JP2006088088A - Gas adsorbing element and infrared sensor using the same - Google Patents

Gas adsorbing element and infrared sensor using the same Download PDF

Info

Publication number
JP2006088088A
JP2006088088A JP2004279306A JP2004279306A JP2006088088A JP 2006088088 A JP2006088088 A JP 2006088088A JP 2004279306 A JP2004279306 A JP 2004279306A JP 2004279306 A JP2004279306 A JP 2004279306A JP 2006088088 A JP2006088088 A JP 2006088088A
Authority
JP
Japan
Prior art keywords
gas
infrared sensor
evaporable getter
stem
gas adsorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279306A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fukuyama
康弘 福山
Yasushi Nakajima
靖志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004279306A priority Critical patent/JP2006088088A/en
Publication of JP2006088088A publication Critical patent/JP2006088088A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas adsorbing element which can prevent lowering in performance of an infrared sensor by removing hydrocarbon-based gas and to provide the infrared sensor using the same. <P>SOLUTION: The gas adsorbing element 10 is constituted of a non-evaporating type getter 13 obtained by using a chemically active metal and a porous gas adsorbing material 12 which is not compactingly sintered at an activation temperature of the non-evaporating type getter. The non-evaporating type getter has a standard cylinder shape or a disk shape and is held by a holding hole 11 formed in the porous gas adsorbing material. The gas adsorbing element is heated to below activation temperature of the non-evaporating type getter to discharge gas, then the gas adsorbing element is heated to activation temperature of the non-evaporating type getter to activate the non-evaporating type getter and then the gas adsorbing element is enclosed inside the infrared sensor 20. The porous gas adsorbing material, in particular, consists of molded zeolite having micro pores of larger diameter than that of molecules of target hydrocarbon-based gas and thereby various kinds of the target hydrocarbon-base gas produced inside the infrared sensor can be adsorbed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体チップなどの電子機器を真空環境に実装する際に用いるガス吸着素子と、それを用いた赤外線センサに関する。   The present invention relates to a gas adsorption element used when an electronic device such as a semiconductor chip is mounted in a vacuum environment, and an infrared sensor using the gas adsorption element.

内部を真空に保ち、半導体チップなどの電子機器を封入する実装技術における従来例としては特許文献1に記載されたものがある。
従来技術においては、赤外線センサチップを固定し、接続端子を設けた下部のステムと、受光用の窓を備えたキャップとを合わせて周縁部を真空雰囲気にて溶接して赤外線センサを形成する。赤外線センサ内部の真空を維持するために、真空排気時にヒータ加熱して活性化した非蒸発型のゲッターを、赤外線センサ内部に支持具にて固定している。
特開2003−4524号公報
As a conventional example of a mounting technique for keeping the inside in a vacuum and enclosing an electronic device such as a semiconductor chip, there is one described in Patent Document 1.
In the prior art, an infrared sensor chip is fixed, and a lower stem provided with a connection terminal and a cap provided with a light receiving window are combined and the peripheral portion is welded in a vacuum atmosphere to form an infrared sensor. In order to maintain the vacuum inside the infrared sensor, a non-evaporable getter activated by heating with a heater at the time of evacuation is fixed inside the infrared sensor with a support.
JP 2003-4524 A

非蒸発型のゲッターは、ジルコニウム(Zr)、バナジウム(V)、鉄(Fe)などよりなる合金であり、活性化と呼ばれる真空中での加熱処理を施すことで、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)のような不活性ガスを除く全てのガスを吸着できるようになる。
真空排気された容器中に存在する酸素、窒素、一酸化炭素、二酸化炭素などの活性ガスは、ゲッターの表面に吸着され、あるものは分解され、最後に活性化した非蒸発型のゲッターの構成金属と酸化物、窒化物、炭化物となって化学的に吸着される。
また、容器中に存在する水や炭化水素ガスについても非蒸発型のゲッターの表面にて、水素、酸素、炭素に分解されて同様に化学吸着されるが、炭化水素系ガスの分解を効率よく行うためには、非蒸発型のゲッターの温度を400℃以上に保つ必要があることが知られている。
The non-evaporable getter is an alloy made of zirconium (Zr), vanadium (V), iron (Fe), or the like, and is subjected to heat treatment in a vacuum called activation so that helium (He), neon ( It becomes possible to adsorb all gases except for inert gases such as Ne) and argon (Ar).
The active gas such as oxygen, nitrogen, carbon monoxide, carbon dioxide, etc. present in the evacuated container is adsorbed on the surface of the getter, and some are decomposed, and finally activated non-evaporable getter configuration It is chemically adsorbed as metal and oxide, nitride and carbide.
In addition, water and hydrocarbon gas present in the container are also decomposed into hydrogen, oxygen and carbon on the surface of the non-evaporable getter and chemisorbed in the same manner, but the hydrocarbon gas is efficiently decomposed. In order to do this, it is known that the temperature of the non-evaporable getter needs to be kept at 400 ° C. or higher.

一方、赤外線センサのような比較的大型の半導体チップをステムにダイボンディングする際には、半導体チップへ応力が掛かるのを緩和するため、シリコン接着剤に代表される有機系接着剤を用いることが多い。有機系接着剤は、真空環境において加熱されることによってその一部が分解し、水、炭化水素系ガスを放出する。
前述のように、真空雰囲気中にてステムとキャップの周縁部を溶接するが、その溶接時の熱はステムを伝熱し、有機系接着剤にも熱が加わって、炭化水素系ガスを含む種々のガスが赤外線センサの内部に発生する。
On the other hand, when a relatively large semiconductor chip such as an infrared sensor is die-bonded to the stem, an organic adhesive typified by a silicon adhesive may be used to alleviate stress applied to the semiconductor chip. Many. A part of the organic adhesive is decomposed by being heated in a vacuum environment, and water and hydrocarbon gas are released.
As described above, the periphery of the stem and the cap is welded in a vacuum atmosphere. The heat at the time of welding is transferred to the stem, and heat is also applied to the organic adhesive, which includes various hydrocarbon gases. Gas is generated inside the infrared sensor.

