JP2006088051A - Production method of back filling material for piping work construction and back filling material for piping work construction - Google Patents

Production method of back filling material for piping work construction and back filling material for piping work construction Download PDF

Info

Publication number
JP2006088051A
JP2006088051A JP2004277389A JP2004277389A JP2006088051A JP 2006088051 A JP2006088051 A JP 2006088051A JP 2004277389 A JP2004277389 A JP 2004277389A JP 2004277389 A JP2004277389 A JP 2004277389A JP 2006088051 A JP2006088051 A JP 2006088051A
Authority
JP
Japan
Prior art keywords
cement
sludge
purified water
water content
pipe construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277389A
Other languages
Japanese (ja)
Other versions
JP4139371B2 (en
Inventor
Shiyouzo Okawa
称三 大川
Kunihei Shu
国平 周
Takehisa Fukae
健久 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004277389A priority Critical patent/JP4139371B2/en
Publication of JP2006088051A publication Critical patent/JP2006088051A/en
Application granted granted Critical
Publication of JP4139371B2 publication Critical patent/JP4139371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a good quality back filling material for piping work construction from water purification sludge. <P>SOLUTION: In a production method of the back filling material for piping work construction using low moisture content water purification sludge as a raw material, the low moisture content water purification sludge is changed into clay, and then at least one among a water reducing material, cement and a cement-based solidifying material mainly derived from quicklime is added thereto to be granulated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、管工事布設用埋戻材の製造方法に関し、特に、浄水汚泥から管工事布設用埋戻材を製造する方法に関する。   TECHNICAL FIELD The present invention relates to a method for manufacturing a pipework laying back material, and more particularly, to a method for manufacturing a pipework laying back material from purified water sludge.

浄水処理によって排出される浄水汚泥は、水分を多量に含んだ粘土や、腐植酸などの微細な粒子から構成されている。   The purified water sludge discharged by the purified water treatment is composed of fine particles such as clay containing a large amount of water and humic acid.

従来、浄水汚泥は、天日で減水されることによって天日乾燥式浄水汚泥にされて、産業廃棄物として埋め立て処分される。他にも、浄水汚泥は、機械で脱水されることによって機械脱水ケーキにされて、産業廃棄物として埋め立て処分されることもある。   Conventionally, purified water sludge is reduced to sunlight to be converted into a sun-dried purified water sludge and disposed of as landfill as industrial waste. In addition, the purified water sludge is sometimes dehydrated by a machine to form a machine dewatered cake, which is disposed of as landfill as industrial waste.

しかし、近年、埋め立て処分場の確保が困難となっており、特に浄水汚泥の排出量が多い大都市圏でその傾向が強い。そのため、遠方の処分場まで輸送しなければならず、処理コストの高騰を招いていた。   However, in recent years, it has become difficult to secure landfill sites, and this tendency is particularly strong in metropolitan areas where the amount of purified water sludge is large. Therefore, it had to be transported to a distant disposal site, resulting in an increase in processing costs.

そこで、浄水汚泥を再利用する技術が考えられえている。例えば、機械脱水ケーキを、グラウンド用舗装材、園芸用土、屋根瓦の固定土、又はセメント原料へ利用する技術が知られている。しかし、天日乾燥式浄水汚泥は、再利用されていない。再利用されない理由を以下で説明する。   Therefore, a technique for reusing purified water sludge can be considered. For example, a technique is known in which a machine dewatered cake is used as a ground pavement material, horticultural soil, roof tile fixed soil, or cement raw material. However, sun-dried water purification sludge is not reused. The reason why it is not reused will be explained below.

機械脱水ケーキの含水比は、90%〜180%の範囲で変動する。一方、天日乾燥式浄水汚泥の含水比は、地域によって異なり、50%〜550%の広い範囲で変動する。   The water content of the mechanical dewatered cake varies in the range of 90% to 180%. On the other hand, the water content of the sun-drying type purified water sludge varies depending on the region, and varies in a wide range of 50% to 550%.

さらに、天日乾燥式浄水汚泥は、同一乾燥床内の汚泥でも含水比に大きな差が生じる。例えば、天日乾燥式浄水汚泥の含水比は、平均が50%であっても、含水比の高い部分では70〜100%となり、一方、含水比の低い部分では30%以下となる。また、天日乾燥式浄水汚泥の含水比の低い部分には、水分蒸発に伴う収縮によって、多量の浄水汚泥の塊(土塊)が生ずる。   Furthermore, the sun-drying type purified water sludge has a large difference in the water content even with sludge in the same dry bed. For example, even if the average water content of the sun-dried water purification sludge is 50%, the water content ratio is 70 to 100%, and the water content ratio is 30% or less. In addition, a large amount of purified water sludge (soil mass) is produced in the portion of the sun-dried purified water sludge having a low water content ratio due to shrinkage accompanying water evaporation.

このように、天日乾燥式浄水汚泥は、含水比に大きな変動幅があるので、再利用されることがなかった。また、天日乾燥式浄水汚泥に有機物対応型の特殊固化材を加えて固化する技術は知られているが、処理コストが高いため、現実的に利用されていなかった。   Thus, the sun-drying type purified water sludge has not been reused because the water content has a large fluctuation range. In addition, a technique for solidifying by adding a special solidifying material for organic matter to sun-dried water purification sludge is known, but it has not been practically used because of high processing costs.

一方、管工事布設用の埋戻材は、自然資源を用いている。例えば、水道設備業者は、規定の締固め強度(CBR値)を持つ天然産山砂を購入し、管工事布設用埋戻材として使用している。しかし、これらの自然資源は無尽蔵でない。また、大量採取によって、資源の減少や自然破壊といった問題も生じている。   On the other hand, natural materials are used as backfill materials for pipe construction. For example, a water supply company purchases natural mountain sand having a specified compaction strength (CBR value) and uses it as a backfill material for pipe construction. However, these natural resources are not inexhaustible. Moreover, problems such as resource reduction and natural destruction have arisen due to mass collection.

この問題点を解消するために、管工事布設用埋戻材(主に、再生路盤材又は再生砕石)等を建設汚泥から生成する技術が知られている。   In order to solve this problem, a technique for generating a pipework laying back material (mainly recycled roadbed material or recycled crushed stone) from construction sludge is known.

例えば、コンクリート殻及びセメントを建設汚泥に添加混合し、固化したものを40mm以下に破砕することによって、路盤材として再利用する技術が知られている(例えば、特許文献1参照)。   For example, a technique is known in which concrete shell and cement are added to and mixed with construction sludge, and the solidified material is crushed to 40 mm or less to be reused as a roadbed material (see, for example, Patent Document 1).

他にも、セメント固化剤、水及び添加剤を建設汚泥に添加混合後、造粒し、その造粒物にコンクリート殻を混合することによって、再生クラッシャラン又は再生砕石として再利用する技術が知られている(例えば、特許文献2参照)。   In addition, cement solidifying agent, water and additives are added to construction sludge, mixed, granulated, and mixed with concrete shell to recycle it as recycled crusher or recycled crushed stone. (For example, refer to Patent Document 2).

特開2003−342902号公報JP 2003-342902 A 特開2003−33798号公報JP 2003-33798 A 特開2003−236520号公報JP 2003-236520 A

しかし、前述した建設汚泥を再利用する技術は、そのまま浄水汚泥に応用することができない。なぜなら、浄水汚泥は、建設汚泥の性状と異なるからである。   However, the above-described technology for reusing construction sludge cannot be applied to purified water sludge as it is. This is because purified water sludge is different from the properties of construction sludge.

建設汚泥は、砂及びシルトを主成分としており、含水比が浄水汚泥より低い。また、腐植酸等の有機物がほとんど含有されていない。従って、建設汚泥の含水に応じてセメントの添加量を調整して固化すれば(例えば、重量比で40〜60%)、セメントのポゾラン反応が阻害されないので、建設汚泥は強度を発現する。   Construction sludge is mainly composed of sand and silt and has a lower water content than purified water sludge. Moreover, organic substances, such as humic acid, are hardly contained. Therefore, if the amount of cement added is adjusted according to the moisture content of the construction sludge and solidified (for example, 40 to 60% by weight), the pozzolanic reaction of the cement is not inhibited, so that the construction sludge exhibits strength.

一方、浄水汚泥は、主成分の粘土のほかに、腐植酸(例えば、フミン酸)等の有機酸成分が含有されている。浄水汚泥にセメント(例えば、ポルトランドセメント)を添加混合して固化すると、浄水汚泥の有機酸成分によって、セメントのポゾラン反応が阻害される。このため、浄水汚泥の強度発現が著しく遅延してしまう。   On the other hand, purified water sludge contains organic acid components such as humic acid (for example, humic acid) in addition to the main component clay. When cement (for example, Portland cement) is added to and mixed with purified water sludge and solidified, the organic acid component of the purified water sludge inhibits the pozzolanic reaction of the cement. For this reason, the strength expression of the purified water sludge is significantly delayed.

なお、ポゾラン反応阻害の原因は、セメントの水和反応時に生成する水酸化カルシウムのカルシウムイオンCa2+が、浄水汚泥に含まれる有機酸成分との反応によるものである。   The cause of the pozzolanic reaction inhibition is due to the reaction of calcium ions Ca2 + of calcium hydroxide generated during the hydration reaction of cement with the organic acid component contained in the purified water sludge.

また、浄水汚泥には、活性炭や消石灰が混入する場合もある。このことも、浄水汚泥の再利用に大きな影響を与えている。   Moreover, activated water and slaked lime may be mixed in the purified water sludge. This also has a great impact on the reuse of purified water sludge.

たとえ建設汚泥を再利用する従来技術を浄水汚泥に応用したとしても、浄水汚泥にセメント系固化材を添加する際に、セメント固化材に含有される微量の六価クロムを溶出するという問題が生じてしまう。   Even if the conventional technology for reusing construction sludge is applied to purified water sludge, there is a problem that a small amount of hexavalent chromium contained in the cement solidified material is eluted when cemented solidified material is added to the purified water sludge. End up.

本発明はこのような問題点を解決するために提案されたもので、浄水汚泥から良質な管工事布設用埋戻材を低コストで製造する。   The present invention has been proposed in order to solve such problems, and a high-quality backfill material for pipe construction is manufactured at low cost from purified water sludge.

本発明は、低含水浄水汚泥を原料とする管工事布設用埋戻材の製造方法において、前記低含水浄水汚泥を粘土化し、その後生石灰が主導する減水材、セメント及びセメント系固化材のうち少なくても一つを添加し、さらに造粒することを特徴とする。   The present invention relates to a method for producing a backfill material for pipe construction laying using low water content purified water sludge as a raw material, and the low water content purified water sludge is made into clay, and then less of water reducing material, cement and cement-based solidified material led by quick lime. Even one is added and further granulated.

