かりやすくするため、3つのゾーン13a,13b,13cが3つの設定目標温度TG1=230℃,TG2=200℃,TG3=180℃とした例について説明する。   Next, a multipoint temperature control method in the multipoint temperature control system configured as described above will be described. Here, FIG. 3 is a flowchart showing a sequence in the multipoint simultaneous arrival control program stored in the program memory 9, and FIG. 4 is a setting table exemplifying the temperature rise of the three heaters 4a, 4b, 4c. An example is shown, and FIG. 5 is a diagram showing an example of a temperature change in the zone 13 detected by the temperature sensor 5. Here, in order to make the explanation easy to understand, an example in which the three zones 13a, 13b, and 13c are set to three set target temperatures TG1 = 230 ° C., TG2 = 200 ° C., and TG3 = 180 ° C. will be described.

まず、サンプリング回数iに1を設定する(ステップS1)。次に、サンプリング開始時刻tを設定する[t←ti](ステップS2)。
その設定の後、サンプリング回数i=1か否かを判定する(ステップS3)。この判定において、”1”即ち、最初のサンプリングの場合には(YES)、各ヒータ4の設定目標値TG1〜TG5と、各検出温度DT1〜DT5とのそれぞれの偏差値を演算する(ステップS4)。求められた偏差値のうち最大偏差値に対応するヒータ(ここでは、HT1と仮定する)を特定する(ステップS5)。一方、ステップS3の判定において、前回のシーケンスにおけるステップS5で特定されたHT1に対する偏差値(TG1−DT1)を算出する(ステップS6)。
前記ステップS5,6において、ヒータ4の特定又は偏差値を算出した後に、各ヒータ4の修正目標温度TGi´を最新の偏差値(TG1−DT1)を用いて、式(1)に基づいて算出する(ステップS7)。この算出結果に基づいて各ヒータ4の温度制御(昇温又は降温)を行う(ステップS8)。但し、TG1´は、TG1のままとする。
HT1→TG1´=TG1
HT2→TG2´=TG2−(TG1−DT1)
HT3→TG3´=TG3−(TG1−DT1)
次に、偏差値が0、即ち、TG1=DT1であるか否かを判定する(ステップS9)。尚、この判定を行うときには、各ヒータ4の温度は、それぞれ設定目標温度(図5において、時刻tarriveにおけるTG1=230℃,TG2=200℃,TG3=180℃)に到達しているものとする。このTG1=DT1であった場合には(YES)、各ヒータにおける修正目標温度TG1´,TG2´,TG3´を設定目標温度TG1,TG2,TG3に再設定して(ステップS10)、このシーケンスを終了する。
First, 1 is set to the number of samplings i (step S1). Next, the sampling start time t is set [t ← ti] (step S2).
After the setting, it is determined whether or not the number of times of sampling i = 1 (step S3). In this determination, “1”, that is, in the case of the first sampling (YES), each deviation value between the set target values TG1 to TG5 of each heater 4 and each detected temperature DT1 to DT5 is calculated (step S4). ). Of the obtained deviation values, the heater corresponding to the maximum deviation value (here, assumed to be HT1) is specified (step S5). On the other hand, in the determination in step S3, a deviation value (TG1-DT1) with respect to HT1 specified in step S5 in the previous sequence is calculated (step S6).
In steps S5 and S6, after the heater 4 is specified or the deviation value is calculated, the corrected target temperature TGi ′ of each heater 4 is calculated based on the formula (1) using the latest deviation value (TG1-DT1). (Step S7). Based on this calculation result, temperature control (temperature increase or temperature decrease) of each heater 4 is performed (step S8). However, TG1 ′ remains as TG1.
HT1 → TG1 ′ = TG1
HT2 → TG2 ′ = TG2- (TG1-DT1)
HT3 → TG3 ′ = TG3- (TG1-DT1)
Next, it is determined whether or not the deviation value is 0, that is, TG1 = DT1 (step S9). When this determination is made, it is assumed that the temperature of each heater 4 has reached a set target temperature (in FIG. 5, TG1 = 230 ° C., TG2 = 200 ° C., TG3 = 180 ° C. at the time of arrival). . If TG1 = DT1 (YES), the corrected target temperatures TG1 ′, TG2 ′, TG3 ′ of the heaters are reset to the set target temperatures TG1, TG2, TG3 (step S10), and this sequence is performed. finish.

