JP2006087390A - Method for separating acidic oligosaccharide - Google Patents

Method for separating acidic oligosaccharide Download PDF

Info

Publication number
JP2006087390A
JP2006087390A JP2004279380A JP2004279380A JP2006087390A JP 2006087390 A JP2006087390 A JP 2006087390A JP 2004279380 A JP2004279380 A JP 2004279380A JP 2004279380 A JP2004279380 A JP 2004279380A JP 2006087390 A JP2006087390 A JP 2006087390A
Authority
JP
Japan
Prior art keywords
oligosaccharides
acidic
neutral
oligosaccharide
sugar solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279380A
Other languages
Japanese (ja)
Other versions
JP2006087390A5 (en
Inventor
Hiroyuki Miyawaki
洋之 宮脇
Kiyoshi Shibanuma
清 柴沼
Takahisa Yamaura
孝久 山浦
Manabu Ikemoto
学 池元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANWA DENBUN KOGYO KK
Nippon Rensui Co
Sanwa Starch Co Ltd
Original Assignee
SANWA DENBUN KOGYO KK
Nippon Rensui Co
Sanwa Starch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANWA DENBUN KOGYO KK, Nippon Rensui Co, Sanwa Starch Co Ltd filed Critical SANWA DENBUN KOGYO KK
Priority to JP2004279380A priority Critical patent/JP2006087390A/en
Publication of JP2006087390A publication Critical patent/JP2006087390A/en
Publication of JP2006087390A5 publication Critical patent/JP2006087390A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently, simply and selectively separating acidic oligosaccharides from a saccharide mixture solution containing acidic oligosaccharides and neutral components (neutral oligosaccharides and monosaccharides). <P>SOLUTION: In this method for selectively separating the acidic oligosaccharides from the saccharide mixture solution containing acidic oligosaccharides and the neutral components comprising neutral oligosaccharides and monosaccharides, the saccharide mixture solution is fed to a chromatographic separator in which a cationic ion-exchanging resin is used as a separating agent whereby the saccharide mixture solution is separated into an acidic oligosaccharide-rich fraction and a neutral components-rich fraction. In a preferred embodiment, the saccharide mixture solution is a hydrolzate of plant cell wall and the acidic oligosaccharides are saccharides prepared by allowing a weak acid to link to hardly digestive oligosaccharides. In addition, more than 90 wt.% of the oligosaccharides and monosaccharides in the separated neutral component-rich fraction preferably has a molecular weight of 680 or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸性オリゴ糖と、中性オリゴ糖及び単糖からなる中性成分とを含む混合糖液から酸性オリゴ糖を選択的に分離する方法に関し、具体的には植物細胞壁の加水分解物から、腸内ビフィズス菌増殖促進作用等の有用な性質を有する酸性オリゴ糖を選択的に分離する方法に関する。   The present invention relates to a method for selectively separating acidic oligosaccharides from a mixed sugar solution containing acidic oligosaccharides and neutral components consisting of neutral oligosaccharides and monosaccharides, specifically, plant cell wall hydrolysates. The present invention relates to a method for selectively separating acidic oligosaccharides having useful properties such as intestinal bifidobacteria growth promoting action.

オリゴ糖は単糖が二個から十数個重合した糖質であり、自然界に様々な形で存在する。オリゴ糖の中でも難消化性のものは、経口摂取した場合、消化液で実質的に分解されずに大腸に到達し、腸内ビフィズス菌によって選択的に資化されるため、腸内ビフィズス菌を増殖させて腸内細菌叢を改善する作用を有する。また、難消化性オリゴ糖はその具体的なメカニズムは明確に解明されていないが、体脂肪蓄積抑制作用も有する。   Oligosaccharides are carbohydrates in which 2 to 10 monosaccharides are polymerized, and exist in various forms in nature. Some of the oligosaccharides that are indigestible, when taken orally, reach the large intestine without being substantially decomposed by the digestive fluid and are selectively assimilated by the intestinal bifidobacteria. Proliferates and improves the intestinal flora. In addition, the specific mechanism of indigestible oligosaccharides has not been clearly elucidated, but also has an effect of suppressing body fat accumulation.

従来、様々なオリゴ糖が腸内ビフィズス菌増殖因子や体脂肪蓄積抑制因子として使用されているが(非特許文献1〜6、特許文献1)、これらのオリゴ糖はいずれも糖であるがゆえに多少とも甘味を有している。しかし、肥満や糖尿病の忌避から甘味に対して良くないイメージを保持する消費者もいる。従って、甘味以外に例えば酸味等の味覚を有するビフィズス増殖因子を提供することは、市場的意義が大きい。さらに、体脂肪蓄積抑制効果を強調して販売する場合、甘味とは異なる味覚が、一般に消費者に受け入れられ易い。   Conventionally, various oligosaccharides have been used as intestinal bifidobacterial growth factors and body fat accumulation inhibitory factors (Non-patent Documents 1 to 6, Patent Document 1), and these oligosaccharides are all sugars. It has some sweetness. However, some consumers retain a bad image of sweetness because of obesity and diabetes avoidance. Therefore, providing a bifido growth factor having a taste such as acidity in addition to sweetness has great market significance. Furthermore, when selling with emphasis on the effect of suppressing body fat accumulation, a taste different from sweet taste is generally easily accepted by consumers.

かかる従来技術の現状に鑑み、出願人は別途同日付の出願において、甘味ではなく酸味を有するオリゴ糖として、難消化性オリゴ糖に弱酸が結合された分子構造を有する酸性オリゴ糖を提案している。この酸性オリゴ糖は、例えばトウモロコシの種皮等の植物細胞壁を酸及び/又は酵素で加水分解することにより得ることができるとされている。   In view of the current state of the prior art, the applicant has proposed an acidic oligosaccharide having a molecular structure in which a weak acid is bound to an indigestible oligosaccharide as an oligosaccharide having a sour taste instead of a sweet taste, in an application of the same date. Yes. It is said that this acidic oligosaccharide can be obtained, for example, by hydrolyzing plant cell walls such as corn seed coat with acid and / or enzyme.

しかしながら、植物細胞壁の加水分解物に含まれるオリゴ糖のうち、酸性オリゴ糖は約30〜40%であり、残りは弱酸が結合されていない中性オリゴ糖である。また、加水分解物にはオリゴ糖のみならず単糖も若干含まれている。従って、酸性オリゴ糖を得るためには、分解物に含まれる中性成分(中性オリゴ糖及び単糖)を分離除去する必要がある。   However, among oligosaccharides contained in plant cell wall hydrolysates, acidic oligosaccharides are about 30 to 40%, and the rest are neutral oligosaccharides to which weak acids are not bound. In addition, the hydrolyzate contains some monosaccharides as well as oligosaccharides. Therefore, in order to obtain acidic oligosaccharides, it is necessary to separate and remove neutral components (neutral oligosaccharides and monosaccharides) contained in the degradation product.

植物細胞壁の分解物中の中性成分を分離除去する方法として、アニオン交換樹脂を用いた吸着法が従来用いられている。この方法では、植物細胞壁の分解糖液はアニオン交換樹脂を充填したカラムに通液され、その際、酸性成分は樹脂に吸着されてカラム中に留まり、一方、中性成分は樹脂に吸着されずにそのまま排出される。吸着した酸性成分は、金属イオン(Ca2+やNa等)を含む塩で溶出することができる。 An adsorption method using an anion exchange resin has been conventionally used as a method for separating and removing neutral components in the degradation product of the plant cell wall. In this method, the decomposition sugar solution of the plant cell wall is passed through a column filled with an anion exchange resin. At that time, acidic components are adsorbed on the resin and remain in the column, while neutral components are not adsorbed on the resin. It is discharged as it is. The adsorbed acidic component can be eluted with a salt containing metal ions (Ca 2+ , Na +, etc.).

この方法は高純度の酸性オリゴ糖を得るのに適しているが、酸性オリゴ糖に結合している酸が弱酸であるため、交換樹脂から容易に脱離して中性オリゴ糖と混合しやすく、そのためアニオン交換樹脂にはごく少量の酸性オリゴ糖しか吸着されず、結果として分離装置の容量が大きくなり、効率が悪いという欠点がある。また、アニオン交換樹脂からの酸性オリゴ糖の脱離に塩を用いるため、分離工程後に脱塩工程を挿入する必要があり、工程が複雑になるという欠点がある。
奥,栄養学雑誌,44,291(1986) 石川等,ビフィズス,9,5,(1995) Hara et al.,Bifdobact.Microflora.,13,51,(1994) 坂井等,澱粉化学,63,167(1990) Agheli et al.,J of Nutr.,128, 1283,(1998) 林等,医学と生物学,119,15(1989) 特開平10−290681号公報
This method is suitable for obtaining high-purity acidic oligosaccharides, but since the acid bound to acidic oligosaccharides is a weak acid, it can be easily detached from the exchange resin and easily mixed with neutral oligosaccharides. Therefore, only a very small amount of acidic oligosaccharide is adsorbed on the anion exchange resin, resulting in a disadvantage that the capacity of the separation apparatus is increased and the efficiency is poor. Further, since a salt is used for detachment of the acidic oligosaccharide from the anion exchange resin, it is necessary to insert a desalting step after the separation step, and there is a drawback that the step becomes complicated.
Oku, Nutrition Journal, 44, 291 (1986) Ishikawa et al., Bifidos, 9, 5, (1995) Hara et al. , Bifdobact. Microflora. , 13, 51, (1994) Sakai et al., Starch Chemistry, 63, 167 (1990) Agheli et al. , J of Nutr. , 128, 1283, (1998) Hayashi et al., Medicine and Biology, 119, 15 (1989) Japanese Patent Laid-Open No. 10-290681

本発明はかかる従来技術の現状に鑑み創案されたものであり、その目的は、酸性オリゴ糖と中性成分(中性オリゴ糖及び単糖)を含む混合糖液から酸性オリゴ糖を選択的に分離する効率的かつ簡便な方法を提供することである。   The present invention was created in view of the current state of the prior art, and its purpose is to selectively select acidic oligosaccharides from a mixed sugar solution containing acidic oligosaccharides and neutral components (neutral oligosaccharides and monosaccharides). It is to provide an efficient and simple method of separation.

本発明者はかかる課題を解決するために酸性オリゴ糖と中性成分の混合糖液からの酸性オリゴ糖の分離方法について鋭意検討した結果、カチオン交換樹脂を分離剤として使用したクロマトグラフィー分離処理に混合糖液を供することにより、酸性オリゴ糖を主成分とする糖液を効率的かつ簡便に得ることができることを見出し、遂に本発明を完成するに至った。   In order to solve such problems, the present inventor has intensively studied a method for separating acidic oligosaccharides from a mixed sugar solution of acidic oligosaccharides and neutral components. It has been found that by providing a mixed sugar solution, a sugar solution mainly composed of acidic oligosaccharides can be obtained efficiently and simply, and the present invention has finally been completed.

即ち、本発明によれば、酸性オリゴ糖と、中性オリゴ糖及び単糖からなる中性成分とを含む混合糖液から酸性オリゴ糖を選択的に分離する方法において、カチオン交換樹脂を分離剤として使用したクロマトグラフィー分離処理に前記混合糖液を供し、それにより前記混合糖液を酸性オリゴ糖に富む画分と中性成分に富む画分に分離する工程を含むことを特徴とする方法が提供される。   That is, according to the present invention, in the method for selectively separating acidic oligosaccharides from a mixed sugar solution containing acidic oligosaccharides and neutral components consisting of neutral oligosaccharides and monosaccharides, the cation exchange resin is separated as a separating agent. The method comprising the step of subjecting the mixed sugar solution to a chromatographic separation process used as a step, thereby separating the mixed sugar solution into a fraction rich in acidic oligosaccharides and a fraction rich in neutral components. Provided.

