JP2006085970A - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP2006085970A
JP2006085970A JP2004268089A JP2004268089A JP2006085970A JP 2006085970 A JP2006085970 A JP 2006085970A JP 2004268089 A JP2004268089 A JP 2004268089A JP 2004268089 A JP2004268089 A JP 2004268089A JP 2006085970 A JP2006085970 A JP 2006085970A
Authority
JP
Japan
Prior art keywords
air
fuel cell
air supply
power generation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004268089A
Other languages
Japanese (ja)
Inventor
Atsushi Sakuta
作田  淳
Noboru Iida
飯田  登
Tatsuya Nakamoto
達也 中本
Ryuichi Ono
竜一 大野
Kiyoshi Sawai
澤井  清
Hiroyuki Fukuhara
弘之 福原
Hideki Murakami
秀樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004268089A priority Critical patent/JP2006085970A/en
Publication of JP2006085970A publication Critical patent/JP2006085970A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrostatic Separation (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell device equipped with a structure for removing a foreign matter such as dust, salt water mist, and oil mist contained in the air supplied to the fuel cell generation part. <P>SOLUTION: The air introduced from an air intake port 8 formed at the case 7 by operation of an air supply pump 3 is sucked in the air supply pump 3 through a vapor liquid separation film 9 and/or an electrostatic filter 10, and then sent to the fuel cell power generation part 2. The vapor liquid separation film 9 and the electrostatic filter 10 can be installed selectively at the air intake port 8, the suction port of the air supply pump 3, and the air supply port of the fuel cell power generation part 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、比較的消費電力が大きい携帯機器などの電源として好適な燃料電池装置に関するものである。   The present invention relates to a fuel cell device suitable as a power source for a portable device or the like that consumes a relatively large amount of power.

携帯機器など比較的小型の機器の電源として、その構造が比較的簡単であることからDMFC(直接メタノール燃料電池)が有望視されている。このDMFCは電解質膜を介して燃料とするメタノール水溶液と空気中の酸素とを化学反応させて発電するもので、空気の供給は発電部に強制的に空気を供給するアクティブタイプと、自然循環により発電部に空気を供給するパッシブタイプとが存在する。携帯機器の中でもパソコンのように比較的消費電力が大きい機器(20〜50W)に対応するDMFCでは、送気ポンプにより発電部に比較的大量の空気(5〜10L/min)を強制的に供給するアクティブタイプのものが採用されている。このような送気ポンプを用いたDMFCの基本的構成として、図6に示すような構成が知られている(特許文献1参照)。   As a power source for relatively small devices such as portable devices, DMFC (direct methanol fuel cell) is considered promising because of its relatively simple structure. This DMFC generates electricity by chemically reacting an aqueous methanol solution used as fuel with oxygen in the air via an electrolyte membrane. The supply of air is an active type that forcibly supplies air to the power generation unit, and natural circulation. There is a passive type that supplies air to the power generation unit. DMFC for portable devices (20-50W) with relatively high power consumption, such as personal computers, forcibly supplies a relatively large amount of air (5-10 L / min) to the power generation unit using an air pump. The active type is used. As a basic configuration of a DMFC using such an air supply pump, a configuration as shown in FIG. 6 is known (see Patent Document 1).

図6に示すように、メタノール水溶液と空気とを反応させて発電するDMFC発電部100は、電解質膜110を中心に、一方面側にアノード触媒層122、アノード集電体123、他方面にカソード触媒層132、カソード集電体133を積層して反応膜が形成され、この反応膜のアノード側にメタノール水溶液の流路120を形成したアノード流路体121、カソード側に空気の流路130を形成したカソード流路体131を配して構成されている。前記アノード流路体121の流路120には燃料カートリッジ30に貯留されたメタノール水溶液が送液ポンプ41により供給され、カソード流路体131の流路130には送気ポンプ42から空気が供給される。流路120からアノード触媒層122に染み込んだメタノール水溶液は触媒作用を受けて化学反応し、生成されたプロトンが電解質膜110を透過してカソード触媒層132に染み込んだ酸素と反応することにより電力が生起され、アノード集電体123及びカソード集電体133から発電出力が取り出される。
特開2004−071259号公報(第2〜4頁、図2)
As shown in FIG. 6, a DMFC power generation unit 100 that generates electricity by reacting an aqueous methanol solution with air has an anode catalyst layer 122, an anode current collector 123 on one side, and a cathode on the other side, with an electrolyte membrane 110 at the center. The reaction layer is formed by laminating the catalyst layer 132 and the cathode current collector 133, the anode passage body 121 in which the methanol aqueous solution passage 120 is formed on the anode side of the reaction membrane, and the air passage 130 on the cathode side. The formed cathode channel body 131 is arranged. A methanol aqueous solution stored in the fuel cartridge 30 is supplied to the flow path 120 of the anode flow path body 121 by the liquid feed pump 41, and air is supplied to the flow path 130 of the cathode flow path body 131 from the air feed pump 42. The The methanol aqueous solution soaked into the anode catalyst layer 122 from the flow path 120 is subjected to a chemical reaction and undergoes a chemical reaction, and the generated protons pass through the electrolyte membrane 110 and react with the oxygen soaked into the cathode catalyst layer 132 to generate electric power. The generated power is taken out from the anode current collector 123 and the cathode current collector 133.
JP 2004-071259 A (pages 2 to 4, FIG. 2)

上記従来技術として示したDMFCのような燃料電池装置を例えば携帯機器の電源に適用したとき、携帯機器であるがゆえに様々な環境に曝されることになる。即ち、携帯機器が持ち運ばれる場所によって酸化剤として燃料電池装置に取り込む空気の状態が様々に変化し、空気中に塵埃や塩水ミスト、オイルミストなどが含まれている場合が予想される。携帯機器に限らず燃料電池装置が設置される場所によって空気環境は様々である。   When the fuel cell device such as DMFC shown as the above prior art is applied to, for example, a power source of a portable device, it is exposed to various environments because it is a portable device. That is, it is expected that the state of air taken into the fuel cell device as an oxidizer varies depending on the place where the portable device is carried, and dust, salt water mist, oil mist, etc. are included in the air. The air environment varies depending on where the fuel cell device is installed, not limited to portable devices.