一方、前記ステップS9の判定において、TG1=DT1ではない場合には(NO)、各温度センサ5で各ゾーン13の温度を検出しつつ、次のサンプリング時刻まで待機する(ステップS12)。その待機しつつ、サンプリング回数をインクリメント(i=i+1)して、前記ステップ2に戻り、再度サンプリング時刻tを設定する。尚、サンプリング回数やサンプリング時刻の設定は、演算基準とするヒータ例えば、HT1の昇温特性が既知であれば、予めサンプリングの回数や時間間隔を設定してもよいし、HT1の昇温する速度に従って、随時、途中温度までの到達時間を予測し、温度制御しつつ回数や時間間隔
到着を順次設定してもよい。
On the other hand, if it is determined in step S9 that TG1 = DT1 is not satisfied (NO), each temperature sensor 5 detects the temperature of each zone 13 and waits for the next sampling time (step S12). While waiting, the number of samplings is incremented (i = i + 1), the process returns to step 2 and the sampling time t is set again. Note that the number of samplings and the sampling time can be set by setting the number of samplings and the time interval in advance if the temperature rise characteristics of the heater used as a calculation reference, for example, HT1, are known, or the rate at which the temperature of HT1 is raised. Accordingly, the arrival time to the intermediate temperature may be predicted at any time, and the number of times and arrival of time intervals may be sequentially set while controlling the temperature.

次に図4及び図5を参照して、前述した様なシーケンスに従う射出成形機の加熱筒に対する多点温度制御について説明する。
まず、図4及び図5に示すように、予め測定基準となるゾーン13a(HT1)における測定温度又は所定の測定時間間隔のいずれか一方によりサンプリング時刻t1,t2,t3,t4を決定する。このサンプリング時刻は限定されるものではなく、適宜変更が可能であることは勿論である。但し、ヒータ4の応答性以下の短時間に設定することは無意味である。昇温開始後の最初のサンプリング時刻t1をどの時間に設定するか、即ち多点温度制御の開始タイミングに対する制限はない。この時、各ゾーン13a,13b,13cの設定目標温度をそれぞれTG1=230℃、TG2=200℃、TG3=180℃と設定する。
Next, with reference to FIG. 4 and FIG. 5, the multipoint temperature control for the heating cylinder of the injection molding machine according to the sequence as described above will be described.
First, as shown in FIGS. 4 and 5, sampling times t1, t2, t3, and t4 are determined in advance based on either the measurement temperature or the predetermined measurement time interval in the zone 13a (HT1) serving as a measurement reference. The sampling time is not limited and can be changed as appropriate. However, it does not make sense to set the time to be shorter than the response of the heater 4. There is no restriction on which time the first sampling time t1 after the start of temperature increase is set, that is, the start timing of the multipoint temperature control. At this time, the set target temperatures of the zones 13a, 13b, and 13c are set as TG1 = 230 ° C., TG2 = 200 ° C., and TG3 = 180 ° C., respectively.

常温のヒータ4に対する昇熱を開始した後、任意に定めたサンプリング時刻t1(この例では、ゾーン13aの温度センサ4aの検出温度100℃に達する時刻とした)に達すると、ゾーン13b(HT2)、13c(HT3)の各温度センサ4b,4cによる検出温度は、105℃及び80℃であった。このような昇温速度を維持すると、ゾーン13aにおける230℃に到達する到達予測時間の前にゾーン13b,ゾーン13cが設定目標温度に到達してしまう。このため、各ゾーン13b,ゾーン13cの昇温速度を低下させる。この例では、一旦温度に降下さするように、修正目標温度をゾーン13b=70℃、ゾーン13c=80℃に設定する。   After starting to heat up the heater 4 at room temperature, when it reaches an arbitrarily determined sampling time t1 (in this example, the time when the temperature of the temperature sensor 4a of the zone 13a reaches 100 ° C.), the zone 13b (HT2) , 13c (HT3) detected by the temperature sensors 4b and 4c were 105 ° C. and 80 ° C., respectively. If such a temperature rising rate is maintained, the zone 13b and the zone 13c will reach the set target temperature before the predicted arrival time for reaching 230 ° C. in the zone 13a. For this reason, the temperature increase rate of each zone 13b and zone 13c is reduced. In this example, the corrected target temperature is set to zone 13b = 70 ° C. and zone 13c = 80 ° C. so that the temperature is once lowered.