本発明によると、含水比変動幅が大きく、活性炭やフミン酸等有機質成分が含有された浄水汚泥を原料として、より低コストで管工事布設用埋戻材を製造することができる。製造された管工事布設用埋戻材は、粒度が10mm以下に揃い、一定の締固め強度を有し、環境に対して害の無いものであり、山砂の代替品として十分に使用できる。   According to the present invention, a pipe laying backfill material can be produced at a lower cost using purified water sludge having a large water content ratio fluctuation range and containing organic components such as activated carbon and humic acid. The produced pipework laying back material has a particle size of 10 mm or less, has a certain compaction strength, is harmless to the environment, and can be used satisfactorily as a substitute for mountain sand.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

なお、本実施の形態の浄水汚泥は、乾燥方法に限定されず、天日乾燥式浄水汚泥及び機械脱水ケーキが含まれる。また、本実施の形態の浄水汚泥は、浄水処理過程中に添加された注入物の種類にも限定されず、活性炭や消石灰が混入されていてもよい。   In addition, the purified water sludge of this Embodiment is not limited to a drying method, A sun-drying type purified water sludge and a machine dewatering cake are included. Moreover, the purified water sludge of this Embodiment is not limited to the kind of the injection material added during the water purification process, Activated carbon and slaked lime may be mixed.

まず、低含水浄水汚泥から管工事布設用埋戻材を製造する工程について説明する。   First, the process of manufacturing a backfill material for pipe construction laying from low water content purified water sludge will be described.

図1は、本発明の実施の形態の低含水浄水汚泥から管工事布設用埋戻材を製造する工程のフローチャートである。   FIG. 1 is a flowchart of a process for manufacturing a pipework laying back material from a low water content purified water sludge according to an embodiment of the present invention.

ここで、低含水浄水汚泥とは、含水比が300%未満の浄水汚泥である。例えば、低含水の天日乾燥式浄水汚泥又は機械脱水ケーキ等があげられる。   Here, the low water content purified water sludge is a purified water sludge having a water content ratio of less than 300%. For example, low-moisture sun-dried purified water sludge or mechanical dehydrated cake can be used.

管工事布設用埋戻材の製造工程は、まず、低含水浄水汚泥を粘土化する(工程A)。粘土化は、通常の浄水汚泥の解砕に使用される装置によって行われる。例えば、ロールの隙間を10mm以下に調整されたロールクラッシャーや、浄水汚泥を解砕して練りこむ混練ミキサ等の装置である。このように粘土化することによって、後述する工程Cで添加する固化材を均一に混合することが可能となる。   In the manufacturing process of the pipework laying back material, first, the low water content purified water sludge is made into clay (process A). Claying is performed by an apparatus used for crushing ordinary water purification sludge. For example, it is an apparatus such as a roll crusher in which the gap between the rolls is adjusted to 10 mm or less, or a kneading mixer for crushing and kneading purified water sludge. Thus, it becomes possible to mix uniformly the solidification material added at the process C mentioned later by making into clay.

次に、粘土化された低含水浄水汚泥に、生石灰を添加混練する(工程B)。混練は、混練ミキサ等によって、例えば1〜3分間程度行う。なお、混練ミキサは、特に限定されないが、例えば2軸パドルミキサや、アーム及びローラが付いた混練ミキサである。   Next, quick lime is added and kneaded to the crushed low water content purified water sludge (step B). Kneading is performed, for example, for about 1 to 3 minutes using a kneading mixer or the like. The kneading mixer is not particularly limited, and is, for example, a biaxial paddle mixer or a kneading mixer with an arm and a roller.

その結果、添加された生石灰は、水和反応して消石灰(水酸化カルシウム)となる。消石灰は、低含水浄水汚泥中のフミン酸を中和・破壊し、低含水浄水汚泥の有機質性状を改良する。これによって、ポラゾン反応のフミン酸による阻害を排除するので、製造される管工事布設用埋戻材の強度が向上する。   As a result, the added quicklime is hydrated to become slaked lime (calcium hydroxide). Slaked lime neutralizes and destroys humic acid in low water content purified sludge and improves the organic properties of low water content purified sludge. This eliminates the inhibition of the polazone reaction by humic acid, thereby improving the strength of the pipework laying back material produced.

また、生石灰は、水和反応の発熱によって、低含水浄水汚泥の水分を蒸発させる(減水する)。更に、水和反応によってエトリンガイトが生成されるので、粒子間に架橋を形成し低含水浄水汚泥を固化する。   Quicklime evaporates (reduces) the water content of the low water content purified water sludge by the heat generated by the hydration reaction. Furthermore, since ettringite is produced by the hydration reaction, a cross-link is formed between the particles to solidify the low water content purified water sludge.

なお、低含水浄水汚泥の含水比が低い場合、工程Bは省略することもできる。省略した場合には、後述する工程Dにおいて、生石灰を添加して有機質性状を改良する必要がある。   In addition, when the water content of the low water content purified water sludge is low, the process B can also be skipped. If omitted, it is necessary to improve the organic properties by adding quick lime in step D described later.

次に、生石灰を添加混練した低含水浄水汚泥に、セメント又はセメント系固化材(セメント等)と共に還元固定剤を添加混練し、混練ミキサで十分な攪拌及び練り込みを行う(工程C)。なお、セメント等は、特に限定されるものでなく、市販のものを使用することができる。例えば、セメント等は、ポルトランドセメント、高炉セメント又は汎用性セメント系固化材である。   Next, a reducing fixative is added and kneaded together with cement or cement-based solidifying material (cement or the like) to the low water content purified water sludge to which quick lime has been added and kneaded, and sufficient stirring and kneading are performed with a kneading mixer (step C). In addition, cement etc. are not specifically limited, A commercially available thing can be used. For example, the cement or the like is Portland cement, blast furnace cement, or a general-purpose cement-based solidifying material.

なお、工程Cでセメント等を添加するのは、管工事布設用埋戻材が、天然産山砂の特性である、流動性及び締固め強度を備えるためである。管工事布設用埋戻材は、流動性を確保するために、天然産山砂のように10mm以下の粒度分布で揃えなければならない。また、管工事布設用埋戻材は、10トン以上の車両が舗道上を通過できる支持力の締固め強度が必要である。即ち、管工事布設用埋戻材は、CBR値で20%以上の締固め強度を備えることが望ましい。   The reason for adding cement or the like in step C is that the backfill material for pipe construction laying has fluidity and compaction strength, which are the characteristics of natural mountain sand. In order to ensure fluidity, the pipework laying back material must be aligned with a particle size distribution of 10 mm or less like natural mountain sand. In addition, the backfill material for pipe construction laying needs to have a compaction strength that can support a vehicle of 10 tons or more on the pavement. That is, it is desirable that the pipework laying backfill material has a compaction strength of 20% or more in terms of CBR value.

しかし、セメント等を低含水浄水汚泥に添加することは、締固め強度を大きくする上で、経済的かつ有効な手段であるが、六価クロムの溶出が懸念される。そこで、本出願人が開発した還元固定剤(特許文献3参照)をセメント等と共に添加混練することで、管工事布設用埋戻材から六価クロムの溶出を抑制することができる。   However, adding cement or the like to low water content purified water sludge is an economical and effective means for increasing the compaction strength, but there is a concern about the elution of hexavalent chromium. Therefore, by adding and kneading the reducing and fixing agent developed by the present applicant (see Patent Document 3) together with cement or the like, elution of hexavalent chromium from the pipework laying back material can be suppressed.

この還元固定剤は、硫酸第一鉄(試薬鹿1級、関東化学株式会社製)を0.7〜1.0重量%、珪酸ナトリウムの水溶液(J珪酸ソーダ3号、日本化学工業株式会社製)を14〜21重量%、水及び安定剤からなるものである。なお、還元固定剤は、まず、硫酸第一鉄を所定の割合で水中に添加混合し、さらに珪酸ナトリウムの水溶液及び安定剤を所定の割合で添加混合して作成された。   This reduced fixing agent is 0.7 to 1.0% by weight of ferrous sulfate (reagent deer grade 1, manufactured by Kanto Chemical Co., Ltd.), an aqueous solution of sodium silicate (J sodium silicate No. 3, manufactured by Nippon Chemical Industry Co., Ltd.). 14) to 21% by weight, water and a stabilizer. The reduced fixing agent was prepared by first adding and mixing ferrous sulfate in water at a predetermined ratio, and further adding and mixing an aqueous solution of sodium silicate and a stabilizer at a predetermined ratio.

製造工程に戻ると、工程Cを終えた低含水浄水汚泥に、生石灰を主導する造粒粉材を添加混練しながら、10mm以下の粒子に造粒する(工程D)。造粒は、造粒機能を有する混練ミキサによって行うことができる。例えば、株式会社北川鉄工所製の混合ミキサ(実験機商品名ベレガイヤ)や、日工株式会社製の二軸パドル混合ミキサ(実験機商品名ECB)などである。   When returning to the manufacturing process, the granulated powder material led by quick lime is added and kneaded to the low water content purified water sludge having finished the process C, and granulated into particles of 10 mm or less (process D). Granulation can be performed by a kneading mixer having a granulation function. For example, there are a mixing mixer manufactured by Kitagawa Iron Works Co., Ltd. (experimental machine brand name Bellegaya) and a biaxial paddle mixing mixer manufactured by Nikko Corporation (experimental machine brand name ECB).

工程Dにおいて、生石灰を主導する造粒粉材を添加混合することによって、低含水浄水汚泥の可塑性を調整できる。造粒は、セメント等のポゾラン反応が起こる前に行うので、低含水浄水汚泥に可塑性が必要となるからである。   In the process D, the plasticity of the low water content purified water sludge can be adjusted by adding and mixing the granulated powder material which leads quicklime. This is because granulation is performed before the pozzolanic reaction of cement or the like occurs, so that plasticity is required for the low water content purified water sludge.

なお、必要に応じて造粒粉材と共に補強材を添加混合してもよい。低含水浄水汚泥中に補強材を加えることによって、製造される埋戻材の強度を補強することができる。更に、生石灰及びセメント等の使用量を低減することができるので、安価に管工事布設用埋戻材を製造することができる。なお、補強材は、水分が少ない粉材であればよい。例えば、山砂、石炭灰、石粉、ダスト、水砕スラグの微粉末等である。   In addition, you may add and mix a reinforcing material with a granulated powder material as needed. By adding a reinforcing material to the low water content purified water sludge, the strength of the manufactured backfill material can be reinforced. Furthermore, since the usage-amount of quicklime, cement, etc. can be reduced, the backfill material for pipe construction laying can be manufactured cheaply. In addition, the reinforcing material should just be a powder material with little moisture. For example, mountain sand, coal ash, stone powder, dust, fine powder of granulated slag, and the like.