発生したガスは、前述の非蒸発型のゲッターのガス吸着能力により除去されるが、炭化水素系ガスの分解効率の悪い常温においては、赤外線センサ内部に炭化水素系ガスが蓄積されてしまう。
その結果として、赤外線センサ内部の真空度が所定の値を得られなくなり、赤外線センサの性能低下を招くという問題があった。
本発明は、上記の問題点を解決するために、炭化水素系ガスを除去して、赤外線センサの性能低下を防ぐことのできるガス吸着素子とそれを用いた赤外線センサを提供することを目的とする。
The generated gas is removed by the gas adsorbing ability of the non-evaporable getter described above, but the hydrocarbon gas accumulates inside the infrared sensor at room temperature where the decomposition efficiency of the hydrocarbon gas is poor.
As a result, there is a problem in that the degree of vacuum inside the infrared sensor cannot obtain a predetermined value and the performance of the infrared sensor is degraded.
In order to solve the above problems, an object of the present invention is to provide a gas adsorbing element that can remove a hydrocarbon-based gas and prevent performance degradation of the infrared sensor and an infrared sensor using the same. To do.

このため、本発明は、化学的に活性な金属を用いた非蒸発型のゲッターと、非蒸発型のゲッターの活性化温度において緻密化焼結されない多孔質ガス吸着材とから構成され、非蒸発型のゲッターは多孔質ガス吸着材に保持されるものとした。   Therefore, the present invention comprises a non-evaporable getter using a chemically active metal and a porous gas adsorbent that is not densified and sintered at the activation temperature of the non-evaporable getter. The mold getter was held by a porous gas adsorbent.

本発明により、非蒸発型のゲッターの活性化温度において緻密化焼結されない多孔質ガス吸着材に非蒸発型のゲッターを保持させたガス吸着素子を、例えば電子機器とともに真空容器に封入すると、常温において非蒸発型のゲッターが吸着困難な炭化水素系ガスを多孔質ガス吸着材が吸着する。したがって、真空容器内に炭化水素系ガスが蓄積することがなく、良好な真空度が維持できる。赤外線センサに上記ガス吸着素子を封入した場合、炭化水素系ガスの蓄積による真空度悪化に伴う性能低下の問題が解決できる。   According to the present invention, when a gas adsorption element in which a non-evaporable getter is held in a porous gas adsorbent that is not densified and sintered at the activation temperature of a non-evaporable getter is enclosed in a vacuum container together with an electronic device, for example, The porous gas adsorbent adsorbs the hydrocarbon gas that is difficult to adsorb in the non-evaporable getter. Therefore, hydrocarbon gas does not accumulate in the vacuum vessel, and a good degree of vacuum can be maintained. When the gas adsorbing element is enclosed in an infrared sensor, the problem of performance degradation due to deterioration of the degree of vacuum due to accumulation of hydrocarbon gas can be solved.

また、真空排気した後に非蒸発型のゲッターを活性化するためにガス吸着素子全体を活性化温度で加熱しても、多孔質ガス吸着材の細孔が緻密化しないので、活性化のための加熱処理により、多孔質ガス吸着材の炭化水素系ガスの吸着能力が劣化しない。   In addition, even if the entire gas adsorbing element is heated at the activation temperature in order to activate the non-evaporable getter after evacuation, the pores of the porous gas adsorbent are not densified. By the heat treatment, the adsorption capacity of the hydrocarbon gas of the porous gas adsorbent is not deteriorated.

以下本発明の実施の形態を説明する。
図1は実施の形態の赤外線センサの縦断面図である。本赤外線センサ20は、ステム21とキャップ26とからなる。
円盤状のステム21には、電気導体で構成された接続端子22を外部に貫通させる貫通孔30が設けられている。接続端子22は、電気絶縁材としてのガラス材28が貫通孔30に充填されて、ハーメチックシールによって電気的絶縁と真空封止を同時に満足しつつ固定されている。
このステム21上の中央部に半導体チップである赤外線センサチップ23が、有機系接着剤27によりステム21の上面にダイボンドされ、赤外線センサチップ23上の図示しない外部接続用パッドと接続端子22の間は電気配線となるワイヤボンディング24が施されている。
Embodiments of the present invention will be described below.
FIG. 1 is a longitudinal sectional view of an infrared sensor according to an embodiment. The infrared sensor 20 includes a stem 21 and a cap 26.
The disk-shaped stem 21 is provided with a through hole 30 through which a connection terminal 22 made of an electric conductor passes outside. The connection terminal 22 is fixed with a glass material 28 as an electrical insulating material filled in the through-hole 30 and satisfying electrical insulation and vacuum sealing simultaneously by a hermetic seal.
An infrared sensor chip 23, which is a semiconductor chip, is die-bonded to the upper surface of the stem 21 with an organic adhesive 27 at the central portion on the stem 21, and between an external connection pad (not shown) on the infrared sensor chip 23 and the connection terminal 22. Is provided with wire bonding 24 to be electrical wiring.

赤外線センサチップ23の周囲には、中央に円筒形の開口部14を有する円盤形状のガス吸着素子10(図2参照)が配置されている。ガス吸着素子10の下面はステム21の上面に接し、開口部14の内周面は貫通孔30より外側に位置し、接続端子22、ワイヤボンディング24と離間している。   Around the infrared sensor chip 23, a disc-shaped gas adsorbing element 10 (see FIG. 2) having a cylindrical opening 14 in the center is arranged. The lower surface of the gas adsorbing element 10 is in contact with the upper surface of the stem 21, and the inner peripheral surface of the opening 14 is located outside the through hole 30 and is separated from the connection terminal 22 and the wire bonding 24.