これらの異物が含まれた空気が燃料電池装置内に取り込まれると、送気ポンプの内部に付着してポンプ性能を低下させる恐れがある。また、異物を含む空気が送気ポンプを通過して燃料電池発電部に送給されると、反応膜や空気流路に付着して発電性能や電池寿命を低下させる恐れがある。   If air containing these foreign substances is taken into the fuel cell device, it may adhere to the inside of the air pump and reduce the pump performance. In addition, when air containing foreign matter passes through the air supply pump and is supplied to the fuel cell power generation unit, it may adhere to the reaction membrane and the air flow path and reduce power generation performance and battery life.

本発明は上記従来技術に係る課題に鑑みて創案されたもので、その目的とするところは、空気中に含まれた異物による悪影響を抑制する構造を備えた燃料電池装置を提供することにある。   The present invention was devised in view of the above-described problems of the prior art, and an object of the present invention is to provide a fuel cell device having a structure that suppresses adverse effects caused by foreign matter contained in the air. .

上記目的を達成するための本願第1発明は、空気取入口が形成された筐体内に、電解質膜を介して燃料と空気とを化学反応させて電力を発生させる燃料電池発電部と、前記空気取入口から取り込んだ空気を前記燃料電池発電部に送給する送気ポンプとを収容してなる燃料電池装置であって、前記空気取入口、この空気取入口から前記送気ポンプの吸入口までの吸気流路、送気ポンプの吐出口から前記燃料電池発電部の空気送給口までの送気流路の少なくとも1箇所に、気体を通過させ液体の通過を阻止する気液分離膜が設けられてなることを特徴とするものである。   In order to achieve the above object, the first invention of the present application includes a fuel cell power generation unit that generates electric power by chemically reacting fuel and air through an electrolyte membrane in a housing in which an air intake is formed, and the air A fuel cell device comprising an air pump that feeds air taken in from an intake port to the fuel cell power generation unit, the air intake port, from the air intake port to an intake port of the air feed pump A gas-liquid separation membrane that allows gas to pass therethrough and prevents liquid from passing is provided in at least one location of the air intake flow path, the air supply flow path from the discharge port of the air supply pump to the air supply port of the fuel cell power generation unit. It is characterized by.

上記第1発明の構成によれば、筐体内に取り込む空気中に塵埃や塩水ミスト、オイルミストなどの異物が含まれていても、気液分離膜によって異物の通過が阻止され、異物が除去された空気が送気ポンプあるいは燃料電池発電部に取り入れられるので、送気ポンプに異物が付着することによるポンプ性能の低下やポンプロックの発生が防止でき、燃料電池発電部の空気流路や電解質膜に異物が付着することによる発電性能や電池寿命の低下を防止することができる。従って、長期にわたって性能劣化の少ない燃料電池装置を構成することができ、特に、空気状態が変化する携帯機器の電源として適用するのに好適な燃料電池装置を提供することができる。   According to the configuration of the first aspect of the invention, even if foreign matter such as dust, salt water mist, and oil mist is contained in the air taken into the housing, the gas-liquid separation film prevents passage of the foreign matter and removes the foreign matter. Air is taken into the air supply pump or the fuel cell power generation unit, so that foreign matter adheres to the air supply pump to prevent the pump performance from deteriorating and pump locks. The air flow path and electrolyte membrane of the fuel cell power generation unit It is possible to prevent a decrease in power generation performance and battery life due to foreign matter adhering to the battery. Accordingly, it is possible to configure a fuel cell device with little performance deterioration over a long period of time, and in particular, it is possible to provide a fuel cell device suitable for application as a power source for portable equipment in which the air state changes.

また、本願第2発明は、空気取入口が形成された筐体内に、電解質膜を介して燃料と空気とを化学反応させて電力を発生させる燃料電池発電部と、前記空気取入口から取り込んだ空気を前記燃料電池発電部に送給する送気ポンプとを収容してなる燃料電池装置であって、前記空気取入口、この空気取入口から前記送気ポンプの吸入口に至る吸気流路、送気ポンプの吐出口から前記燃料電池発電部の空気送給口に至る送気流路に、気体を通過させ液体の通過を阻止する気液分離膜又は静電フィルタが選択的に設けられてなることを特徴とするものである。   Further, the second invention of the present application takes in the fuel cell power generation unit that generates electric power by chemically reacting fuel and air through the electrolyte membrane in the casing in which the air intake is formed, and the air intake from the air intake. A fuel cell device that houses an air supply pump that supplies air to the fuel cell power generation unit, the air intake, an intake flow path from the air intake to the intake of the air supply pump, A gas-liquid separation membrane or an electrostatic filter for selectively allowing gas to pass therethrough and preventing passage of liquid is provided in an air supply passage extending from the discharge port of the air supply pump to the air supply port of the fuel cell power generation unit. It is characterized by this.