次に、造粒した低含水浄水汚泥を、一定期間で養生する(工程E)。養生は、野積みでシートを被せて行う。この場合の養生期間は、約3週間程度であるが、4週間程度が好ましい。養生期間中に、セメント等が低含水浄水汚泥中の水分を吸収してポゾラン反応を行う。このポラゾン反応によって、生成される管工事布設用埋戻材の強度が向上する。   Next, the granulated low water content purified water sludge is cured for a certain period (step E). Curing is done by placing the sheets on top of each other. The curing period in this case is about 3 weeks, but is preferably about 4 weeks. During the curing period, cement etc. absorbs the water in the low water content purified sludge and performs pozzolanic reaction. The strength of the pipework laying back material generated is improved by this polazone reaction.

次に、養生された浄水汚泥は、分級機によって、10mmより大きい粒子と10mm以下の粒子とに分けられる(工程F)。分級機は、例えば、振動ふるい機である。分級された10mm以下の粒子は管工事布設用埋戻材として回収される。一方、10mmより大きい粒子は、ロールクラッシャー等の破砕機によって破砕される。そして、10mm以下に破砕された粒子は、管工事布設用埋戻材として回収される。   Next, the cured purified water sludge is divided into particles larger than 10 mm and particles smaller than 10 mm by a classifier (process F). The classifier is, for example, a vibration sieve machine. The classified particles of 10 mm or less are collected as a backfill material for pipe construction. On the other hand, particles larger than 10 mm are crushed by a crusher such as a roll crusher. And the particle | grains crushed to 10 mm or less are collect | recovered as a backfill material for pipe construction installation.

本実施の形態においては、工程Bで添加する生石灰の配合量を適当な範囲に調整することによって、生成される生成物の90%以上が10mm以下の粒子となる。この場合、分級の工程(工程F)を省略しても管工事布設用埋戻材を製造することが可能となる。   In this Embodiment, 90% or more of the produced | generated products become a particle | grain of 10 mm or less by adjusting the compounding quantity of the quicklime added at the process B to an appropriate range. In this case, it is possible to manufacture the pipework laying back material even if the classification step (step F) is omitted.

なお、工程A〜Dは混練ミキサを使って以下のように実現することができる。   In addition, process AD can be implement | achieved as follows using a kneading mixer.

混練ミキサへの各材料の投入は、次によって行われる。まず、低含水浄水汚泥を投入されると、計量制御装置を使って低含水浄水汚泥の重量を測定する。そして、測定した重量が設定値に達すると、自動的に予め定められた量の生石灰、セメント等、還元固定剤を順次投入し、また、必要に応じて補強材を投入する。   The materials are charged into the kneading mixer as follows. First, when low water content purified water sludge is thrown in, the weight of low water content purified water sludge is measured using a measurement control apparatus. Then, when the measured weight reaches the set value, a predetermined amount of reducing lime, cement, and the like are automatically charged sequentially, and a reinforcing material is charged as necessary.

混練ミキサは、例えば5〜8分間程度で工程A〜Dを行う。そして、工程A〜Dを経た低含水浄水汚泥は、ベルトコンベアを使って移動し、他の場所で養生される。   A kneading mixer performs process AD for about 5 to 8 minutes, for example. And the low water content purified water sludge which passed through process AD moves using a belt conveyor, and is cured in another place.

次に、本実施の形態の低含水浄水汚泥に添加する資材の添加量について説明する。   Next, the addition amount of the material added to the low water content purified water sludge of this Embodiment is demonstrated.

生石灰の添加率(%)((添加物の重量/浄水汚泥の容積)×100)は、低含水浄水汚泥の容積に対し、3%以上20%以下、より好ましくは5%以上15%以下に設定する。生石灰の添加率が、5%未満であると、生石灰の量が少な過ぎるため、低含水浄水汚泥の減水、有機質性状改良及び造粒効果が充分に発揮できない。一方、15%を超えると、浄水汚泥の水分を減水しすぎるので、セメント等のポゾラン効果に影響を与えてしまう。   The addition rate (%) of quicklime ((weight of additive / volume of purified water sludge) × 100) is 3% or more and 20% or less, more preferably 5% or more and 15% or less with respect to the volume of the low water content purified water sludge. Set. When the addition rate of quick lime is less than 5%, the amount of quick lime is too small, so that the reduced water content of the low water content purified water sludge, the organic property improvement and the granulation effect cannot be fully exhibited. On the other hand, if it exceeds 15%, the water content of the purified water sludge is excessively reduced, which affects the pozzolanic effect of cement and the like.

セメント等の添加率(%)((添加物の重量/浄水汚泥の容積)×100)は、低含水浄水汚泥の容積に対し、2.5%以上20%以下、より好ましくは5%以上15%以下に設定する。セメント等の添加率が、5%未満であると、セメント等の量が少な過ぎるため、低含水浄水汚泥の固化の効果を充分に発揮できない。一方、15%を超えると、低含水浄水汚泥が固化し過ぎてしまい、更にコスト増にもなる。なお、セメント等の添加率は、低含水浄水汚泥の含水比によって調整してもよい。   The addition rate (%) of cement and the like ((weight of additive / volume of purified water sludge) × 100) is 2.5% or more and 20% or less, more preferably 5% or more and 15 with respect to the volume of the low water content purified water sludge. Set to% or less. If the addition rate of cement or the like is less than 5%, the amount of cement or the like is too small, and thus the effect of solidifying the low water content purified water sludge cannot be sufficiently exhibited. On the other hand, if it exceeds 15%, the low water content purified water sludge is excessively solidified, which further increases the cost. In addition, you may adjust the addition rate of cement etc. with the water content ratio of a low water content purified water sludge.

次に、高含水浄水汚泥から管工事布設用埋戻材を製造する工程について説明する。   Next, the process of manufacturing the backfill material for pipe construction laying from high water content purified water sludge is demonstrated.

図2は、本発明の実施の形態の高含水浄水汚泥から管工事布設用埋戻材を製造する工程のフローチャートである。   FIG. 2 is a flowchart of a process for producing a pipework laying back material from the high water content purified water sludge according to the embodiment of the present invention.

ここで、高含水浄水汚泥とは、含水比が300〜600%の浄水汚泥である。例えば、高含水の天日乾燥式浄水汚泥又は活性炭混入の天日乾燥式浄水汚泥等があげられる。   Here, the high water content purified water sludge is a purified water sludge having a water content ratio of 300 to 600%. For example, sun-drying type purified water sludge with high water content or sun-drying type purified water sludge mixed with activated carbon can be used.

まず、高含水浄水汚泥は、固化及び造粒する前に、減水する必要がある。そこで、高含水浄水汚泥に生石灰を添加混練して減水する(工程I)。なお、生石灰を添加混練することによって、前述した低含水浄水汚泥の場合と同様に、フミン酸を中和・破壊し、有機質性状を改良する。また、水和反応によって、エトリンガイドが生成されるので、粒子間に架橋を形成し高含水浄水汚泥を固化する。   First, high water content purified water sludge needs to be reduced before solidifying and granulating. Then, quick lime is added and kneaded to the high water content purified water sludge to reduce the water (step I). In addition, by adding and kneading quicklime, humic acid is neutralized and destroyed, and the organic properties are improved, as in the case of the low water content purified water sludge described above. Moreover, since an ethrin guide is produced | generated by hydration reaction, a bridge | crosslinking is formed between particle | grains and a high water content purified water sludge is solidified.

生石灰を添加混練した高含水浄水汚泥は、混練ミキサ又はバックホウを使って攪拌される。攪拌された高含水浄水汚泥は、生石灰の水和反応の発熱によって、水分が減水される。   The high water content purified water sludge kneaded with quicklime is stirred using a kneading mixer or a backhoe. The water content of the stirred high water content purified water sludge is reduced by the heat generated by the quick lime hydration reaction.

攪拌された高含水浄水汚泥は、更に、天日で減水されることが望ましい。また、天日で減水する場所がない場合には、高含水浄水汚泥を野積みで減水してもよい。   It is desirable that the stirred high water content purified water sludge be further reduced in the sun. In addition, when there is no place to reduce water in the sun, the high water content purified sludge may be reduced by field loading.

この工程Iは、例えば1〜3日間程度で行われる。なお、減水処理をされた高含水浄水汚泥の含水比は、150%以下になることが望ましい。   This process I is performed in about 1-3 days, for example. In addition, it is desirable that the water content of the high water content purified water sludge subjected to the water reduction treatment is 150% or less.

また、必要に応じて、補強材を生石灰と共に添加混練してもよい。添加する補強材の種類及び添加量は、高含水浄水汚泥の含水比によって調整する。高含水浄水汚泥に補強材を加えることによって、製造される管工事布設用埋戻材の強度を補強することができる。更に、生石灰及びセメント等の使用量を低減することができるので、安価に管工事布設用埋戻材を製造することができる。   Moreover, you may add and knead a reinforcing material with quick lime as needed. The type and amount of the reinforcing material to be added are adjusted according to the water content ratio of the high water content purified water sludge. By adding a reinforcing material to the high water content purified water sludge, it is possible to reinforce the strength of the pipework laying material produced. Furthermore, since the usage-amount of quicklime, cement, etc. can be reduced, the backfill material for pipe construction laying can be manufactured cheaply.

減水された高含水浄水汚泥に、セメント等及び還元固定剤を添加混練し、混練ミキサで十分な攪拌及び練り込みを行う(工程J)。なお、工程Jは、前述した低含水浄水汚泥の場合の工程Cと同様であり、詳細の説明は省略する。   Cement and the like and a reducing fixative are added and kneaded to the reduced water content purified water sludge, and sufficient stirring and kneading are performed with a kneading mixer (step J). In addition, the process J is the same as the process C in the case of the low water content purified water sludge mentioned above, and detailed description is abbreviate | omitted.

次に、混練された高含水浄水汚泥を、一定期間、養生する(工程K)。なお、工程Kは、前述した低含水浄水汚泥の場合の工程Eと同様であり、詳細の説明は省略する。   Next, the kneaded high water content purified water sludge is cured for a certain period (step K). In addition, the process K is the same as the process E in the case of the low water content purified water sludge mentioned above, and detailed description is abbreviate | omitted.