本発明の他の好ましい実施態様によれば、混合糖液は植物細胞壁の加水分解物であり、酸性オリゴ糖は、難消化性オリゴ糖に弱酸が結合された糖である。   According to another preferred embodiment of the present invention, the mixed sugar solution is a hydrolyzate of plant cell walls, and the acidic oligosaccharide is a sugar in which a weak acid is bound to an indigestible oligosaccharide.

本発明の他の好ましい実施態様によれば、分離された中性成分に富む画分に含まれるオリゴ糖又は単糖の90重量%以上は680以下の分子量(平均分子量)を有する。   According to another preferred embodiment of the present invention, 90% by weight or more of the oligosaccharides or monosaccharides contained in the separated fraction rich in neutral components has a molecular weight (average molecular weight) of 680 or less.

本発明の分離方法において原材料として使用する、酸性オリゴ糖と中性成分を含む混合糖液としては、例えば植物細胞壁の加水分解物を用いることができる。加水分解する植物細胞壁としては、酸性多糖を多く含む材料であればいかなるものも用いることができるが、例えばコーンスターチ製造時の副産物であるトウモロコシの種皮(粒外皮)を用いることができる。加水分解法は例えば特開平11−313700号公報に開示されている酸加水分解及び/又は酵素加水分解法を用いればよい。   As a mixed sugar solution containing acidic oligosaccharides and neutral components used as raw materials in the separation method of the present invention, for example, a hydrolyzate of plant cell walls can be used. As the plant cell wall to be hydrolyzed, any material containing a large amount of acidic polysaccharide can be used. For example, corn seed coat (grain hull), which is a by-product during the production of corn starch, can be used. For the hydrolysis method, for example, acid hydrolysis and / or enzyme hydrolysis disclosed in JP-A-11-313700 may be used.

本発明の分離方法において、原材料である混合糖液中の酸性オリゴ糖の組成は、加水分解に用いた植物細胞壁中の酸性多糖の組成に依存するが、一般的には、難消化性オリゴ糖に弱酸(グルクロン酸等のウロン酸やフェルラ酸)が結合された形の糖である。この弱酸の存在により、オリゴ糖は糖本来の甘味ではなく酸味を呈することができる。また、弱酸のオリゴ糖への結合様式は通常、弱酸残基がオリゴ糖の側鎖として存在する様式であると考えられる。   In the separation method of the present invention, the composition of the acidic oligosaccharide in the mixed sugar liquid that is the raw material depends on the composition of the acidic polysaccharide in the plant cell wall used for the hydrolysis, but generally, it is an indigestible oligosaccharide. It is a sugar in which a weak acid (uronic acid such as glucuronic acid or ferulic acid) is bound. Due to the presence of this weak acid, the oligosaccharide can exhibit an acidity rather than the original sweetness of sugar. Further, the mode of binding of weak acids to oligosaccharides is generally considered to be a mode in which weak acid residues are present as oligosaccharide side chains.

酸性オリゴ糖の基本骨格であるオリゴ糖は、腸内ビフィズス菌増殖促進作用及び体脂肪蓄積抑制作用の主な担い手である。このオリゴ糖の平均重合度は植物細胞壁の加水分解条件によって変化するが、得られる酸性オリゴ糖の粘度の低さ及び取扱いの容易さの観点からは平均重合度は2〜10であることが好ましい。平均重合度のさらに好ましい範囲は2〜8であり、特に好ましい範囲は2〜7である。   Oligosaccharides, which are basic skeletons of acidic oligosaccharides, are the main players in intestinal bifidobacteria growth promoting action and body fat accumulation inhibiting action. Although the average degree of polymerization of this oligosaccharide varies depending on the hydrolysis conditions of the plant cell wall, the average degree of polymerization is preferably 2 to 10 from the viewpoint of low viscosity and ease of handling of the resulting acidic oligosaccharide. . A more preferable range of the average degree of polymerization is 2 to 8, and a particularly preferable range is 2 to 7.

オリゴ糖の平均重合度の制御は加水分解時間や加水分解時の反応溶液のpHを適宜調節することによって行うことができる。なお、本発明において「難消化性オリゴ糖」とは、消化液で実質的に分解されず、従って小腸で吸収されずにそのまま大腸に到達する程度の消化性しか有さないオリゴ糖を意味し、例えばキシロースが複数個重合したキシロオリゴ糖がこれに該当する。また、このオリゴ糖はホモオリゴ糖には限定されず、加水分解に用いる植物細胞壁の組成によっては2種以上の単糖が重合したヘテロオリゴ糖であることもあり得る。   The average degree of polymerization of the oligosaccharide can be controlled by appropriately adjusting the hydrolysis time and the pH of the reaction solution during the hydrolysis. In the present invention, the “indigestible oligosaccharide” means an oligosaccharide that is not substantially decomposed in the digestive fluid and therefore has a digestibility that is not absorbed in the small intestine and reaches the large intestine as it is. For example, xylooligosaccharide in which a plurality of xyloses are polymerized corresponds to this. Moreover, this oligosaccharide is not limited to a homo-oligosaccharide, and depending on the composition of the plant cell wall used for hydrolysis, it may be a hetero-oligosaccharide obtained by polymerizing two or more monosaccharides.

植物細胞壁の加水分解により得られた混合糖液は、カチオン交換樹脂を使用したクロマトグラフィー分離処理に供する前に所望により脱色、脱塩処理を行うが、その手法は何ら限定されるものではない。また、夾雑物中に不溶物が含まれる場合は、クロマトグラフィー前に除去することが望ましい。   The mixed sugar solution obtained by hydrolysis of the plant cell wall is decolored and desalted as desired before being subjected to chromatographic separation using a cation exchange resin, but the method is not limited at all. Moreover, when insoluble matters are contained in the impurities, it is desirable to remove them before chromatography.

脱色および夾雑物の排除は、活性炭や化学合成樹脂を用いて行うことができるが、酸性オリゴ糖を吸着させないもの、あるいはそのような条件で行う必要がある。また着色量が高い場合、粉末活性炭、活性白土、キトサン、化学合成樹脂等で予備脱色することで精製負荷を軽減することができる。ただし、脱色に使用する活性炭や化学合成樹脂の粒径や使用方法は限定されるものではない。   Decolorization and removal of contaminants can be carried out using activated carbon or chemically synthesized resin, but it is necessary to carry out decolorization and those that do not adsorb acidic oligosaccharides or under such conditions. Further, when the amount of coloring is high, the purification load can be reduced by preliminary decolorization with powdered activated carbon, activated clay, chitosan, chemically synthesized resin or the like. However, the particle size and method of use of activated carbon or chemically synthesized resin used for decolorization are not limited.

脱塩処理は、糖液をカチオン交換樹脂、アニオン交換樹脂に順次通液するか、ミックスベッド(カチオン交換樹脂とアニオン交換樹脂の混合品)に通液することで行うことができる。糖液をカチオン交換樹脂、アニオン交換樹脂、ミックスベッドに順次通液することも可能である。また、脱塩負荷を軽減する目的で、電気透析膜を使用することもできる。電気透析膜に用いられる膜は、塩類を通過させ、酸性オリゴ糖を通過させいない孔径を持つため、酸性オリゴ糖を含む糖液を効率よく予備脱塩するのに適している。脱塩に用いるアニオン交換樹脂は特に限定されないが、弱塩基性で酸性オリゴ糖を吸着しないものを用いるか、あるいは弱塩基性で酸性オリゴ糖を吸着しない条件で通液する必要がある。ミックスベッドについても同様である。   The desalting treatment can be performed by sequentially passing the sugar solution through a cation exchange resin and an anion exchange resin, or by passing through a mix bed (mixed product of cation exchange resin and anion exchange resin). It is also possible to sequentially pass the sugar solution through a cation exchange resin, an anion exchange resin, and a mix bed. An electrodialysis membrane can also be used for the purpose of reducing the desalting load. Since the membrane used for the electrodialysis membrane has a pore size that allows salts to pass through and does not allow acidic oligosaccharides to pass through, the membrane is suitable for efficiently pre-desalting a sugar solution containing acidic oligosaccharides. The anion exchange resin used for desalting is not particularly limited, but it is necessary to use a weakly basic one that does not adsorb acidic oligosaccharides, or a weakly basic one that does not adsorb acidic oligosaccharides. The same applies to mixed beds.

着色成分や夾雑物がクロマトグラフィーに用いる樹脂をマスキングし、分離に影響を与える場合は、事前に脱色、夾雑物の排除を行う必要がある。また、含有される塩の金属イオンがカチオン交換樹脂の金属イオンと交換し、結果として分離性能を低下させる場合は、事前に脱塩処理する必要がある。ただし、脱塩処理については、溶離液中にカウンターイオンを混入させるなどして、分離性能の低下を防ぐことができる場合は、この限りではない。   If the coloring component or impurities mask the resin used for chromatography and affect the separation, it is necessary to decolorize and eliminate the impurities in advance. Moreover, when the metal ion of the salt to contain exchanges with the metal ion of a cation exchange resin, and results in lowering | separating performance as a result, it is necessary to desalinate in advance. However, the desalting treatment is not limited to this when the degradation of the separation performance can be prevented by mixing counter ions in the eluent.

脱色、脱塩処理の有無を問わず、クロマトグラフィー分離処理に供する混合糖液中の固形分濃度は、操作上許容を得る範囲でできるだけ高い方が好ましい。通常は固形分濃度50%重量%以上の糖液を用い、特に60±5重量%のものを用いることが望ましい。また、糖液の温度は、微生物の増殖を防止しかつ粘度を低下させるためにも、できるだけ高い方が望ましいが、糖液が着色し易い性質の場合は、温度を上げすぎないように注意する必要がある。通常は60〜70℃で糖液及び水をクロマトグラフィー装置に供給する。   Regardless of the presence or absence of decolorization and desalting treatment, the solid content concentration in the mixed sugar solution to be subjected to the chromatographic separation treatment is preferably as high as possible within a range that allows operation. Usually, it is desirable to use a sugar solution having a solid content concentration of 50% by weight or more, particularly 60 ± 5% by weight. In addition, the temperature of the sugar solution is preferably as high as possible in order to prevent the growth of microorganisms and reduce the viscosity. However, if the sugar solution is easily colored, be careful not to raise the temperature too much. There is a need. Usually, a sugar solution and water are supplied to the chromatography apparatus at 60 to 70 ° C.

