JP2006088069A - Photocatalytic body, manufacturing method for the same and photocatalytic device - Google Patents

Photocatalytic body, manufacturing method for the same and photocatalytic device Download PDF

Info

Publication number
JP2006088069A
JP2006088069A JP2004278248A JP2004278248A JP2006088069A JP 2006088069 A JP2006088069 A JP 2006088069A JP 2004278248 A JP2004278248 A JP 2004278248A JP 2004278248 A JP2004278248 A JP 2004278248A JP 2006088069 A JP2006088069 A JP 2006088069A
Authority
JP
Japan
Prior art keywords
photocatalyst
photocatalytic
titanium oxide
visible light
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004278248A
Other languages
Japanese (ja)
Inventor
Ryotaro Matsuda
良太郎 松田
Ariyoshi Ishizaki
有義 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2004278248A priority Critical patent/JP2006088069A/en
Publication of JP2006088069A publication Critical patent/JP2006088069A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalytic body showing high activity when a substance to be decomposed is decomposed by irradiating the photocatalytic body with light of a visible light range, a method for manufacturing the photocatalytic body and a photocatalytic device. <P>SOLUTION: The photocatalytic body is manufactured by mixing 0.01-1.0 mass% manganese dioxide having 1-50 nm average particle size with titanium oxide having 1-100 nm average particle size. A desired activity result can be achieved when the substance to be decomposed is decomposed by irradiating the photocatalytic body with light of the visible light range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、紫外線領域だけでなく可視光領域でも高い分解活性作用を有する光触媒体、この光触媒体を用いた光触媒装置及び光触媒体の製造方法に関する。   The present invention relates to a photocatalyst having a high decomposition activity not only in the ultraviolet region but also in the visible light region, a photocatalyst apparatus using the photocatalyst, and a method for producing the photocatalyst.

従来から、光触媒体として酸化チタンが知られているが、酸化チタンに分解活性を付与できる光は、太陽光や室内の照明光にその一部として含まれる380nm以下の近紫外線であって可視光(400〜750nm)を利用することができず、このため光利用効率が低いという難点があった。   Conventionally, titanium oxide has been known as a photocatalyst, but the light that can impart decomposition activity to titanium oxide is visible light that is near ultraviolet light of 380 nm or less included as part of sunlight or indoor illumination light. (400 to 750 nm) cannot be used, and thus there is a problem that the light utilization efficiency is low.

このような問題の解決手段として、酸化チタン結晶の酸素サイトの一部を窒素原子で置換することによって、可視光を吸収して光触媒体に付着もしくは接触した有機物を分解するようにした発明が提案されている(特許文献1参照)。   As a means for solving such a problem, an invention is proposed in which a part of the oxygen site of the titanium oxide crystal is replaced with a nitrogen atom, thereby absorbing visible light and decomposing an organic substance adhering to or contacting the photocatalyst. (See Patent Document 1).

しかし、この方法では、光触媒体の形成工程において、還元雰囲気中で熱処理を行う必要がある。このため、光触媒の一次粒子が成長して光触媒の比表面積が低減し有機物との接触面積が小さくなって有機物に対する分解活性作用が低下してしまうという問題があった。
特開2004−988号公報
However, in this method, it is necessary to perform heat treatment in a reducing atmosphere in the photocatalyst formation process. For this reason, the primary particle of the photocatalyst grows, the specific surface area of the photocatalyst is reduced, the contact area with the organic substance is reduced, and there is a problem that the decomposition activity on the organic substance is reduced.
Japanese Patent Laid-Open No. 2004-988

本発明は、このような課題を解決すべくなされたもので、可視光領域でも高い分解活性作用を呈する光触媒体、この光触媒体を用いた光触媒装置及び光触媒体の製造方法を提供することを目的とする。   The present invention has been made to solve such problems, and an object thereof is to provide a photocatalyst exhibiting a high decomposition activity even in the visible light region, a photocatalyst apparatus using the photocatalyst, and a method for producing the photocatalyst. And