この昇温設定を維持し、次のサンプリング時刻t2(この例では、ゾーン13aの温度センサ4aの検出温度150℃に達する時刻とした)に達した際に、ゾーン13b,ゾーン13cの温度を測定する。ここで、ゾーン13b,ゾーン13cの検出された温度は、前段で降下させるように設定した修正目標温度を目指すように降下して、それぞれ70℃、80℃となっている。このサンプリング時刻t2において、次の修正目標温度をTG2=120℃、TG3=100℃と設定する。このように、ゾーン13b,ゾーン13cの昇温速度が基準となるゾーン13aの設定目標温度TG1と同時に設定目標温度TG2,TG3に到達するように、修正目標温度を設けることにより、昇温速度を制御する。   The temperature setting is maintained, and the temperature of the zone 13b and the zone 13c is measured when the next sampling time t2 (in this example, the time when the temperature sensor 4a of the zone 13a reaches the detection temperature 150 ° C.) is reached. To do. Here, the temperatures detected in the zones 13b and 13c are lowered to 70 ° C. and 80 ° C., respectively, so as to aim at the corrected target temperature set to be lowered in the previous stage. At the sampling time t2, the next corrected target temperatures are set as TG2 = 120 ° C. and TG3 = 100 ° C. In this way, by providing the corrected target temperatures so that the temperature increase rates of the zones 13b and 13c reach the set target temperatures TG2 and TG3 at the same time as the set target temperature TG1 of the zone 13a as a reference, the temperature increase rate is reduced. Control.

次に、サンプリング時刻t3(この例では、ゾーン13aの温度センサ4aの検出温度180℃に達する時刻とした)に達した際に、ゾーン13b,ゾーン13cの温度を測定する。ここで、ゾーン13b,ゾーン13cの検出された温度が110℃、100℃であった場合には、次の修正目標温度をTG2=150℃、TG3=130℃と設定する。同様に、サンプリング時刻t4(この例では、ゾーン13aの温度センサ4aの検出温度210℃に達する時刻とした)に達した際に、ゾーン13b,ゾーン13cは、修正目標温度をTG2=180℃、TG3=160℃と設定し、この昇温速度を維持させて、到達時間tarriveに最終到達温度となる設定目標温度TG1=230℃、TG2=200℃、TG3=180℃に到達する。   Next, when the sampling time t3 (in this example, the time when the temperature of the temperature sensor 4a of the zone 13a reaches the detected temperature 180 ° C.) is reached, the temperatures of the zones 13b and 13c are measured. Here, when the detected temperatures of the zone 13b and the zone 13c are 110 ° C. and 100 ° C., the next corrected target temperatures are set as TG2 = 150 ° C. and TG3 = 130 ° C. Similarly, when the sampling time t4 (in this example, the time when the temperature of the temperature sensor 4a of the zone 13a reaches the detected temperature 210 ° C.) is reached, the zone 13b and the zone 13c set the correction target temperature to TG2 = 180 ° C., TG3 = 160 ° C. is set, and this rate of temperature rise is maintained to reach the set target temperatures TG1 = 230 ° C., TG2 = 200 ° C., and TG3 = 180 ° C., which are the final reached temperatures during the arrival time “tarrive”.

以上説明したように、本実施形態によれば、射出成形機の加熱筒に対する多点温度制御において、加熱筒の各ゾーンにおける昇温速度をそれぞれに制御することにより、任意に設定した各ゾーンの設定目標温度に対して、同時に到達することができる。これにより加熱筒内部に残留する樹脂等からなる成形部材が高温に晒され続けて、樹脂の熱特性によっては熱分解による劣化を防止すると共に、樹脂の炭化や有毒ガスの発生などを防止することができる。   As described above, according to the present embodiment, in the multi-point temperature control for the heating cylinder of the injection molding machine, by controlling the temperature rising rate in each zone of the heating cylinder, The set target temperature can be reached at the same time. As a result, the molded member made of resin or the like remaining inside the heating cylinder continues to be exposed to high temperature, and depending on the thermal characteristics of the resin, deterioration due to thermal decomposition is prevented, and carbonization of the resin and generation of toxic gas are prevented. Can do.