キャップ26は、赤外線センサチップ23とガス吸着素子10を覆うため、その周縁部33から上側に円筒部34が突出して、格納空間を形成し、ステム21の周縁部32と合わさる周縁部33とでハット形状をしている。円筒部34の上端面35は、さらに径方向内側で同心円リング状に段差をつけて上側に押し出され、窓の縁部36を形成している。窓の縁部36には、円形の赤外線透過窓25が、低温ガラス31により、接着されている。
上端面35がガス吸着素子10の上面の一部を、特に保持穴11(図2参照)の径のほぼ半分を押さえ、円筒部34の内周面がガス吸着素子10の外周面を押さえ、赤外線センサ20内部でのガス吸着素子10の位置を規制している。
キャップ26の周縁部33とステム21の周縁部32とはシール溶接部29の溶接により気密接合し、内部は真空排気されている。
Since the cap 26 covers the infrared sensor chip 23 and the gas adsorbing element 10, the cylindrical portion 34 protrudes upward from the peripheral portion 33 to form a storage space, and the peripheral portion 33 that joins the peripheral portion 32 of the stem 21. Has a hat shape. The upper end surface 35 of the cylindrical portion 34 is further pushed out upward with a step in a concentric ring shape on the radially inner side to form a window edge 36. A circular infrared transmission window 25 is bonded to the window edge 36 by a low-temperature glass 31.
The upper end surface 35 holds a part of the upper surface of the gas adsorbing element 10, particularly about half of the diameter of the holding hole 11 (see FIG. 2), and the inner peripheral surface of the cylindrical portion 34 holds the outer peripheral surface of the gas adsorbing element 10. The position of the gas adsorption element 10 within the infrared sensor 20 is regulated.
The peripheral edge portion 33 of the cap 26 and the peripheral edge portion 32 of the stem 21 are hermetically joined by welding of a seal welding portion 29, and the inside is evacuated.

図2はガス吸着素子の外形を示す斜視図である。
ガス吸着素子10は、中央に開口部14を有する円盤形状の多孔質ガス吸着材12と、片面側に開口する保持穴11を多孔質ガス吸着材12に複数形成し、その保持穴11に入れた円柱形状の非蒸発型のゲッター13とから構成されている。
非蒸発型のゲッター13の外径は、保持穴11とほぼ一致し、保持穴11に入れると摩擦により容易には抜けにくい寸法としてある。
なお、非蒸発型のゲッター13は円盤形状のものを複数重ねて保持穴11に入れてもよい。
FIG. 2 is a perspective view showing the outer shape of the gas adsorption element.
The gas adsorption element 10 is formed by forming a disk-shaped porous gas adsorbent 12 having an opening 14 in the center and a plurality of holding holes 11 opening on one side in the porous gas adsorbent 12, and inserting them into the holding holes 11. And a non-evaporable getter 13 having a cylindrical shape.
The outer diameter of the non-evaporable getter 13 is substantially the same as that of the holding hole 11 and is not easily removed by friction when inserted into the holding hole 11.
Note that a plurality of non-evaporable getters 13 may be stacked in the holding hole 11 in a disk shape.

多孔質ガス吸着材12は、例えばゼオライト、非蒸発型のゲッター13は、例えばジルコニウム(Zr)、バナジウム(V)、鉄(Fe)などの合金からなる。
ガス吸着素子10の形状は、開口部14が赤外線センサチップ23の受光する赤外線の通路を形成しており、表面積の大きいドーナツ形状となり、比較的空間の狭い赤外線センサ20内に表面積の大きい多孔質ガス吸着材12を封入することができる。
一般的に非蒸発型のゲッターは、ゲッター材単独での自由な形の形成が難しく、円柱または円盤形状、シート形状に限られるため、本ガス吸着素子10では、非蒸発型のゲッター13を円柱形状または円盤形状とし、それに適合する保持穴11を比較的成型の自由な多孔質ガス吸着材12側に設ける。
The porous gas adsorbent 12 is made of, for example, zeolite, and the non-evaporable getter 13 is made of an alloy such as zirconium (Zr), vanadium (V), or iron (Fe), for example.
The shape of the gas adsorbing element 10 is such that the opening 14 forms an infrared passage for receiving light by the infrared sensor chip 23, has a large surface area, and has a large surface area in the infrared sensor 20 having a relatively small space. The gas adsorbent 12 can be enclosed.
In general, a non-evaporable getter is difficult to form freely by a getter material alone, and is limited to a cylinder, a disk shape, or a sheet shape. A holding hole 11 is formed on the side of the porous gas adsorbent 12 which is relatively free to mold.

多孔質ガス吸着材12は、自身が有する細孔構造の物理吸着によりガス吸着を行う。
図3は、商品名「モレキュラーシーブ(MOLECULAR SIEVES)」と呼ばれるゼオライトのガス吸着特性の一例として、水の吸着特性をゼオライトの温度をパラメータとして示したものである。横軸は蒸気圧(mmHg)を、縦軸は多孔質ガス吸着材100gに対する水の吸着量(g)を示す。
The porous gas adsorbent 12 performs gas adsorption by physical adsorption of its own pore structure.
FIG. 3 shows the adsorption characteristics of water with the temperature of the zeolite as a parameter as an example of the gas adsorption characteristics of zeolite called “MOLECULAR SIEVES”. The horizontal axis represents the vapor pressure (mmHg), and the vertical axis represents the amount of water adsorbed (g) on 100 g of the porous gas adsorbent.

一般的に多孔質ガス吸着材12は、低温での吸着能力が高いが、図3によれば、100℃程度においても、蒸気圧1×10−3mmHg(1×10−3Torr)において対重量比1%の吸着能力を保持していることが分かる。
図3は水に対する吸着特性を示しているが、ゼオライトは不活性ガスを除き、炭化水素系ガスを含むあらゆるガスを吸着できる。
多孔質ガス吸着材12は、着目する炭化水素系ガスの分子径以上の細孔径とすることで炭化水素系の吸着が可能である。
In general, the porous gas adsorbent 12 has a high adsorption capability at a low temperature. According to FIG. 3, even at about 100 ° C., the porous gas adsorbent 12 has a vapor pressure of 1 × 10 −3 mmHg (1 × 10 −3 Torr). It can be seen that the adsorption capacity of 1% by weight is maintained.
Although FIG. 3 shows the adsorption characteristic with respect to water, zeolite can adsorb | suck all the gas containing hydrocarbon type gas except an inert gas.
The porous gas adsorbent 12 can adsorb hydrocarbons by making the pore diameter larger than the molecular diameter of the hydrocarbon gas of interest.