請求項1記載の光触媒体は、平均粒径1〜100nmの酸化チタンに、平均粒径1〜50nmの二酸化マンガンを0.01〜1.0質量%混合してなることを特徴とする。
請求項2記載の光触媒装置は、請求項1記載の光触媒体を多孔性の支持基体に付着させてなることを特徴とする。
また、請求項3記載の光触媒体の製造方法は、炭酸マンガンを強酸の希薄溶液に溶解させる溶液化工程と、前記溶液化工程で得られたゾルに酸化チタンを分散させてスラリーとするスラリー化工程と、前記スラリー化工程で得られたスラリーを乾燥させて粉体とする粉体化工程とを有することを特徴とする。
The photocatalyst according to claim 1 is characterized in that 0.01 to 1.0 mass% of manganese dioxide having an average particle diameter of 1 to 50 nm is mixed with titanium oxide having an average particle diameter of 1 to 100 nm.
A photocatalyst device according to claim 2 is characterized in that the photocatalyst body according to claim 1 is attached to a porous support substrate.
The method for producing a photocatalyst according to claim 3 includes a solution step in which manganese carbonate is dissolved in a dilute solution of a strong acid, and slurry formation in which titanium oxide is dispersed in the sol obtained in the solution step. And a pulverization step in which the slurry obtained in the slurrying step is dried to form powder.

酸化チタンには、結晶構造の違いからアナターゼ型、ブルッカイト型、およびルチル型が存在する。アナタ−ゼ型およびブルッカイト型の酸化チタンは、バンドギャップエネルギーが約3.20eVであり、これを波長に換算すると388nmになる。
しかし、本発明者らは実験により、このアナターゼ型およびブルッカイト型の酸化チタンに二酸化マンガンを添加するとバンドギャップエネルギーが低下して可視光領域でも分解活性を示すようになることを確認した。
Titanium oxide includes anatase type, brookite type, and rutile type due to the difference in crystal structure. The anatase type and brookite type titanium oxide has a band gap energy of about 3.20 eV, which is 388 nm in terms of wavelength.
However, the present inventors have confirmed through experiments that when manganese dioxide is added to the anatase-type and brookite-type titanium oxide, the band gap energy is reduced and the degradation activity is exhibited even in the visible light region.

本発明は、かかる知見に基づいてなされたもので、酸化チタンに微量の二酸化マンガンを混合したことを特徴とする。
本発明の光触媒体は、波長400nm以上の可視光および波長380nm以下の紫外光のいずれの領域においても活性化されて光触媒活性を発揮する。
また、酸化チタン単独に光を照射するとその表面に電子および正孔が出現するが、酸化チタンに二酸化マンガンを混合して光を照射すると二酸化マンガンの表面に電子が出現し、酸化チタンの表面には正孔が出現するようになって、酸化チタン単独の場合よりも電子と正孔とが再結合し難くなる。
The present invention has been made based on such findings, and is characterized by mixing a small amount of manganese dioxide with titanium oxide.
The photocatalyst of the present invention is activated and exhibits photocatalytic activity in any region of visible light having a wavelength of 400 nm or more and ultraviolet light having a wavelength of 380 nm or less.
In addition, when titanium oxide alone is irradiated with light, electrons and holes appear on the surface, but when titanium dioxide is mixed with manganese dioxide and irradiated with light, electrons appear on the surface of manganese dioxide, and on the surface of titanium oxide. Holes appear and electrons and holes are less likely to recombine than with titanium oxide alone.

したがって、本発明においては、酸化チタン単独の場合よりも電子と正孔をより長い時間存在させることができこれによっても分解活性を高めることができる。   Therefore, in the present invention, electrons and holes can exist for a longer time than in the case of titanium oxide alone, and the decomposition activity can also be enhanced by this.