次に、養生された高含水浄水汚泥を破砕し、10mm以下の粒子に造粒する(工程L)。   Next, the cured high water content purified water sludge is crushed and granulated into particles of 10 mm or less (step L).

具体的には、まず、養生された高含水浄水汚泥を、バックホウで200mm前後に解砕し、その後、爪付ロールクラッシャーで40mm以下に破砕する。そして、その破砕物は、10mm網の振動篩い機を通され、10mm以下の粒子を埋戻材として回収する。一方、10mmより大きい粒子は、ロールクラッシャーで10mm以下に破砕して、埋戻材として回収する。   Specifically, first, the cured high water content purified sludge is crushed to about 200 mm with a backhoe, and then crushed to 40 mm or less with a roll crusher with a nail. Then, the crushed material is passed through a vibration sieve of 10 mm net, and particles of 10 mm or less are collected as backfill material. On the other hand, particles larger than 10 mm are crushed to 10 mm or less with a roll crusher and collected as a backfill material.

次に、本発明の実施の形態の高含水浄水汚泥に添加する資材の添加量について説明する。   Next, the addition amount of the material added to the high water content purified water sludge of embodiment of this invention is demonstrated.

生石灰の添加率(%)((添加物の重量/浄水汚泥の容積)×100)は、高含水浄水汚泥の容積に対し、5%以上25%以下、より好ましくは5%以上15%以下に設定する。生石灰の添加率が5%未満であると、生石灰の量が少な過ぎるため、高含水浄水汚泥の減水及び有機質性状改良効果が充分に発揮できない。一方、15%を超えると、高含水浄水汚泥の減水及び有機質性状改良効果は変わらないので、コスト増になるだけである。   The addition rate of quicklime (%) ((weight of additive / volume of purified water sludge) × 100) is 5% or more and 25% or less, more preferably 5% or more and 15% or less with respect to the volume of the high water content purified water sludge. Set. When the addition rate of quick lime is less than 5%, the amount of quick lime is too small, so that the effect of reducing the water content and improving the organic properties cannot be fully achieved. On the other hand, if it exceeds 15%, the water reduction and organic property improvement effect of the high water content purified water sludge does not change, so only the cost increases.

セメント等の添加率(%)((添加物の重量/浄水汚泥の容積)×100)は、高含水浄水汚泥の容積に対し、5%以上20%以下、より好ましくは5%以上15%以下に設定する。   Addition rate (%) of cement, etc. ((weight of additive / volume of purified water sludge) × 100) is 5% or more and 20% or less, more preferably 5% or more and 15% or less with respect to the volume of high water content purified water sludge. Set to.

セメント等の添加率が、5%未満であると、セメント等の量が少な過ぎるため、高含水浄水汚泥の固化効果が充分に発揮できない。一方、15%を超えると、高含水浄水汚泥が固化し過ぎてしまい、更にコスト増にもなる。   When the addition rate of cement or the like is less than 5%, the amount of cement or the like is too small, and the solidification effect of the high water content purified water sludge cannot be sufficiently exhibited. On the other hand, if it exceeds 15%, the high water content purified water sludge is excessively solidified, which further increases the cost.

以下、本発明の実施例について図面を参照して説明する。但し、本発明は以下の実施例により限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following examples.

(実施例1)
本実施例では、天日乾燥式浄水汚泥を原料とし、管工事布設用埋戻材の製造試験を行った。なお、天日乾燥式浄水汚泥の含水比は60%前後であった。
Example 1
In this example, a production test of a backfill material for pipe construction was conducted using sun-dried purified water sludge as a raw material. The water content of the sun-dried water purification sludge was around 60%.

Figure 2006088051
Figure 2006088051

表1は、本発明の実施例1〜3の実験結果を示す表である。表1は、汚泥の種類、試験項目、試験番号、及び浄水汚泥の平均含水比が記載されている。また、試験で浄水汚泥に添加した、生石灰、セメント及び還元固定剤の添加率が、浄水汚泥の容積に対する添加物の重量比の%(重量%)で記載されている。例えば、100mの浄水汚泥に対し、3tの生石灰を添加すると、生石灰の添加率は3%になる。また、浄水汚泥に試験で添加した山砂の添加率が、浄水汚泥の容積に対する山砂の容積比の%(容積%)で記載されている。例えば、100mの浄水汚泥に対し、10mの山砂を添加すると、山砂の添加率は10%になる。また、試験で生成された管工事布設用埋戻材の粒度分布及び強度特性(CBR試験値)が、記載されている。 Table 1 is a table | surface which shows the experimental result of Examples 1-3 of this invention. Table 1 lists the type of sludge, test items, test number, and average water content of the purified water sludge. Moreover, the addition rate of quicklime, cement, and a reduction | restoration fixing agent added to the purified water sludge by the test is described by% (weight%) of the weight ratio of the additive with respect to the volume of the purified water sludge. For example, when 3 t of quick lime is added to 100 m 3 of purified water sludge, the addition rate of quick lime becomes 3%. Moreover, the addition rate of the mountain sand added by the test to the purified water sludge is described in% (volume%) of the volume ratio of the mountain sand to the volume of the purified water sludge. For example, when 10 m 3 of mountain sand is added to 100 m 3 of purified water sludge, the addition rate of mountain sand becomes 10%. Moreover, the particle size distribution and strength characteristic (CBR test value) of the pipework laying back material generated in the test are described.

即ち、試験番号1及び2では、生石灰(粉末生石灰、田源石灰工業(株)製)の添加率を3%、補強材である山砂の添加率を30%とした。そして、ポルトランドセメント(太平洋セメント(株)製)の添加率を、試験番号1では7.5%(還元固定剤3.8%)、試験番号2では10%(還元固定剤5%)とし、セメントの添加率の違いによる固化効果を調べた。なお、生石灰の添加率は、減水過程及び造粒過程で用いる添加率を合計したものである。   That is, in the test numbers 1 and 2, the addition rate of quick lime (powder quicklime, manufactured by Tagen Lime Industry Co., Ltd.) was 3%, and the addition rate of mountain sand as a reinforcing material was 30%. And, the addition rate of Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) was 7.5% (reduced fixing agent 3.8%) in test number 1, and 10% (reduced fixing agent 5%) in test number 2, The effect of solidification due to the difference of cement addition rate was investigated. The addition rate of quicklime is the sum of the addition rates used in the water reduction process and the granulation process.

また、試験番号3及び4では、生石灰の添加率を5%、ポルトランドセメントの添加率を5%、還元固定剤を2.5%とした。そして、山砂の添加率を、試験番号3では30%とし、試験番号4では40%とし、山砂の添加率の違いによる固化効果を調べた。   In Test Nos. 3 and 4, the addition rate of quick lime was 5%, the addition rate of Portland cement was 5%, and the reducing fixative was 2.5%. Then, the addition rate of mountain sand was set to 30% in test number 3 and 40% in test number 4, and the solidification effect due to the difference in the addition rate of mountain sand was examined.

本実施例における管工事布設用埋戻材の製造は、まず、実験用二軸ミキサを用いて天日乾燥式浄水汚泥を粘土化した。なお、粘土化するミキサの混練時間は2分とした。次に、粘土化した天日乾燥式浄水汚泥に生石灰を添加することによって、減水及び浄水汚泥の性状を改良した。なお、このときのミキサの混練時間は1分とした。   In the production of the backfill material for pipe construction laying in this example, first, the sun-dried clean water sludge was made into clay using an experimental biaxial mixer. In addition, the kneading time of the mixer for converting to clay was 2 minutes. Next, the properties of reduced water and purified water sludge were improved by adding quick lime to clay-dried sun-dried purified water sludge. The mixer kneading time at this time was 1 minute.

次に、減水した天日乾燥式浄水汚泥に、ポルトランドセメント及び還元固定剤(硫酸第一鉄及び珪酸ナトリウムを主成分とする液体)を加えて2分間混練する。そして、ポルトランドセメント及び還元固定剤が均一に浄水汚泥と練り込まされた事を確認した後、二軸ミキサで造粒粉材である生石灰を添加しながら1分間で混合物を造粒した。次に、造粒した天日乾燥式浄水汚泥に補強材である山砂を混合し、室温で4週間養生して管工事布設用埋戻材を得た。   Next, Portland cement and a reducing fixative (a liquid mainly composed of ferrous sulfate and sodium silicate) are added to sun-dried purified water sludge with reduced water and kneaded for 2 minutes. And after confirming that Portland cement and the reduction | restoration fixing agent were knead | mixed with purified water sludge uniformly, the mixture was granulated for 1 minute, adding the quicklime which is a granulated powder material with a biaxial mixer. Next, mountain sand as a reinforcing material was mixed with the granulated sun-dried water purification sludge and cured at room temperature for 4 weeks to obtain a backfill material for pipe construction.

そして、得られた管工事布設用埋戻材の強度特性(CBR試験値)及び粒度分布をそれぞれ測定した。なお、粒度分布は、JIS A 1204に準じて測定した。また、CBR試験は、JIS A 1211に準じて測定した(以下同様)。測定結果を、表1に示す。   And the strength characteristic (CBR test value) and particle size distribution of the obtained pipework laying back material were measured, respectively. The particle size distribution was measured according to JIS A 1204. The CBR test was measured according to JIS A 1211 (the same applies hereinafter). The measurement results are shown in Table 1.

試験番号1及び2によると、生石灰の添加率を3%、山砂の添加率を30%とした場合、ポルトランドセメントの添加率を7.5%とすると、管工事布設用埋戻材は、CBR値が7.7%となり、強度を発現しなかった。一方、ポルトランドセメントの添加率を10%とすると、管工事布設用埋戻材は、CBR値が68%となり、強度を発現する。なお、試験番号1と2では、還元固定剤の添加率が異なるが、還元固定剤による管工事布設用埋戻材の強度に与える影響は非常に小さいので無視することができる。   According to test numbers 1 and 2, when the addition rate of quick lime is 3% and the addition rate of mountain sand is 30%, the addition rate of Portland cement is 7.5%, The CBR value was 7.7%, and no strength was developed. On the other hand, when the addition rate of Portland cement is 10%, the backfill material for pipe construction laying has a CBR value of 68% and develops strength. In addition, although the addition rate of the reducing fixative is different between Test Nos. 1 and 2, the effect of the reducing fixative on the strength of the pipework laying back material is very small and can be ignored.