上記第2発明の構成によれば、筐体内に取り込む空気中に塵埃や塩水ミスト、オイルミストなどの異物が含まれていても、気液分離膜及び静電フィルタによって異物の通過が阻止され、異物が除去された空気が送気ポンプあるいは燃料電池発電部に取り入れられるので、送気ポンプに異物が付着することによるポンプ性能の低下やポンプロックの発生が防止でき、燃料電池発電部の空気流路や電解質膜に異物が付着することによる発電性能や電池寿命の低下を防止することができる。気液分離膜は異物の捕捉が進行することにより送風圧力の低下をまねくので交換する必要が生じるが、静電フィルタを併用することにより、気液分離膜による異物の捕捉量を減少させることができ、交換頻度を減少させることが可能となる。   According to the configuration of the second invention, even if foreign matter such as dust, salt water mist, oil mist is contained in the air taken into the housing, passage of the foreign matter is blocked by the gas-liquid separation membrane and the electrostatic filter, Since the air from which foreign matter has been removed is taken into the air pump or the fuel cell power generation unit, it is possible to prevent deterioration of pump performance and pump lock due to foreign matter adhering to the air supply pump. It is possible to prevent a decrease in power generation performance and battery life due to foreign matters adhering to the road and the electrolyte membrane. The gas-liquid separation membrane will need to be replaced because the trapping of foreign matter will lead to a decrease in the blowing pressure, but the combined use of an electrostatic filter may reduce the amount of foreign matter trapped by the gas-liquid separation membrane. It is possible to reduce the replacement frequency.

上記各構成において、気液分離膜は、開口径が0.1〜10.0μmの領域に分布する細孔が形成されたものとするのが好適で、塵埃やミストの粒子径より小さい細孔径により空気通過を可能にして塵埃の阻止を確実に実施することができる。   In each of the above configurations, the gas-liquid separation membrane preferably has pores distributed in a region having an opening diameter of 0.1 to 10.0 μm, and has a pore diameter smaller than the particle diameter of dust or mist. Thus, air can be passed and dust can be reliably prevented.

また、第2発明の構成において、空気取入口に気液分離膜を設け、吸気流路及び/又は送気流路に静電フィルタを設けることにより、気液分離膜によって筐体内に取り込まれる空気中から異物を除去し、吸気流路に静電フィルタを設けると筐体内に存在する異物が送気ポンプに侵入することが防止でき、送気流路に静電フィルタを設けると送気ポンプから発生した磨耗粉などの異物が燃料電池発電部に侵入することが防止できる。   Further, in the configuration of the second invention, a gas-liquid separation membrane is provided at the air intake, and an electrostatic filter is provided at the intake flow path and / or the air supply flow path, so that the air is taken into the housing by the gas-liquid separation film. If foreign matter is removed from the air and an electrostatic filter is provided in the intake flow path, foreign matter present in the housing can be prevented from entering the air supply pump, and if an electrostatic filter is provided in the air supply flow path, it is generated from the air supply pump. Foreign matter such as wear powder can be prevented from entering the fuel cell power generation unit.

また、空気取入口に静電フィルタを設け、吸気流路及び/又は送気流路に気液分離膜を設けることにより、筐体内に取り込まれる空気中に含まれる塵埃等は空気取入口に設けた静電フィルタによって捕捉され、吸気流路及び/又は送気流路に設けた気液分離膜によってミスト等の異物の通過が阻止されるので、気液分離膜に塵埃等が堆積することによる目詰まりの発生が抑制される。   In addition, by providing an electrostatic filter in the air intake and providing a gas-liquid separation membrane in the intake flow path and / or the air supply flow path, dust contained in the air taken into the housing is provided in the air intake. The gas-liquid separation film captured by the electrostatic filter and provided in the intake flow path and / or the air supply flow path prevents foreign substances such as mist from passing through, so clogging is caused by the accumulation of dust or the like on the gas-liquid separation film. Is suppressed.

また、吸気流路に気液分離膜を設け、送気流路に静電フィルタを設けることにより、送気ポンプに吸入される空気中から気液分離膜により異物を除去することができ、送気ポンプから磨耗粉等が吐出されたときには静電フィルタによって通過が阻止されるので、燃料電池発電部には異物が混入しない空気を送給することができる。   In addition, by providing a gas-liquid separation membrane in the intake flow channel and providing an electrostatic filter in the air supply flow channel, foreign substances can be removed from the air sucked into the air supply pump by the gas-liquid separation membrane. When wear powder or the like is discharged from the pump, passage is blocked by the electrostatic filter, so that air in which no foreign matter is mixed can be supplied to the fuel cell power generation unit.

本発明によれば、空気中に含まれる塵埃や塩水ミスト、オイルミストなどの異物の通過を気液分離膜によって阻止することができるので、異物が送気ポンプ及び燃料電池発電部に侵入することが抑制され、更には静電フィルタとの併用によって異物の侵入を効果的に阻止できるので、送気ポンプや燃料電池発電部の性能低下や寿命低下が少なく、長期にわたって所要の性能を維持することができる燃料電池装置が構成でき、特に、吸入する空気の状態が変化しやすい携帯機器の電源として好適な燃料電池装置を提供することができる。   According to the present invention, foreign substances such as dust, salt water mist and oil mist contained in the air can be blocked by the gas-liquid separation membrane, so that the foreign substances enter the air feed pump and the fuel cell power generation unit. In addition, since the intrusion of foreign matter can be effectively prevented by the combined use with an electrostatic filter, the performance and life of the air pump and the fuel cell power generation unit are reduced and the required performance is maintained over a long period of time. In particular, it is possible to provide a fuel cell device suitable as a power source for a portable device in which the state of the inhaled air easily changes.

図1は、本発明の第1の実施形態に係る携帯型燃料電池スタック1の構成を示すものである。燃料と空気とを反応させて発電する燃料電池発電部2と、この燃料電池発電部2に液体燃料タンク5に貯留されたメタノール水溶液等の液体燃料を送給する送液ポンプ6と、燃料電池発電部2に空気を送給する送気ポンプ3とを筐体7内に収容して構成されている。   FIG. 1 shows a configuration of a portable fuel cell stack 1 according to a first embodiment of the present invention. A fuel cell power generation unit 2 that generates power by reacting fuel and air, a liquid feed pump 6 that supplies liquid fuel such as an aqueous methanol solution stored in a liquid fuel tank 5 to the fuel cell power generation unit 2, and a fuel cell An air supply pump 3 that supplies air to the power generation unit 2 is housed in a housing 7.

前記筐体7の側面には空気取入口8が形成されており、図示しないモータにより送気ポンプ3が回転駆動されると、空気取入口8から筐体7内に取り込まれた空気は、送気ポンプ3の吸入口から吸入され、所定圧力に昇圧されて吐出口から吐出され、吐出口と燃料電池発電部2との間に配管接続された送気管路4から燃料電池発電部2に空気が供給される。一方、液体燃料タンク5に貯留された燃料は、送液ポンプ6の駆動により所定圧力に昇圧されて燃料電池発電部2に供給される。   An air intake port 8 is formed on the side surface of the housing 7. When the air supply pump 3 is rotationally driven by a motor (not shown), air taken into the housing 7 from the air intake port 8 is supplied. The air is sucked from the suction port of the air pump 3, boosted to a predetermined pressure, discharged from the discharge port, and air is supplied to the fuel cell power generation unit 2 from the air supply line 4 connected between the discharge port and the fuel cell power generation unit 2. Is supplied. On the other hand, the fuel stored in the liquid fuel tank 5 is boosted to a predetermined pressure by driving the liquid feed pump 6 and supplied to the fuel cell power generation unit 2.

燃料電池発電部2には、電解質膜の両側それぞれに正負の触媒層及び集電体が形成された反応膜の一方面に燃料流路が形成された燃料流路形成体が配設され、他方面に空気流路が形成された空気流路形成体が配された単位セルを複数段にスタック接続した燃料電池スタック1が設けられており、各単位セルにおいて燃料流路に供給された燃料と空気流路に供給された空気とが電解質膜を介して化学反応することにより電力が生起され、複数の単位セルで生起された電力が直列接続されることにより、所要電圧の電力が出力される。   The fuel cell power generation unit 2 is provided with a fuel flow path forming body in which a fuel flow path is formed on one side of a reaction film in which positive and negative catalyst layers and current collectors are formed on both sides of the electrolyte membrane. A fuel cell stack 1 is provided in which unit cells each having an air flow path forming body having an air flow path formed in a direction are stacked and connected in a plurality of stages, and the fuel supplied to the fuel flow path in each unit cell Electric power is generated by a chemical reaction with air supplied to the air flow path through the electrolyte membrane, and electric power generated in a plurality of unit cells is connected in series to output electric power of a required voltage. .

上記構成のように送気ポンプ3により空気を強制的に供給して発電量に対応する空気供給量を得るアクティブタイプの燃料電池装置では、空気取入口8から筐体7内に取り込まれた空気中に塵埃や塩水ミスト、オイルミストなどの異物が含まれていると、異物が送気ポンプ3内に付着して送気ポンプ3のポンプ性能を低下させる恐れがある。また、送気ポンプ3を通過した異物が空気と共に燃料電池発電部2に送給されると、異物が空気流路や反応膜に付着して発電性能の低下や電池寿命の低下をまねく恐れがある。   In the active type fuel cell device that obtains an air supply amount corresponding to the power generation amount by forcibly supplying air by the air pump 3 as in the above configuration, the air taken into the housing 7 from the air intake 8 If foreign matter such as dust, salt water mist, and oil mist is contained therein, the foreign matter may adhere to the inside of the air pump 3 and deteriorate the pump performance of the air pump 3. In addition, if foreign matter that has passed through the air supply pump 3 is supplied to the fuel cell power generation unit 2 together with air, the foreign matter may adhere to the air flow path or the reaction membrane, leading to a reduction in power generation performance or battery life. is there.

従って、送気ポンプ3及び燃料電池発電部2に流入する空気中から異物を除去する必要がある。塵埃だけであれば空気のみを濾過するフィルタを設ければよいが、塩水ミストやオイルミストなどの浸入を阻止することができない。そこで、図示するように空気が流入する入口となる空気取入口8、送気ポンプ3の吸入口、燃料電池発電部2の空気送給口に気液分離膜9を設けるのが有効な手段となる。気液分離膜9は、気体は通過させるが液体は通過させない膜で、四フッ化エチレン樹脂膜などを適用することができる。   Therefore, it is necessary to remove foreign substances from the air flowing into the air feed pump 3 and the fuel cell power generation unit 2. If it is only dust, a filter that filters only air may be provided, but it cannot prevent the intrusion of salt water mist, oil mist, and the like. Therefore, as shown in the figure, it is effective to provide a gas-liquid separation membrane 9 at the air intake 8 serving as an inlet through which air flows, the intake port of the air supply pump 3, and the air supply port of the fuel cell power generation unit 2. Become. The gas-liquid separation membrane 9 is a membrane that allows gas to pass through but does not allow liquid to pass through, and a tetrafluoroethylene resin membrane or the like can be applied.

この気液分離膜9は、前述のように空気が流入する入口となる空気取入口8、送気ポンプ3の吸入口、燃料電池発電部2の空気送給口に設けるのが好ましいが、空気送給の圧力損失を考慮すると、前記3箇所のうちの少なくとも1箇所に設けることが有効となる。但し、燃料電池発電部2の空気送給口のみに気液分離膜9を設けた場合には、送気ポンプ3に対する異物の侵入を防止することが不可能になるので、1箇所に気液分離膜9を設ける場合には、空気取入口8あるいは送気ポンプ3の吸入口が好ましい配設部位となる。また、目詰まりが生じた際には気液分離膜9を交換する必要があるので、着脱交換が容易に行い得る部位が好適であり、図1に示す構成では、筐体7の外面に位置する空気取入口8に設けるのが最も好ましいものとなる。送気ポンプ3の吸入口に設ける場合には、筐体7の外部から着脱できるように構成することによって配設が可能となる。   The gas-liquid separation membrane 9 is preferably provided at the air intake 8 serving as an inlet through which air flows, the intake port of the air supply pump 3, and the air supply port of the fuel cell power generation unit 2 as described above. Considering the pressure loss during feeding, it is effective to provide at least one of the three locations. However, when the gas-liquid separation membrane 9 is provided only at the air supply port of the fuel cell power generation unit 2, it is impossible to prevent foreign matter from entering the air supply pump 3, so that the gas-liquid separation is performed at one location. When the separation membrane 9 is provided, the air intake 8 or the intake port of the air feed pump 3 is a preferable arrangement site. In addition, since it is necessary to replace the gas-liquid separation membrane 9 when clogging occurs, a portion that can be easily attached and detached is suitable. In the configuration shown in FIG. It is most preferable that the air intake 8 is provided. When it is provided at the suction port of the air pump 3, it can be arranged by being configured to be detachable from the outside of the housing 7.

気液分離膜9は、その細孔径が小さいほど異物の除去に有効となるが、送気ポンプ3による送風圧力の損失が大きくなり、捕捉した異物により細孔が塞がれる度合いも大きくなってフィルタ寿命が短くなるので、細孔径は0.1〜10μmの領域に分布したものが好適である。即ち、塩水やオイル等のミストの粒子径は100〜3000μm程度なので、細孔径は前記領域にあれば異物の除去に有効となる。   The gas-liquid separation membrane 9 is more effective for removing foreign substances as its pore diameter is smaller. However, the loss of the blowing pressure by the air feed pump 3 is increased, and the degree to which the pores are blocked by the trapped foreign substances is also increased. Since the filter life is shortened, it is preferable that the pore diameter is distributed in the region of 0.1 to 10 μm. That is, since the particle diameter of a mist such as salt water or oil is about 100 to 3000 μm, if the pore diameter is in the region, it is effective for removing foreign substances.

前述したように空気取入口8、送気ポンプ3の吸入口、燃料電池発電部2の空気送給口の3箇所に気液分離膜9を設けると、異物の除去に効果的である反面、送風圧力損失や目詰まりに伴う交換などの課題が生じる。そこで、図2〜図5に示す第2〜第5の実施形態のように、気液分離膜9と共に静電フィルタ10を併用するのが有効な手段となる。   As described above, providing the gas-liquid separation membrane 9 at the three locations of the air intake port 8, the intake port of the air supply pump 3, and the air supply port of the fuel cell power generation unit 2 is effective for removing foreign matters, Problems such as air pressure loss and replacement due to clogging occur. Therefore, it is effective to use the electrostatic filter 10 together with the gas-liquid separation film 9 as in the second to fifth embodiments shown in FIGS.

図2に示す第2の実施形態の構成では、送気ポンプ3の吸入口に気液分離膜9を配設し、空気取入口8に静電フィルタ10を配設している。この構成では、気液分離膜9が設けられた送気ポンプ3の吸入口より空気流通の上流側である空気取入口8に静電フィルタ10が設けられているので、塵埃などの粒子径が大きな異物は静電フィルタ10によって捕捉され、静電フィルタ10で捕捉できなかった粒子径の小さい異物を気液分離膜9で捕捉することができる。従って、空気取入口8に設けられた静電フィルタ10で大部分の異物が除去されるので、気液分離膜9に目詰まりが生じる頻度は大幅に減少させることができ、空気取入口8に設けた静電フィルタ10は目詰まりが生じた場合にも筐体7の外面に位置しているため、着脱交換を容易に実施することができる。   In the configuration of the second embodiment shown in FIG. 2, the gas-liquid separation membrane 9 is disposed at the suction port of the air feed pump 3, and the electrostatic filter 10 is disposed at the air intake port 8. In this configuration, since the electrostatic filter 10 is provided in the air intake port 8 that is upstream of the air flow from the intake port of the air supply pump 3 provided with the gas-liquid separation membrane 9, the particle diameter of dust and the like is reduced. Large foreign matters are captured by the electrostatic filter 10, and foreign matters having a small particle diameter that cannot be captured by the electrostatic filter 10 can be captured by the gas-liquid separation membrane 9. Therefore, most of the foreign matter is removed by the electrostatic filter 10 provided at the air intake 8, so that the frequency of clogging in the gas-liquid separation membrane 9 can be greatly reduced. Since the provided electrostatic filter 10 is located on the outer surface of the housing 7 even when clogging occurs, it can be easily attached and detached.

図3に示す第3の実施形態の構成では、空気取入口8に気液分離膜9を配設し、送気ポンプ3の吸入口に静電フィルタ10を配設している。筐体7内に空気取入口8から取り込む空気中に含まれている塵埃や塩水ミスト、オイルミストなども気液分離膜9によって除去されるので、筐体7内に異物が侵入することを大幅に抑制することができる。また、送気ポンプ3の吸入口に静電フィルタ10が設けられているので、燃料電池装置の組み立て時に筐体7内に侵入した塵埃などが運転開始時に送気ポンプ3に吸入されることがなく、送気ポンプ3の性能低下や大きな異物が吸入されることによるポンプロックなどの故障発生を防止することができる。   In the configuration of the third embodiment shown in FIG. 3, a gas-liquid separation membrane 9 is disposed at the air intake 8 and an electrostatic filter 10 is disposed at the suction port of the air feed pump 3. Since dust, salt water mist, oil mist, etc. contained in the air taken into the housing 7 from the air intake 8 are also removed by the gas-liquid separation film 9, it is greatly prevented that foreign matter enters the housing 7. Can be suppressed. Further, since the electrostatic filter 10 is provided at the suction port of the air supply pump 3, dust or the like that has entered the housing 7 when the fuel cell device is assembled may be sucked into the air supply pump 3 at the start of operation. In addition, it is possible to prevent the occurrence of a malfunction such as a pump lock due to a decrease in performance of the air feed pump 3 or a large amount of foreign matter inhaled.

図4に示す第4の実施形態の構成では、空気取入口8に気液分離膜9を配設し、燃料電池発電部2の空気送給口に静電フィルタ10を配設している。空気取入口8に設けた気液分離膜9により筐体7内に取り込まれる空気中から塵埃や塩水ミスト、オイルミストなどが除去されるので、異物が含まれない空気を燃料電池発電部2に送給することができる。しかし、送気ポンプ3の種類によっては、回転部分や摺動部分を有するものもあり、磨耗粉を発生させる場合もあるので、燃料電池発電部2の空気送給口に静電フィルタ10が設けられていると、送気ポンプ3から磨耗粉が吐出された場合でも、それが燃料電池発電部2の空気流路に侵入させることを防止することができる。   In the configuration of the fourth embodiment shown in FIG. 4, a gas-liquid separation membrane 9 is disposed at the air intake 8, and an electrostatic filter 10 is disposed at the air supply port of the fuel cell power generation unit 2. Since dust, salt water mist, oil mist, and the like are removed from the air taken into the housing 7 by the gas-liquid separation membrane 9 provided at the air intake 8, air containing no foreign matter is supplied to the fuel cell power generation unit 2. Can be sent. However, depending on the type of the air pump 3, some have a rotating part or a sliding part, which may generate wear powder. Therefore, the electrostatic filter 10 is provided at the air supply port of the fuel cell power generation unit 2. In this case, even when wear powder is discharged from the air supply pump 3, it can be prevented from entering the air flow path of the fuel cell power generation unit 2.

図5に示す第5の実施形態の構成では、送気ポンプ3の吸入口に気液分離膜9を配設し、燃料電池発電部2の空気送給口に静電フィルタ10を配設している。送気ポンプ3の吸入口に設けた気液分離膜9により筐体7内に取り込まれた空気中に含まれた塵埃や塩水ミスト、オイルミストなどが除去されるので、送気ポンプ3から異物が含まれない空気を燃料電池発電部2に送給することができる。しかし、送気ポンプ3の種類によっては、回転部分や摺動部分を有するものもあり、磨耗粉を発生させる場合もあるので、燃料電池発電部2の空気送給口に静電フィルタ10が設けられていると、送気ポンプ3から磨耗粉が吐出された場合でも、それが燃料電池発電部2の空気流路に侵入させることを防止することができる。   In the configuration of the fifth embodiment shown in FIG. 5, the gas-liquid separation membrane 9 is disposed at the suction port of the air feed pump 3, and the electrostatic filter 10 is disposed at the air feed port of the fuel cell power generation unit 2. ing. Since dust, salt water mist, oil mist and the like contained in the air taken into the housing 7 are removed by the gas-liquid separation membrane 9 provided at the suction port of the air feed pump 3, foreign matter is removed from the air feed pump 3. Can be supplied to the fuel cell power generation unit 2. However, depending on the type of the air pump 3, some have a rotating part or a sliding part, which may generate wear powder. Therefore, the electrostatic filter 10 is provided at the air supply port of the fuel cell power generation unit 2. In this case, even when wear powder is discharged from the air supply pump 3, it can be prevented from entering the air flow path of the fuel cell power generation unit 2.

図示省略しているが、図4に示した構成において、送気ポンプ3の吸入口にも静電フィルタ10を設けることができ、筐体7内に存在する塵埃等が送気ポンプ3に吸入されることを静電フィルタ10により防止することができ、送気ポンプ3から磨耗粉等が吐出された場合には燃料電池発電部2の空気送給口に設けた静電フィルタ10によって、それが空気流路に侵入することを阻止することができ、防塵効果の高い構成を得ることができる。   Although not shown, in the configuration shown in FIG. 4, the electrostatic filter 10 can also be provided at the suction port of the air feed pump 3, and dust or the like existing in the housing 7 is sucked into the air feed pump 3. Can be prevented by the electrostatic filter 10, and when wear powder or the like is discharged from the air supply pump 3, the electrostatic filter 10 provided at the air supply port of the fuel cell power generation unit 2 Can be prevented from entering the air flow path, and a structure having a high dustproof effect can be obtained.

以上説明した構成において、燃料電池発電部2の空気送給口に設ける気液分離膜9又は静電フィルタ10は、必ずしも空気送給口でなく、送気ポンプ3の吐出口から空気送給口に至る送気管路4に設けることもできる。また、送気ポンプ3の吸入口に設ける気液分離膜9又は静電フィルタ10は、空気取入口8から吸入口に空気流路とする配管接続を形成した場合には、その配管路に配設しても同様の効果が得られる。   In the configuration described above, the gas-liquid separation membrane 9 or the electrostatic filter 10 provided at the air supply port of the fuel cell power generation unit 2 is not necessarily an air supply port, but from the discharge port of the air supply pump 3 to the air supply port. It can also be provided in the air supply pipe line 4 leading to. In addition, the gas-liquid separation membrane 9 or the electrostatic filter 10 provided at the suction port of the air feed pump 3 is arranged in the pipe line when a pipe connection is formed as an air flow path from the air intake port 8 to the suction port. Even if installed, the same effect can be obtained.

以上の説明の通り本発明によれば、燃料電池発電部に送給する空気中に含まれる塵埃は勿論のこと、塩水ミストやオイルミストなどの異物を送気ポンプ及び燃料電池発電部に侵入させることが抑制され、更には送気ポンプから磨耗粉などは吐出された場合においても、それらを燃料電池発電部に侵入させることが抑制されるので、送気ポンプや燃料電池発電部の性能低下や寿命低下が少なく、長期にわたって所要の性能を維持することができる燃料電池装置が構成でき、特に、吸入する空気の状態が変化しやすい携帯機器に適用する燃料電池装置として好適な構成が得られる。   As described above, according to the present invention, foreign matter such as salt water mist and oil mist, as well as dust contained in the air supplied to the fuel cell power generation unit, enter the air supply pump and the fuel cell power generation unit. In addition, even when wear powder or the like is discharged from the air supply pump, it is possible to prevent them from entering the fuel cell power generation unit. A fuel cell device that can maintain the required performance over a long period of time with little reduction in life can be configured, and in particular, a configuration suitable as a fuel cell device applied to a portable device in which the state of the inhaled air is likely to change can be obtained.

第1の実施形態に係る燃料電池装置の構成を示す模式図。The schematic diagram which shows the structure of the fuel cell apparatus which concerns on 1st Embodiment. 第2の実施形態に係る燃料電池装置の構成を示す模式図。The schematic diagram which shows the structure of the fuel cell apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る燃料電池装置の構成を示す模式図。The schematic diagram which shows the structure of the fuel cell apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る燃料電池装置の構成を示す模式図。The schematic diagram which shows the structure of the fuel cell apparatus which concerns on 4th Embodiment. 第5の実施形態に係る燃料電池装置の構成を示す模式図。The schematic diagram which shows the structure of the fuel cell apparatus which concerns on 5th Embodiment. 従来技術に係る燃料電池の基本構成を示す模式図。The schematic diagram which shows the basic composition of the fuel cell which concerns on a prior art.

符号の説明Explanation of symbols

1 燃料電池スタック
2 燃料電池発電部
3 送気ポンプ
4 送気管路
5 燃料タンク
6 送液ポンプ
7 筐体
8 空気取入口
9 気液分離膜
10 静電フィルタ
DESCRIPTION OF SYMBOLS 1 Fuel cell stack 2 Fuel cell power generation part 3 Air supply pump 4 Air supply line 5 Fuel tank 6 Liquid supply pump 7 Case 8 Air intake 9 Gas-liquid separation membrane 10 Electrostatic filter

Claims (6)

空気取入口が形成された筐体内に、電解質膜を介して燃料と空気とを化学反応させて電力を発生させる燃料電池発電部と、前記空気取入口から取り込んだ空気を前記燃料電池発電部に送給する送気ポンプとを収容してなる燃料電池装置であって、前記空気取入口、この空気取入口から前記送気ポンプの吸入口までの吸気流路、送気ポンプの吐出口から前記燃料電池発電部の空気送給口までの送気流路の少なくとも1箇所に、気体を通過させ液体の通過を阻止する気液分離膜が設けられてなることを特徴とする燃料電池装置。 A fuel cell power generation unit that generates electric power by chemically reacting fuel and air through an electrolyte membrane in a housing in which an air intake port is formed, and air taken from the air intake port to the fuel cell power generation unit A fuel cell device comprising an air supply pump for supplying air, wherein the air intake port, an intake passage from the air intake port to an intake port of the air supply pump, and an exhaust port of the air supply pump A fuel cell device comprising a gas-liquid separation membrane that allows gas to pass therethrough and prevents liquid from passing through at least one portion of an air supply passage to an air supply port of a fuel cell power generation unit. 空気取入口が形成された筐体内に、電解質膜を介して燃料と空気とを化学反応させて電力を発生させる燃料電池発電部と、前記空気取入口から取り込んだ空気を前記燃料電池発電部に送給する送気ポンプとを収容してなる燃料電池装置であって、前記空気取入口、この空気取入口から前記送気ポンプの吸入口に至る吸気流路、送気ポンプの吐出口から前記燃料電池発電部の空気送給口に至る送気流路に、気体を通過させ液体の通過を阻止する気液分離膜又は静電フィルタが選択的に設けられてなることを特徴とする燃料電池装置。 A fuel cell power generation unit that generates electric power by chemically reacting fuel and air through an electrolyte membrane in a housing in which an air intake port is formed, and air taken from the air intake port to the fuel cell power generation unit A fuel cell device including an air supply pump for supplying air, wherein the air intake port, an intake passage extending from the air intake port to an intake port of the air supply pump, and an exhaust port of the air supply pump A fuel cell device, wherein a gas-liquid separation membrane or an electrostatic filter that allows gas to pass therethrough and prevents liquid from passing through is selectively provided in an air supply passage leading to an air supply port of the fuel cell power generation unit. . 気液分離膜は、開口径が0.1〜10.0μmの領域に分布する細孔が形成されてなる請求項1又は2に記載の燃料電池装置。 The fuel cell device according to claim 1 or 2, wherein the gas-liquid separation membrane is formed with pores distributed in a region having an opening diameter of 0.1 to 10.0 µm. 空気取入口に気液分離膜が設けられ、吸気流路及び/又は送気流路に静電フィルタが設けられてなる請求項2又は3に記載の燃料電池装置。 The fuel cell device according to claim 2 or 3, wherein a gas-liquid separation membrane is provided at the air intake, and an electrostatic filter is provided in the intake flow path and / or the air supply flow path. 空気取入口に静電フィルタが設けられ、吸気流路及び/又は送気流路に気液分離膜が設けられてなる請求項2又は3に記載の燃料電池装置。 The fuel cell device according to claim 2 or 3, wherein an electrostatic filter is provided at the air intake, and a gas-liquid separation membrane is provided in the intake flow path and / or the air supply flow path. 吸気流路に気液分離膜が設けられ、送気流路に静電フィルタが設けられてなる請求項2又は3に記載の燃料電池装置。 The fuel cell device according to claim 2 or 3, wherein a gas-liquid separation membrane is provided in the intake passage, and an electrostatic filter is provided in the air supply passage.
JP2004268089A 2004-09-15 2004-09-15 Fuel cell device Pending JP2006085970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268089A JP2006085970A (en) 2004-09-15 2004-09-15 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268089A JP2006085970A (en) 2004-09-15 2004-09-15 Fuel cell device

Publications (1)

Publication Number Publication Date
JP2006085970A true JP2006085970A (en) 2006-03-30

Family

ID=36164287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268089A Pending JP2006085970A (en) 2004-09-15 2004-09-15 Fuel cell device

Country Status (1)

Country Link
JP (1) JP2006085970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141040A1 (en) * 2012-03-21 2013-09-26 スズキ株式会社 Air intake device for fuel cell vehicle
US11866169B2 (en) 2020-08-07 2024-01-09 Textron Innovations Inc. System and method for supplying passively filtered ram air to a hydrogen fuel cell of a UAV

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141040A1 (en) * 2012-03-21 2013-09-26 スズキ株式会社 Air intake device for fuel cell vehicle
CN104114402A (en) * 2012-03-21 2014-10-22 铃木株式会社 Air intake device for fuel cell vehicle
GB2514917A (en) * 2012-03-21 2014-12-10 Suzuki Motor Corp Air intake device for fuel cell vehicle
JPWO2013141040A1 (en) * 2012-03-21 2015-08-03 スズキ株式会社 Intake device for fuel cell vehicle
US9466849B2 (en) 2012-03-21 2016-10-11 Suzuki Motor Corporation Air intake device for fuel cell vehicle
GB2514917B (en) * 2012-03-21 2018-05-09 Suzuki Motor Corp Air intake device for fuel cell vehicle
US11866169B2 (en) 2020-08-07 2024-01-09 Textron Innovations Inc. System and method for supplying passively filtered ram air to a hydrogen fuel cell of a UAV

Similar Documents

Publication Publication Date Title
EP1992035B1 (en) Fuel cell system with regeneration of electrode activity during start or stop
JP2007311209A (en) Redox flow battery
JP2006049032A (en) Fuel cartridge and fuel cell system
JP2006216495A (en) Fuel cell unit
JP4790222B2 (en) Gas removal device
JP2007296419A (en) Ion filter and fuel cell device equipped with the same
JP2005025959A (en) Method and system for operating fuel cell
US7971671B2 (en) Drive unit, hydraulic working machine, and electric vehicle
JP2006085970A (en) Fuel cell device
JP2005100886A (en) Fuel cell system and fuel supply method to fuel cell
JP2004273311A (en) Air supply device of fuel cell
JP2006085971A (en) Fuel cell device
JP5292767B2 (en) Fuel cell system
JP2007095591A (en) Fuel cell system
US20070190394A1 (en) Fuel cell
JP2005243357A (en) Fuel cell system
JP2008151390A (en) Water vapor exchange membrane refresh system, humidifier, and fuel cell system
JP2008243696A (en) Fuel cell module
JP2016162539A (en) Fuel battery power generation device
JP2007115482A (en) Fuel cell system and method for stopping operation
KR100533008B1 (en) Fuel cell system having water trap apparatus
KR20200137461A (en) Fuel cell system
JP2004199897A (en) Air supply device for fuel cell
JP4624021B2 (en) Gas purification unit for fuel cells
JP2008186800A (en) Gas-liquid separator, and fuel cell device provided with the same