また、サンプリング時刻(温度制御タイミング)は、例えば、図5に示したt4以降では、温度変化(昇温速度)の状態に応じて、もっと細かい時間刻みのサンプリング時刻による修正目標温度の設定を実施してもよく、さらに、1回の昇温プロセス中で、サンプリングの周期を適宜変化させることもできる。   Further, for example, after t4 shown in FIG. 5, the sampling time (temperature control timing) is set at a corrected target temperature at a sampling time in finer increments according to the temperature change (temperature increase rate) state. In addition, the sampling period may be changed as appropriate during one heating process.

本発明の射出成形機における多点温度制御方法について説明するため多点温度制御システムの概略的な構成を示す図である。It is a figure which shows the schematic structure of a multipoint temperature control system in order to demonstrate the multipoint temperature control method in the injection molding machine of this invention. 本実施形態における温度コントローラの機能制御ブロックを示す図である。It is a figure which shows the function control block of the temperature controller in this embodiment. 本実施形態における多点温度制御システムのプログラムメモリに格納される多点同時到達制御プログラムを説明するためのフローチャートである。It is a flowchart for demonstrating the multipoint simultaneous arrival control program stored in the program memory of the multipoint temperature control system in this embodiment. 本実施形態における多点温度制御システムのヒータの昇温の経過を例示する設定テーブル例である。It is an example of a setting table which illustrates progress of the temperature rising of the heater of the multipoint temperature control system in this embodiment. 本実施形態における多点温度制御システムの温度センサにより検出されたゾーンの温度変化の一例を示す図である。It is a figure which shows an example of the temperature change of the zone detected by the temperature sensor of the multipoint temperature control system in this embodiment. 従来の多点温度制御システムのヒータの昇温の経過を例示する設定テーブル例である。It is an example of a setting table which illustrates progress of the temperature rising of the heater of the conventional multipoint temperature control system.

符号の説明Explanation of symbols

1…射出成形機、2…金型、3…加熱筒、4,4a,4b,4c,4d,4e…ヒータ、5,5a,5b,5c,5d,5e…温度センサ、6…温度調節計、7…温度コントローラ、8…温度設定部、9…データメモリ、10…プログラムメモリ、11…中央処理装置(CPU)、12…インタフェース部(iF)、13…ゾーン、14…バスライン、TG1,TG2,TG3,TG4,TG5…設定目標温度、DT1,DT2,DT3,DT4,DT5…検出温度、TG1´,TG2´,TG3´,TG4´,TG5´…修正目標温度。   DESCRIPTION OF SYMBOLS 1 ... Injection molding machine, 2 ... Mold, 3 ... Heating cylinder, 4, 4a, 4b, 4c, 4d, 4e ... Heater, 5, 5a, 5b, 5c, 5d, 5e ... Temperature sensor, 6 ... Temperature controller , 7 ... Temperature controller, 8 ... Temperature setting unit, 9 ... Data memory, 10 ... Program memory, 11 ... Central processing unit (CPU), 12 ... Interface unit (iF), 13 ... Zone, 14 ... Bus line, TG1, TG2, TG3, TG4, TG5 ... set target temperature, DT1, DT2, DT3, DT4, DT5 ... detected temperature, TG1 ', TG2', TG3 ', TG4', TG5 '... corrected target temperature.

