JP2006086431A - Wavelength variable light source and wavelength characteristics measuring system - Google Patents

Wavelength variable light source and wavelength characteristics measuring system Download PDF

Info

Publication number
JP2006086431A
JP2006086431A JP2004271409A JP2004271409A JP2006086431A JP 2006086431 A JP2006086431 A JP 2006086431A JP 2004271409 A JP2004271409 A JP 2004271409A JP 2004271409 A JP2004271409 A JP 2004271409A JP 2006086431 A JP2006086431 A JP 2006086431A
Authority
JP
Japan
Prior art keywords
light
wavelength
laser
light intensity
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004271409A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubota
寛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004271409A priority Critical patent/JP2006086431A/en
Publication of JP2006086431A publication Critical patent/JP2006086431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength variable light source where producibility of light intensity of output light is satisfactory, even if wavelength is swept a plurality number of times, and to provide a wavelength characteristic measuring system that uses the wavelength variable light source. <P>SOLUTION: The wavelength variable light source, having a semiconductor laser outputting a laser beam for a prescribed wavelength range, a laser drive circuit supplying laser-driving current to the semiconductor laser, a light-receiving part receiving the laser beam which the semiconductor laser outputs and a current control part for controlling the laser drive current which the laser-driving circuit outputs, based on light intensity of the laser beam which the light-receiving part receives is improved. The light source has a storage part for storing the value of the light intensity at each wavelength and an operation means comparing the value of the light intensity outputted from the light-receiving part with the value of light intensity in the storage part and obtaining laser drive current which the laser-driving circuit outputs. The storage part stores the value of the light intensity, in a range where a change of light intensity of the laser beam becomes constant with respect to the increase/decrease of the laser drive current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、所定の波長範囲にわたってレーザ光を出力する半導体レーザと、この半導体レーザにレーザ駆動電流を供給するレーザ駆動回路と、半導体レーザが出力するレーザ光を受光する受光部と、この受光部が受光したレーザ光の光強度に基づいてレーザ駆動回路が出力するレーザ駆動電流を制御する電流制御部とを備えた波長可変光源およびこの波長可変光源を用いた波長特性測定システムに関し、詳しくは、波長掃引を複数回行なっても出力光の光強度の再現性がよい波長可変光源およびこの波長可変光源を用いた波長特性測定システムに関するものである。   The present invention includes a semiconductor laser that outputs laser light over a predetermined wavelength range, a laser drive circuit that supplies a laser drive current to the semiconductor laser, a light receiving unit that receives the laser light output from the semiconductor laser, and the light receiving unit In particular, the present invention relates to a wavelength tunable light source including a current control unit that controls a laser drive current output from a laser drive circuit based on the light intensity of laser light received by the laser, and a wavelength characteristic measurement system using the wavelength tunable light source. The present invention relates to a wavelength tunable light source with good reproducibility of the intensity of output light even if wavelength sweeping is performed a plurality of times, and a wavelength characteristic measurement system using the wavelength tunable light source.

波長可変光源は、出力光の波長を広範囲にわたって変えることができる。このような波長可変光源で波長掃引し、光学部品、測定器等の波長特性の測定が行なわれる。例えば、波長フィルタの透過特性、ビームスプリッタの分岐比特性、光スイッチのスイッチング特性等が測定される。   The wavelength tunable light source can change the wavelength of the output light over a wide range. Wavelength sweeping is performed with such a wavelength tunable light source, and wavelength characteristics of optical components, measuring instruments, and the like are measured. For example, the transmission characteristics of the wavelength filter, the branching ratio characteristics of the beam splitter, the switching characteristics of the optical switch, and the like are measured.

測定方法は、波長可変光源からの出力光を被測定対象(光学部品、測定器等)に入力する。そして、被測定対象からの出力光を光スペクトラムアナライザや光パワーメータ等の光測定器で測定する。また、波長可変光源の波長を掃引することによって、被測定対象の波長特性が測定される(例えば、特許文献1、特許文献2参照)。   In the measurement method, output light from a wavelength tunable light source is input to an object to be measured (optical component, measuring instrument, etc.). Then, the output light from the measurement target is measured by an optical measuring instrument such as an optical spectrum analyzer or an optical power meter. Further, the wavelength characteristic of the measurement target is measured by sweeping the wavelength of the wavelength tunable light source (see, for example, Patent Document 1 and Patent Document 2).

通常、波長可変光源は、広い波長範囲(例えば、数百[nm])にわたって一定の光強度(光パワーとも呼ばれる)となる出力光を出力することは困難である。これは、半導体レーザのレーザ光の光強度が、半導体レーザを駆動するレーザ駆動電流が一定であっても波長によって異なるからである。   Usually, it is difficult for a wavelength tunable light source to output output light having a constant light intensity (also referred to as optical power) over a wide wavelength range (for example, several hundred [nm]). This is because the light intensity of the laser light from the semiconductor laser varies depending on the wavelength even if the laser drive current for driving the semiconductor laser is constant.

このため、被測定対象の波長特性を測定する際には、波長掃引を2回行なう。まず、被測定対象を接続せずに、波長可変光源と光測定器を直接接続して波長掃引し、1回目の測定を行なう。次に、波長可変光源と光測定器との間に被測定対象を接続して波長掃引し、2回目の測定を行う。そして、1回目の測定と2回目の測定との差分をとることにより、精度よく被測定対象の波長特性を測定することができる。   For this reason, when measuring the wavelength characteristic of the object to be measured, the wavelength sweep is performed twice. First, without connecting the object to be measured, the wavelength variable light source and the optical measuring device are directly connected to sweep the wavelength, and the first measurement is performed. Next, the object to be measured is connected between the wavelength tunable light source and the optical measuring device, the wavelength is swept, and the second measurement is performed. Then, by taking the difference between the first measurement and the second measurement, the wavelength characteristic of the measurement target can be measured with high accuracy.

ちなみに光強度を安定させて出力する場合は、APC(Automatic Power Control)制御を行なってレーザ駆動電流を変化させるか、光アッテネータを用いて変化させる。   Incidentally, when the light intensity is stabilized and output, APC (Automatic Power Control) control is performed to change the laser drive current or using an optical attenuator.

続いて、図4は、半導体レーザへのレーザ駆動電流とレーザ光の光強度の特性(いわゆる、I−L特性)を示した図である。図4において、横軸はレーザ駆動電流の電流値であり、縦軸はレーザ光の光強度である。所定の電流値Itまでは、レーザ光はほとんど出力されない。そして、電流値Itを越えると、電流の増加に比例して、すなわち直線性をもって出力が増加する。さらに、所定の電流値Isを越えると出力が飽和する。また、電流値Isを越えても電流値を増やすと、光出力は減少し、更には半導体レーザが破壊されることもある。通常、出力が飽和する手前の電流値Idで、駆動される。   Next, FIG. 4 is a diagram showing the characteristics (so-called IL characteristics) of the laser drive current to the semiconductor laser and the light intensity of the laser light. In FIG. 4, the horizontal axis represents the current value of the laser drive current, and the vertical axis represents the light intensity of the laser light. Until the predetermined current value It, almost no laser beam is output. When the current value It is exceeded, the output increases in proportion to the increase in current, that is, with linearity. Further, when the predetermined current value Is is exceeded, the output is saturated. Further, if the current value is increased even if the current value Is is exceeded, the optical output decreases and the semiconductor laser may be destroyed. Usually, it is driven at a current value Id before the output is saturated.

そして、半導体レーザの使用環境(例えば、温度等)が変動したり、半導体レーザに注入されるレーザ駆動電流量によって半導体レーザ自体の温度が変動すると、I−L特性も変化する。具体的に、図5を用いて説明する。図5は、温度の変化によるI−L特性の変化を示した図である。ここで、図4と同一のものには同一符号を付し、説明を省略する。   When the environment (for example, temperature) of the semiconductor laser changes or the temperature of the semiconductor laser itself changes due to the amount of laser drive current injected into the semiconductor laser, the IL characteristic also changes. This will be specifically described with reference to FIG. FIG. 5 is a diagram showing a change in IL characteristics due to a change in temperature. Here, the same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.

図5において、温度がTからT1、T2(T≠T1≠T2)に変動すると、特性曲線もAからA1、A2に変化するが、曲線が横軸にそって変化するだけであり、形状は類似である。従って、温度が変化しても、掃引する波長範囲にわたって光強度が一様に変動し、APCも容易である。   In FIG. 5, when the temperature changes from T to T1, T2 (T ≠ T1 ≠ T2), the characteristic curve also changes from A to A1, A2, but the curve only changes along the horizontal axis, and the shape is It is similar. Therefore, even if the temperature changes, the light intensity varies uniformly over the wavelength range to be swept, and APC is easy.

特開2001−308455号公報JP 2001-308455 A 特開2002−299757号公報JP 2002-299757 A

このように2回に分けて測定を行なって差分をとるので、波長可変光源の出力光の光強度が波長によって異なっていても被測定対象の特性を測定することができる。   Thus, since the measurement is performed twice and the difference is taken, the characteristics of the measurement target can be measured even if the light intensity of the output light of the wavelength tunable light source differs depending on the wavelength.

しかしながら、実際の半導体レーザのI−L特性は、全波長にわたって図4に示すように直線性のよいものばかりではない。図6を用いて、説明する。図6は、その他のI−L特性を示した図である。ここで、図4と同一のものには同一符号を付し、説明を省略する。波長によっては、図6(a)に示すように凹凸があり、電流の増加に伴なって出力が下がるものや、図6(b)に示すように、レーザ光が出力されるには大きな電流値Itを必要とし、僅かな温度変化によってレーザ光が出力されないもの等、様々な特性をもつ。   However, the IL characteristics of an actual semiconductor laser are not limited to those having good linearity as shown in FIG. 4 over all wavelengths. This will be described with reference to FIG. FIG. 6 is a diagram showing other IL characteristics. Here, the same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted. Depending on the wavelength, there are irregularities as shown in FIG. 6 (a), and the output decreases as the current increases, and as shown in FIG. 6 (b), a large current is required to output laser light. A value It is required, and various characteristics such as a laser beam that is not output due to a slight temperature change are provided.

そのため、1回目と2回目の測定の間に温度が変化し、I−L特性も変化すると、掃引する波長範囲でAPC制御ができない波長が発生することがある。そのため、1回目と2回目とで出力光の再現性が悪くなり、被測定対象の波長特性を精度よく測定することが難しいという問題があった。   Therefore, when the temperature changes between the first and second measurements and the IL characteristic also changes, a wavelength that cannot be APC controlled in the wavelength range to be swept may be generated. Therefore, the reproducibility of the output light is deteriorated in the first time and the second time, and there is a problem that it is difficult to accurately measure the wavelength characteristic of the measurement target.

そこで本発明の目的は、波長掃引を複数回行なっても出力光の光強度の再現性がよい波長可変光源およびこの波長可変光源を用いた波長特性測定システムを実現することにある。   Accordingly, an object of the present invention is to realize a wavelength tunable light source with good reproducibility of the light intensity of output light even if wavelength sweep is performed a plurality of times, and a wavelength characteristic measurement system using the wavelength tunable light source.