また、試験番号3及び4によると、生石灰の添加率を5%とした場合、ポルトランドセメントを5%としても、管工事布設用埋戻材は、CBR値が81.4%、71.3%となり、強度を発現する。つまり、この結果を試験番号1と比較すると、生石灰の添加率を増加すると、ポルトランドセメントの添加率を低くしても管工事布設用埋戻材の強度を発現することが分かる。   According to Test Nos. 3 and 4, when the addition rate of quick lime is 5%, the Portland cement is 5%, and the backfill material for pipe construction has a CBR value of 81.4% and 71.3%. And develops strength. That is, when this result is compared with Test No. 1, it can be seen that when the addition rate of quick lime is increased, the strength of the pipework laying back material is developed even if the addition rate of Portland cement is lowered.

更に、試験番号3及び4を比較すると、山砂の添加率が30%の場合は管工事布設用埋戻材のCBR値が87.4%となり、山砂の添加率が40%の場合は管工事布設用埋戻材のCBR値が71.3%となった。この結果から、山砂の添加率を一方的に増加しても、管工事布設用埋戻材の強度が必ず比例して増加するとは限らないことが分かる。   Furthermore, when test numbers 3 and 4 are compared, when the sand sand addition rate is 30%, the CBR value of the pipework laying backfill material is 87.4%, and when the sand sand addition rate is 40%. The CBR value of the pipework laying back material was 71.3%. From this result, it can be understood that the strength of the pipework laying back material does not always increase in proportion to the unilateral increase in the sand sand addition rate.

また、本実施例で生成した管工事布設用埋戻材は、10mm以下の礫分及び砂分を主成分とし、山砂並みの粒度分布である。   Moreover, the backfill material for pipe construction laying produced in this example has a gravel content and sand content of 10 mm or less as main components, and has a particle size distribution similar to mountain sand.

(実施例2)
本実施例では、天日乾燥式浄水汚泥を原料とし、実施例1と同様の工程で管工事布設用埋戻材の製造試験を行った。なお、天日乾燥式浄水汚泥の含水比は55%前後であった。本実施例における各添加物の添加率は、表1に示す。
(Example 2)
In this example, a production test of a pipework laying back material was performed in the same process as in Example 1 using sun-dried water purification sludge as a raw material. The water content of the sun-dried water purification sludge was around 55%. The addition rate of each additive in the present example is shown in Table 1.

試験番号5〜7は、ポルトランドセメントを5%、還元固定剤を2.5%、生石灰の添加率を5〜7%とした。そして、山砂の添加率を、試験番号5では0%、試験番号6では10%、試験番号7では30%と変化させ、山砂の添加率の違いによる固化効果を調べた。   In Test Nos. 5 to 7, Portland cement was 5%, the reducing fixative was 2.5%, and the addition rate of quick lime was 5 to 7%. Then, the addition rate of mountain sand was changed to 0% in test number 5, 10% in test number 6, and 30% in test number 7, and the solidification effect due to the difference in the addition rate of mountain sand was investigated.

試験番号5によると、生石灰の添加率を5%、ポルランドセメントの添加率を5%とした場合、山砂を0%とすると、管工事布設用埋戻材は、CBR値が8.9%となり、強度を発現しなかった。一方、試験番号6によると、山砂の添加率を10%に増すと、管工事布設用埋戻材は、CBR値が46%となり、強度を発現する。また、試験番号7によると、山砂の添加率を30%に増すと、管工事布設用埋戻材は、CBR値が90%となり、更に強度を増した。この結果から、低含水浄水汚泥では、セメントの添加率が低くても、山砂の添加率を調整することによって、希望の強度を得ることができることが分かった。   According to Test No. 5, when the addition rate of quick lime is 5%, the addition rate of Porland cement is 5%, and the mountain sand is 0%, the backfill material for pipe construction laying has a CBR value of 8.9. %, And no strength was developed. On the other hand, according to Test No. 6, when the addition rate of mountain sand is increased to 10%, the backfill material for pipe construction laying has a CBR value of 46% and develops strength. Further, according to test number 7, when the addition rate of mountain sand was increased to 30%, the CBR value of the backfill material for pipe construction laying was 90%, which further increased the strength. From this result, it was found that the desired strength can be obtained in the low water content purified water sludge even when the cement addition rate is low, by adjusting the mountain sand addition rate.

また、本実施例で生成した管工事布設用埋戻材は、10mm以下の礫分及び砂分を主成分とし、山砂並みの粒度分布を得た。   Moreover, the pipework laying back material produced in this example was mainly composed of gravel and sand of 10 mm or less, and obtained a particle size distribution similar to mountain sand.

(実施例3)
本実施例では、天日乾燥式浄水汚泥を原料とし、実施例1と同様の工程で管工事布設用埋戻材の製造試験を行った。なお、天日乾燥式浄水汚泥の含水比は57%前後であった。本実施例における各添加物の添加率は、表1に示す。
(Example 3)
In this example, a production test of a pipework laying back material was performed in the same process as in Example 1 using sun-dried water purification sludge as a raw material. The water content of the sun-dried clean water sludge was around 57%. The addition rate of each additive in the present example is shown in Table 1.

なお、試験番号8及び9では、高炉セメントB種(太平洋セメント(株)製)を使用した。また、試験番号10では、汎用性有機質対応型セメント系固化材(商品名GS−10、太平洋セメント(株)製)を使用した。   In test numbers 8 and 9, blast furnace cement type B (manufactured by Taiheiyo Cement Co., Ltd.) was used. In test number 10, a general-purpose organic-compatible cement-based solidifying material (trade name GS-10, manufactured by Taiheiyo Cement Co., Ltd.) was used.

試験番号8〜10は、高炉セメントB種又は有機質対応型セメント系固化材を15%、還元固定剤を7.5%とし、生石灰及び山砂の添加率の変化による固化効果を調べた。   Test Nos. 8 to 10 were 15% for blast furnace cement type B or organic-compatible cement-based solidified material and 7.5% for reducing fixative, and examined the solidification effect due to changes in the addition rate of quicklime and mountain sand.

試験番号8によると、生石灰の添加率を5%、高炉セメントB種の添加率を15%、山砂の添加率を25%とした場合、管工事布設用埋戻材は、CBR値が186%となり、強度を発現した。また、試験番号9によると、山砂以外の添加率は試験番号8と同一であり、山砂の添加率を20%に減らしても、管工事布設用埋戻材は、CBR値が137%となり、十分な強度が得られた。   According to Test No. 8, when the addition rate of quick lime is 5%, the addition rate of blast furnace cement type B is 15%, and the addition rate of mountain sand is 25%, the backfill material for pipe construction has a CBR value of 186. %, And strength was developed. Further, according to test number 9, the addition rate other than mountain sand is the same as test number 8, and even if the addition rate of mountain sand is reduced to 20%, the backfill material for pipe construction has a CBR value of 137%. Thus, sufficient strength was obtained.

一方、試験番号10によると、生石灰の添加率を0%、有機質対応型セメント系固化材の添加率を15%、山砂の添加率を試験番号9と同じ20%とした場合、管工事布設用埋戻材は、CBR値が34%となり、強度を発現したが、試験番号8及び9と比較して十分な強度向上効果が得られなかった。   On the other hand, according to Test No. 10, when the addition rate of quick lime is 0%, the addition rate of organic-compatible cement-based solidified material is 15%, and the addition rate of mountain sand is 20%, the same as Test No. 9, pipe construction The backfill material had a CBR value of 34% and exhibited strength, but a sufficient strength improvement effect was not obtained as compared with Test Nos. 8 and 9.

以上の結果から、有機質対応型セメント系固化材及び山砂の組合せで生成された管工事布設用埋戻材より、同量の高炉セメント及び山砂の組合わせに、生石灰5%を加えた管工事布設用埋戻材のほうが、強度を大きく向上させることができた。よって、生石灰が浄水汚泥の有機質性状を改良する効果があることが示唆された。   Based on the above results, pipes with 5% quick lime added to the same amount of blast furnace cement and mountain sand combination from the backfill material for pipe construction laying produced by the combination of organic cement-type solidification material and mountain sand The backfill material for construction laying was able to greatly improve the strength. Therefore, it was suggested that quicklime has the effect of improving the organic properties of purified water sludge.

また、本実施例で生成した管工事布設用埋戻材は、10mm以下の礫分及び砂分を主成分とし、山砂並みの粒度分布を得た。   Moreover, the pipework laying back material produced in this example was mainly composed of gravel and sand of 10 mm or less, and obtained a particle size distribution similar to mountain sand.

(比較例1)
比較例1では、天日乾燥式浄水汚泥を原料とし、実施例1と同様の工程で管工事布設用埋戻材の製造試験を行った。なお、天日乾燥式浄水汚泥の含水比は57%前後であった。本実施例における各添加物の添加率は、表1に示す。
(Comparative Example 1)
In Comparative Example 1, a sun-drying type purified water sludge was used as a raw material, and a production test of a pipework laying back material was performed in the same process as in Example 1. The water content of the sun-dried clean water sludge was around 57%. The addition rate of each additive in the present example is shown in Table 1.

即ち、生石灰を添加せず、還元固定剤を7.5%に固定し、ポルトランドセメント及び山砂の添加率を変化して、固化効果を調べた。   That is, without adding quicklime, the reducing fixative was fixed at 7.5%, and the addition rate of Portland cement and mountain sand was changed to examine the solidification effect.

試験番号11〜14によると、生石灰を添加せず、山砂の添加率を0〜30%、ポルトランドセメントの添加率を5〜15%とした場合、管工事布設用埋戻材は、CBR値が1.7〜4.5%となり、いずれも強度を発現しなかった。この結果からも、生石灰は、浄水汚泥の有機質性状の改良効果を発揮し、セメントの固化効果に大きな影響を与えていることが示唆された。   According to Test Nos. 11 to 14, when quick lime is not added, the addition rate of mountain sand is 0 to 30%, and the addition rate of Portland cement is 5 to 15%, the backfill material for pipe construction is CBR value. Was 1.7 to 4.5%, and none of them exhibited strength. This result also suggested that quick lime exerts an effect of improving the organic properties of the purified water sludge and has a great influence on the solidification effect of cement.

(実施例4)
本実施例では、浄水処理過程で石灰を注入した機械脱水ケーキを原料とし、管工事布設用埋戻材の製造試験を行った。なお、機械脱水ケーキの含水比は91.2%又は93.8%であった。本実施例の脱水ケーキは、石灰が予め含まれていたため、生石灰を添加してケーキの有機質性状を改良する必要がないと判断される。よって、本実施例では、セメントを用いて製造試験を行った。
Example 4
In this example, a machine dehydration cake into which lime was injected during the water purification treatment was used as a raw material, and a production test for a pipework laying back material was conducted. The water content of the mechanically dehydrated cake was 91.2% or 93.8%. Since the dehydrated cake of this example contained lime in advance, it is determined that it is not necessary to add quick lime to improve the organic properties of the cake. Therefore, in this example, a production test was performed using cement.