図4は、商品化されている「低温活性タイプ」と呼ばれる種類の非蒸発型のゲッターの活性化条件を示す図である。横軸は分オーダーから時間オーダーの加熱時間を、縦軸は活性化温度を示し、パラメータは活性化度合いを示している。
本図より、加熱時間に依存するが300℃〜500℃に加熱することにより、「低温活性タイプ」の非蒸発型のゲッター13を100%活性化させることができる。
また、多孔質ガス吸着材12であるゼオライトは、この温度領域に対し耐熱性を有しており、ガス吸着素子10全体を活性化温度で加熱しても多孔質ガス吸着材12が緻密化焼結することはない。
FIG. 4 is a diagram showing the activation conditions of a non-evaporable getter of a kind called “low temperature activation type” that has been commercialized. The horizontal axis indicates the heating time from the minute order to the hour order, the vertical axis indicates the activation temperature, and the parameter indicates the degree of activation.
Although depending on the heating time, it is possible to activate 100% of the “low temperature active type” non-evaporable getter 13 by heating to 300 ° C. to 500 ° C., depending on the heating time.
Moreover, the zeolite which is the porous gas adsorbent 12 has heat resistance in this temperature range, and even if the gas adsorbing element 10 is heated at the activation temperature, the porous gas adsorbent 12 is densified and sintered. There is no conclusion.

次に、本発明におけるガス吸着素子を収納する簡単な真空容器の組立工程の一例を図5、図6、図7にもとづいて説明する。
まず、図5の(a)に示すように、組み立て完了したガス吸着素子10を用意し、ガス吸着素子10を可動爪64で掴んでセラミック製のヒータブロック63に密着保持する。
また、図5の(b)に示すように赤外線透過窓25を受光用の窓を塞ぐように低温ガラス31で接着されたキャップ26を用意し、キャップ26の内側面を上向きにし、溶接治具61に載せ、保持する。
Next, an example of an assembling process of a simple vacuum container that houses the gas adsorption element according to the present invention will be described with reference to FIGS. 5, 6, and 7. FIG.
First, as shown in FIG. 5A, the assembled gas adsorbing element 10 is prepared, and the gas adsorbing element 10 is gripped by the movable claw 64 and held in close contact with the ceramic heater block 63.
Further, as shown in FIG. 5B, a cap 26 is prepared in which the infrared transmitting window 25 is bonded with a low-temperature glass 31 so as to close the light receiving window, the inner surface of the cap 26 faces upward, and a welding jig is provided. Place on 61 and hold.

さらに、図5の(c)に示すように、ステム21に赤外線センサチップ23を有機系接着剤27にてダイボンドしたものを用意し、赤外線センサチップ23が有機系接着剤27により固定された側を下向きにして、溶接治具62に保持する。
ステム21は、接続端子22がハーメチックシールによって固定されている。赤外線センサチップ23と接続端子22とはワイヤボンディング24で接続されている。
Further, as shown in FIG. 5C, a stem 21 in which an infrared sensor chip 23 is die-bonded with an organic adhesive 27 is prepared, and the infrared sensor chip 23 is fixed on the organic adhesive 27 side. Is held by the welding jig 62.
The stem 21 has a connection terminal 22 fixed by a hermetic seal. The infrared sensor chip 23 and the connection terminal 22 are connected by wire bonding 24.

次に、上記のキャップ26、ステム21をそれぞれ保持した溶接治具61、62、およびガス吸着素子10保持したヒータブロック63の3点を図示省略の真空溶接機チャンバー内の可動ステージにセットし、チャンバー全体を排気する。
真空度が約1.33×10−3Pa(≒10−5Torr)に到達したところで、ヒータブロック63を加熱する。
この加熱処理の制御は、まずガス吸着素子10を構成する多孔質ガス吸着材12の脱ガス処理をするため、ガス吸着素子10全体を非蒸発型のゲッター13の活性化温度より低い150℃となるように制御して30分間加熱する。
Next, the welding jigs 61 and 62 holding the cap 26 and the stem 21 and the heater block 63 holding the gas adsorption element 10 are set on a movable stage in a vacuum welding machine chamber (not shown), Exhaust the entire chamber.
When the degree of vacuum reaches about 1.33 × 10 −3 Pa (≈10 −5 Torr), the heater block 63 is heated.
In this heat treatment control, first, the porous gas adsorbent 12 constituting the gas adsorbing element 10 is degassed, so that the entire gas adsorbing element 10 is set to 150 ° C. lower than the activation temperature of the non-evaporable getter 13. Heat for 30 minutes under control.

この熱処理によって、それまで多孔質ガス吸着材12が吸着していたガスを放出させることができる。
この段階では非蒸発型のゲッター13は活性化不十分な状態であり、多孔質ガス吸着材12から放出されたガスを非蒸発型のゲッター13が吸着してしまうということはない。
次に、非蒸発型のゲッター13を活性化するため、ガス吸着素子10全体が400℃になるように制御して10分間加熱する。この熱処理によって、非蒸発型のゲッター13が100%活性状態となる。
By this heat treatment, the gas previously adsorbed by the porous gas adsorbent 12 can be released.
At this stage, the non-evaporable getter 13 is in an insufficiently activated state, and the non-evaporable getter 13 does not adsorb the gas released from the porous gas adsorbent 12.
Next, in order to activate the non-evaporable getter 13, the entire gas adsorption element 10 is controlled to 400 ° C. and heated for 10 minutes. By this heat treatment, the non-evaporable getter 13 becomes 100% active.

次にガス吸着素子10を100℃以下に冷却後、図6の(a)に示すようにキャップ26を保持した溶接治具61を、ガス吸着素子10を保持したヒータブロック63の真下に移動させ、さらに上昇、接近させる。続いて(b)のように可動爪64を開いて、ガス吸着素子10をキャップ26内に落とし込む。
続いて図7の(a)に示すように、キャップ26を保持した溶接治具61を、ステム21を保持した溶接治具62の下に移動させ、さらに上昇させ、(b)に示すようにステム21とキャップ26の周縁部32、33を合わせて密着させる。
その後、真空チャンバー内で電子ビーム法を用いてシール溶接部29を溶接、またはシーム溶接にて周縁部32、33を溶接して封止する。
Next, after cooling the gas adsorption element 10 to 100 ° C. or less, the welding jig 61 holding the cap 26 is moved directly below the heater block 63 holding the gas adsorption element 10 as shown in FIG. , Further rise, approach. Subsequently, the movable claw 64 is opened as shown in (b), and the gas adsorption element 10 is dropped into the cap 26.
Subsequently, as shown in FIG. 7 (a), the welding jig 61 holding the cap 26 is moved below the welding jig 62 holding the stem 21, and further raised, as shown in FIG. 7 (b). The stem 21 and the peripheral portions 32 and 33 of the cap 26 are brought into close contact with each other.
Thereafter, the seal welded portion 29 is welded using the electron beam method in the vacuum chamber, or the peripheral portions 32 and 33 are welded and sealed by seam welding.

以上のように本実施の形態によれば、「低温活性タイプ」の非蒸発型のゲッター13の活性化温度において緻密化焼結されない多孔質ガス吸着材12に形成した保持穴11に、非蒸発型のゲッター13を保持させた構造のガス吸着素子10を、赤外線センサチップ23とともにステム21とキャップ26とで形成する真空容器に封入して赤外線センサ20を製造する。
特に多孔質ガス吸着材12は、着目する炭化水素系ガスの分子径以上の細孔を有する成型したゼオライトであるので、赤外線センサ20内部に発生する着目する種々の炭化水素系ガスの吸着ができる。
As described above, according to the present embodiment, the non-evaporation is caused in the holding hole 11 formed in the porous gas adsorbent 12 that is not densified and sintered at the activation temperature of the “low temperature active type” non-evaporable getter 13. An infrared sensor 20 is manufactured by enclosing a gas adsorption element 10 having a structure holding a mold getter 13 in a vacuum container formed by a stem 21 and a cap 26 together with an infrared sensor chip 23.
In particular, the porous gas adsorbent 12 is a molded zeolite having pores larger than the molecular diameter of the hydrocarbon gas of interest, and therefore can adsorb various hydrocarbon gases of interest generated inside the infrared sensor 20. .

したがって、ステム21とキャップ26の周縁部32、33を溶接するときの熱により有機系接着剤27から炭化水素系ガスが発生しても、常温において非蒸発型のゲッター13が吸着困難な炭化水素系ガスを多孔質ガス吸着材12が吸着するので、真空容器内に炭化水素系ガスが蓄積することがなく、良好な真空度が維持できる。
赤外線センサ20にガス吸着素子10を封入することにより、炭化水素系ガスの蓄積による真空度悪化に伴う赤外線センサ20の性能低下の問題が解決できる。
Therefore, even if hydrocarbon gas is generated from the organic adhesive 27 due to heat generated when the stem 21 and the peripheral portions 32 and 33 of the cap 26 are welded, the hydrocarbon that is difficult to adsorb the non-evaporable getter 13 at room temperature. Since the porous gas adsorbent 12 adsorbs the system gas, the hydrocarbon gas does not accumulate in the vacuum vessel, and a good degree of vacuum can be maintained.
By enclosing the gas adsorption element 10 in the infrared sensor 20, the problem of the performance deterioration of the infrared sensor 20 due to the deterioration of the vacuum degree due to the accumulation of hydrocarbon-based gas can be solved.

また、多孔質ガス吸着材12は、中央に開口部14を有する円盤形状に成型され、複数の保持穴11を形成し、成型が容易で比較的安価な標準形状(円柱または円盤形状)の非蒸発型のゲッター13を保持穴11で保持し、ガス吸着素子10はステム21とキャップ26により挟まれて保持され、多孔質ガス吸着材12が非蒸発型のゲッター13の支持具を兼ねている。
特に、キャップ26の上端面35は、保持穴11の径のほぼ半分を覆っており、非蒸発型のゲッター13の保持穴11からの脱落を防止する。
ガス吸着素子10を保持するために、また従来のように非蒸発型のゲッターを支持するために、別途金属などよりなる支持具を必要としない。
多孔質ガス吸着剤12を構成するゼオライトは比較的安価な材料であり、ガス吸着素子10および赤外線センサ20のコストを低減できる。
Further, the porous gas adsorbent 12 is molded into a disk shape having an opening 14 in the center to form a plurality of holding holes 11, and a non-standard shape (a cylinder or a disk shape) that is easy to mold and relatively inexpensive. The evaporative getter 13 is held by the holding hole 11, the gas adsorption element 10 is held between the stem 21 and the cap 26, and the porous gas adsorbent 12 also serves as a support for the non-evaporable getter 13. .
In particular, the upper end surface 35 of the cap 26 covers almost half of the diameter of the holding hole 11 and prevents the non-evaporable getter 13 from falling off the holding hole 11.
In order to hold the gas adsorbing element 10 and to support a non-evaporable getter as in the prior art, a separate support made of metal or the like is not required.
Zeolite constituting the porous gas adsorbent 12 is a relatively inexpensive material, and the costs of the gas adsorption element 10 and the infrared sensor 20 can be reduced.

赤外線センサ製造工程において、ガス吸着素子10を構成する多孔質ガス吸着材12を、非蒸発型のゲッター13の活性化温度以下にてガス放出させた後、ガス吸着素子10に保持されている非蒸発型のゲッター13の活性化を行い、その後ガス吸着素子10を赤外線センサ20に封入する工程を用いることで、非蒸発型のゲッター13のガス吸着特性を損ねることなく多孔質ガス吸着材12の脱ガスを行える。   In the infrared sensor manufacturing process, the porous gas adsorbing material 12 constituting the gas adsorbing element 10 is released at a temperature equal to or lower than the activation temperature of the non-evaporable getter 13, and then held in the gas adsorbing element 10. By using the process of activating the evaporative getter 13 and then enclosing the gas adsorbing element 10 in the infrared sensor 20, the porous gas adsorbent 12 can be obtained without impairing the gas adsorption characteristics of the non-evaporable getter 13. Degassing can be performed.