本発明に用いられる酸化チタンの平均粒径は、1〜100nm、好ましくは5〜30nmである。平均粒径が1nm未満であると製造が困難になり、平均粒径が100nmを超えると比表面積が小さくなって十分な分解活性が得られなくなる。   The average particle diameter of the titanium oxide used in the present invention is 1 to 100 nm, preferably 5 to 30 nm. If the average particle size is less than 1 nm, production becomes difficult, and if the average particle size exceeds 100 nm, the specific surface area becomes small and sufficient decomposition activity cannot be obtained.

本発明に用いられる二酸化マンガンの平均粒径は、1〜50nm、好ましくは3〜10nmである。平均粒径が1nm未満であると製造が困難になり、平均粒径が50nmを超えると比表面積が小さくなって十分な分解活性が得られなくなる。
二酸化マンガンの配合量は、光触媒体(酸化チタンと二酸化マンガンの合計量)の0.01〜1.0質量%である。
The average particle diameter of manganese dioxide used in the present invention is 1 to 50 nm, preferably 3 to 10 nm. If the average particle size is less than 1 nm, production becomes difficult, and if the average particle size exceeds 50 nm, the specific surface area becomes small and sufficient decomposition activity cannot be obtained.
The compounding quantity of manganese dioxide is 0.01-1.0 mass% of a photocatalyst body (total amount of titanium oxide and manganese dioxide).

本発明の光触媒体は、例えば、次のような方法により製造することができる。   The photocatalyst of the present invention can be produced, for example, by the following method.

まず、炭酸マンガン(MnCO3・nH2O)を、硫酸、塩酸又は硝酸のような強酸の希酸に10〜20質量%となるよう溶解させて二酸化マンガンのコロイド粒子が分散したゾルを得る。強酸としては硝酸が適しており、強酸の希酸のpHは0〜1程度である。
このとき媒液中で発生するコロイド粒子を分散させて安定なゾルにするためキレート剤や界面活性剤を加えるようにしてもよい。
First, manganese carbonate (MnCO 3 .nH 2 O) is dissolved in a dilute acid of strong acid such as sulfuric acid, hydrochloric acid or nitric acid so as to be 10 to 20% by mass to obtain a sol in which colloidal particles of manganese dioxide are dispersed. Nitric acid is suitable as the strong acid, and the pH of the dilute acid of the strong acid is about 0 to 1.
At this time, a chelating agent or a surfactant may be added in order to disperse the colloidal particles generated in the liquid medium to obtain a stable sol.

このようにして得られた二酸化マンガンのゾルに酸化チタン粒子を分散させて、2.5〜10質量%のスラリーを調整する。しかる後、このスラリーを、必要に応じて水で洗浄し、耐酸性の乾燥機で100〜300℃で加熱乾燥させ粉体として本発明の光触媒体が得られる。   Titanium oxide particles are dispersed in the manganese dioxide sol thus obtained to prepare a 2.5 to 10% by mass slurry. Thereafter, the slurry is washed with water as necessary, and is heat-dried at 100 to 300 ° C. with an acid resistant dryer to obtain the photocatalyst of the present invention as powder.

この光触媒体は、可視光を透過するガラス容器内に被処理物とともに入れ、光源を用いて波長400nm以上の可視光を照射することにより光触媒活性を付与することができる。照射時間は、光源の光線強度および被処理物の種類や濃度に応じて適宜選択すればよい。光源としては、波長が400nm以上の可視光を照射できるものであれば制限されるものではなく、例えば、太陽光線、蛍光灯、ハロゲンランプ、ブラックライト、キセノンランプ、水銀灯、ナトリウムランプまたは冷陰極ランプなどが使用可能である。   This photocatalyst body can be provided with photocatalytic activity by placing it together with an object to be processed in a glass container that transmits visible light and irradiating visible light having a wavelength of 400 nm or more with a light source. The irradiation time may be appropriately selected according to the light intensity of the light source and the type and concentration of the object to be processed. The light source is not limited as long as it can irradiate visible light having a wavelength of 400 nm or more. For example, sunlight, fluorescent lamp, halogen lamp, black light, xenon lamp, mercury lamp, sodium lamp or cold cathode lamp Etc. can be used.