Claims (5)

射出成形機の複数の加熱部位にそれぞれ配置されたヒータへの通電率をそれぞれ独立に演算制御する温度調節計と、前記温度調節計に対し前記各加熱部位の温度を検出する温度検出手段と、前記各加熱部位の目標温度を指令する温度コントローラと、前記目標温度を設定し前記温度コントローラへ与える温度設定手段と、を備えた温度制御装置を用いて、前記複数の加熱部位の目標温度到達までの昇温時間が同一となるように前記温度調節計を制御する方法であって、
各ヒータによる昇温開始後の所定時刻における前記各加熱部位の目標温度と当該各部位の検出温度との偏差を演算し、その中の最大偏差に対応する部位を特定する第1の段階と、
少なくとも前記特定された加熱部位における目標温度と検出温度との偏差を前記第1の段階以後の各所定時刻にて演算する第2の段階と、
前記特定された加熱部位を除く他の加熱部位ごとにその目標温度から前記第2の段階で得た偏差を差し引いた温度値を当該時刻における前記各部位の修正目標値として演算し、同修正目標値を前記温度調節計に指令する第3の段階と、
からなり、前記偏差がゼロとなるまで任意に定めたサンプリング時刻による前記第2、第3の段階の処理を繰り返し行うことを特徴とする射出成形機における多点温度制御方法。
A temperature controller for independently calculating and controlling the energization rates to the heaters respectively disposed in the plurality of heating parts of the injection molding machine, and a temperature detecting means for detecting the temperature of each heating part with respect to the temperature controller; By using a temperature control device that includes a temperature controller that commands a target temperature of each heating part and a temperature setting unit that sets the target temperature and applies the target temperature to the target temperature of the plurality of heating parts. A method of controlling the temperature controller so that the heating time of
A first stage of calculating a deviation between a target temperature of each heating part and a detected temperature of each part at a predetermined time after the start of temperature increase by each heater, and specifying a part corresponding to the maximum deviation among them;
A second stage for calculating a deviation between the target temperature and the detected temperature at least in the identified heating portion at each predetermined time after the first stage;
A temperature value obtained by subtracting the deviation obtained in the second stage from the target temperature for each of the other heating parts excluding the specified heating part is calculated as a correction target value for each part at the time, and the correction target A third step of commanding a value to the temperature controller;
The multi-point temperature control method in an injection molding machine is characterized in that the processes of the second and third stages are repeatedly performed at arbitrarily set sampling times until the deviation becomes zero.
前記多点温度制御方法において、
前記昇温開始は、昇温過程の任意のタイミングで開始することを特徴とする請求項1に記載の射出成形機における多点温度制御方法。
In the multipoint temperature control method,
2. The multi-point temperature control method for an injection molding machine according to claim 1, wherein the temperature raising start is started at an arbitrary timing of the temperature raising process.
前記多点温度制御方法において、
前記第2の段階における偏差の演算をリアルタイムで遂行することを特徴とする請求項2に記載の射出成形機における多点温度制御方法。
In the multipoint temperature control method,
The multipoint temperature control method for an injection molding machine according to claim 2, wherein the calculation of the deviation in the second stage is performed in real time.
前記多点温度制御方法において、
前記サンプリング時刻は、前記特定された加熱部位の目標温度到達までにかかる昇温時間に基づき、複数設定されることを特徴とする請求項1に記載の射出成形機における多点温度制御方法。
In the multipoint temperature control method,
The multi-point temperature control method for an injection molding machine according to claim 1, wherein a plurality of sampling times are set based on a temperature rise time required to reach a target temperature of the identified heating part.
前記多点温度制御方法において、
前記サンプリング時刻は、前記特定された加熱部位の計測温度結果に基づき、次回のサンプリング時刻を設定することを特徴とする請求項1に記載の射出成形機における多点温度制御方法。
In the multipoint temperature control method,
The multipoint temperature control method for an injection molding machine according to claim 1, wherein the sampling time is set to the next sampling time based on the measured temperature result of the identified heating part.
JP2004276003A 2004-09-22 2004-09-22 Multi-point temperature control method in injection molding machine Expired - Fee Related JP4537162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276003A JP4537162B2 (en) 2004-09-22 2004-09-22 Multi-point temperature control method in injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276003A JP4537162B2 (en) 2004-09-22 2004-09-22 Multi-point temperature control method in injection molding machine

Publications (2)

Publication Number Publication Date
JP2006088482A true JP2006088482A (en) 2006-04-06
JP4537162B2 JP4537162B2 (en) 2010-09-01

Family

ID=36229911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276003A Expired - Fee Related JP4537162B2 (en) 2004-09-22 2004-09-22 Multi-point temperature control method in injection molding machine