さらに、脱ガス工程と活性化工程は、同じヒータブロック63を用いて加熱温度制御を変えるだけでできるので、製造コストアップとなることなく、ガス吸着素子のガス吸着性能を向上できる。
また、真空排気した後に非蒸発型のゲッター13を活性化するためにガス吸着素子10全体を活性化温度で加熱しても、多孔質ガス吸着材12の細孔が緻密化しないので、活性化のための加熱処理により、多孔質ガス吸着材12の炭化水素系ガスの吸着能力が劣化しない。
Furthermore, since the degassing step and the activation step can be performed only by changing the heating temperature control using the same heater block 63, the gas adsorption performance of the gas adsorption element can be improved without increasing the manufacturing cost.
Further, even if the entire gas adsorption element 10 is heated at the activation temperature in order to activate the non-evaporable getter 13 after evacuation, the pores of the porous gas adsorbent 12 are not densified. Due to the heat treatment for, the adsorption ability of the hydrocarbon gas of the porous gas adsorbent 12 does not deteriorate.

なお、本実施の形態の多孔質ガス吸着材12の開口部14の形状を円筒形としたが、四角筒形としてもよい。
また、多孔質ガス吸着材12をゼオライトのような導電性のない材料とすることにより、ガス吸着素子10の開口部14の内周面を接続端子22に接触するぎりぎりまで接近でき、多孔質ガス吸着材12の体積、または露出面を増大させガス吸着能力を長く維持できる。
キャップ26の上端面35は、多孔質ガス吸着材12の上面の露出ができるだけ大きくなるように、形成することが望ましい。
In addition, although the shape of the opening part 14 of the porous gas adsorption material 12 of this Embodiment was made into the cylindrical shape, it is good also as a square cylinder shape.
Further, by using the porous gas adsorbing material 12 as a non-conductive material such as zeolite, the inner peripheral surface of the opening 14 of the gas adsorbing element 10 can be approached to the limit of contact with the connection terminal 22, so that the porous gas The volume of the adsorbent 12 or the exposed surface can be increased to maintain the gas adsorption capacity for a long time.
It is desirable to form the upper end surface 35 of the cap 26 so that the upper surface of the porous gas adsorbent 12 is exposed as much as possible.

以上、本実施の形態の多孔質ガス吸着材12として、ゼオライトを例に説明したがシリカゲル、活性炭でもよい。また、ゼオライト、シリカゲル、活性炭のいずれか2つ以上を用いた複合材でもよい。   As described above, zeolite has been described as an example of the porous gas adsorbent 12 of the present embodiment, but silica gel and activated carbon may be used. Further, a composite material using any two or more of zeolite, silica gel, and activated carbon may be used.

また、本発明のガス吸着素子を用いた電子機器の真空容器内への密封製造方法(図5、6、7)において、ガス吸着素子10を保持穴11の開口側を下側に向け、キャップ26の内面側を上側に向けた状態で、キャップ26にガス吸着素子10を落とし込んだが、それに限定されるものではない。
ステム21の内面側を上にして溶接治具で下側から保持し、その上からガス吸着素子10の保持穴11の開口側を上側にして落とし込むようにしてもよい。
その場合、さらにキャップ26の内面側を下側にして上側から保持した溶接治具の下に、ステム21を保持した溶接治具を移動し、さらに上方に移動して周縁部32、33を合わせて溶接するようにしてもよい。
このようにすることにより、保持穴11に入れる非蒸発型のゲッター13の外径を保持穴11の径より小さめにし、非蒸発型のゲッター13が赤外線センサ20内部のガスと接触しやすくでき、かつ組み立て時の非蒸発型のゲッター13の保持穴11からの脱落を防止できる。
Further, in the method for sealing and manufacturing an electronic apparatus using the gas adsorption element of the present invention in a vacuum vessel (FIGS. 5, 6, and 7), the gas adsorption element 10 is placed with the opening side of the holding hole 11 facing downward, and the cap Although the gas adsorbing element 10 is dropped into the cap 26 with the inner surface side of 26 facing upward, the present invention is not limited to this.
The stem 21 may be held from the lower side with a welding jig with the inner surface side up, and dropped from above with the opening side of the holding hole 11 of the gas adsorbing element 10 on the upper side.
In that case, the welding jig holding the stem 21 is moved under the welding jig held from the upper side with the inner surface side of the cap 26 facing down, and further moved upward to align the peripheral portions 32 and 33. May be welded.
By doing so, the outer diameter of the non-evaporable getter 13 put into the holding hole 11 can be made smaller than the diameter of the holding hole 11, and the non-evaporable getter 13 can easily come into contact with the gas inside the infrared sensor 20. In addition, it is possible to prevent the non-evaporable getter 13 from dropping from the holding hole 11 during assembly.

本発明の赤外線センサの断面図である。It is sectional drawing of the infrared sensor of this invention. 本発明のガス吸着素子の斜視図である。It is a perspective view of the gas adsorption element of the present invention. ゼオライトのガス吸着特性図である。It is a gas adsorption characteristic figure of zeolite. 非蒸発型のゲッターの活性化条件を示す図である。It is a figure which shows the activation conditions of a non-evaporable getter. 本発明におけるガス吸着素子を収納する真空容器の組み立て工程の示す図である。It is a figure which shows the assembly process of the vacuum vessel which accommodates the gas adsorption | suction element in this invention. 本発明におけるガス吸着素子を収納する真空容器の組み立て工程の示す図である。It is a figure which shows the assembly process of the vacuum vessel which accommodates the gas adsorption | suction element in this invention. 本発明におけるガス吸着素子を収納する真空容器の組み立て工程の示す図である。It is a figure which shows the assembly process of the vacuum vessel which accommodates the gas adsorption | suction element in this invention.

符号の説明Explanation of symbols

10 ガス吸着素子
11 保持穴
12 多孔質ガス吸着材
13 非蒸発型のゲッター
14 開口部
20 赤外線センサ
21 ステム
22 接続端子
23 赤外線センサチップ
24 ワイヤボンディング
25 赤外線透過窓
26 キャップ
27 有機系接着剤
28 ガラス材
29 シール溶接部
30 貫通孔
31 低温ガラス
32、33 周縁部
34 円筒部
35 上端面
36 窓の縁部
61、62 溶接治具
63 ヒータブロック
64 可動爪
DESCRIPTION OF SYMBOLS 10 Gas adsorption element 11 Holding hole 12 Porous gas adsorption material 13 Non-evaporable getter 14 Opening part 20 Infrared sensor 21 Stem 22 Connection terminal 23 Infrared sensor chip 24 Wire bonding 25 Infrared transmission window 26 Cap 27 Organic adhesive 28 Glass Material 29 Seal welded portion 30 Through hole 31 Low temperature glass 32, 33 Peripheral portion 34 Cylindrical portion 35 Upper end surface 36 Window edge portion 61, 62 Welding jig 63 Heater block 64 Movable claw

Claims (8)

化学的に活性な金属を用いた非蒸発型のゲッターと、
該非蒸発型のゲッターの活性化温度において緻密化焼結されない多孔質ガス吸着材とから構成され、
前記非蒸発型のゲッターは、前記多孔質ガス吸着材に保持されていることを特徴とするガス吸着素子。
A non-evaporable getter using a chemically active metal;
A porous gas adsorbent that is not densified and sintered at the activation temperature of the non-evaporable getter,
The gas adsorbing element, wherein the non-evaporable getter is held by the porous gas adsorbing material.
前記多孔質ガス吸着材が、ゼオライト、シリカゲル、活性炭のうちのいずれか1つ、またはその2つ以上の複合材であることを特徴とする請求項1に記載のガス吸着素子。 The gas adsorption element according to claim 1, wherein the porous gas adsorbent is any one of zeolite, silica gel, activated carbon, or a composite material of two or more thereof. 前記多孔質ガス吸着材の細孔径が、所定の炭化水素系ガスの分子径以上であることを特徴とする請求項1または2に記載のガス吸着素子。 The gas adsorption element according to claim 1 or 2, wherein a pore diameter of the porous gas adsorbent is equal to or larger than a molecular diameter of a predetermined hydrocarbon gas. 前記非蒸発型のゲッターは前記多孔質ガス吸着材に形成した保持穴に保持されることを特徴とする請求項1から3のいずれか1に記載のガス吸着素子。 The gas adsorption element according to any one of claims 1 to 3, wherein the non-evaporable getter is held in a holding hole formed in the porous gas adsorbent. 前記多孔質ガス吸着材は中央に開口部を有した円盤形状であり、
前記保持穴は前記円盤形状の片面側に開口し、
前記非蒸発型のゲッターは円柱形状または円盤形状であることを特徴とする請求項4に記載のガス吸着素子。
The porous gas adsorbent has a disc shape with an opening in the center,
The holding hole opens on one side of the disk shape,
The gas adsorption element according to claim 4, wherein the non-evaporable getter has a cylindrical shape or a disk shape.
ステムの上面に赤外線センサチップを固定し、請求項5に記載のガス吸着素子を、該ガス吸着素子の開口部に前記赤外線センサチップを納めるように前記ステム上に配置し、
前記赤外線センサチップと前記ガス吸着素子を覆い、かつ前記ガス吸着素子を前記ステムとの間に挟んで保持するように、キャップを真空中で前記ステムにかぶせて気密接合し、
前記キャップは、前記赤外線センサチップの位置に対応した赤外線透過性を有する窓を有することを特徴とする赤外線センサ。
An infrared sensor chip is fixed to the upper surface of the stem, and the gas adsorption element according to claim 5 is disposed on the stem so as to fit the infrared sensor chip in an opening of the gas adsorption element.
Covering the infrared sensor chip and the gas adsorbing element and holding the gas adsorbing element sandwiched between the stem and covering the stem in a vacuum and airtightly joining the stem,
2. The infrared sensor according to claim 1, wherein the cap has a window having infrared transparency corresponding to the position of the infrared sensor chip.
前記キャップは、前記ステムとの合わせ面から円筒部が立ち上がり、
さらに前記窓の縁部は、前記円筒部の端面が、径方向内側で同心円リング状に段差をつけて前記ステムから離間する方向に押し出されて形成され、
前記ガス吸着素子は、前記円盤形状の外周部分と前記窓の側の面の外周近傍を、前記円筒部の内周部分と端面により保持されることを特徴とする請求項6に記載の赤外線センサ。
The cap has a cylindrical portion rising from the mating surface with the stem,
Further, the edge of the window is formed by extruding the end surface of the cylindrical portion in a direction concentrically ring-shaped radially inward and away from the stem,
The infrared sensor according to claim 6, wherein the gas adsorbing element holds an outer peripheral portion of the disc-shaped outer peripheral portion and an outer peripheral portion of a surface on the window side by an inner peripheral portion and an end surface of the cylindrical portion. .
化学的に活性な金属を用いた非蒸発型のゲッターを、非蒸発型のゲッターの活性化温度において緻密化焼結されない多孔質ガス吸着材に保持させたガス吸着素子を真空中に置き、
前記ガス吸着素子を非蒸発型のゲッターの活性化温度以下に加熱してガス放出させ、
その後前記ガス吸着素子を前記非蒸発型のゲッターの活性化温度まで加熱して、非蒸発型のゲッターを活性化させ、
その後前記ガス吸着素子を密封容器内部に電子機器とともに封入することを特徴とする密封容器の製造方法。
A gas adsorption element in which a non-evaporable getter using a chemically active metal is held in a porous gas adsorbent that is not densified and sintered at the activation temperature of the non-evaporable getter is placed in a vacuum,
The gas adsorbing element is heated below the activation temperature of the non-evaporable getter to release the gas,
Thereafter, the gas adsorption element is heated to the activation temperature of the non-evaporable getter to activate the non-evaporable getter,
Thereafter, the gas adsorbing element is sealed together with electronic equipment in the sealed container.
JP2004279306A 2004-09-27 2004-09-27 Gas adsorbing element and infrared sensor using the same Pending JP2006088088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279306A JP2006088088A (en) 2004-09-27 2004-09-27 Gas adsorbing element and infrared sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279306A JP2006088088A (en) 2004-09-27 2004-09-27 Gas adsorbing element and infrared sensor using the same