また、この光触媒体を適当な分散媒に分散させてスラリーとし、任意の形状の多孔性の支持基体に付着させ乾燥させて光触媒装置とすることができる。光触媒体を調整する溶媒としては、酸化チタン表面に存在する二酸化マンガンを溶解することがなく、かつ塗布後に蒸発して光触媒体に残存しないものが好ましい。溶媒の具体例としては、水またはアルコール等が挙げられる。   Moreover, this photocatalyst body can be dispersed in an appropriate dispersion medium to form a slurry, which can be attached to a porous support substrate having an arbitrary shape and dried to form a photocatalyst device. As a solvent for adjusting the photocatalyst body, a solvent that does not dissolve manganese dioxide present on the surface of titanium oxide and does not evaporate after coating and remains in the photocatalyst body is preferable. Specific examples of the solvent include water or alcohol.

光触媒体含有量は、塗布対象である支持基材の種類、塗布する膜厚などに応じて適宜選択すればよく、2.5〜10質量%程度である。   What is necessary is just to select photocatalyst body content suitably according to the kind of support base material which is application object, the film thickness to apply | coat, etc., and is about 2.5-10 mass%.

このスラリー中には、光触媒体の微粒子相互間を結着させて光触媒膜の機械的強度を高めるために、適当な結着剤を適量混合することができる。このような結着剤としては、例えばシリコーン樹脂、SiO、ZrO、およびAlなどの一種または複数種を使用することができる。これらの物質は、光触媒体の微粒子相互間を良好に結着するが、紫外光および可視光に対する透過率が高いので、光触媒膜の分解活性を阻害しにくい。 In this slurry, an appropriate amount of an appropriate binder can be mixed in order to bind the fine particles of the photocatalyst to increase the mechanical strength of the photocatalyst film. Such binder include a silicone resin, may be used one or more of such SiO 2, ZrO 2, and Al 2 O 3. Although these substances bind well between the fine particles of the photocatalyst, they have a high transmittance with respect to ultraviolet light and visible light, so that the decomposition activity of the photocatalyst film is hardly inhibited.

結着剤の量が多すぎると光触媒微粒子が結着剤中に埋設されて光触媒作用を発揮しにくくなり、少なすぎると所要の結着力が得られなくなるので、光触媒体に対して1〜30質量%、好ましくは7〜15質量%とする。   If the amount of the binder is too large, the photocatalyst fine particles are embedded in the binder and it is difficult to exert the photocatalytic action. If the amount is too small, the required binding force cannot be obtained. %, Preferably 7 to 15% by mass.

結着剤は、溶融し固化して光触媒微粒子および照明製品などの担持体の間を結着する態様のものであってもよいし、超微粒子状態でファンデルワールス力により結着する態様のものであってもよい。   The binder may be in the form of being melted and solidified to bind between photocatalyst fine particles and a support such as a lighting product, or in the form of being bonded by van der Waals force in an ultrafine particle state. It may be.

このように結着剤を混合することにより、強い分解活性を維持しながら機械的強度の強い光触媒膜を形成することができる。   By mixing the binder in this manner, it is possible to form a photocatalytic film having high mechanical strength while maintaining strong decomposition activity.

光触媒装置の支持基体上に形成される光触媒体の膜厚は0.1〜10μm程度であることが望ましい。光触媒の膜厚が0.1μm未満であると十分な分解活性が得られなくなり10μmを超えると十分な機械的強度、光透過率、および分解活性が得られなくなる。   The film thickness of the photocatalyst formed on the support substrate of the photocatalyst device is preferably about 0.1 to 10 μm. When the film thickness of the photocatalyst is less than 0.1 μm, sufficient decomposition activity cannot be obtained, and when it exceeds 10 μm, sufficient mechanical strength, light transmittance, and decomposition activity cannot be obtained.

次に、多孔性の支持基体にフローコート法、ディッピング法で塗布し、乾燥させて、1〜10μm程度の光触媒膜を形成する。光触媒膜は、既知の各種製膜方法、例えばスプレー法、ディップ法、刷毛塗り法または静電吸着法などによる被着法を用いて、常温、低温加熱または高温加熱焼成により被着させることができる。   Next, it is applied to a porous support substrate by a flow coating method or a dipping method, and dried to form a photocatalytic film of about 1 to 10 μm. The photocatalyst film can be applied by using various known film forming methods, for example, spraying, dipping, brushing, electrostatic adsorption, or the like, by room temperature, low temperature heating or high temperature heating baking. .

多孔性の支持基体の具体例としては、空気清浄機、掃除機等のフィルターが挙げられる。具体的には、セラミックスフィルター、アルミナフィルター、アルミエキスバンドメタル等が挙げられる。このような家庭電化製品のフィルターにコーティングすることで、例えば、新建材から発生するホルムアルデヒドを分解・除去することが可能である。   Specific examples of the porous support substrate include filters such as an air cleaner and a vacuum cleaner. Specific examples include a ceramic filter, an alumina filter, and an aluminum expanded metal. By coating such a household appliance filter, for example, formaldehyde generated from a new building material can be decomposed and removed.

多孔性の支持基体上に形成される光触媒膜は、波長360nmの紫外光透過率20〜50%、波長400nmの可視光透過率が40〜80%、波長450nmの可視光透過率が80〜95%の範囲であることが望ましい。   The photocatalytic film formed on the porous support substrate has an ultraviolet light transmittance of 20 to 50% at a wavelength of 360 nm, a visible light transmittance of 40 to 80% at a wavelength of 400 nm, and a visible light transmittance of 80 to 95 at a wavelength of 450 nm. % Range is desirable.

本発明の光触媒体によれば、紫外光および可視光に対して十分な分解活性を得ることができる。
また、本発明の光触媒体は、有機ガスの分解だけでなく、防汚に対しても効果がある。特に光触媒膜の表面の凹凸が細かいので、汚れ粒子が付着しにくいという作用があり、これが防汚効果に寄与する。
According to the photocatalyst of the present invention, sufficient decomposition activity can be obtained for ultraviolet light and visible light.
The photocatalyst of the present invention is effective not only for decomposition of organic gas but also for antifouling. In particular, since the unevenness of the surface of the photocatalyst film is fine, there is an effect that dirt particles are difficult to adhere, which contributes to the antifouling effect.

本発明の光触媒体によれば、可視光領域で照射した際の、所望の被分解物質の分解活性効果を得ることができる。   According to the photocatalyst body of the present invention, it is possible to obtain a decomposition activity effect of a desired substance to be decomposed when irradiated in the visible light region.

次に、本発明を、以下の実施例及びその評価結果を用いて、より具体的に説明する。ただし、本発明はこの実施例に限定されるものではない。   Next, the present invention will be described more specifically with reference to the following examples and evaluation results thereof. However, the present invention is not limited to this embodiment.

なお、光触媒体の物性測定は以下の方法で行った。   The physical properties of the photocatalyst were measured by the following method.