請求項1記載の発明は、
所定の波長範囲にわたってレーザ光を出力する半導体レーザと、
この半導体レーザにレーザ駆動電流を供給するレーザ駆動回路と、
前記半導体レーザが出力するレーザ光を受光する受光部と、
この受光部が受光したレーザ光の光強度に基づいて前記レーザ駆動回路が出力するレーザ駆動電流を制御する電流制御部と
を備えた波長可変光源において、
波長ごとに光強度の値を記憶する記憶部と、
前記受光部から出力される光強度の値と前記記憶部の光強度の値とを比較して前記レーザ駆動回路が出力するレーザ駆動電流を求める演算手段と
を有し、前記記憶部は、前記レーザ駆動電流の増減に対してレーザ光の光強度の変化分が一定となる範囲内の光強度の値を記憶することを特徴とするものである。
The invention according to claim 1
A semiconductor laser that outputs laser light over a predetermined wavelength range;
A laser driving circuit for supplying a laser driving current to the semiconductor laser;
A light receiving portion for receiving laser light output from the semiconductor laser;
In the wavelength tunable light source including the current control unit that controls the laser driving current output from the laser driving circuit based on the light intensity of the laser beam received by the light receiving unit,
A storage unit for storing a light intensity value for each wavelength;
Comparing a light intensity value output from the light receiving unit with a light intensity value of the storage unit to obtain a laser drive current output from the laser drive circuit, and the storage unit, A light intensity value within a range in which a change in the light intensity of the laser light is constant with respect to increase / decrease in the laser drive current is stored.

請求項2記載の発明は、請求項1記載の発明において、
記憶部は、範囲のほぼ中央の電流値に相当する光強度の値を記憶することを特徴とするものである。
The invention according to claim 2 is the invention according to claim 1,
The storage unit stores a light intensity value corresponding to a current value approximately in the center of the range.

請求項3記載の発明は、
被測定対象の波長特性を測定する波長特性測定システムにおいて、
請求項1または2記載の波長可変光源と、
前記被測定対象を介さずに得られる前記波長可変光源からの第1の出力光と前記被測定対象を介して得られる前記波長可変光源からの第2の出力光とを測定し、第1の出力光と第2の出力光との差分から前記被測定対象の波長特性を測定する光測定器と
を有することを特徴とするものである。
The invention described in claim 3
In the wavelength characteristic measurement system that measures the wavelength characteristics of the measurement target,
The wavelength tunable light source according to claim 1 or 2,
Measuring the first output light from the wavelength tunable light source obtained without passing through the measurement object and the second output light from the wavelength tunable light source obtained through the measurement object; It has an optical measuring device for measuring the wavelength characteristic of the object to be measured from the difference between the output light and the second output light.

本発明によれば、以下のような効果がある。
請求項1、2によれば、記憶部が、レーザ駆動電流の増減に対して変化分が一定となる範囲内の光強度の値を、あらかじめ記憶する。そして、出力光の波長掃引を行う場合、演算手段が、記憶部の光強度の値と受光部からの光強度の値とに基づいて、レーザ駆動電流を求める。これにより、温度変化等によってI−L特性が変化しても、一部の波長でAPC制御ができなくなることがない。従って、波長掃引を複数回行なっても出力光の光強度の再現性がよく、被測定対象の波長特性を精度よく測定することができる。
The present invention has the following effects.
According to the first and second aspects, the storage unit stores in advance a light intensity value within a range in which the amount of change is constant with respect to increase or decrease of the laser drive current. Then, when performing wavelength sweeping of the output light, the calculation means obtains the laser drive current based on the light intensity value of the storage unit and the light intensity value from the light receiving unit. Thereby, even if the IL characteristic changes due to a temperature change or the like, the APC control cannot be performed at some wavelengths. Therefore, even if the wavelength sweep is performed a plurality of times, the reproducibility of the light intensity of the output light is good, and the wavelength characteristics of the measurement target can be measured with high accuracy.

請求項2によれば、記憶部が、I−L特性で直線性のよい範囲のほぼ中央付近の電流値に相当する光強度の値を記憶するので、I−L特性の変動の影響を受けにくく、光強度の再現性がさらによくなる。   According to the second aspect of the present invention, the storage unit stores the light intensity value corresponding to the current value near the center of the range having a good linearity with the IL characteristic, so that it is affected by the fluctuation of the IL characteristic. The light intensity is more reproducible.

請求項3によれば、請求項1または2記載の波長可変光源の出力光を用いるので、波長掃引を複数回行なっても出力光の光強度の再現性がよい。これにより、複数回の波長掃引を行なって測定を行なっても、被測定対象の波長特性を精度よく測定することができる。   According to claim 3, since the output light of the wavelength tunable light source according to claim 1 or 2 is used, the reproducibility of the light intensity of the output light is good even if the wavelength sweep is performed a plurality of times. As a result, the wavelength characteristics of the object to be measured can be accurately measured even when measurement is performed by performing multiple wavelength sweeps.

以下図面を用いて本発明の実施の形態を説明する。
[第1の実施例]
図1は、本発明の第1の実施例を示す構成図である。波長可変光源には外部共振器型と内部共振器型とがあるが、ここでは、波長可変範囲が広い外部共振器型の波長可変光源を一例にして説明する。また、モードホップが発生しないリットマン配置型で説明する。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
FIG. 1 is a block diagram showing a first embodiment of the present invention. There are two types of wavelength tunable light sources: an external resonator type and an internal resonator type. Here, an external resonator type wavelength tunable light source having a wide wavelength tunable range will be described as an example. In addition, the description will be made with a Littman arrangement type in which mode hops do not occur.