クロマトグラフィー分離処理に用いるカチオン交換樹脂は、Na形カチオン交換樹脂であることが望ましく、特にNa塩形としたスチレン−ジビニルベンゼン架橋共重合体のスルホン化物を用いることが望ましい。スチレン−ジビニルベンゼン架橋共重合体としては通常はゲル型のものを用いる。架橋度も低い方が分離性能が良い。クロマトグラフィーでは、混合糖液を酸性オリゴ糖に富む画分と中性成分に富む画分の二つ、または、中性成分に富む画分をさらに2つに分離し、酸性オリゴ糖に富む画分と中性オリゴ糖を多く含む画分、単糖に富む画分の3つに分離する。分離された中性成分に富む画分は、そこに含まれるオリゴ糖又は単糖の90重量%以上が680以下の分子量を有することが好ましい。 The cation exchange resin used for the chromatographic separation treatment is preferably a Na + type cation exchange resin, and particularly preferably a sulfonated styrene-divinylbenzene crosslinked copolymer in Na salt form. As the styrene-divinylbenzene crosslinked copolymer, a gel type is usually used. The lower the degree of crosslinking, the better the separation performance. In chromatography, the mixed sugar solution is separated into two fractions rich in acidic oligosaccharides and a fraction rich in neutral components, or two fractions rich in neutral components, and fractions rich in acidic oligosaccharides. The fraction is separated into three fractions, a fraction rich in neutral oligosaccharides and a fraction rich in monosaccharides. It is preferable that 90% by weight or more of the oligosaccharide or monosaccharide contained therein has a molecular weight of 680 or less in the separated fraction rich in neutral components.

クロマトグラフィーは、特開2000−201700号公報に記載の方法に準じて行うことができる。糖液を酸性オリゴ糖に富む画分と、中性成分に富む画分に分画するには、擬似移動床方式、つまり、分離剤が充填されておりかつ液体が内部を循環的に移動し得るようになっている充填床に、糖液と溶離剤としての水あるいはカウンターイオン混合液を供給し、同時に床内から酸性オリゴ糖に富む画分と中性成分に富む画分とを抜出し、かつこれらの供給口及び抜出口を間欠的に下流のそれに切り替える方式により行うことが好ましい。この場合、床内には液体を常に循環させておき、床への液体の供給及び床からの液体の抜出しを、供給口及び抜出口の切り替えから切り替えまでの間、連続的に行う標準的方法により行うこともできる。また、供給口及び抜出口の切り替えから切り替えまでの間のある時間帯だけ床への液体の供給及び床からの液体の抜出しを行わずに床内の液体の循環だけを行う改変方法(図2、及び特開平2−49159号公報参照)により行うこともできる。   Chromatography can be performed according to the method described in JP 2000-201700 A. In order to fractionate the sugar liquid into a fraction rich in acidic oligosaccharides and a fraction rich in neutral components, the simulated moving bed method, that is, the separation agent is filled and the liquid circulates in the interior cyclically. Supply the sugar solution and water or eluent mixture as eluent to the packed bed, and simultaneously extract the fraction rich in acidic oligosaccharide and the fraction rich in neutral components from the bed, And it is preferable to carry out by the system which switches these supply ports and outlets to those downstream downstream. In this case, a standard method in which liquid is constantly circulated in the floor, and the supply of liquid to the floor and the extraction of liquid from the floor are continuously performed from the switching of the supply port and the outlet to the switching. Can also be performed. Also, a modification method (FIG. 2) in which only the liquid is circulated in the floor without supplying the liquid to the floor and extracting the liquid from the floor for a certain period of time between the switching of the supply port and the discharge port. And JP-A-2-49159).

また、別法として、特開昭63−158105号公報に記載された方法に従い、分離剤が充填されており、かつ前端と後端とが液体流路で連結されていて液体が床内を循環的に移動し得るようになっている充填床を備えた装置を用いて、次のような半連続方式により行うこともできる。
(i)充填床の前端から糖液を供給し、後端から中性成分に富む画分を抜出す原料供給工程。
(ii)充填床の前端から水またはカウンターイオン混合液を供給し、後端から中性成分に富む画分を抜出す第1脱着工程。
(iii)充填床の前端から水またはカウンターイオン混合液を供給し、後端から酸性オリゴ糖に富む画分を抜出す第2脱着工程。
(iv)充填床への液体の供給及び充填床からの液体の抜出しを行わずに、床内の液体を循環的に移動させ、酸性オリゴ糖と中性成分との混在する帯域を充填床の前端に移動させる循環工程。
Alternatively, according to the method described in JP-A-63-158105, the separating agent is filled and the front end and the rear end are connected by a liquid flow path so that the liquid circulates in the bed. It is also possible to carry out the following semi-continuous method using an apparatus equipped with a packed bed that can be moved in an automatic manner.
(I) A raw material supply step of supplying a sugar solution from the front end of the packed bed and extracting a fraction rich in neutral components from the rear end.
(Ii) A first desorption step of supplying water or a counter ion mixture from the front end of the packed bed and extracting a fraction rich in neutral components from the rear end.
(Iii) A second desorption step of supplying water or a counter ion mixture from the front end of the packed bed and extracting a fraction rich in acidic oligosaccharides from the rear end.
(Iv) The liquid in the bed is moved cyclically without supplying the liquid to the packed bed and withdrawing the liquid from the packed bed, and the zone where the acidic oligosaccharide and the neutral component are mixed is formed in the packed bed. Circulation process to move to the front end.

いずれの方式のクロマトグラフィーによる場合でも、酸性成分に富む画分中には、供給した糖液中の酸性オリゴ糖の70重量%以上、特に80%重量以上が含まれるように操作することが好ましい。また、中性成分に富む溶液中には供給した糖液中の中性成分中の70%が含まれるように操作することが好ましい。なお、糖液に対する水またはカウンターイオン混合液の供給比は、通常5倍(容積比)以上であるが、擬似移動床方式の方が一般に水またはカウンターイオン混合液の供給比を小さくすることができる。   In any case of chromatography, it is preferable to operate so that the fraction rich in acidic components contains 70% by weight or more, particularly 80% by weight or more of acidic oligosaccharides in the supplied sugar liquid. . Moreover, it is preferable to operate so that the solution rich in neutral components may contain 70% of the neutral components in the supplied sugar liquid. The supply ratio of water or counter ion mixture to sugar liquid is usually 5 times (volume ratio) or more, but the simulated moving bed method generally reduces the supply ratio of water or counter ion mixture. it can.

糖液を酸性オリゴ糖に富む画分、中性オリゴ糖を多く含む画分、並びに単糖に富む画分の3つの画分に分画するには、特開昭63−158105号公報の記載に従い、分離剤が充填されており、かつ前端と後端とが液体流路で連結されていて液体が床内を循環的に移動し得るようになっている充填床を用いて、次の第1工程〜第4工程からなるサイクルを反復する半連続方式により行うことが好ましい(図3も参照)。
(i)充填床の前端から糖液を供給し、充填床の後端から、中性オリゴ糖を多く含む画分を抜出す第1工程。
(ii)充填床への液体の供給及び充填床からの液体の抜出しを行わずに、床内の液体を循環的に移動させることにより、酸性オリゴ糖、中性オリゴ糖、単糖が混在する帯域を充填床の前端に移動させる第2工程。
(iii)充填床の前端から水またはカウンターイオン混合液を供給し、充填床の後端から単糖に富む画分、及び酸性オリゴ糖に富む画分をこの順序で抜出す第3工程。
(iv)充填床への液体の供給及び充填床からの液体の抜出しを行わずに、床内の液体を循環的に移動させることにより、酸性オリゴ糖、中性オリゴ糖、単糖が混在する帯域を充填床の前端に移動させる第4工程。
To fractionate a sugar solution into three fractions rich in acidic oligosaccharides, a fraction rich in neutral oligosaccharides, and a fraction rich in monosaccharides, the description of JP-A-63-158105 In accordance with the following, a packed bed in which the separating agent is filled and the front end and the rear end are connected by a liquid flow path so that the liquid can circulate in the bed is used. It is preferable to carry out by the semi-continuous system which repeats the cycle which consists of 1 process-4th process (refer also FIG. 3).
(I) A first step of supplying a sugar solution from the front end of the packed bed and extracting a fraction containing a large amount of neutral oligosaccharides from the rear end of the packed bed.
(Ii) Acid oligosaccharides, neutral oligosaccharides, and monosaccharides are mixed by circulating the liquid in the bed without supplying the liquid to the packed bed and withdrawing the liquid from the packed bed. A second step of moving the zone to the front end of the packed bed;
(Iii) A third step in which water or a counter ion mixture is supplied from the front end of the packed bed, and a fraction rich in monosaccharides and a fraction rich in acidic oligosaccharides are extracted in this order from the rear end of the packed bed.
(Iv) Acid oligosaccharides, neutral oligosaccharides, and monosaccharides are mixed by circulating the liquid in the bed without supplying the liquid to the packed bed and withdrawing the liquid from the packed bed. A fourth step of moving the zone to the front end of the packed bed.

上記工程には、いくつかの付加工程を加えることもできる。例えば、糖液中の単糖のうち特定成分を高純度で抜出したい場合であって、3つの画分の分離では求める純度が不十分な場合などは、この前に、予備的な分離として、単糖を分離するクロマトグラフィーを挿入してもよい。例えば、糖液の主な組成が、酸性オリゴ糖、中性オリゴ糖、D−キシロース、L−アラビノースであり、かつ、L−アラビノースについて80%以上の純度の物を得たい場合、先に糖液を例えば、上述の3成分分離で、酸性オリゴ糖と中性オリゴ糖に富む画分、D−キシロースに富む画分、L−アラビノースに富む画分の3つに分離し、その後、酸性オリゴ糖と中性オリゴ糖を富む画分を次のクロマトグラフィーで分離すればよい。その場合は、酸性オリゴ糖の分離精製では、酸性オリゴ糖に富む画分と中性成分に富む画分の2つに分離することになる。   Several additional steps can be added to the above steps. For example, when it is desired to extract a specific component of a monosaccharide in a sugar solution with high purity, and when the purity required by the separation of three fractions is insufficient, before this, as a preliminary separation, Chromatography to separate monosaccharides may be inserted. For example, when the main composition of the sugar solution is acidic oligosaccharide, neutral oligosaccharide, D-xylose, L-arabinose, and L-arabinose is desired to have a purity of 80% or higher, For example, the liquid is separated into three fractions rich in acidic oligosaccharide and neutral oligosaccharide, fraction rich in D-xylose, and fraction rich in L-arabinose by the above-mentioned three-component separation, and then the acidic oligosaccharide A fraction rich in sugar and neutral oligosaccharide may be separated by the following chromatography. In that case, separation and purification of acidic oligosaccharides separates into two fractions rich in acidic oligosaccharides and a fraction rich in neutral components.

実施例
以下、実施例により本発明を更に詳しく説明するが、発明はこれに限定される物ではない。
Examples Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

(1)粗精製混合糖液の調製
トウモロコシの種皮にシュウ酸を添加してpHを2付近に調整し、130℃で30分〜2時間の適当な時間加圧分解して分解糖液を得た。得られた分解糖液を細胞壁分解酵素処理後、粉末活性炭で処理し、脱色、夾雑物排除の処理を行った。脱色糖液は、濃縮後、電気透析膜で塩量を60%除去した。予備脱塩済みの糖液を常法によりイオン交換樹脂に通液することにより脱塩した。この糖液をCa形カチオン交換樹脂(UBK535(三菱化学(株)))によるクロマトグラフィー分離処理に供して単糖成分をほぼ分離除去し粗精製混合糖液を得た。この粗精製混合糖液を、Na形とCa形を連結した配位子交換カラムでHPLC分析したところ、酸性のオリゴ糖成分を主成分(34%)とする糖鎖(AO34)であることがわかった(図1、表1)。また、この酸性オリゴ糖の構成糖を調べたところ、10%のグルクロン酸を含むヘテロ糖鎖であることがわかった(表2)。
(1) Preparation of roughly purified mixed sugar solution Add oxalic acid to corn seed coat to adjust the pH to around 2 and pressurize at 130 ° C for 30 minutes to 2 hours to obtain a decomposed sugar solution It was. The obtained degraded sugar solution was treated with cell wall degrading enzyme and then treated with powdered activated carbon to perform decolorization and removal of impurities. The decolorized sugar solution was concentrated, and then the salt content was removed by 60% with an electrodialysis membrane. The preliminarily desalted sugar solution was desalted by passing it through an ion exchange resin by a conventional method. This sugar solution was subjected to a chromatographic separation treatment with a Ca-type cation exchange resin (UBK535 (Mitsubishi Chemical Corporation)) to substantially separate and remove the monosaccharide component to obtain a crude purified mixed sugar solution. When this crudely purified mixed sugar solution was analyzed by HPLC using a ligand exchange column in which Na form and Ca form were linked, it was a sugar chain (AO 34 ) containing an acidic oligosaccharide component as a main component (34%). (Fig. 1, Table 1). Further, when the constituent sugars of this acidic oligosaccharide were examined, it was found to be a hetero sugar chain containing 10% glucuronic acid (Table 2).