まず、硝酸90gに炭酸マンガン10gを溶解させた。次に、キレート剤や界面活性剤を添加して、マンガンゾルを作製した。前記マンガンゾル100gに酸化チタン微粒子(石原産業株式会社製ST−01)20gを添加し、常温常圧下で攪拌した。この混合物をさらに攪拌しながら減圧し、水分を蒸発させて乾燥し、300℃の空気中で1時間焼成した後、空気中で室温まで徐冷して、酸化チタン粒子表面に酸化マンガンを担持した光触媒体を得た。この光触媒体は、含水率が10質量%であった。   First, 10 g of manganese carbonate was dissolved in 90 g of nitric acid. Next, a chelating agent or a surfactant was added to prepare a manganese sol. 20 g of titanium oxide fine particles (ST-01 manufactured by Ishihara Sangyo Co., Ltd.) were added to 100 g of the manganese sol, and stirred at normal temperature and pressure. The mixture was further reduced in pressure with stirring, dried by evaporating moisture, baked in air at 300 ° C. for 1 hour, and then slowly cooled to room temperature in air to carry manganese oxide on the surface of the titanium oxide particles. A photocatalyst was obtained. This photocatalyst had a water content of 10% by mass.

[光触媒の評価]
このようにして得られた光触媒体について、可視光を照射して酢酸の分解活性評価を行った。
[Evaluation of photocatalyst]
The photocatalyst thus obtained was irradiated with visible light to evaluate the decomposition activity of acetic acid.

まず、1mの密閉式ガラス製容器内にガラス製シャーレを設置して、光触媒体200gを置いた。この容器内に100ppmのホルムアルデヒドを充満して、容器の外から可視光線を照射した。可視光線の照射には、10Wの冷陰極ランプ(ハリソン東芝ライティング株式会社製)を取り付けた光源装置に、波長約400nm以下の紫外光をカットするフィルターを装着したものを光源として用いた。 First, a glass petri dish was placed in a 1 m 3 hermetic glass container, and 200 g of the photocatalyst was placed thereon. The container was filled with 100 ppm formaldehyde and irradiated with visible light from the outside. For irradiation with visible light, a light source device equipped with a 10 W cold cathode lamp (manufactured by Harrison Toshiba Lighting Co., Ltd.) and a filter that cuts off ultraviolet light having a wavelength of about 400 nm or less was used as a light source.

可視光線の照射により酢酸が分解すると二酸化炭素が発生するため、容器内の二酸化炭素濃度をガスクロマトグラフィーで測定して、光触媒体の酢酸に対する触媒活性作用を評価した。光照射を1時間行った後の容器内の二酸化炭素濃度は50ppmであった。   Since carbon dioxide is generated when acetic acid is decomposed by irradiation with visible light, the carbon dioxide concentration in the container was measured by gas chromatography to evaluate the catalytic activity of the photocatalyst against acetic acid. The carbon dioxide concentration in the container after light irradiation for 1 hour was 50 ppm.

なお、本実施例では、可視光を照射して光触媒体の分解活性作用を評価しているが、紫外光をカットせずに可視光及び紫外光を照射すると、より高い光触媒効果を得られる。   In this example, the decomposition activity of the photocatalyst is evaluated by irradiating visible light. However, when visible light and ultraviolet light are irradiated without cutting the ultraviolet light, a higher photocatalytic effect can be obtained.

本発明の光触媒体は、例えば、空気清浄機、エアコン、掃除機等のフィルターに適用することができる。ユニット内において、この光触媒体をコーティングしたフィルターを可視光線ランプと組み合わせて、空気の流路に配置することで、空気清浄機能を発揮することができる。   The photocatalyst body of the present invention can be applied to filters such as air cleaners, air conditioners, and vacuum cleaners. In the unit, a filter coated with this photocatalyst is combined with a visible light lamp and placed in an air flow path to exhibit an air cleaning function.