図1において、光増幅部10は、半導体レーザ11、第1のレンズ12、第2のレンズ13を有する。半導体レーザ11は、一端に反射防止膜11aを有する。第1のレンズ11は、半導体レーザ11の一端(反射防止膜11aのある端面)から出射される光を平行光にし出射する。第2のレンズ13は、半導体レーザ11の他端から出射されるレーザ光を集光する。   In FIG. 1, the optical amplification unit 10 includes a semiconductor laser 11, a first lens 12, and a second lens 13. The semiconductor laser 11 has an antireflection film 11a at one end. The first lens 11 emits the light emitted from one end of the semiconductor laser 11 (the end surface having the antireflection film 11a) as parallel light. The second lens 13 condenses laser light emitted from the other end of the semiconductor laser 11.

波長選択部20は、回折格子21、波長選択ミラー22、ミラー回転手段23とを有し、光増幅部10の一端から入射される光を波長選択し、光増幅部11に帰還する。回折格子21は、光増幅部10からの光および波長選択ミラー22からの光を波長分散する。波長選択ミラー22は、反射手段であり、回折格子21が波長分散した光を回折格子21に反射する。ミラー回転手段23は、波長選択ミラー22を回転し、回折格子21が光増幅部10に帰還する光の波長選択を行う。   The wavelength selection unit 20 includes a diffraction grating 21, a wavelength selection mirror 22, and a mirror rotation unit 23. The wavelength selection unit 20 selects the wavelength of light incident from one end of the optical amplification unit 10 and feeds it back to the optical amplification unit 11. The diffraction grating 21 wavelength-disperses the light from the optical amplification unit 10 and the light from the wavelength selection mirror 22. The wavelength selection mirror 22 is a reflection unit, and reflects the light, which is wavelength-dispersed by the diffraction grating 21, to the diffraction grating 21. The mirror rotating unit 23 rotates the wavelength selection mirror 22 and performs wavelength selection of light that the diffraction grating 21 returns to the optical amplification unit 10.

レーザ駆動回路30は、半導体レーザ11を駆動するためのレーザ駆動電流を半導体レーザ11に出力する。光カプラ40は、第2のレンズ13で集光されるレーザ光が入射され、入射されたレーザ光を2分岐し、一方の分岐光を出力光として出力する。受光部50は、光カプラ40によって分岐された他方の分岐光を受光し、受光したレーザ光の光強度の値を出力する。   The laser drive circuit 30 outputs a laser drive current for driving the semiconductor laser 11 to the semiconductor laser 11. The optical coupler 40 receives the laser beam condensed by the second lens 13, splits the incident laser beam into two, and outputs one branched beam as output light. The light receiving unit 50 receives the other branched light branched by the optical coupler 40 and outputs the value of the light intensity of the received laser light.

電流制御部60は、演算手段61を有し、受光部50が受光したレーザ光(他方の分岐光)の光強度に基づいてレーザ駆動回路30が出力するレーザ駆動電流の電流値を制御する。記憶部70は、所定の波長範囲すなわち波長可変範囲で、波長ごとに光強度の値を記憶する。また、演算手段61は受光部50から出力されるレーザ光の光強度の値と記憶部70の光強度の値とを比較してレーザ駆動回路30が出力するレーザ駆動電流を求める。   The current control unit 60 includes a calculation unit 61 and controls the current value of the laser drive current output from the laser drive circuit 30 based on the light intensity of the laser light (the other branched light) received by the light receiving unit 50. The storage unit 70 stores a light intensity value for each wavelength within a predetermined wavelength range, that is, a wavelength variable range. Further, the calculating means 61 compares the value of the light intensity of the laser beam output from the light receiving unit 50 with the value of the light intensity of the storage unit 70 to obtain the laser driving current output from the laser driving circuit 30.

このような装置の動作を説明する。
まず、記憶部70に各波長における光強度の値を記憶する動作を説明する。所定の波長ごと、例えば、1[nm]間隔で半導体レーザ11のI−L特性を測定する。具体的には、レーザ駆動回路30が出力する電流値を電流計で測定し、受光部50が受光した光強度を測定する。または波長可変光源の出力光を光パワーメータで測定してもよい。
The operation of such an apparatus will be described.
First, an operation of storing the light intensity value at each wavelength in the storage unit 70 will be described. The IL characteristic of the semiconductor laser 11 is measured for each predetermined wavelength, for example, at an interval of 1 [nm]. Specifically, the current value output from the laser drive circuit 30 is measured with an ammeter, and the light intensity received by the light receiving unit 50 is measured. Or you may measure the output light of a wavelength variable light source with an optical power meter.

そして、求めたI−L特性から、レーザ駆動電流の増減に対してレーザ光の光強度の変化分が一定となる範囲、すなわち直線性のよい範囲を探し、この範囲内の光強度の値を記憶部70に格納する、なお、この範囲のうち、ほぼ中央付近の電流値に相当する光強度の値を記憶部70に格納するとよい。   Then, from the obtained IL characteristic, a range where the change in the light intensity of the laser light is constant with respect to the increase / decrease of the laser drive current, that is, a range with good linearity is searched for, The light intensity value stored in the storage unit 70 is preferably stored in the storage unit 70 in this range, which corresponds to the current value near the center.

図2を用いて説明する。図2は、図4、図6に示したI−L特性であり、図4、図6と同一のものは同一符号を付し、説明を省略する。図2に示すように、直線性のよい範囲のほぼ中央の電流値に相当する光強度の値を記憶部70に格納する。例えば、図2(a)であれば電流値Id(a)に対応する光強度の値P(a),図2(b)であれば電流値Id(b)に対応する光強度の値P(b)、図2(c)であれば電流値Id(c)に対応する光強度の値P(c)を記憶部70に記憶する。なお、記憶部70に記憶させるのは、装置を出荷する前の調整時や装置の校正時に行なうとよい。   This will be described with reference to FIG. FIG. 2 shows the IL characteristics shown in FIGS. 4 and 6. The same components as those in FIGS. 4 and 6 are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 2, the light intensity value corresponding to the current value at the approximate center of the range with good linearity is stored in the storage unit 70. For example, in FIG. 2A, the light intensity value P (a) corresponding to the current value Id (a), and in FIG. 2B, the light intensity value P corresponding to the current value Id (b). In FIG. 2B and FIG. 2C, the light intensity value P (c) corresponding to the current value Id (c) is stored in the storage unit 70. Note that the storage in the storage unit 70 is preferably performed at the time of adjustment before shipping the device or at the time of calibration of the device.

光強度が飽和している範囲(Isよりも大きな電流値)や、レーザ光が出力される前の範囲(0〜Itの範囲)は、変化分が一定(変化分=0)で直線性があるが、これらの範囲は、もちろん対象外である。   In the range where the light intensity is saturated (current value larger than Is) and the range before the laser beam is output (range of 0 to It), the change is constant (change = 0) and the linearity is Of course, these ranges are out of scope.

続いて、被測定対象の測定を行なう動作を説明する。
レーザ駆動回路30が、初期値として設定された電流値となるレーザ駆動電流を半導体レーザ11に出力する。これにより、半導体レーザ11の一端から出射された光は、第1のレンズ12で平行光にされ回折格子21に入射する。そして、回折格子21に入射した光は回折格子21によって回折され、波長ごとに異なる角度に波長分散され、波長選択ミラー22に入射する。さらに波長選択ミラー22に入射した光のうち、所望の波長の光のみが、同一の光路で回折格子21に反射される。なお、ミラー回転手段23によって、同一光路で反射する波長の選択を行う。
Next, the operation for measuring the measurement target will be described.
The laser drive circuit 30 outputs a laser drive current having a current value set as an initial value to the semiconductor laser 11. Thereby, the light emitted from one end of the semiconductor laser 11 is converted into parallel light by the first lens 12 and enters the diffraction grating 21. Then, the light incident on the diffraction grating 21 is diffracted by the diffraction grating 21, is wavelength-dispersed at different angles for each wavelength, and enters the wavelength selection mirror 22. Further, only the light having a desired wavelength out of the light incident on the wavelength selection mirror 22 is reflected by the diffraction grating 21 through the same optical path. The mirror rotating means 23 selects the wavelength that is reflected by the same optical path.

そして、回折格子21に入射された光は再度波長分散され、波長選択部20で選択された波長の光のみが第1のレンズ12によって半導体レーザ11で収束し、帰還する。ここで、半導体レーザ11の他端と波長選択ミラー22とにより外部共振器が形成され、レーザ発振が行われる。   Then, the light incident on the diffraction grating 21 is wavelength-dispersed again, and only the light having the wavelength selected by the wavelength selection unit 20 is converged by the semiconductor laser 11 by the first lens 12 and returned. Here, an external resonator is formed by the other end of the semiconductor laser 11 and the wavelength selection mirror 22, and laser oscillation is performed.

一方、反射防止膜11aの施されていない他端から出射したレーザ光は、第2のレンズ13によって集光され、光カプラ40に入射する。そして、光カプラ40が、レーザ光を2分岐し、分岐された一方の分岐光は可変波長光源の出力光として出力され、他方の分岐光は受光部50で受光される。   On the other hand, the laser light emitted from the other end not provided with the antireflection film 11 a is condensed by the second lens 13 and enters the optical coupler 40. Then, the optical coupler 40 splits the laser light into two, one branched light is output as output light of the variable wavelength light source, and the other branched light is received by the light receiving unit 50.

受光部50に設けられるフォトダイオード(図示せず)が、他方の分岐光の光強度に応じた光電流を出力する。そして、受光部50に設けられるIV変換回路(図示せず)が、光電流を電圧に変換する。さらに受光部50に設けられるAD変換回路(図示せず)が、アナログデータをデジタルデータに変換する。そして、受光部50がIV変換回路の出力するアナログデータの電圧値、またはAD変換回路の出力するデジタルデータの電圧値の少なくとも一方を、光強度の値として電流制御部60に出力する。   A photodiode (not shown) provided in the light receiving unit 50 outputs a photocurrent corresponding to the light intensity of the other branched light. Then, an IV conversion circuit (not shown) provided in the light receiving unit 50 converts the photocurrent into a voltage. Further, an AD conversion circuit (not shown) provided in the light receiving unit 50 converts analog data into digital data. Then, the light receiving unit 50 outputs at least one of the voltage value of the analog data output from the IV conversion circuit or the voltage value of the digital data output from the AD conversion circuit to the current control unit 60 as a light intensity value.

そして、電流制御部60が、記憶部70に格納される光強度の値P(a)〜P(c)のなかから、出力する波長に対応する光強度の値、例えば、値P(a)を読み出す。さらに、電流制御部60の演算手段61が、受光部50からの光強度の値と、記憶部70から読み出した光強度の値P(a)とを比較し、レーザ駆動回路30に出力させるレーザ駆動電流の値を求める。さらに、電流制御部60がレーザ駆動回路30を制御して、求めた電流値のレーザ駆動電流を半導体レーザ11へ出力させる。つまり、電流制御部60は、APC回路でもある。   Then, the current control unit 60 selects the light intensity value corresponding to the wavelength to be output from the light intensity values P (a) to P (c) stored in the storage unit 70, for example, the value P (a). Is read. Further, the calculation means 61 of the current control unit 60 compares the light intensity value from the light receiving unit 50 with the light intensity value P (a) read from the storage unit 70, and outputs the laser to the laser driving circuit 30. Determine the value of the drive current. Further, the current control unit 60 controls the laser driving circuit 30 to output a laser driving current having the obtained current value to the semiconductor laser 11. That is, the current control unit 60 is also an APC circuit.

さらに、ミラー回転手段23によって波長選択ミラー22を回転することにより、波長選択部20から光増幅部10に帰還する光の波長を可変でき、出力光の波長掃引を行う。もちろん、ミラー回転手段23の回転に合わせて、次に出力する波長に対応する光強度の値P(b)、P(c)を記憶部70から読み出し、演算手段61が、レーザ駆動電流を演算する。そして、電流制御部60が、レーザ駆動回路30を制御して、半導体レーザ11にレーザ駆動電流を出力させる。   Further, by rotating the wavelength selection mirror 22 by the mirror rotating means 23, the wavelength of the light returning from the wavelength selection unit 20 to the optical amplification unit 10 can be varied, and the wavelength of the output light is swept. Of course, in accordance with the rotation of the mirror rotating means 23, the light intensity values P (b) and P (c) corresponding to the wavelength to be output next are read from the storage unit 70, and the calculating means 61 calculates the laser drive current. To do. Then, the current control unit 60 controls the laser drive circuit 30 to cause the semiconductor laser 11 to output a laser drive current.

このように、記憶部70が、レーザ駆動電流の増減に対して変化分が一定となる範囲内の光強度の値P(a)〜P(c)を、あらかじめ記憶する。そして、出力光の波長掃引を行う場合、演算手段61が、記憶部70の光強度の値と受光部50からの光強度の値とに基づいて、レーザ駆動電流を求める。これにより、温度変化等によってI−L特性が変化しても、一部の波長でAPC制御ができなくなることがない。従って、波長掃引を複数回行なっても出力光の光強度の再現性がよく、被測定対象の波長特性を精度よく測定することができる。   As described above, the storage unit 70 stores in advance the light intensity values P (a) to P (c) within a range in which the amount of change is constant with respect to increase and decrease of the laser drive current. When the wavelength sweep of the output light is performed, the calculation unit 61 obtains a laser drive current based on the light intensity value in the storage unit 70 and the light intensity value from the light receiving unit 50. Thereby, even if the IL characteristic changes due to a temperature change or the like, the APC control cannot be performed at some wavelengths. Therefore, even if the wavelength sweep is performed a plurality of times, the reproducibility of the light intensity of the output light is good, and the wavelength characteristics of the measurement target can be measured with high accuracy.

また、記憶部70が、I−L特性で直線性のよい範囲のほぼ中央付近の電流値Id(a)〜Id(c)に相当する光強度の値P(a)〜P(c)を記憶するので、I−L特性の変動の影響を受けにくく、光強度の再現性がさらによくなる。   In addition, the storage unit 70 provides light intensity values P (a) to P (c) corresponding to current values Id (a) to Id (c) in the vicinity of the center of the range having a good linearity with IL characteristics. Since the data is stored, the light intensity is less affected by fluctuations in the IL characteristic, and the light intensity reproducibility is further improved.

[第2の実施例]
続いて、図1に示す波長可変光源を用いて、被測定対象の波長特性を測定する波長特性測定システムの一例を説明する。ここで、図3は、本発明の第2の実施例を示した構成図である。図3において、波長可変光源100は図1に示す光源である。光測定器101は、例えば、光パワーメータや光スペクトラムアナライザ等であり、波長可変光源100からの出力光が入力される。被測定対象102は、波長可変光源100と光測定器101との間に接続される。
[Second Embodiment]
Next, an example of a wavelength characteristic measurement system that measures the wavelength characteristic of the measurement target using the wavelength variable light source shown in FIG. 1 will be described. Here, FIG. 3 is a block diagram showing a second embodiment of the present invention. In FIG. 3, a wavelength tunable light source 100 is the light source shown in FIG. The optical measuring device 101 is, for example, an optical power meter, an optical spectrum analyzer, or the like, and receives output light from the wavelength variable light source 100. The measurement target 102 is connected between the variable wavelength light source 100 and the optical measuring device 101.

このような装置の動作を説明する。
まず、被測定対象102を接続せずに、波長可変光源100と光測定器101とを直接接続して波長掃引し、1回目の測定を行なう。そして、光測定器101が、被測定対象102を介さずに得られる波長可変光源100からの第1の出力光の光強度を測定し記憶する。
The operation of such an apparatus will be described.
First, the wavelength variable light source 100 and the optical measurement device 101 are directly connected without connecting the measurement target 102 and the wavelength is swept to perform the first measurement. Then, the optical measuring device 101 measures and stores the light intensity of the first output light from the wavelength variable light source 100 obtained without going through the measurement target 102.

次に、波長可変光源100と光測定器101との間に被測定対象102を接続して波長掃引し、2回目の測定を行う。そして、光測定器101が、被測定対象102を介して得られる波長可変光源100からの第2の出力光の光強度を測定し記憶する。   Next, the object to be measured 102 is connected between the wavelength tunable light source 100 and the optical measuring instrument 101, the wavelength is swept, and the second measurement is performed. Then, the optical measuring device 101 measures and stores the light intensity of the second output light from the variable wavelength light source 100 obtained via the measurement target 102.

さらに、光測定器101が、第1の出力光と第2の出力光との差分から被測定対象102の波長特性を測定する。   Further, the optical measuring device 101 measures the wavelength characteristic of the measurement object 102 from the difference between the first output light and the second output light.

このように、波長可変光源100の出力光を用いるので、波長掃引を複数回行なっても出力光の光強度の再現性がよい。これにより、複数回の波長掃引を行なって測定を行なっても、被測定対象102の波長特性を精度よく測定することができる。   Thus, since the output light of the wavelength tunable light source 100 is used, the reproducibility of the light intensity of the output light is good even if the wavelength sweep is performed a plurality of times. As a result, the wavelength characteristics of the object 102 to be measured can be accurately measured even when measurement is performed by performing multiple wavelength sweeps.

なお、本発明はこれに限定されるものではなく、以下のようなものでもよい。
図1に示す装置において、リットマン配置型の外部共振器型の波長可変光源の構成を示したが、外部共振器の構成は、どのようなものでもよい。例えば、波長選択部20に反射手段であるミラーのみを設け、このミラーを光軸に沿って移動させてもよい。また、波長選択部に反射手段である回折格子のみを設け、この回折格子を光軸に沿って移動させてもよい。さらに、外部共振器型でなく内部共振器型でもよい。
In addition, this invention is not limited to this, The following may be sufficient.
In the apparatus shown in FIG. 1, the configuration of the Littman arrangement type external resonator type tunable light source is shown. However, the external resonator may have any configuration. For example, only the mirror which is a reflection means may be provided in the wavelength selection unit 20, and this mirror may be moved along the optical axis. Alternatively, only the diffraction grating as the reflection means may be provided in the wavelength selection unit, and this diffraction grating may be moved along the optical axis. Further, an internal resonator type may be used instead of an external resonator type.

図1に示す装置において、1[nm]間隔で光強度の値P(a)〜P(c)を記憶部70に記憶する構成を示したが、波長間隔はいくつでもよく、等間隔でなくてもよい。   In the apparatus shown in FIG. 1, the configuration in which the light intensity values P (a) to P (c) are stored in the storage unit 70 at intervals of 1 [nm] is shown. May be.

図1に示す装置において、光分岐手段の一例として光カプラ40を用いる構成を示したが、ビームスプリッタやハーフミラー等でもよい。要は、半導体レーザ11からのレーザ光を安定した分岐比で分岐できるものならばよい。   In the apparatus shown in FIG. 1, the configuration using the optical coupler 40 as an example of the optical branching unit is shown, but a beam splitter, a half mirror, or the like may be used. The point is that any laser beam from the semiconductor laser 11 can be branched at a stable branching ratio.

図3に示す装置において、可変波長光源100からの出力光を直接測定した後に、被測定対象102を接続して測定する例を挙げたが、測定する順番は逆でもよい。すなわち、被測定対象102を接続して測定した後に、被測定対象102を外して可変波長光源100からの出力光を直接測定してもよい。   In the apparatus shown in FIG. 3, an example is given in which output light from the variable wavelength light source 100 is directly measured, and then the measurement target 102 is connected and measured. However, the measurement order may be reversed. That is, after the measurement object 102 is connected and measured, the measurement object 102 may be removed and the output light from the variable wavelength light source 100 may be directly measured.

本発明の第1の実施例を示した構成図である。It is the block diagram which showed the 1st Example of this invention. 記憶部70に記憶される光強度の値P(a)〜P(c)を説明した図である。6 is a diagram illustrating light intensity values P (a) to P (c) stored in a storage unit 70. FIG. 本発明の第2の実施例を示した構成図である。It is the block diagram which showed the 2nd Example of this invention. 半導体レーザのI−L特性を示した図である。It is the figure which showed the IL characteristic of a semiconductor laser. 温度変化によるI−L特性の変化を示した図である。It is the figure which showed the change of the IL characteristic by a temperature change. 半導体レーザのその他のI−L特性を示した図である。It is the figure which showed the other IL characteristic of the semiconductor laser.

符号の説明Explanation of symbols

11 半導体レーザ
30 レーザ駆動回路
50 受光部
60 電流制御部
61 演算手段
70 記憶部
100 波長可変光源
101 光測定器
102 被測定対象
DESCRIPTION OF SYMBOLS 11 Semiconductor laser 30 Laser drive circuit 50 Light-receiving part 60 Current control part 61 Calculation means 70 Memory | storage part 100 Wavelength variable light source 101 Optical measuring device 102 Object to be measured

Claims (3)

所定の波長範囲にわたってレーザ光を出力する半導体レーザと、
この半導体レーザにレーザ駆動電流を供給するレーザ駆動回路と、
前記半導体レーザが出力するレーザ光を受光する受光部と、
この受光部が受光したレーザ光の光強度に基づいて前記レーザ駆動回路が出力するレーザ駆動電流を制御する電流制御部と
を備えた波長可変光源において、
波長ごとに光強度の値を記憶する記憶部と、
前記受光部から出力される光強度の値と前記記憶部の光強度の値とを比較して前記レーザ駆動回路が出力するレーザ駆動電流を求める演算手段と
を有し、前記記憶部は、前記レーザ駆動電流の増減に対してレーザ光の光強度の変化分が一定となる範囲内の光強度の値を記憶することを特徴とする波長可変光源。
A semiconductor laser that outputs laser light over a predetermined wavelength range;
A laser driving circuit for supplying a laser driving current to the semiconductor laser;
A light receiving portion for receiving laser light output from the semiconductor laser;
In the wavelength tunable light source including the current control unit that controls the laser driving current output from the laser driving circuit based on the light intensity of the laser beam received by the light receiving unit,
A storage unit for storing a light intensity value for each wavelength;
Comparing a light intensity value output from the light receiving unit with a light intensity value of the storage unit to obtain a laser drive current output from the laser drive circuit, and the storage unit, A wavelength tunable light source that stores a value of light intensity within a range in which a change in light intensity of laser light is constant with respect to increase / decrease in laser drive current.
記憶部は、範囲のほぼ中央の電流値に相当する光強度の値を記憶することを特徴とする請求項1記載の波長可変光源。   The wavelength tunable light source according to claim 1, wherein the storage unit stores a light intensity value corresponding to a current value substantially in the center of the range. 被測定対象の波長特性を測定する波長特性測定システムにおいて、
請求項1または2記載の波長可変光源と、
前記被測定対象を介さずに得られる前記波長可変光源からの第1の出力光と前記被測定対象を介して得られる前記波長可変光源からの第2の出力光とを測定し、第1の出力光と第2の出力光との差分から前記被測定対象の波長特性を測定する光測定器と
を有することを特徴とする波長特性測定システム。
In the wavelength characteristic measurement system that measures the wavelength characteristics of the measurement target,
The wavelength tunable light source according to claim 1 or 2,
Measuring the first output light from the wavelength tunable light source obtained without passing through the measurement object and the second output light from the wavelength tunable light source obtained through the measurement object; A wavelength characteristic measurement system comprising: an optical measuring device that measures the wavelength characteristic of the measurement target from the difference between the output light and the second output light.
JP2004271409A 2004-09-17 2004-09-17 Wavelength variable light source and wavelength characteristics measuring system Pending JP2006086431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271409A JP2006086431A (en) 2004-09-17 2004-09-17 Wavelength variable light source and wavelength characteristics measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271409A JP2006086431A (en) 2004-09-17 2004-09-17 Wavelength variable light source and wavelength characteristics measuring system

Publications (1)

Publication Number Publication Date
JP2006086431A true JP2006086431A (en) 2006-03-30

Family

ID=36164665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271409A Pending JP2006086431A (en) 2004-09-17 2004-09-17 Wavelength variable light source and wavelength characteristics measuring system

Country Status (1)

Country Link
JP (1) JP2006086431A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145104A (en) * 2006-12-06 2008-06-26 Yokogawa Electric Corp Instrument for measuring wavelength characteristics
WO2008126276A1 (en) * 2007-03-30 2008-10-23 Fujitsu Limited Light transmitting apparatus and method for controlling the same
CN107643248A (en) * 2017-09-15 2018-01-30 电子科技大学 A kind of adjustable swept light source of start wavelength and dutycycle based on multiple surface rotating mirror

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145104A (en) * 2006-12-06 2008-06-26 Yokogawa Electric Corp Instrument for measuring wavelength characteristics
WO2008126276A1 (en) * 2007-03-30 2008-10-23 Fujitsu Limited Light transmitting apparatus and method for controlling the same
US8249465B2 (en) 2007-03-30 2012-08-21 Fujitsu Limited Light transmitting apparatus and method for controlling the same
JP5029689B2 (en) * 2007-03-30 2012-09-19 富士通株式会社 Optical transmitter and control method thereof
CN107643248A (en) * 2017-09-15 2018-01-30 电子科技大学 A kind of adjustable swept light source of start wavelength and dutycycle based on multiple surface rotating mirror
CN107643248B (en) * 2017-09-15 2019-11-19 电子科技大学 A kind of adjustable swept light source of start wavelength and duty ratio based on multiple surface rotating mirror

Similar Documents

Publication Publication Date Title
US20220365214A1 (en) On-chip monitoring and calibration circuits for frequency modulated continuous wave lidar
FR2644892A1 (en) LIGHT ABSORPTION GAS DETECTION APPARATUS
CA2371988A1 (en) Wavelength measurement apparatus
US20060088068A1 (en) Low noise swept wavelength laser system and method
JPH0749207A (en) Absolute interference measuring method and laser interferometer suitable for method thereof
JP3774630B2 (en) Optical device and optical spectrum analyzer
EP3848677B1 (en) Optical fiber characteristic measuring device and optical fiber characteristic measuring method
KR101970711B1 (en) Fast calibration and programming optical components
JP2011108910A (en) Optical semiconductor device
JP3459070B2 (en) Diffraction grating rotation angle detector
US6542523B1 (en) Wavelength-variable light source apparatus
JP2006329797A (en) Light wave range finder
US20060126073A1 (en) Displacement measuring interferometer system and method using tunable lasers
US6560255B1 (en) Method and apparatus for characterizing laser modules
JP2006086431A (en) Wavelength variable light source and wavelength characteristics measuring system
JP2002232075A (en) Tunable light source
JP5023094B2 (en) Optical heterodyne spectrum analyzer
US20010002860A1 (en) Distance measuring device and method for adjusting photodetection unit of distance measuring device
US10732105B1 (en) Method and apparatus for characterizing laser gain chips
JP4650783B2 (en) External resonator type tunable light source
CN112082585A (en) Drive current tuning distributed measurement method, device and system based on interference optical signal splicing
JP7332650B2 (en) Optical spectrum analyzer and pulse modulated light measurement method
JP2017044565A (en) Distance measurement device and method
JP2007515769A (en) Laser angle control
CN113670348B (en) High-precision optical fiber distributed physical quantity measuring method, device and system