Figure 2006087390
Figure 2006087390

Figure 2006087390
Figure 2006087390

(2)カチオン交換樹脂を分離剤として使用したクロマトグラフィー分離処理による、粗精製混合糖液からの酸性オリゴ糖の分離
スチレン−ジビニルベンゼン架橋共重合体のスルホン化物のNa塩(ゲル型、平均粒径220μm、平均容量1.8meq/mL)を内径27mmφのカラムに338mLずつ充填した4個の充填床を、循環路を形成するように連結した装置(図2)を用いる改変された擬似移動床により、(1)で得られた粗精製混合糖液(表1参照)を酸性オリゴ糖に富む画分と中性成分に富む画分に分画した。
操作条件は下記の通りであった。
糖液供給速度 54mL/hr
水供給速度 675mL/hr
中性成分に富む画分の抜出し速度 208mL/hr
酸性オリゴ糖に富む画分の抜出し速度 170mL/hr
循環工程の流速 675mL/hr
供給―抜出し工程 12.4分
循環工程 9.8分
4回の工程の反復により最初の状態に復帰するまでの間における弁(バルブ)の開閉は、図4の表に示す通りであった。表中、○は弁の開いた状態、×は閉じた状態を表す。
分画の結果、表3に示す組成を得ることができた。
(2) Separation of acidic oligosaccharides from crude mixed sugar solution by chromatographic separation using cation exchange resin as a separating agent Na + salt of sulfonated styrene-divinylbenzene crosslinked copolymer (gel type, average Modified simulated movement using an apparatus (Fig. 2) in which four packed beds packed with 338 mL each in a column with a particle diameter of 220 μm and an average capacity of 1.8 meq / mL packed in a column with an inner diameter of 27 mmφ are formed to form a circulation path. The crude purified mixed sugar solution (see Table 1) obtained in (1) was fractionated into a fraction rich in acidic oligosaccharides and a fraction rich in neutral components by the bed.
The operating conditions were as follows:
Sugar solution supply rate 54mL / hr
Water supply speed 675mL / hr
Extraction speed of fractions rich in neutral components 208mL / hr
Extraction rate of fraction rich in acidic oligosaccharides 170mL / hr
Flow rate of the circulation process 675 mL / hr
Supply-extraction process 12.4 minutes Circulation process 9.8 minutes Opening and closing of the valve (valve) until returning to the initial state by repeating four processes was as shown in the table of FIG. In the table, ◯ indicates the opened state of the valve, and × indicates the closed state.
As a result of fractionation, the composition shown in Table 3 could be obtained.

Figure 2006087390
Figure 2006087390

表3から、本発明によれば酸性オリゴ糖と中性成分の混合糖液から酸性オリゴ糖を簡単な工程で効率的に分離することができることが明らかである。   From Table 3, it is clear that according to the present invention, acidic oligosaccharides can be efficiently separated from a mixed sugar solution of acidic oligosaccharides and neutral components by a simple process.

トウモロコシ種皮酸分解物のゲル濾過結果を示す。The gel filtration result of a corn seed husk acid decomposition product is shown. 改変擬似移動床方式のクロマトグラフィー装置の一例を示す。An example of the chromatography apparatus of a modified simulated moving bed system is shown. 半連続式クロマトグラフィー装置の一例を示す。An example of a semi-continuous chromatography apparatus is shown. 擬似移動床での弁の開閉を示す。Shows opening and closing of valves on simulated moving floor.

Claims (4)

酸性オリゴ糖と、中性オリゴ糖及び単糖からなる中性成分とを含む混合糖液から酸性オリゴ糖を選択的に分離する方法において、カチオン交換樹脂を分離剤として使用したクロマトグラフィー分離処理に前記混合糖液を供し、それにより前記混合糖液を酸性オリゴ糖に富む画分と中性成分に富む画分に分離する工程を含むことを特徴とする方法。   In a method for selectively separating acidic oligosaccharides from a mixed sugar solution containing acidic oligosaccharides and neutral components consisting of neutral oligosaccharides and monosaccharides, the chromatographic separation process uses a cation exchange resin as a separating agent. A method comprising the step of providing the mixed sugar solution, thereby separating the mixed sugar solution into a fraction rich in acidic oligosaccharides and a fraction rich in neutral components. 混合糖液が植物細胞壁の加水分解物であることを特徴とする請求項1記載の方法。   2. The method according to claim 1, wherein the mixed sugar solution is a hydrolyzate of plant cell walls. 酸性オリゴ糖が、難消化性オリゴ糖に弱酸が結合された糖であることを特徴とする請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the acidic oligosaccharide is a sugar in which a weak acid is bound to an indigestible oligosaccharide. 分離された中性成分に富む画分に含まれるオリゴ糖又は単糖の90重量%以上が、680以下の分子量を有することを特徴とする請求項1〜3のいずれか一項記載の方法。

The method according to any one of claims 1 to 3, wherein 90% by weight or more of the oligosaccharide or monosaccharide contained in the separated fraction rich in neutral components has a molecular weight of 680 or less.

JP2004279380A 2004-09-27 2004-09-27 Method for separating acidic oligosaccharide Pending JP2006087390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279380A JP2006087390A (en) 2004-09-27 2004-09-27 Method for separating acidic oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279380A JP2006087390A (en) 2004-09-27 2004-09-27 Method for separating acidic oligosaccharide

Publications (2)

Publication Number Publication Date
JP2006087390A true JP2006087390A (en) 2006-04-06
JP2006087390A5 JP2006087390A5 (en) 2007-10-18

Family

ID=36228932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279380A Pending JP2006087390A (en) 2004-09-27 2004-09-27 Method for separating acidic oligosaccharide

Country Status (1)

Country Link
JP (1) JP2006087390A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520504A (en) * 2007-02-09 2009-05-28 シージェイ チェイルジェダン コープ. Method for producing xylitol using hydrolyzed saccharified solution containing xylose and arabinose produced from tropical fruit biomass by-products
JP2012187099A (en) * 2011-02-21 2012-10-04 Shinshu Univ Ferulic acid bonding type saccharide and production method therefor
JP2013507953A (en) * 2009-10-30 2013-03-07 シージェイ チェイルジェダン コーポレイション Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods
JP2016517861A (en) * 2013-04-24 2016-06-20 ユニヴェルシテ ドゥ ランス シャンパーニュ アルデンヌUniversite De Reims Champagne Ardenne Method for obtaining a mixture of neutral oligosaccharides extracted from flax seeds
CN112480283A (en) * 2020-12-28 2021-03-12 湖南中医药大学 Method for preparing neutral oligosaccharide from rhizoma polygonati

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779800A (en) * 1993-09-14 1995-03-28 Snow Brand Milk Prod Co Ltd Separation of sialic acid-containing oligosaccharide
JPH11313700A (en) * 1998-05-01 1999-11-16 Sanwa Kosan Kk Production of l-arabinose by acid hydrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779800A (en) * 1993-09-14 1995-03-28 Snow Brand Milk Prod Co Ltd Separation of sialic acid-containing oligosaccharide
JPH11313700A (en) * 1998-05-01 1999-11-16 Sanwa Kosan Kk Production of l-arabinose by acid hydrolysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520504A (en) * 2007-02-09 2009-05-28 シージェイ チェイルジェダン コープ. Method for producing xylitol using hydrolyzed saccharified solution containing xylose and arabinose produced from tropical fruit biomass by-products
JP4792509B2 (en) * 2007-02-09 2011-10-12 シージェイ チェイルジェダン コープ. Method for producing xylitol using hydrolyzed saccharified solution containing xylose and arabinose produced from tropical fruit biomass by-products
US8283139B2 (en) 2007-02-09 2012-10-09 Cj Cheiljedang Corporation Method of producing xylitol using hydrolysate containing xylose and arabinose prepared from byproduct of tropical fruit biomass
JP2013507953A (en) * 2009-10-30 2013-03-07 シージェイ チェイルジェダン コーポレイション Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods
US9133229B2 (en) 2009-10-30 2015-09-15 Cj Cheiljedang Corporation Economic process for producing xylose from hydrolysate using electrodialysis and direct recovery method
JP2012187099A (en) * 2011-02-21 2012-10-04 Shinshu Univ Ferulic acid bonding type saccharide and production method therefor
JP2016517861A (en) * 2013-04-24 2016-06-20 ユニヴェルシテ ドゥ ランス シャンパーニュ アルデンヌUniversite De Reims Champagne Ardenne Method for obtaining a mixture of neutral oligosaccharides extracted from flax seeds
CN112480283A (en) * 2020-12-28 2021-03-12 湖南中医药大学 Method for preparing neutral oligosaccharide from rhizoma polygonati

Similar Documents

Publication Publication Date Title
US20240026403A1 (en) Process for the Purification of L-Fucose from a Fermentation Broth
JP3604935B2 (en) Sugar purification method
AU696004B2 (en) Method of processing a cheese processing waste stream
US9650590B2 (en) Separation of polar lipids from krill oil extract
US9163050B2 (en) Mannose production from palm kernel meal using simulated moving bed separation
JP2006087390A (en) Method for separating acidic oligosaccharide
JP2004210682A (en) Method for producing composition highly containing functional component of citrus
US5831082A (en) Process for obtaining, by separation, highly pure water-soluble polydextrose
US20220056065A1 (en) Separation of oligosaccharides
JP4749727B2 (en) Method for producing umefural-containing composition
WO2005090612A1 (en) Process for refining sugar solutions and equipment therefor
JP4741824B2 (en) Acidic oligosaccharide
JP5856619B2 (en) Method for producing inulin
RU2789351C2 (en) Method for purification of l-fucose from fermentation broth
Gonçalves Fructo-oligosaccharides recovery from fermentation processes
JP2000232900A (en) Production of dehydrated crystalline glucose
WO2023242184A1 (en) Separation of human milk oligosaccharides from a fermentation broth
DK202200566A1 (en) Separation of human milk oligosaccharides from a fermentation broth
DK202100635A1 (en) Separation of neutral human milk oligosaccharides from a fermentation broth
CN117480001A (en) Separation of human milk oligosaccharides from fermentation broth
CN117651602A (en) Separation of human milk oligosaccharides from fermentation broth
JPH1042899A (en) Purification of sucrose
JPS62118894A (en) Purification of saccharified starch solution
WO2018116489A1 (en) Liquid sweetener composition, method for producing same and beverage
JPH1084985A (en) Production of phosphorylated oligosaccharide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A621 Written request for application examination

Effective date: 20070903

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100625

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100723

Free format text: JAPANESE INTERMEDIATE CODE: A02