Claims (3)

平均粒径1〜100nmの酸化チタンに、平均粒径1〜50nmの二酸化マンガンを0.01〜1.0質量%混合してなることを特徴とする光触媒体。   A photocatalyst obtained by mixing 0.01 to 1.0 mass% of manganese dioxide having an average particle diameter of 1 to 50 nm with titanium oxide having an average particle diameter of 1 to 100 nm. 請求項1記載の光触媒体を多孔性の支持基体に付着させてなることを特徴とする光触媒装置。   A photocatalyst device comprising the photocatalyst body according to claim 1 attached to a porous support substrate. 炭酸マンガンを強酸の希薄溶液に溶解させる溶液化工程と、
前記溶液化工程で得られたゾルに酸化チタンを分散させてスラリーとするスラリー化工程と、
前記スラリー化工程で得られたスラリーを乾燥させて粉体とする粉体化工程と
を有することを特徴とする光触媒体の製造方法。
A solution process for dissolving manganese carbonate in a dilute solution of strong acid;
A slurrying step in which titanium oxide is dispersed in the sol obtained in the solution step to form a slurry;
A method for producing a photocatalyst, comprising: a step of drying the slurry obtained in the slurrying step to obtain a powder.
JP2004278248A 2004-09-24 2004-09-24 Photocatalytic body, manufacturing method for the same and photocatalytic device Withdrawn JP2006088069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278248A JP2006088069A (en) 2004-09-24 2004-09-24 Photocatalytic body, manufacturing method for the same and photocatalytic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278248A JP2006088069A (en) 2004-09-24 2004-09-24 Photocatalytic body, manufacturing method for the same and photocatalytic device

Publications (1)

Publication Number Publication Date
JP2006088069A true JP2006088069A (en) 2006-04-06

Family

ID=36229546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278248A Withdrawn JP2006088069A (en) 2004-09-24 2004-09-24 Photocatalytic body, manufacturing method for the same and photocatalytic device

Country Status (1)

Country Link
JP (1) JP2006088069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903023B1 (en) 2006-07-24 2009-06-25 이엔에프씨 주식회사 Method for Preparing Visible-Ray Photocatalyst with Good Flame Retardant
ITAR20100012A1 (en) * 2010-05-17 2011-11-18 Arianna Benassai PLASTER FOR EXTERNAL WALLS, PARTICULARLY FOR SWIMMING POOLS, TANKS AND SIMILARS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903023B1 (en) 2006-07-24 2009-06-25 이엔에프씨 주식회사 Method for Preparing Visible-Ray Photocatalyst with Good Flame Retardant
ITAR20100012A1 (en) * 2010-05-17 2011-11-18 Arianna Benassai PLASTER FOR EXTERNAL WALLS, PARTICULARLY FOR SWIMMING POOLS, TANKS AND SIMILARS

Similar Documents

Publication Publication Date Title
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
JP3949374B2 (en) Titanium oxide, photocatalyst and photocatalyst coating using the same
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
JP2009160581A (en) Photocatalyst composite and process for producing the same
US11597657B2 (en) Nitrogen-doped TiO2 nanoparticles and the use thereof in photocatalysis
JP6352527B2 (en) Photocatalytic functional film and method for producing the same
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP2015116526A (en) Photocatalytic complex, production method thereof, and photocatalytic deodorization system including photocatalytic complex
JP6352526B2 (en) Photocatalytic functional film and method for producing the same
JP4296529B2 (en) Titanium oxide photocatalyst for basic gas removal
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JP2008285613A (en) Aqueous dispersion of titanium oxide composite particle and method for producing the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
JP2006088069A (en) Photocatalytic body, manufacturing method for the same and photocatalytic device
JP2009268943A (en) Photocatalyst, photocatalyst dispersion containing the same, and photocatalyst coating composition
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
JP2002172333A (en) Photocatalyst body
JP2003144937A (en) Silica gel molded body carried with titanium oxide photocatalyst and manufacturing method therefor
JP3952238B2 (en) Removal method of harmful substances by photocatalyst
JP4613021B2 (en) Photocatalyst-containing composition and photocatalyst-containing layer
JPH10286456A (en) Adsorbing functional body
JP2003268945A (en) Interior finish material
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP4580197B2 (en) Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same
JP4849862B2 (en) Novel heteropolyacid salt, photocatalyst using the same, and photocatalytic functional member

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204