Publications (1)

Publication Number Publication Date
JP2006088088A true JP2006088088A (en) 2006-04-06

Family

ID=36229562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279306A Pending JP2006088088A (en) 2004-09-27 2004-09-27 Gas adsorbing element and infrared sensor using the same

Country Status (1)

Country Link
JP (1) JP2006088088A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298276A (en) * 2006-04-27 2007-11-15 Nissan Motor Co Ltd Semiconductor device and its manufacturing method
JP2008072091A (en) * 2006-07-13 2008-03-27 Commiss Energ Atom Sealed microcomponent equipped with at least one getter
JP2012122747A (en) * 2010-12-06 2012-06-28 Nec Corp Infrared sensor package and electronic device having the same
CN110327884A (en) * 2019-07-13 2019-10-15 安徽科技学院 Remove vitamin c solution pigment composite material and preparation method and its discoloration method
CN110998305A (en) * 2017-08-09 2020-04-10 世美特株式会社 Gas sensor, gas detection device, gas detection method, and device including gas sensor and gas detection device
CN112138641A (en) * 2020-10-13 2020-12-29 康普斯顿(江苏)技术有限公司 Vacuum cup getter activating machine
WO2021038707A1 (en) * 2019-08-27 2021-03-04 三菱電機株式会社 Optical sensor module and method for manufacturing optical sensor module
US11808698B2 (en) 2018-07-06 2023-11-07 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Analyte detector with nano-antennas

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298276A (en) * 2006-04-27 2007-11-15 Nissan Motor Co Ltd Semiconductor device and its manufacturing method
JP2008072091A (en) * 2006-07-13 2008-03-27 Commiss Energ Atom Sealed microcomponent equipped with at least one getter
JP2012122747A (en) * 2010-12-06 2012-06-28 Nec Corp Infrared sensor package and electronic device having the same
US8785853B2 (en) 2010-12-06 2014-07-22 Nec Corporation Infrared sensor package and electronic device equipped therewith
US11531013B2 (en) 2017-08-09 2022-12-20 Semitec Corporation Gas sensor, gas detection device, gas detection method, and device provided with gas sensor or gas detection device
CN110998305A (en) * 2017-08-09 2020-04-10 世美特株式会社 Gas sensor, gas detection device, gas detection method, and device including gas sensor and gas detection device
US11808698B2 (en) 2018-07-06 2023-11-07 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Analyte detector with nano-antennas
CN110327884A (en) * 2019-07-13 2019-10-15 安徽科技学院 Remove vitamin c solution pigment composite material and preparation method and its discoloration method
CN110327884B (en) * 2019-07-13 2022-04-01 安徽科技学院 Composite material for removing vitamin C solution pigment, preparation method and decoloring method thereof
JPWO2021038707A1 (en) * 2019-08-27 2021-03-04
CN114270537A (en) * 2019-08-27 2022-04-01 三菱电机株式会社 Optical sensor module and method for manufacturing optical sensor module
US20220238587A1 (en) * 2019-08-27 2022-07-28 Mitsubishi Electric Corporation Optical sensor module and manufacturing method thereof
WO2021038707A1 (en) * 2019-08-27 2021-03-04 三菱電機株式会社 Optical sensor module and method for manufacturing optical sensor module
JP7271680B2 (en) 2019-08-27 2023-05-11 三菱電機株式会社 Optical sensor module and method for manufacturing optical sensor module
CN114270537B (en) * 2019-08-27 2024-01-19 三菱电机株式会社 Optical sensor module and method for manufacturing optical sensor module
CN112138641A (en) * 2020-10-13 2020-12-29 康普斯顿(江苏)技术有限公司 Vacuum cup getter activating machine

Similar Documents

Publication Publication Date Title
EP0397251B1 (en) Methods of producing vacuum devices and infrared detectors with a getter
KR101402552B1 (en) Vacuum glass panel and method for manufacturing the same
EP1550161A2 (en) Hermetically sealed microdevices having a single crystalline silicon getter for maintaining vacuum
JP2006088088A (en) Gas adsorbing element and infrared sensor using the same
WO1998037392A1 (en) A sensor element having an integrated reference pressure
JP2010170873A (en) Airtight container and method for manufacturing image display device
JP2011183367A (en) Method of fabricating gas-adsorbing device, gas-adsorbing device, and method of using the same
KR102623520B1 (en) Glass Sealed Gas Discharge Tube
EP2211364B1 (en) Manufacturing method of airtight container and image displaying apparatus
KR20020062587A (en) Electron tube and a method for manufacturing same
JP4722354B2 (en) Equipment for removing pollutants
JPH0712480A (en) Assembling of car regenerator
JP2007509320A5 (en)
JP2006286647A (en) Electrical lamp having outer bulb
JP4484536B2 (en) Manufacturing method of semiconductor device
JP4677780B2 (en) Detector
JP4483112B2 (en) Package vacuum sealing method
JP2003004524A (en) Gas adsorbing element and infrared sensor
JP4639794B2 (en) Photodetector
JP4517894B2 (en) Vacuum package
JP2001108184A (en) Vacuum heat insulating body
JP2010040767A (en) Hermetic seal package
JP3698148B2 (en) Evaporable getter and vacuum vessel
KR100312691B1 (en) Vacuum fluorescent display having non-evaporable getter and method for making vacuous using getter
JP2022134266A (en) Vacuum device manufacturing method and vacuum device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825