Figure 2006088051
Figure 2006088051

表2は、本発明の実施例4の実験結果を示す表である。   Table 2 is a table | surface which shows the experimental result of Example 4 of this invention.

即ち、試験番号15〜18は、ポルトラントセメントの添加率を15%、還元固定剤の添加率を7.5%とし、山砂の添加率の違いによる固化効果を調べた。   That is, in test numbers 15 to 18, the addition rate of the portant cement was 15%, the addition rate of the reducing fixing agent was 7.5%, and the solidification effect due to the difference in the addition rate of mountain sand was examined.

本実施例における管工事布設用埋戻材の製造は、まず、実験用二軸ミキサを用いて機械脱水ケーキを粘土化する。なお、粘土化するミキサの混練時間は3分とした。次に、粘土化された機械脱水ケーキに、ポルトランドセメント(太平洋セメント(株)製)、及び還元固定剤(硫酸第一鉄及び珪酸ナトリウムを主成分とする液体)を添加して2分間混練した。次に、二軸ミキサを用いて、生石灰50%及び石粉50%を混合した造粒粉材を機械脱水ケーキに添加しながら1分間造粒した。そして、造粒された機械脱水ケーキに補強材である山砂を混合して、室温で4週間養生して管工事布設用埋戻材を得た。   In the production of the pipework laying back material in the present example, first, the mechanical dewatered cake is made into clay using an experimental biaxial mixer. In addition, the kneading time of the mixer for converting to clay was 3 minutes. Next, Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) and a reducing fixative (a liquid mainly composed of ferrous sulfate and sodium silicate) were added to the pulverized mechanical dewatered cake and kneaded for 2 minutes. . Next, using a twin-screw mixer, the granulated powder material mixed with 50% quicklime and 50% stone powder was granulated for 1 minute while being added to the mechanical dehydrated cake. And the mountain sand which is a reinforcing material was mixed with the granulated mechanical dewatering cake, and it cured at room temperature for 4 weeks, and obtained the backfill material for pipe construction construction.

得られた管工事布設用埋戻材の強度特性(CBR試験値)及び粒度分布をそれぞれ測定した。測定結果を表2に示す。   The strength characteristics (CBR test value) and particle size distribution of the obtained pipework laying back material were measured. The measurement results are shown in Table 2.

試験番号15〜18によると、機械脱水ケーキに、セメントの添加率を15%、還元固定剤の添加率を7.5%とした場合、山砂の添加率を増加させると、得られる管工事布設用埋戻材の強度も増加し続ける。しかし、試験番号17及び18によると、山砂の添加率を40%としても、山砂の添加率を30%とした場合と比較して、管工事布設用埋戻材の強度を大きく向上することができなかった。   According to Test Nos. 15 to 18, when the addition rate of cement is 15% and the addition rate of reducing fixative is 7.5% in the mechanical dewatered cake, the pipe construction obtained when the addition rate of mountain sand is increased The strength of the backfill material for laying continues to increase. However, according to the test numbers 17 and 18, even when the addition rate of mountain sand is 40%, the strength of the backfill material for pipe construction is greatly improved as compared with the case where the addition rate of mountain sand is 30%. I couldn't.

また、本実施例で生成した管工事布設用埋戻材は、10mm以下の礫分及び砂分を主成分とし、山砂並みの粒度分布を得た。   Moreover, the pipework laying back material produced in this example was mainly composed of gravel and sand of 10 mm or less, and obtained a particle size distribution similar to mountain sand.

(比較例2)
比較例2では、機械脱水ケーキを原料とし、実施例4と同様の工程で管工事布設用埋戻材の製造試験を行った。なお、機械脱水ケーキの含水比は93.8%であった。本比較例2における各添加物の添加率は、表2に示す。
(Comparative Example 2)
In Comparative Example 2, a machine dehydration cake was used as a raw material, and a production test of a pipework laying back material was performed in the same process as in Example 4. The water content of the mechanically dehydrated cake was 93.8%. The addition rate of each additive in the present Comparative Example 2 is shown in Table 2.

即ち、ポルトランドセメントの添加率を10%、還元固定剤の添加率を7.5%、山砂の添加率を20%とし、固化効果を調べた。   That is, the addition rate of Portland cement was 10%, the addition rate of reducing fixative was 7.5%, and the addition rate of mountain sand was 20%, and the solidification effect was examined.

すると、製造された管工事布設用埋戻材は、CBR値が45%となり、強度を発現できた。この結果を試験番号15の結果と比較すると、ポルトランドセメントの添加率を低減しても、山砂の添加率を増加させることによって、管工事布設用埋戻材は同等の強度が得られることが分かった。   Then, the manufactured pipework laying back material had a CBR value of 45% and was able to exhibit strength. When this result is compared with the result of test number 15, even if the addition rate of Portland cement is reduced, the backfill material for pipe construction laying can be obtained with the same strength by increasing the addition rate of mountain sand. I understood.

つまり、山砂の添加率を増加させることによって、ポルトランドセメントの添加率を低減しても、目標の強度を得ることができるので、管工事布設用埋戻材を安価に製造できる。   That is, by increasing the addition rate of mountain sand, even if the addition rate of Portland cement is reduced, the target strength can be obtained, so that the pipework laying backfill material can be manufactured at low cost.

(実施例5)
本実施例では、活性炭が混入した天日乾燥式高含水浄水汚泥を原料とし、管工事布設用埋戻材の製造試験を行った。なお、天日乾燥式高含水浄水汚泥の含水比は532.9%又は580.3%であった。
(Example 5)
In this example, a production test of a backfill material for pipe construction was conducted using sun-dried high water content purified water sludge mixed with activated carbon as a raw material. The water content of the sun-drying high water content purified water sludge was 532.9% or 580.3%.

Figure 2006088051
Figure 2006088051

表3は、本発明の実施例5の実験結果を示す表である。   Table 3 is a table | surface which shows the experimental result of Example 5 of this invention.

即ち、試験番号20〜25では、ポルトランドセメントの添加率を15%、還元固定剤の添加率を7.5%とし、生石灰の添加率を5〜15%、山砂の添加率を20〜30%、及び石炭灰の添加率を10〜20%と変化させて固化効果を調べた。   That is, in the test numbers 20 to 25, the addition rate of Portland cement is 15%, the addition rate of the reducing fixing agent is 7.5%, the addition rate of quick lime is 5 to 15%, and the addition rate of mountain sand is 20 to 30. % And the addition rate of coal ash were changed to 10 to 20%, and the solidification effect was examined.

本実施例における管工事布設用埋戻材の製造は、まず、生石灰、山砂及び石炭灰を天日乾燥式高含水浄水汚泥に添加し、実験用二軸ミキサを用いて3分間混練する。そして、混練された天日乾燥式高含水浄水汚泥を空気中で減水する。なお、試験番号20〜23の減水期間は3日間であり、試験番号24及び25の減水期間は6日間であった。   In the production of the backfill material for pipe construction laying in this example, first, quick lime, mountain sand and coal ash are added to the sun-dried high water content purified water sludge and kneaded for 3 minutes using an experimental biaxial mixer. Then, the kneaded sun-dried high water content purified sludge is reduced in air. In addition, the water reduction period of the test numbers 20-23 was 3 days, and the water reduction period of the test numbers 24 and 25 was 6 days.

減水後の天日乾燥式高含水浄水汚泥の含水比が150%以下になることを確認した後、ポルトランドセメント(太平洋セメント(株)製)、及び還元固定剤(硫酸第一鉄と珪酸ナトリウムを主成分とする液体、本発明者製)を添加し、実験用二軸ミキサを用いて3分間混練する。混練した天日乾燥式高含水浄水汚泥を室温で4週間養生し、さらに破砕及び造粒し、10mmの篩いを通したものを管工事布設用埋戻材として回収した。   After confirming that the water content of the sun-dried high water content purified sludge after water reduction is 150% or less, Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) and reducing fixative (ferrous sulfate and sodium silicate A liquid containing the main component (made by the present inventor) is added and kneaded for 3 minutes using an experimental biaxial mixer. The kneaded sun-dried high water content purified water sludge was aged at room temperature for 4 weeks, further crushed and granulated, and collected through a 10 mm sieve as a backfill material for pipe construction laying.

得られた管工事布設用埋戻材の強度特性(CBR試験値)及び粒度分布をそれぞれ測定した。測定結果を表3に示す。   The strength characteristics (CBR test value) and particle size distribution of the obtained pipework laying back material were measured. Table 3 shows the measurement results.

試験番号20〜23によると、セメントの添加率を15%とした場合、生石灰、山砂及び石炭灰を添加した管工事布設用埋戻材は、CRB値が106.8%以上であり、大きい強度を発現した。一方、試験番号24及び25によると、セメントの添加率が同一の15%の場合でも、石炭灰を添加せず、生石灰及び山砂を添加した管工事布設用埋戻材は、強度を発現したものの、試験番号20〜23で石炭灰を添加して生成した管工事布設用埋戻材よりCBR値が低かった。   According to Test Nos. 20 to 23, when the cement addition rate is 15%, the pipework laying back material to which quicklime, mountain sand and coal ash are added has a CRB value of 106.8% or more and is large. Strength was developed. On the other hand, according to the test numbers 24 and 25, even when the cement addition rate was the same 15%, the pipework laying back material added with quick lime and mountain sand without adding coal ash developed strength. However, the CBR value was lower than the pipework laying back material produced by adding coal ash in test numbers 20 to 23.

この結果から、活性炭が混入した天日乾燥式高含水浄水汚泥に対し、生石灰及びポルトランドセメントを添加し、更に、補強材を添加することによって、管工事布設用埋戻材の強度を向上させることができる。特に、補強材として、石炭灰を添加することによって、管工事布設用埋戻材の強度を著しく向上させることができる。   From this result, the strength of the backfill material for pipe construction is improved by adding quick lime and Portland cement to the sun-dried high water content purified water sludge mixed with activated carbon, and further adding a reinforcing material. Can do. In particular, by adding coal ash as the reinforcing material, the strength of the pipework laying back material can be significantly improved.

また、本実施例で生成した管工事布設用埋戻材は、10mm以下の礫分及び砂分を主成分とし、山砂並みの粒度分布を得た。   Moreover, the pipework laying back material produced in this example was mainly composed of gravel and sand of 10 mm or less, and obtained a particle size distribution similar to mountain sand.

(比較例3)
比較例3は、活性炭が混入した天日乾燥式高含水浄水汚泥を原料とし、実施例5と同様の工程で管工事布設用埋戻材の製造試験を行った。なお、天日乾燥式浄水汚泥の含水比は532.9%であった。本比較例3における各添加物の添加率は、表3に示す。
(Comparative Example 3)
In Comparative Example 3, a production test of a pipework laying back material was performed in the same process as in Example 5, using sun-dried high water content purified water sludge mixed with activated carbon as a raw material. The water content of the sun-dried clean water sludge was 532.9%. The addition rate of each additive in Comparative Example 3 is shown in Table 3.

即ち、生石灰を添加せず、ポルトランドセメントの添加率を15%、還元固定剤の添加率を7.5%、山砂の添加率を30%とし、固化効果を調べた。   That is, without adding quick lime, the addition rate of Portland cement was 15%, the addition rate of reducing fixative was 7.5%, the addition rate of mountain sand was 30%, and the solidification effect was examined.

すると、管工事布設用埋戻材は、CBR値が6.1%となり、強度を発現しなかった。この結果と試験番号20〜23の結果とを比較すると、生石灰を添加しなかったことが原因であると判断できる。本比較例3では、生石灰を添加しなかったため、高含水浄水汚泥の有機質性状を改良できなかったからである。つまり、有機質性状を改良することによって、ポルトランドセメントであっても浄水汚泥を固化できることが分かる。   Then, the backfill material for pipe construction laying had a CBR value of 6.1% and did not exhibit strength. When this result is compared with the results of Test Nos. 20 to 23, it can be determined that the quick lime was not added. This is because in this comparative example 3, quick lime was not added, so that the organic properties of the high water content purified water sludge could not be improved. In other words, it can be seen that by improving the organic properties, purified water sludge can be solidified even with Portland cement.

(実施例6)
本実施例では、天日乾燥式浄水汚泥、又は活性炭が混入した天日乾燥式高含水浄水汚泥を原料とし、管工事布設用埋戻材の製造試験を行った。
(Example 6)
In the present Example, the production test of the backfill material for pipe construction laying was performed by using as a raw material the sun drying type purified water sludge or the sun drying type high water content purified water sludge mixed with activated carbon.

Figure 2006088051
Figure 2006088051

表4は、本発明の実施例6の実験結果を示す表である。   Table 4 is a table | surface which shows the experimental result of Example 6 of this invention.

管工事布設用埋戻材は、天日乾燥式低含水浄水汚泥が原料の場合は実施例1と同様の工程で製造され、活性炭が混入された高含水浄水汚泥が原料の場合は実施例5と同様の工程で製造される。   The backfill material for pipe construction is manufactured in the same process as in Example 1 when sun-dried low water content purified sludge is the raw material, and Example 5 when the high water content purified water sludge mixed with activated carbon is the raw material. It is manufactured in the same process.

そして、製造された管工事布設用埋戻材の六価クロムの溶出量をそれぞれ調べた。その測定結果を表4に示す。なお、六価クロムの溶出量の測定は、環境庁告示第46号(土壌の汚染に係る環境基準)に従って、ジフェニカルバジド吸光光度法によって測定した。   And the elution amount of the hexavalent chromium of the manufactured pipework laying back material was investigated, respectively. The measurement results are shown in Table 4. The elution amount of hexavalent chromium was measured by diphenicarbazide absorptiometry in accordance with Environmental Agency Notification No. 46 (environmental standard related to soil contamination).

試験番号27〜43によると、セメントの添加率を5〜15%とし、還元固定剤の添加率をセメントの添加率の1/2とすることで、すべての試験で六価クロムの溶出量が土壌環境基準値である0.05mg/l以下に抑えられた。   According to Test Nos. 27 to 43, the elution amount of hexavalent chromium was reduced in all tests by setting the addition rate of cement to 5 to 15% and the addition rate of reducing fixative to 1/2 of the addition rate of cement. The soil environmental standard value was suppressed to 0.05 mg / l or less.

(比較例4)
比較例4では、天日乾燥式浄水汚泥、又は活性炭が混入した天日乾燥式高含水浄水汚泥を原料とし、実施例6と同様の工程で管工事布設用埋戻材の製造試験を行った。なお、比較例4では、還元固定剤を添加せずに管工事布設用埋戻材の製造試験を行った。本比較例4における各添加物の添加率は、表4に示す。
(Comparative Example 4)
In Comparative Example 4, a sun-drying type high-purity purified water sludge mixed with sun-dried water purification sludge or activated carbon was used as a raw material, and a production test of a pipework laying backfill material was performed in the same process as in Example 6. . In Comparative Example 4, a production test of a pipework laying back material was performed without adding a reducing fixative. Table 4 shows the addition ratio of each additive in Comparative Example 4.

試験番号44〜46によると、還元固定剤を添加しない場合、六価クロムの溶出量が土壌環境基準値(0.05mg/l)を超えてしまう。   According to Test Nos. 44 to 46, when no reducing fixative is added, the elution amount of hexavalent chromium exceeds the soil environment standard value (0.05 mg / l).

この結果から、浄水汚泥からセメント固化材を用いて管工事布設用埋戻材を製造する際に還元固定剤を添加することによって、製造された管工事布設用埋戻材の六価クロムの溶出を環境基準値以下に抑えることができることが分かる。つまり、還元固定剤を添加することによって、安全性の高い管工事布設用埋戻材を製造することができる。   From this result, elution of hexavalent chromium in the manufactured pipe laying backfill material was made by adding a reducing fixator when manufacturing the pipe laying backfill material from the purified water sludge using cement solidifying material. It can be seen that can be kept below the environmental standard value. That is, by adding a reducing fixing agent, a highly safe backfilling material for pipe construction can be manufactured.

(実施例7)
本実施例では、底砂が混入された天日乾燥式浄水汚泥を原料とし、管工事布設用埋戻材への製造試験を行った。この天日乾燥式浄水汚泥は、天日乾燥期間中に、トラクタで乾燥床中の汚泥を数回で天地換えを行い、強制的に水分を蒸発させた。そのような天地換えの作業は、トラクタの羽根が乾燥床の底部に敷いた底砂を一部掘り起し、天日乾燥式浄水汚泥に底砂を混入する。天日乾燥式浄水汚泥は、底砂が混入すると、含水比が低減する。更に、天日乾燥式浄水汚泥は、補強材として山砂を添加されたときと同様に、強度が向上する効果もある。
(Example 7)
In this example, a sun-drying type purified water sludge mixed with bottom sand was used as a raw material, and a production test for a pipework laying back material was conducted. This sun-dried water purification sludge was forced to evaporate water by changing the top and bottom of the sludge in the dry bed with a tractor several times during the sun drying period. In such an upside-down work, a part of the bottom sand laid by the tractor blades on the bottom of the dry floor is dug, and the bottom sand is mixed into the sun-dried clean water sludge. When the sun-dried water purification sludge is mixed with bottom sand, the moisture content is reduced. Furthermore, the sun-drying type purified water sludge has an effect of improving the strength as in the case where mountain sand is added as a reinforcing material.

なお、本実施例の底砂混入天日乾燥式浄水汚泥の含水比は、43%前後であった。   In addition, the water content ratio of the sun-dried clean water sludge mixed with bottom sand in this example was around 43%.

Figure 2006088051
Figure 2006088051

本実施例における各添加物の添加率は、表5に示す。   Table 5 shows the addition ratio of each additive in this example.

表5には、試験で浄水汚泥に添加した生石灰の添加率が、浄水汚泥の容積に対する添加物の重量比の%(重量%)で記載されている。また、浄水汚泥に試験で添加した山砂の添加率が、浄水汚泥の容積に対する山砂の容積比の%(容積%)で記載されている。また、試験で生成された管工事布設用埋戻材の粒度分布及び強度特性(CBR試験値)が、記載されている。   In Table 5, the addition rate of quicklime added to the purified water sludge in the test is described in% (% by weight) of the weight ratio of the additive to the volume of the purified water sludge. Moreover, the addition rate of the mountain sand added by the test to the purified water sludge is described in% (volume%) of the volume ratio of the mountain sand to the volume of the purified water sludge. Moreover, the particle size distribution and strength characteristic (CBR test value) of the pipework laying back material generated in the test are described.

即ち、試験番号47では、生石灰の添加率を10%、補強材である山砂の添加率を40%とした。また、試験番号48では、生石灰の添加率を15%、補強材である山砂の添加率を30%とした。このように本実施例では、セメント等を添加せず、生石灰及び山砂のみの添加による固化効果を調べた。   That is, in the test number 47, the addition rate of quick lime was 10%, and the addition rate of mountain sand as a reinforcing material was 40%. Moreover, in the test number 48, the addition rate of quicklime was 15%, and the addition rate of mountain sand which is a reinforcing material was 30%. Thus, in the present Example, the solidification effect by adding only quicklime and mountain sand without adding cement or the like was examined.

本実施例における管工事布設用埋戻材の製造は、まず、実験用ミキサを用いて底砂混入天日乾燥式浄水汚泥を2分間で粘土化した。次に、粘土化した底砂混入天日乾燥式浄水汚泥に生石灰を添加することによって、2分間で減水及び浄水汚泥の有機質性状を改良した。   In the production of the backfill material for pipe construction laying in this example, first, sun-dried clean water sludge mixed with bottom sand was made into clay using a laboratory mixer for 2 minutes. Next, by adding quick lime to sun-dried purified water sludge mixed with bottom sand, the organic properties of the reduced water and purified water sludge were improved in 2 minutes.

次に、減水した底砂混入天日乾燥式浄水汚泥に造粒粉材である生石灰を添加しながら、二軸ミキサより1分間で混合物を造粒した。次に造粒した底砂混入天日乾燥式浄水汚泥に補強材である山砂を混合し、室温で3週間養生して管工事布設用埋戻材を得た。   Next, the mixture was granulated for 1 minute from a biaxial mixer while adding quicklime as a granulated powder material to sun-dried clean water sludge mixed with bottom sand. Next, mountain sand as a reinforcing material was mixed with the granulated bottom sand-mixed sun-dried water purification sludge and cured at room temperature for 3 weeks to obtain a backfill material for pipe construction.

そして、得られた管工事布設用埋戻材の強度特性(CBR試験値)及び粒度分布をそれぞれ測定し、結果を表5に示す。   And the strength characteristic (CBR test value) and particle size distribution of the obtained pipework laying back material were measured, and the results are shown in Table 5.

試験番号47によると、生石灰の添加率を10%、山砂の添加率を40%とした場合、得られた管工事布設用埋戻材は、CBR値が71.5%となった。また、試験番号48によると、生石灰の添加率を15%、山砂の添加率を30%として得られた管工事布設用埋戻材は、CBR値が93.7%となった。   According to test number 47, when the addition rate of quick lime was 10% and the addition rate of mountain sand was 40%, the obtained backfill material for pipe construction laying had a CBR value of 71.5%. Moreover, according to the test number 48, the CBR value of the backfill material for pipe construction laying obtained with the addition rate of quick lime being 15% and the addition rate of mountain sand being 30% was 93.7%.

この結果から、底砂混入天日乾燥式浄水汚泥に、センメント等を添加しなくても、生石灰を10%前後の添加率で添加し、更に、山砂を30%前後の添加率で添加すると、目標値を超える強度の管工事布設用埋戻材を製造することが可能となることが分かった。また、生石灰の添加率を増加させることによって、生成された管工事布設用埋戻材の強度を向上できることが分かった。   From this result, even if no sentiment is added to sun-dried water purification sludge mixed with bottom sand, quick lime is added at an addition rate of about 10%, and mountain sand is added at an addition rate of about 30%. It was found that it was possible to produce a pipe laying backfill material with a strength exceeding the target value. Moreover, it turned out that the intensity | strength of the produced backfill material for pipe construction laying can be improved by increasing the addition rate of quicklime.

また、本実験例で生成した管工事布設用埋戻材は、10mm以下の礫分及び砂分を主成分とし、山砂並みの粒度分布である。   Further, the pipework laying back material generated in this experimental example has a gravel content and sand content of 10 mm or less as main components, and has a particle size distribution similar to mountain sand.

本発明によれば、浄水処理業者は、浄水汚泥を廃棄せずに、リサイクルすることが可能となる。   According to the present invention, it becomes possible for a water purification treatment contractor to recycle without discarding the purified water sludge.

本発明の実施の形態の低含水浄水汚泥から管工事布設用埋戻材を製造する工程のフローチャートである。It is a flowchart of the process of manufacturing the backfill material for pipe construction laying from the low water content purified water sludge of embodiment of this invention. 本発明の実施の形態の高含水浄水汚泥から管工事布設用埋戻材を製造する工程のフローチャートである。It is a flowchart of the process of manufacturing the backfill material for pipe construction laying from the high water content purified water sludge of embodiment of this invention.

Claims (11)

低含水浄水汚泥を原料とする管工事布設用埋戻材の製造方法において、
前記低含水浄水汚泥を粘土化し、その後生石灰が主導する減水材、セメント及びセメント系固化材のうち少なくても一つを添加し、さらに造粒することを特徴とする管工事布設用埋戻材の製造方法。
In the manufacturing method of the backfill material for pipe construction laying using low water content purified water sludge as a raw material,
Backfilling material for pipe construction laying characterized in that the low water content purified water sludge is made into clay, and then at least one of a water reducing material led by quick lime, cement and cement-based solidified material is added, and further granulated. Manufacturing method.
生石灰が主導する減水材、セメント及びセメント系固化材のうち少なくても一つを添加するとは、生石灰が主導する減水材と、セメント又はセメント系固化材と、を添加することであることを特徴とする請求項1に記載の管工事布設用埋戻材の製造方法。   Adding at least one of the water-reducing material led by quick lime, cement and cement-based solidifying material is to add a water-reducing material driven by quick lime and cement or cement-based solidifying material. The manufacturing method of the backfill material for pipe construction laying of Claim 1. 前記低含水浄水汚泥を造粒した後に、養生、分級することを特徴とする請求項1又は2に記載の管工事布設用埋戻材の製造方法。   The method for producing a backfill material for pipe construction laying according to claim 1 or 2, wherein the low water content purified water sludge is granulated and then subjected to curing and classification. 前記低含水浄水汚泥に、補強材を添加することを特徴とする請求項1〜3のいずれか一つに記載の管工事布設用埋戻材の製造方法。   The method for producing a backfill material for pipe construction laying according to any one of claims 1 to 3, wherein a reinforcing material is added to the low water content purified water sludge. 高含水浄水汚泥を原料とする管工事布設用埋戻材の製造方法において、
前記高含水浄水汚泥に、生石灰が主導する減水材と、セメント又はセメント系固化材と、を添加することを特徴とする管工事布設用埋戻材の製造方法。
In the manufacturing method of the backfill material for pipe construction laying using high water content purified water sludge as a raw material,
A method for producing a backfill material for pipe construction laying, comprising adding a water-reducing material led by quick lime and cement or a cement-based solidifying material to the high water content purified water sludge.
前記セメント又はセメント系固化材を添加後、前記高含水浄水汚泥を養生し、その後破砕及び造粒することを特徴とする請求項5に記載の管工事布設用埋戻材の製造方法。   The method for producing a backfill material for pipe construction laying according to claim 5, wherein after adding the cement or cement-based solidifying material, the high water content purified water sludge is cured, and then crushed and granulated. 前記高含水浄水汚泥に、補強材を添加することを特徴とする請求項5又は6に記載の管工事布設用埋戻材の製造方法。   The method for producing a backfill material for pipe construction laying according to claim 5 or 6, wherein a reinforcing material is added to the high water content purified water sludge. 前記補強材は、山砂、石炭灰、石粉、ダスト及びスラグ微粉末から選択された少なくとも一種であることを特徴とする請求項4又は7に記載の管工事布設用埋戻材の製造方法。   The said reinforcing material is at least 1 sort (s) selected from mountain sand, coal ash, stone powder, dust, and slag fine powder, The manufacturing method of the backfill material for pipe construction laying of Claim 4 or 7 characterized by the above-mentioned. 前記セメント又はセメント系固化材と共に還元固定剤を添加することを特徴とする請求項1〜8のいずれか一つに記載の管工事布設用埋戻材の製造方法。   The method for producing a backfill material for pipe construction laying according to any one of claims 1 to 8, wherein a reducing fixing agent is added together with the cement or cement-based solidifying material. 前記還元固定剤は、硫酸第一鉄及び珪酸ナトリウムを主成分とすることを特徴とする請求項9に記載の管工事布設用埋戻材の製造方法。   The method for producing a backfill material for pipe construction according to claim 9, wherein the reducing fixing agent contains ferrous sulfate and sodium silicate as main components. 請求項1〜10に記載の製造方法によって製造された管工事布設用埋戻材であって、粒径が10mm以下、六価クロム溶出量が0.05mg/l以下であることを特徴とする管工事布設用埋戻材。   A pipework laying back material manufactured by the manufacturing method according to claim 1, wherein the particle size is 10 mm or less and the hexavalent chromium elution amount is 0.05 mg / l or less. Backfill material for pipe construction laying.
JP2004277389A 2004-09-24 2004-09-24 Manufacturing method of pipework laying back material and pipework laying back material Active JP4139371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277389A JP4139371B2 (en) 2004-09-24 2004-09-24 Manufacturing method of pipework laying back material and pipework laying back material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277389A JP4139371B2 (en) 2004-09-24 2004-09-24 Manufacturing method of pipework laying back material and pipework laying back material

Publications (2)

Publication Number Publication Date
JP2006088051A true JP2006088051A (en) 2006-04-06
JP4139371B2 JP4139371B2 (en) 2008-08-27

Family

ID=36229528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277389A Active JP4139371B2 (en) 2004-09-24 2004-09-24 Manufacturing method of pipework laying back material and pipework laying back material

Country Status (1)

Country Link
JP (1) JP4139371B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190949A (en) * 2008-02-15 2009-08-27 Hitachi Ltd Granule for civil engineering use using dehydrated cake as by-product in water purification plant and crushed stone powder and preparation method thereof
CN103979758A (en) * 2014-06-01 2014-08-13 许盛英 Acidified sludge
JP2015127050A (en) * 2013-11-29 2015-07-09 国立大学法人横浜国立大学 Granulation solidification method of liquid mud

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190949A (en) * 2008-02-15 2009-08-27 Hitachi Ltd Granule for civil engineering use using dehydrated cake as by-product in water purification plant and crushed stone powder and preparation method thereof
JP2015127050A (en) * 2013-11-29 2015-07-09 国立大学法人横浜国立大学 Granulation solidification method of liquid mud
CN103979758A (en) * 2014-06-01 2014-08-13 许盛英 Acidified sludge

Also Published As

Publication number Publication date
JP4139371B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
Wang et al. A novel type of controlled low strength material derived from alum sludge and green materials
EP2655279B1 (en) Method for producing aggregates from cement compositions
Wang et al. Recycling fresh concrete waste: A review
KR100921334B1 (en) Environment-conscious embankment material using high-volume industrial waste and manufacturing method thereby
KR100956593B1 (en) Manufacturing method of artificial soil by solidifying organic or inorganic sludge
KR100842769B1 (en) The method of construction materials
JP4665259B2 (en) Effective use of construction sludge
KR101525034B1 (en) Environment-conscious embankment material using high-volume industrial waste by hydration reaction of phosphogypsum-slag
JP5533690B2 (en) Granular materials for civil engineering work
JP4139371B2 (en) Manufacturing method of pipework laying back material and pipework laying back material
KR100889393B1 (en) Recycling composition of sewage or waste water sludge, sidewalk block and making method of sidewalk block using it
JP3803076B2 (en) Admixture for soil stabilization and soil stabilization method using the same
KR101068008B1 (en) The construction material utilizing sludge and its manufacturing method
JP4112666B2 (en) Solidified material
JP2005041750A (en) Industrial waste regenerated aggregate and method of producing the same
JP4014400B2 (en) Soil treatment material composition and method for producing the same
JP3086200B2 (en) Solidification and stabilization of molten fly ash
JP4450519B2 (en) Construction sludge treatment method
JP2003171160A (en) Regenerated aggregate obtained from industrial waste material
JPH0739845A (en) Production of recycling materials from refuse incineration ashes, sewer sludge incineration ashes and the like
KR102631822B1 (en) Mixed composition containing inorganic waste composition, And the material using a mix composition
KR102571724B1 (en) Marine grout material using shell and marine grouting method using the same
JP5117930B2 (en) Neutral solidification method of mud and new stone-kow-based solidification improver
KR102370546B1 (en) Composition for building or civil engineering materials used for manufacturing fish reef and so on, wchich comprises waste shells, aggregates, Masato, soil hardener and sodium alginate and a construction or civil structure manufacturing method using the sam
JP3980109B2 (en) Incineration ash firing method / fired product and method of using the fired product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4139371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250