Country Status (1)

Country Link
JP (1) JP4537162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398996A (en) * 2019-08-19 2019-11-01 盛昌科技(深圳)有限公司 A kind of heat exchange cooling temperature sensor and heat exchange cooling temperature sensing equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445912A (en) * 1990-06-14 1992-02-14 Fanuc Ltd Method for controlling temperature of injection molding machine
JPH09277337A (en) * 1996-04-19 1997-10-28 Fanuc Ltd Method for controlling temperature of injection molding machine
JP2000218674A (en) * 1999-02-03 2000-08-08 Japan Steel Works Ltd:The Method and apparatus for controlling temperature of injection machine heating cylinder
JP2002049406A (en) * 2000-08-04 2002-02-15 Yamatake Corp Controller and control method
JP2003048240A (en) * 2001-08-06 2003-02-18 Japan Steel Works Ltd:The Method for controlling temperature of heating cylinder of injection molding machine
JP2003080576A (en) * 2001-09-10 2003-03-19 Fanuc Ltd Method and apparatus for controlling temperature of injection molding machine
JP2003165150A (en) * 2001-12-03 2003-06-10 Toyo Mach & Metal Co Ltd Molding machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445912A (en) * 1990-06-14 1992-02-14 Fanuc Ltd Method for controlling temperature of injection molding machine
JPH09277337A (en) * 1996-04-19 1997-10-28 Fanuc Ltd Method for controlling temperature of injection molding machine
JP2000218674A (en) * 1999-02-03 2000-08-08 Japan Steel Works Ltd:The Method and apparatus for controlling temperature of injection machine heating cylinder
JP2002049406A (en) * 2000-08-04 2002-02-15 Yamatake Corp Controller and control method
JP2003048240A (en) * 2001-08-06 2003-02-18 Japan Steel Works Ltd:The Method for controlling temperature of heating cylinder of injection molding machine
JP2003080576A (en) * 2001-09-10 2003-03-19 Fanuc Ltd Method and apparatus for controlling temperature of injection molding machine
JP2003165150A (en) * 2001-12-03 2003-06-10 Toyo Mach & Metal Co Ltd Molding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398996A (en) * 2019-08-19 2019-11-01 盛昌科技(深圳)有限公司 A kind of heat exchange cooling temperature sensor and heat exchange cooling temperature sensing equipment

Also Published As

Publication number Publication date
JP4537162B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
KR101420920B1 (en) Control apparatus and control method
JP4978001B2 (en) Temperature control method, temperature control apparatus, and heat treatment apparatus
EP1647868B1 (en) Temperature control method and apparatus
CN109863462B (en) Temperature control method for heating non-combustible smoking equipment and smoking equipment
JP2018107175A5 (en)
JP3776297B2 (en) Control system
JP3836696B2 (en) Semiconductor manufacturing system and semiconductor device manufacturing method
JP4537162B2 (en) Multi-point temperature control method in injection molding machine
JP2009301258A (en) Control device
US20060249502A1 (en) Distance estimation apparatus, abnormality detection apparatus, temperature regulator, and thermal treatment apparatus
JP4042645B2 (en) Automatic temperature rise control method for molding machine
TW200520036A (en) Heat treatment apparatus and heat treatment method
US20150019596A1 (en) Controller and data collecting method
TWI466584B (en) Control apparatus, heating apparatus control system, control method, program, and storage medium
TWI756501B (en) Temperature control device, temperature control method, and temperature control program
KR101304974B1 (en) Controlling method for primary combustion amount of hot water use in heating apparatus
JP2007276189A (en) Temperature control method of injection moulding machine
JP3824502B2 (en) Temperature control method and apparatus for injection molding machine
WO2019186869A1 (en) Temperature control device and temperature control method
JP3028281B2 (en) Temperature control method for injection molding machine
JP2006155169A (en) Temperature control method, temperature controller and heat treatment system
JPWO2016142991A1 (en) Temperature control system and temperature control method
JP2001273002A (en) Control system
JP3691417B2 (en) Method for controlling the temperature of a heating cylinder of an injection molding machine
JP2001318702A (en) Control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees