JP2006084730A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2006084730A
JP2006084730A JP2004268911A JP2004268911A JP2006084730A JP 2006084730 A JP2006084730 A JP 2006084730A JP 2004268911 A JP2004268911 A JP 2004268911A JP 2004268911 A JP2004268911 A JP 2004268911A JP 2006084730 A JP2006084730 A JP 2006084730A
Authority
JP
Japan
Prior art keywords
transfer
transfer roller
roller
resistance value
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004268911A
Other languages
Japanese (ja)
Other versions
JP4555645B2 (en
Inventor
Sueaki Okamoto
季明 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2004268911A priority Critical patent/JP4555645B2/en
Publication of JP2006084730A publication Critical patent/JP2006084730A/en
Application granted granted Critical
Publication of JP4555645B2 publication Critical patent/JP4555645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily prevent transfer failures caused by the fluctuations in the resistance of a transfer roller, and to prevent increase in the output of a bias power supply. <P>SOLUTION: A toner image formed by an electrophotographic process is carried on a photoreceptor drum 11, a transfer roller 12 is brought into contact with the photoreceptor drum and a transfer nip part, and a transfer bias current is supplied to the transfer roller, to transfer the toner image onto a transfer material sent to the transfer nip part. The transfer roller comprises a conductive shaft core 12a and an ionic conductive material 12b, disposed on the outer peripheral face of the conductive shaft core, and a power feed roller 13 abuts against the surface of the transfer roller, and the power feed roller is connected to a transfer bias power supply 14. The transfer bias power supply is connected to the conductive shaft core through a resistor 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真プロセスを用いた複写機、プリンタ、ファクシミリ装置、又はそれらの複合機等の画像形成装置に関し、特に、転写ローラに転写バイアス電流を給電して像担持体上のトナー画像を記録用紙等の転写材に転写する転写装置に関するものである。   The present invention relates to an image forming apparatus such as a copying machine, a printer, a facsimile machine, or a composite machine using an electrophotographic process, and in particular, supplies a transfer bias current to a transfer roller to transfer a toner image on an image carrier. The present invention relates to a transfer device for transferring to a transfer material such as recording paper.

電子写真プロセスを用いた画像形成装置では、像担持体である感光体ドラム上に形成されたトナー画像を記録用紙等の転写材に転写する際、コロトロン又はスコロトロンチャージャに電圧を印加して転写を行うことが行われていたものの、近年、オゾン発生量の抑制、転写材の搬送安定性、転写バイアストランスの低出力化等の観点から、転写ローラが用いられるようになっている。   In an image forming apparatus using an electrophotographic process, when a toner image formed on a photosensitive drum, which is an image carrier, is transferred to a transfer material such as recording paper, a voltage is applied to the corotron or scorotron charger for transfer. However, in recent years, transfer rollers have been used from the viewpoints of suppressing the amount of ozone generated, transport stability of a transfer material, lowering the output of a transfer bias transformer, and the like.

一般に、転写ローラとして、環境安定性に優れたカーボンをEPDM(エチレンプロピレンゴム)等に分散させた電子導電タイプの転写ローラが用いられているものの、電子導電タイプの転写ローラでは、像担持体としてアモルファスシリコン(a−Si)感光体ドラムを用いると、カーボンの分散ムラに起因して電荷集中による異常放電が発生して、感光体の保護層であるSi−C層が破壊されてしまうことがあり、Si−C層が破壊された部分で所謂黒点が発生する。   Generally, an electroconductive transfer roller in which carbon having excellent environmental stability is dispersed in EPDM (ethylene propylene rubber) or the like is used as a transfer roller. If an amorphous silicon (a-Si) photosensitive drum is used, abnormal discharge due to charge concentration occurs due to uneven dispersion of carbon, and the Si-C layer that is a protective layer of the photosensitive member may be destroyed. In other words, so-called black spots are generated at the portion where the Si-C layer is destroyed.

一方、エピクロヒドリン等のイオン導電材を用いた転写ローラ(イオン導電タイプ)においては、前述のような異常放電が発生しにくく、このため、黒点の発生が抑制されるものの、環境変動による転写ローラの抵抗値の変動が大きく、さらには、通電時間に伴ってイオン導電材に偏りが生じ、これによって抵抗値が大きくなって転写ローラの耐久性が悪化するという不具合がある。   On the other hand, in the transfer roller (ion conductive type) using an ionic conductive material such as epichlorohydrin, the abnormal discharge as described above is difficult to occur. For this reason, although the generation of black spots is suppressed, There is a problem that the resistance value fluctuates greatly, and further, the ionic conductive material is biased with the energization time, which increases the resistance value and deteriorates the durability of the transfer roller.

上述のような不具合を防止するため、例えば、転写ローラの電荷供給作用の制御を容易にすべく、転写ローラの表層に誘電体層を配置して、この誘電体層表面に電荷を供給するようにしたものがある(特許文献1参照)。   In order to prevent the above-mentioned problems, for example, a dielectric layer is disposed on the surface of the transfer roller so as to easily control the charge supply operation of the transfer roller, and charges are supplied to the surface of the dielectric layer. (See Patent Document 1).

さらに、環境条件の変動に拘わらず、安定した転写性を得るため、弾性ローラに誘電体層を形成して、誘電体層の裏面を弾性ローラ表面に対して電気的に浮かせて、環境条件の変動に応じて誘電体層の裏面を接地するようにしたものがある(特許文献2参照)。   Furthermore, in order to obtain stable transferability regardless of changes in environmental conditions, a dielectric layer is formed on the elastic roller, and the back surface of the dielectric layer is electrically floated with respect to the surface of the elastic roller. There is one in which the back surface of the dielectric layer is grounded according to the fluctuation (see Patent Document 2).

一方、放電によるトナー画像の劣化を防止するため、転写ローラ及び像担持体によって形成されるニップ部の中心点と転写ローラの中心点とを結ぶ延長線よりも下流側に、転写ローラとの接点がくるように電極部材を配置して、この電極部材から転写ローラに転写バイアスを印加し、用紙進入側における電界変化を小さくするようにするとともに、電源側からみた転写ローラの総抵抗値を減らして電源容量を小さくするようにしている(特許文献3参照)。   On the other hand, in order to prevent deterioration of the toner image due to electric discharge, the contact point with the transfer roller is located downstream of the extended line connecting the center point of the nip portion formed by the transfer roller and the image carrier and the center point of the transfer roller. The electrode member is arranged so that the transfer roller is biased, and a transfer bias is applied from the electrode member to the transfer roller to reduce the electric field change on the paper entrance side, and the total resistance value of the transfer roller as viewed from the power source side is reduced. Thus, the power source capacity is reduced (see Patent Document 3).

特開平6−138784号公報(第10頁〜第25頁、第7図〜第8図)JP-A-6-138784 (pages 10 to 25, FIGS. 7 to 8) 特開平9−34278号公報(第7頁〜第9頁、第2図〜第4図)Japanese Patent Laid-Open No. 9-34278 (pages 7 to 9, FIGS. 2 to 4) 特開2003−5539公報(第4頁〜第6頁、第2図〜第3図)JP 2003-5539 A (pages 4 to 6, FIGS. 2 to 3)

前述のように、イオン導電タイプの転写ローラは、電荷集中による異常放電が発生しにくいものの、環境変動によるイオン導電材の抵抗値の変動が大きく、例えば、その抵抗値が1.5〜2桁程度変動する。具体的には、低温低湿環境、常温常湿環境、高温高湿環境の順に抵抗値が高くなる。そして、α−Si感光体ドラムにおいては、OPC感光体ドラムに比べて転写電流を多く流す必要があり、このため、環境変動によって転写ローラの抵抗値が大きく変動すると、低温低湿環境では転写ローラの抵抗値が大きくなるので、転写ローラに規定の電流を流すためには転写バイアス電源の出力電圧を上昇させねばならず、転写バイアス電源の出力電圧の上限値が設定されている関係上、場合によっては転写電流不足が発生して、転写不良が生じてしまう恐れがある。   As described above, the ionic conductive type transfer roller is unlikely to cause abnormal discharge due to charge concentration, but the resistance value of the ionic conductive material varies greatly due to environmental fluctuations. For example, the resistance value is 1.5 to 2 digits. It varies to some extent. Specifically, the resistance value increases in the order of low temperature and low humidity environment, normal temperature and normal humidity environment, and high temperature and high humidity environment. In the α-Si photosensitive drum, it is necessary to pass a larger transfer current than in the OPC photosensitive drum. For this reason, if the resistance value of the transfer roller greatly fluctuates due to environmental fluctuations, the transfer roller has a low temperature and low humidity environment. Since the resistance value increases, the output voltage of the transfer bias power supply must be increased in order to allow a specified current to flow through the transfer roller, and the upper limit value of the output voltage of the transfer bias power supply is set. May cause a transfer failure due to insufficient transfer current.

一方、特許文献1及び2に記載された画像形成装置においては、その表面に誘電体層が形成されている関係上、誘電体層の転写電荷蓄積にムラが生じやすい。このため、画像形成の際、転写ローラに印加する電圧を決定する制御動作及び転写部材の抵抗値を検知する制御を行う必要があり、転写の際の制御が複雑になってしまうという課題がある。   On the other hand, in the image forming apparatuses described in Patent Documents 1 and 2, since the dielectric layer is formed on the surface of the image forming apparatus, unevenness in transfer charge accumulation of the dielectric layer is likely to occur. For this reason, it is necessary to perform a control operation for determining the voltage to be applied to the transfer roller and a control for detecting the resistance value of the transfer member during image formation, and there is a problem that the control at the time of transfer becomes complicated. .

さらに、特許文献2に記載された画像形成装置においては、環境条件又は転写材の種類に応じて誘電体層裏面を接地する制御を行わなければならず、その結果、さらに制御が複雑になってしまうという課題がある。   Furthermore, in the image forming apparatus described in Patent Document 2, it is necessary to perform control for grounding the back surface of the dielectric layer according to environmental conditions or the type of transfer material, and as a result, the control becomes more complicated. There is a problem of end.

特許文献3に記載された画像形成装置においては、用紙進入側における電界変化を小さくするようにして、放電によるトナー画像の劣化を防止するようにしているものの、転写ローラの抵抗値変動に起因する転写不良を防止することができない。   In the image forming apparatus described in Patent Document 3, the change in the electric field on the paper entry side is reduced to prevent the toner image from being deteriorated due to the discharge, but this is caused by the resistance value fluctuation of the transfer roller. Transfer defects cannot be prevented.

いずれにしても、従来の画像形成装置では、転写ローラの抵抗値変動に起因する転写不良を簡単に防止することが難しいという課題がある。   In any case, in the conventional image forming apparatus, there is a problem that it is difficult to easily prevent a transfer failure due to a change in resistance value of the transfer roller.

そのため本発明においては、簡単な構成で転写不良及びバイアス電源出力の上昇を防止することのできる画像形成装置を提供することが課題である。   Therefore, an object of the present invention is to provide an image forming apparatus that can prevent transfer failure and increase in bias power output with a simple configuration.

上記の課題を解決するため、本発明は、電子写真プロセスによって形成されたトナー画像を担持する像担持体と転写ニップ部で接触する転写ローラと、該転写ローラに定電流制御によって転写バイアス電流を供給する転写バイアス電源とを有し、前記転写ニップ部に送られる転写材に前記トナー画像を転写させる転写装置を備える画像形成装置において、前記転写ローラは導電性軸芯と該導電性軸芯の外周面に配置されたイオン導電材とを有し、前記転写ローラは、前記転写ローラの表面に当接した給電部材と前記導電性軸芯に接続された抵抗器とを介して前記転写バイアス電源に接続されていることを特徴とするものである。   In order to solve the above-described problems, the present invention provides an image carrier that carries a toner image formed by an electrophotographic process, a transfer roller that is in contact with the transfer nip, and a transfer bias current applied to the transfer roller by constant current control. A transfer bias power supply for supplying the transfer roller, and transferring the toner image onto a transfer material sent to the transfer nip portion. An ionic conductive material disposed on an outer peripheral surface, and the transfer roller is connected to the transfer bias power source via a power supply member in contact with the surface of the transfer roller and a resistor connected to the conductive shaft core. It is characterized by being connected to.

本発明では、前記給電部材は前記転写ローラを挟んで前記像担持体と反対側で前記転写ローラと接触しており、温湿度に起因して前記転写ローラの抵抗値が変動する際、前記抵抗器の抵抗値は、前記転写ローラの抵抗値の変動幅の上限未満でかつ下限を越える値に設定する。なお、前記像担持体は、例えば、感光体としてアモルファスシリコン感光体を有している。   In the present invention, the power supply member is in contact with the transfer roller on the side opposite to the image carrier with the transfer roller interposed therebetween, and when the resistance value of the transfer roller varies due to temperature and humidity, the resistance The resistance value of the container is set to a value that is less than the upper limit and exceeds the lower limit of the fluctuation range of the resistance value of the transfer roller. The image carrier has, for example, an amorphous silicon photoconductor as a photoconductor.

以上のように、本発明の画像形成装置では、転写ローラが導電性軸芯とこの導電性軸芯の外周面に配置されたイオン導電材とを有して、さらに、転写ローラを、転写ローラの表面に当接する給電部材と導電性軸芯に接続された抵抗器とを介して転写バイアス電源に接続するようにしたので、環境条件(温湿度)の変動によって転写ローラの抵抗値が大きくなって抵抗器の抵抗値を越えると、転写バイアス電流の大部分は抵抗器を介して導電性軸芯に供給されることになって、転写ローラの見かけの抵抗値が低減される結果、転写ローラの抵抗値変動に起因する転写不良を防止することができるばかりでなく、バイアス電源出力の上昇を防止することができるという効果がある。   As described above, in the image forming apparatus of the present invention, the transfer roller has the conductive shaft core and the ion conductive material disposed on the outer peripheral surface of the conductive shaft core, and the transfer roller is further connected to the transfer roller. The transfer roller is connected to the transfer bias power source through a power supply member that abuts on the surface of the roller and a resistor connected to the conductive shaft, so that the resistance value of the transfer roller increases due to fluctuations in environmental conditions (temperature and humidity). When the resistance value of the resistor is exceeded, most of the transfer bias current is supplied to the conductive shaft core via the resistor, and the apparent resistance value of the transfer roller is reduced. As a result, the transfer roller In addition to preventing transfer failure due to the resistance value fluctuation, it is possible to prevent an increase in bias power supply output.

本発明では、抵抗器の抵抗値を、転写ローラの抵抗値の変動幅の上限未満でかつ下限を越える値に設定するようにしたので、転写ローラの抵抗値変動を実質的に抑制して簡単に転写ローラの抵抗値変動に起因する転写不良を防止することができるという効果がある。   In the present invention, since the resistance value of the resistor is set to a value that is less than the upper limit of the fluctuation range of the resistance value of the transfer roller and exceeds the lower limit, the fluctuation of the resistance value of the transfer roller is substantially suppressed and simplified. In addition, there is an effect that it is possible to prevent a transfer failure due to a change in resistance value of the transfer roller.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1を参照して、図示の転写装置10は画像形成装置(図示せず)とともに用いられ、像担持体としてのα−Si感光体ドラム11(以下単に感光体ドラム11と呼ぶ)と当接する転写ローラ12を有している。感光体ドラム11上には電子写真プロセスによってトナー画像が形成され、転写ローラ12は感光体ドラム11と転写ニップ部で接触している。そして、転写ローラに転写バイアス電流が供給されて、転写ニップ部に送られる転写材にトナー画像が転写される。   Referring to FIG. 1, an illustrated transfer device 10 is used together with an image forming apparatus (not shown), and abuts an α-Si photosensitive drum 11 (hereinafter simply referred to as a photosensitive drum 11) as an image carrier. A transfer roller 12 is provided. A toner image is formed on the photosensitive drum 11 by an electrophotographic process, and the transfer roller 12 is in contact with the photosensitive drum 11 at the transfer nip portion. Then, a transfer bias current is supplied to the transfer roller, and the toner image is transferred to a transfer material sent to the transfer nip portion.

転写ローラ12には、例えば、SUSなどの導電材を用いた給電ローラ(給電部材)13が当接しており、この給電ローラ13は感光体ドラム11と反対側に配置され、転写バイアス電源14が接続されている(なお、感光体ドラム11は接地されている)。転写ローラ12にはエピクロルヒドリンゴム等のイオン導電材が用いられており、導電性軸芯12aの外周面上にイオン導電材12bが形成されている。   For example, a power supply roller (power supply member) 13 using a conductive material such as SUS is in contact with the transfer roller 12. The power supply roller 13 is disposed on the side opposite to the photosensitive drum 11, and a transfer bias power supply 14 is provided. (The photosensitive drum 11 is grounded). The transfer roller 12 is made of an ion conductive material such as epichlorohydrin rubber, and the ion conductive material 12b is formed on the outer peripheral surface of the conductive shaft core 12a.

例えば、導電性軸芯12aの周囲にイオン導電材12bが単層のソリッド又は発泡弾性体として巻装される。イオン導電材としては、前述のエピクロルヒドリンゴムの他に、金属錯体(例えば、過塩素酸リチウム)又は1エチル−3メチル−イミタゾリウム−ビス(トリフルオロメチルスルフォニル)イミド等をNBR等に添加したものを用いることができる。   For example, the ion conductive material 12b is wound around the conductive shaft core 12a as a single-layer solid or a foamed elastic body. As the ionic conductive material, in addition to the aforementioned epichlorohydrin rubber, a metal complex (for example, lithium perchlorate) or 1 ethyl-3methyl-imidazolium-bis (trifluoromethylsulfonyl) imide or the like added to NBR or the like Can be used.

そして、イオン導電材12bはプラス電極及びマイナス電極(共に図示せず)との間に挟持し、プラス電極とマイナス電極との間に電圧を印加すると、印加された電圧によって形成された電界によってプラスイオンとマイナスイオンが転写ローラ内を移動して、電流が流れることになる。図示の例では、導電性軸芯12aは抵抗器15を介して転写バイアス電源14に接続され、この転写バイアス電源14は接地されている。   The ionic conductive material 12b is sandwiched between a plus electrode and a minus electrode (both not shown), and when a voltage is applied between the plus electrode and the minus electrode, the ion conductive material 12b is added by an electric field formed by the applied voltage. Ions and negative ions move in the transfer roller, and current flows. In the illustrated example, the conductive axis 12a is connected to a transfer bias power source 14 via a resistor 15, and this transfer bias power source 14 is grounded.

ここで、図2を参照して、まず、転写ローラ12に直接転写バイアスを印加した際の転写動作について説明する。転写バイアス電源14を転写ローラ12の軸芯12aに接続して、転写バイアスを印加すると、転写電流が、矢印Aで示すように、転写ローラ12の軸芯12aから、感光体ドラム11と転写ローラ12とが接して転写材16を挟む転写ニップ部の方向に流れる。この場合、イオン導電材12b中のイオンは転写ニップ部で転写ローラ12の外周方向に流れて分極して、通電時間の経過とともにその抵抗値が増加する。なお、分極の影響が顕著になり、転写不良などが現れるのは使用後数十時間後である。   Here, with reference to FIG. 2, first, a transfer operation when a transfer bias is directly applied to the transfer roller 12 will be described. When the transfer bias power source 14 is connected to the shaft core 12a of the transfer roller 12 and a transfer bias is applied, the transfer current is transferred from the shaft core 12a of the transfer roller 12 to the photosensitive drum 11 and the transfer roller as indicated by an arrow A. 12 flows in the direction of the transfer nip where the transfer material 16 is sandwiched. In this case, the ions in the ion conductive material 12b flow and polarize in the transfer nip portion toward the outer periphery of the transfer roller 12, and the resistance value increases with the passage of energization time. It should be noted that the influence of polarization becomes significant, and transfer defects appear after several tens of hours after use.

一方、温湿度等の環境条件が変動すると、図2に示す転写装置では、転写ローラ12の抵抗値が大きく変動する。図3を参照すると、いま転写ローラ12の軸芯12aに1kVの転写バイアスを印加したとすると、低温/低湿(L/L)の際には、ローラ抵抗値がlogΩで約8であるのに対して、常温/常湿(N/N)となると、logΩ=約7となり、高温/高湿(H/H)となると、logΩ=約6.5となる。このように、温湿度の変化に起因して、イオン導電材12b中におけるイオン移動度の割合が変化して、温湿度が変動すると、ローラ抵抗値が1.5桁〜2桁程度変動してしまうことになる。   On the other hand, when environmental conditions such as temperature and humidity vary, the resistance value of the transfer roller 12 varies greatly in the transfer apparatus shown in FIG. Referring to FIG. 3, if a transfer bias of 1 kV is applied to the shaft core 12a of the transfer roller 12, the roller resistance value is about 8 at log Ω at low temperature / low humidity (L / L). On the other hand, when it is normal temperature / normal humidity (N / N), logΩ = about 7, and when it is high temperature / high humidity (H / H), logΩ = about 6.5. Thus, when the ratio of ion mobility in the ion conductive material 12b changes due to the change in temperature and humidity, and the temperature and humidity change, the roller resistance value changes by about 1.5 to 2 digits. Will end up.

続いて、図4及び図5を参照して、給電ローラ13を介して転写ローラ12に転写バイアスを印加すると、図5に矢印Bで示すように、転写電流は給電ローラ13から転写ローラ12の軸芯12aに流れ込み、その後、矢印Cで示すように、軸芯12aから転写ローラ12と感光体ドラム11との転写ニップ部に転写電流が流れる。この際、転写ローラ12が回転しているから、当初転写ローラ12において感光体ドラム11と接触していた部位(以下特定部位と呼ぶ)は移動することになって、転写ローラ12が当初の状態から180度回転した状態では、この特定部位は給電ローラ13側に位置することになる。   4 and 5, when a transfer bias is applied to the transfer roller 12 via the power supply roller 13, the transfer current is transferred from the power supply roller 13 to the transfer roller 12 as indicated by an arrow B in FIG. Then, as shown by an arrow C, a transfer current flows from the shaft core 12 a to the transfer nip portion between the transfer roller 12 and the photosensitive drum 11 as indicated by an arrow C. At this time, since the transfer roller 12 is rotating, a portion of the transfer roller 12 that was initially in contact with the photosensitive drum 11 (hereinafter referred to as a specific portion) moves, and the transfer roller 12 is in an initial state. In this state, the specific portion is located on the power supply roller 13 side.

つまり、特定部位においては、転写ローラ12が180度回転すると、軸芯12aから流れる転写電流の向きが逆向きとなって、その結果、イオン導電材12bにかかる電界は転写ローラ2の半回転毎に逆方向になる。このため、イオン導電材12bの中のイオンから見ると、半周毎に電界の方向が反転するようになって、例えば、図4に示すように、感光体ドラム11を接地して給電ローラ13にマイナス電圧を印加すると、特定部位では、マイナスイオンは、転写ローラ12の軸芯12aから感光体ドラム11までは感光体ドラム11側へ、給電ローラ13から軸芯12aまでは軸芯12a側に集まり、その後、転写ローラ12が半周した状態では、感光体ドラム11側へ集まったイオンが軸芯12a側へ、軸芯12a側に集まったイオンが感光体ドラム11側に集まる。従って、イオン導電材12b中のイオンは、転写ローラ12の半周毎にその外周部と軸芯12a側に交互に移動し分極が起こることがない。   That is, in the specific portion, when the transfer roller 12 rotates 180 degrees, the direction of the transfer current flowing from the shaft core 12a is reversed, and as a result, the electric field applied to the ion conductive material 12b is changed every half rotation of the transfer roller 2. In the opposite direction. For this reason, when viewed from the ions in the ionic conductive material 12b, the direction of the electric field is reversed every half circle. For example, as shown in FIG. When a negative voltage is applied, negative ions are collected at the specific portion from the shaft core 12a of the transfer roller 12 to the photosensitive drum 11 toward the photosensitive drum 11, and from the power supply roller 13 to the shaft core 12a toward the shaft core 12a. Thereafter, in a state where the transfer roller 12 makes a half turn, ions gathered on the photosensitive drum 11 side gather on the axial core 12a side, and ions gathered on the axial core 12a side gather on the photosensitive drum 11 side. Accordingly, the ions in the ion conductive material 12b are alternately moved to the outer peripheral portion and the axis 12a side every half circumference of the transfer roller 12, and polarization does not occur.

図4に示す転写装置においては、前述のように分極が生じることがないから、転写ローラ12に高電圧が印加されても、通電によるローラ抵抗値の上昇を抑制することができるものの、温湿度等の環境条件が変動すると、図2で説明したように、イオン導電材12b中におけるイオン移動度の割合が変化して、ローラ抵抗値が1.5桁〜2桁程度変動してしまう。   In the transfer apparatus shown in FIG. 4, since polarization does not occur as described above, an increase in the roller resistance value due to energization can be suppressed even when a high voltage is applied to the transfer roller 12. When the environmental conditions such as are changed, as described with reference to FIG. 2, the ratio of the ion mobility in the ion conductive material 12b is changed, and the roller resistance value is changed by about 1.5 to 2 digits.

再び、図1を参照して、前述したように、図示の例では、転写ローラ12の軸芯12aは抵抗器15を介して転写バイアス電源14に接続されている。いま、抵抗器15の抵抗値をR2とし、転写ローラ12の抵抗値をRv(軸芯12aと転写ローラ表面との間の抵抗値)とする。前述のように、この抵抗値Rvは温湿度の変化に応じて変化し、高温高湿となるほど抵抗値Rvは低下する。N/N〜H/H(N/N以上H/H以下)における転写ローラ12の抵抗値をRvhで表し、L/L〜N/N(L/L以上N/N未満)における転写ローラ12の抵抗値をRvlで表し、Rvh<R2<Rvlに設定する。   Again referring to FIG. 1, as described above, in the illustrated example, the shaft core 12 a of the transfer roller 12 is connected to the transfer bias power source 14 via the resistor 15. Here, the resistance value of the resistor 15 is R2, and the resistance value of the transfer roller 12 is Rv (resistance value between the shaft core 12a and the transfer roller surface). As described above, the resistance value Rv changes according to changes in temperature and humidity, and the resistance value Rv decreases as the temperature and humidity become higher. The resistance value of the transfer roller 12 in N / N to H / H (N / N or more and H / H or less) is represented by Rvh, and the transfer roller 12 in L / L to N / N (L / L or more and less than N / N). Is represented by Rvl, and Rvh <R2 <Rvl is set.

従って、N/N〜H/H環境下では、転写ローラ12の抵抗値の方が抵抗器15の抵抗値よりも低いから、転写電流の大部分は給電ローラ13から転写ローラ12に供給されることになる(図6参照)。一方、L/L環境下では、転写ローラ12の抵抗値が大きくなり、転写ローラ12の抵抗値が抵抗器15の抵抗値よりも高くなって、図7に示すように、転写電流の大部分は軸芯12aに直接流れることになる。   Therefore, in the N / N to H / H environment, the resistance value of the transfer roller 12 is lower than the resistance value of the resistor 15, so that most of the transfer current is supplied from the power supply roller 13 to the transfer roller 12. (See FIG. 6). On the other hand, under the L / L environment, the resistance value of the transfer roller 12 becomes large, and the resistance value of the transfer roller 12 becomes higher than the resistance value of the resistor 15, and as shown in FIG. Will flow directly to the shaft core 12a.

上述のように、転写装置10が配置された環境条件(温湿度)に応じて、転写ローラ12に流れる電流が選択的に抵抗器15を介して流れることになる。つまり、図7に示すように、温湿度がL/Lの際には、抵抗器15を介して転写ローラ12の軸芯12aに転写電流の大部分が供給され、見かけ上の転写ローラ12の抵抗値はRvl+R2となり、(Rvl+R2)<2Rvlである。   As described above, the current flowing through the transfer roller 12 selectively flows through the resistor 15 according to the environmental conditions (temperature and humidity) in which the transfer device 10 is disposed. That is, as shown in FIG. 7, when the temperature and humidity are L / L, most of the transfer current is supplied to the shaft core 12a of the transfer roller 12 via the resistor 15, and the apparent transfer roller 12 The resistance value is Rvl + R2, and (Rvl + R2) <2Rvl.

一方、温湿度がN/N〜H/Hの際には、図6に示すように、給電ローラ13を介して転写ローラ12に転写電流の大部分が供給され、前述したように、電界の反転が生じ分極が起こることがない(イオン導電材に偏りが生じることなく、抵抗値の上昇が抑制される)。   On the other hand, when the temperature / humidity is N / N to H / H, most of the transfer current is supplied to the transfer roller 12 via the power supply roller 13 as shown in FIG. Inversion does not occur and polarization does not occur (the ionic conductive material is not biased, and an increase in resistance value is suppressed).

ここで、図1に示す転写装置、図2に示す転写装置、及び図4に示す転写装置を用いて、環境条件(温湿度)が変化した際の転写電圧の変動を調べてみた。その結果を図8(a)〜(c)に示す。図8(a)は図2に示す転写装置における転写電圧の変動を示し、図8(b)は図4に示す転写装置における転写電圧の変動を示す。また、図8(c)は図1に示す転写装置における転写電圧の変動を示す。なお、ここでは、抵抗器15の抵抗値を10MΩとした。   Here, using the transfer device shown in FIG. 1, the transfer device shown in FIG. 2, and the transfer device shown in FIG. 4, the variation of the transfer voltage when the environmental condition (temperature and humidity) changed was examined. The results are shown in FIGS. FIG. 8A shows the fluctuation of the transfer voltage in the transfer apparatus shown in FIG. 2, and FIG. 8B shows the fluctuation of the transfer voltage in the transfer apparatus shown in FIG. FIG. 8C shows the fluctuation of the transfer voltage in the transfer apparatus shown in FIG. Here, the resistance value of the resistor 15 is set to 10 MΩ.

図8(a)〜(c)において、温湿度がL/L、N/N、及びH/Hの際に転写電流(定電流制御)がそれぞれ50μA、80μA、及び100μAとなるようにしたところ、図8(a)では転写電流が50μA、80μA、及び100μAにおいて、転写ローラ抵抗値はlogΩで8.1、7.1、及び6.5となった(図8(a)においては、見かけ抵抗値は転写ローラ抵抗値と同一である)。そして、転写電圧はそれぞれ6.3kV、1.0kV、及び0.3kVとなった。   8A to 8C, when the temperature and humidity are L / L, N / N, and H / H, the transfer current (constant current control) is 50 μA, 80 μA, and 100 μA, respectively. 8A, when the transfer current is 50 μA, 80 μA, and 100 μA, the transfer roller resistance value is 8.1, 7.1, and 6.5 in logΩ (in FIG. 8A, the apparent value is shown). The resistance value is the same as the transfer roller resistance value). The transfer voltages were 6.3 kV, 1.0 kV, and 0.3 kV, respectively.

同様にして、図8(b)では転写電流が50μA、80μA、及び100μAにおいて、転写ローラ抵抗値はlogΩで7.8、6.8、及び6.2となった(図8(b)においては、見かけ抵抗値はそれぞれ8.1、7.1、及び6.5である)。そして、転写電圧はそれぞれ6.3kV、1.0kV、及び0.3kVとなった。   Similarly, in FIG. 8B, when the transfer current is 50 μA, 80 μA, and 100 μA, the transfer roller resistance value is 7.8, 6.8, and 6.2 in logΩ (in FIG. 8B). Are apparent resistance values of 8.1, 7.1, and 6.5, respectively). The transfer voltages were 6.3 kV, 1.0 kV, and 0.3 kV, respectively.

一方、図8(c)では、転写電流が50μA、80μA、及び100μAにおいて、転写ローラ抵抗値はlogΩで7.8、6.8、及び6.2となった(図8(c)においては、見かけ抵抗値はそれぞれ7.9、7.0、及び6.5となった)。そして、転写電圧はそれぞれ3.6kV、0.8kV、及び0.3kVとなった。   On the other hand, in FIG. 8C, when the transfer current is 50 μA, 80 μA, and 100 μA, the transfer roller resistance values are 7.8, 6.8, and 6.2 in logΩ (in FIG. 8C). The apparent resistance values were 7.9, 7.0, and 6.5, respectively). The transfer voltages were 3.6 kV, 0.8 kV, and 0.3 kV, respectively.

このように、給電ローラ13を感光体ドラム11の反対側において転写ローラ12に当接して給電を行うとともに、転写ローラ12の軸芯12aを抵抗器15を介して転写バイアス電源14に接続すると(図1参照)、温湿度がL/Lの際、つまり、転写ローラ12の抵抗値が変動して大きくなった際においても(図3参照)、図2及び図4に示す転写装置に比べて(図8(a)及び(b)参照)、転写電圧の上昇を抑えることができる(転写電圧が6.3kVから3.6kVに低下する)。この結果、抵抗器15を転写バイアス電源14と転写ローラ12の軸芯12aとの間に挿入するだけで、転写ローラの抵抗値変動に起因する転写不良を簡単に防止することができ、しかも転写バイアス電源出力の上昇を防止することができることになる。なお、低温低湿環境は通常の事務所環境では、寒冷地の始業直後などごく限られた時間内しか発生しないので、転写バイアス電流の大部分を転写ローラ12の軸芯12aに接続された抵抗器15を介して印加しても転写ローラ12を構成するイオン導電材12bに分極が生じ、その影響が現れることはない(前述のように数十時間以上転写ローラ12の軸芯12aを介して転写電流を印加し続けると、転写不良などの分極の影響が生じる)。   In this way, the power supply roller 13 is brought into contact with the transfer roller 12 on the opposite side of the photosensitive drum 11 to perform power supply, and the shaft core 12a of the transfer roller 12 is connected to the transfer bias power supply 14 via the resistor 15 ( 1), even when the temperature and humidity are L / L, that is, when the resistance value of the transfer roller 12 fluctuates and becomes large (see FIG. 3), compared to the transfer device shown in FIGS. (See FIGS. 8 (a) and 8 (b)), an increase in transfer voltage can be suppressed (transfer voltage is reduced from 6.3 kV to 3.6 kV). As a result, by simply inserting the resistor 15 between the transfer bias power supply 14 and the shaft core 12a of the transfer roller 12, transfer defects caused by fluctuations in the resistance value of the transfer roller can be easily prevented, and transfer can be performed. An increase in the bias power supply output can be prevented. In a normal office environment, a low temperature and low humidity environment occurs only within a very limited time, such as immediately after the start of a cold district. Therefore, most of the transfer bias current is a resistor connected to the shaft core 12a of the transfer roller 12. 15, the ionic conductive material 12b constituting the transfer roller 12 is polarized and the influence thereof does not appear (as described above, the transfer is performed via the shaft core 12a of the transfer roller 12 for several tens of hours or more. If an electric current is continuously applied, an influence of polarization such as transfer failure occurs.

つまり、N/N環境〜H/H環境においては、転写ローラの抵抗値は抵抗器の抵抗値よりも低くなって、転写バイアス電流が給電ローラを介して転写ローラに与えられ、L/L環境においては、転写ローラの抵抗値が上昇して、抵抗器の抵抗値よりも大きくなって、転写バイアス電流は転写ローラの軸芯を介して供給されることになる(給電ローラを介して転写バイアス電流を供給する際には、軸芯を介して転写バイアス電流を供給する場合に比べて、その抵抗層が2倍となる。図4と図1の構成の場合も、図2の場合と同じ転写バイアス電源14の使用を前提としているので、各環境において転写ローラに流しえる転写電流は同一となる。図4と図1の構成の場合は転写ローラのイオン導電材の抵抗値を図2の場合と比較して半分に設定したイオン導電材を使用している)。このため、L/L環境下においては、見かけの転写ローラ抵抗値が低くなる。   That is, in the N / N environment to the H / H environment, the resistance value of the transfer roller is lower than the resistance value of the resistor, and the transfer bias current is applied to the transfer roller via the power supply roller, and the L / L environment. In this case, the resistance value of the transfer roller rises and becomes larger than the resistance value of the resistor, and the transfer bias current is supplied via the axis of the transfer roller (transfer bias via the power supply roller). When the current is supplied, the resistance layer is doubled as compared with the case where the transfer bias current is supplied via the shaft core, and the configuration of FIGS. Since it is assumed that the transfer bias power source 14 is used, the transfer current that can flow to the transfer roller in each environment is the same.In the case of the configurations of FIGS. Set it in half compared to the case Using ion conductive material). For this reason, the apparent transfer roller resistance value is low under the L / L environment.

一方、N/N環境〜H/H環境下では、転写バイアス電流は給電ローラを介して転写ローラに供給され、転写ローラの一回転で電界の反転が生じ、イオン導電材中においてイオン導電物質の偏り、即ち、分極が生じることがなく、転写ローラの抵抗値の上昇を抑制することができる。   On the other hand, in the N / N environment to the H / H environment, the transfer bias current is supplied to the transfer roller via the power supply roller, and the electric field is reversed by one rotation of the transfer roller, so that the ion conductive material in the ion conductive material Bias, that is, polarization does not occur, and an increase in the resistance value of the transfer roller can be suppressed.

また、感光体ドラムとしてα−Si感光体ドラムを用いた際には、転写バイアス電流を大きくする必要があるが、上述のようにして、温湿度に対する転写ローラの抵抗値変動を抑制するようにすれば、転写バイアス電圧(バイアス電源出力)の上昇を抑えることができることになる。   Further, when the α-Si photosensitive drum is used as the photosensitive drum, it is necessary to increase the transfer bias current. However, as described above, it is possible to suppress fluctuations in the resistance value of the transfer roller with respect to temperature and humidity. In this case, an increase in transfer bias voltage (bias power supply output) can be suppressed.

転写ローラを、転写ローラの表面に当接する給電ローラと導電性軸芯に接続された抵抗器とを介して転写バイアス電源に接続するようにしたから、温湿度の変動によって転写ローラの抵抗値が大きくなって抵抗器の抵抗値を越えると、転写バイアス電流の大部分は抵抗器を介して導電性軸芯に供給されることになって、転写ローラの抵抗値変動に起因する転写不良を防止することができるばかりでなくバイアス電源出力の上昇を防止することができる結果、電子写真プロセスを用いた複写機、プリンタ、又はファクシミリ装置等の画像形成装置に適用できる。   Since the transfer roller is connected to the transfer bias power source via a power supply roller that contacts the surface of the transfer roller and a resistor connected to the conductive shaft core, the resistance value of the transfer roller due to temperature and humidity fluctuations is reduced. When the resistance value exceeds the resistance value of the resistor, most of the transfer bias current is supplied to the conductive shaft core via the resistor to prevent transfer defects caused by fluctuations in the resistance value of the transfer roller. As a result, it is possible to prevent an increase in the bias power output, and as a result, it can be applied to an image forming apparatus such as a copying machine, a printer, or a facsimile machine using an electrophotographic process.

本発明の実施例1による画像形成装置に用いられる転写装置を概略的に示す図である。1 is a diagram schematically showing a transfer device used in an image forming apparatus according to Embodiment 1 of the present invention. 転写ローラの軸芯に直接転写バイアスを印加する転写装置を概略的に示す図である。It is a figure which shows roughly the transfer apparatus which applies a transfer bias directly to the axial center of a transfer roller. 環境条件(温湿度)の変動による転写ローラの抵抗値の変化を示す図である。It is a figure which shows the change of the resistance value of a transfer roller by the fluctuation | variation of environmental conditions (temperature / humidity). 転写ローラに給電ローラを介して転写バイアスを印加する転写装置を概略的に示す図である。It is a figure which shows schematically the transfer apparatus which applies a transfer bias to a transfer roller via a power feeding roller. 図4に示す転写装置における転写電流の流れを説明するための図である。FIG. 5 is a diagram for explaining a flow of a transfer current in the transfer device shown in FIG. 4. 図1に示す転写装置において、温湿度が高い場合の転写電流の流れを示す図である。In the transfer apparatus shown in FIG. 1, it is a figure which shows the flow of the transfer electric current when temperature and humidity are high. 図1に示す転写装置において、温湿度が低い場合の転写電流の流れを示す図である。In the transfer apparatus shown in FIG. 1, it is a figure which shows the flow of the transfer electric current when temperature and humidity are low. 環境条件の変動による転写電圧の変化を示す図であり、(a)は図2に示す転写装置を用いた際の転写電圧の変化を示す図、(b)は図4に示す転写装置を用いた際の転写電圧の変化を示す図、(c)は図1に示す転写装置を用いた際の転写電圧の変化を示す図である。FIG. 5 is a diagram showing a change in transfer voltage due to a change in environmental conditions, (a) shows a change in transfer voltage when the transfer device shown in FIG. 2 is used, and (b) uses the transfer device shown in FIG. FIG. 6C is a diagram showing a change in transfer voltage when the transfer device shown in FIG. 1 is used.

符号の説明Explanation of symbols

10 転写装置
11 感光体ドラム
12 転写ローラ
12a 導電性軸芯
12b イオン導電材
13 給電ローラ
14 転写バイアス電源
15 抵抗器
16 転写材
DESCRIPTION OF SYMBOLS 10 Transfer apparatus 11 Photosensitive drum 12 Transfer roller 12a Conductive shaft core 12b Ion conductive material 13 Feed roller 14 Transfer bias power supply 15 Resistor 16 Transfer material

Claims (4)

電子写真プロセスによって形成されたトナー画像を担持する像担持体と転写ニップ部で接触する転写ローラと、該転写ローラに定電流制御によって転写バイアス電流を供給する転写バイアス電源とを有し、前記転写ニップ部に送られる転写材に前記トナー画像を転写させる転写装置を備える画像形成装置において、
前記転写ローラは導電性軸芯と該導電性軸芯の外周面に配置されたイオン導電材とを有し、
前記転写ローラは、前記転写ローラの表面に当接した給電部材と前記導電性軸芯に接続された抵抗器とを介して前記転写バイアス電源に接続されていることを特徴とする画像形成装置。
An image carrier that carries a toner image formed by an electrophotographic process; a transfer roller that is in contact with a transfer nip; and a transfer bias power source that supplies a transfer bias current to the transfer roller by constant current control. In an image forming apparatus comprising a transfer device for transferring the toner image to a transfer material sent to a nip portion,
The transfer roller has a conductive axis and an ionic conductive material disposed on the outer peripheral surface of the conductive axis;
The image forming apparatus, wherein the transfer roller is connected to the transfer bias power source via a power supply member in contact with the surface of the transfer roller and a resistor connected to the conductive shaft core.
前記給電部材は、前記転写ローラを挟んで前記像担持体と反対側で前記転写ローラと接触していることを特徴とする請求項1記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the power supply member is in contact with the transfer roller on a side opposite to the image carrier with the transfer roller interposed therebetween. 温湿度に起因して前記転写ローラの抵抗値が変動し、
前記抵抗器の抵抗値は、前記転写ローラの抵抗値の変動幅の上限未満でかつ下限を越える値に設定するようにしたことを特徴とする請求項1又は2記載の画像形成装置。
The resistance value of the transfer roller fluctuates due to temperature and humidity,
The image forming apparatus according to claim 1, wherein the resistance value of the resistor is set to a value that is less than an upper limit and exceeds a lower limit of a fluctuation range of the resistance value of the transfer roller.
前記像担持体は、感光体としてアモルファスシリコン感光体を有することを特徴とする請求項1〜3いずれか1項記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the image bearing member includes an amorphous silicon photosensitive member as a photosensitive member.
JP2004268911A 2004-09-15 2004-09-15 Image forming apparatus Expired - Fee Related JP4555645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268911A JP4555645B2 (en) 2004-09-15 2004-09-15 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268911A JP4555645B2 (en) 2004-09-15 2004-09-15 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2006084730A true JP2006084730A (en) 2006-03-30
JP4555645B2 JP4555645B2 (en) 2010-10-06

Family

ID=36163307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268911A Expired - Fee Related JP4555645B2 (en) 2004-09-15 2004-09-15 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4555645B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068518A (en) * 2010-09-24 2012-04-05 Fuji Xerox Co Ltd Transfer device and image forming apparatus
JP2012181344A (en) * 2011-03-01 2012-09-20 Fuji Xerox Co Ltd Image forming device
JP2013054298A (en) * 2011-09-06 2013-03-21 Fuji Xerox Co Ltd Transfer device and image forming apparatus
JP2014062977A (en) * 2012-09-20 2014-04-10 Fuji Xerox Co Ltd Transfer device, image forming device
JP2014089388A (en) * 2012-10-31 2014-05-15 Kyocera Document Solutions Inc Transfer device, and image forming apparatus including the same
JP2015072347A (en) * 2013-10-02 2015-04-16 富士ゼロックス株式会社 Image forming apparatus
US20170351200A1 (en) * 2016-06-03 2017-12-07 Canon Kabushiki Kaisha Image forming apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144409B1 (en) * 1968-07-04 1976-11-29
JPH0749604A (en) * 1993-06-04 1995-02-21 Bridgestone Corp Method of operating electrically conductive member
JPH0934278A (en) * 1995-05-12 1997-02-07 Fuji Xerox Co Ltd Image forming device
JPH1048914A (en) * 1996-08-02 1998-02-20 Canon Inc Contact electrification device and image forming device
JPH10228158A (en) * 1997-02-13 1998-08-25 Fuji Xerox Co Ltd Contact electrifier
JPH11119572A (en) * 1997-10-17 1999-04-30 Fuji Xerox Co Ltd Transfer device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144409B1 (en) * 1968-07-04 1976-11-29
JPH0749604A (en) * 1993-06-04 1995-02-21 Bridgestone Corp Method of operating electrically conductive member
JPH0934278A (en) * 1995-05-12 1997-02-07 Fuji Xerox Co Ltd Image forming device
JPH1048914A (en) * 1996-08-02 1998-02-20 Canon Inc Contact electrification device and image forming device
JPH10228158A (en) * 1997-02-13 1998-08-25 Fuji Xerox Co Ltd Contact electrifier
JPH11119572A (en) * 1997-10-17 1999-04-30 Fuji Xerox Co Ltd Transfer device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068518A (en) * 2010-09-24 2012-04-05 Fuji Xerox Co Ltd Transfer device and image forming apparatus
US8737858B2 (en) 2010-09-24 2014-05-27 Fuji Xerox Co., Ltd. Transfer device and image forming apparatus
JP2012181344A (en) * 2011-03-01 2012-09-20 Fuji Xerox Co Ltd Image forming device
JP2013054298A (en) * 2011-09-06 2013-03-21 Fuji Xerox Co Ltd Transfer device and image forming apparatus
JP2014062977A (en) * 2012-09-20 2014-04-10 Fuji Xerox Co Ltd Transfer device, image forming device
JP2014089388A (en) * 2012-10-31 2014-05-15 Kyocera Document Solutions Inc Transfer device, and image forming apparatus including the same
JP2015072347A (en) * 2013-10-02 2015-04-16 富士ゼロックス株式会社 Image forming apparatus
US20170351200A1 (en) * 2016-06-03 2017-12-07 Canon Kabushiki Kaisha Image forming apparatus

Also Published As

Publication number Publication date
JP4555645B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP2005316200A (en) Transfer device for image forming apparatus
JP4555645B2 (en) Image forming apparatus
JP4560361B2 (en) Image forming apparatus
JPH07248669A (en) Charge applying member and image forming device
JP2004205583A (en) Image forming apparatus
US6963716B2 (en) Image forming apparatus featuring a resistance relationship between an image bearing member and a transfer member
US7493063B2 (en) Image-forming device comprising a contact charging unit
JP2008242141A (en) Charge roller and image forming apparatus equipped with charge roller
JP2000293054A (en) Image forming device
US9081334B2 (en) Image forming apparatus
JPH08292648A (en) Transfer and carrying belt and transfer device
JP2004094157A (en) Transferring roll and image forming apparatus
JP2005316199A (en) Transfer device for image forming apparatus
US7020422B2 (en) Transferring roller, transfer device, and image forming apparatus
JP6938145B2 (en) Image forming device
JP3457100B2 (en) Image forming device
JP2002162835A (en) Image forming device
JP3772879B2 (en) Image forming apparatus
JP3287114B2 (en) Charging device
JPH0540418A (en) Image forming device
JP3667975B2 (en) Belt transfer device
JPH0511643A (en) Roller transfer device
JP2007240672A (en) Image forming apparatus
JP2021060535A (en) Image forming apparatus
JPH04280278A (en) Transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees