JP2006084375A - Measuring method using crystalline carbon as electrode - Google Patents

Measuring method using crystalline carbon as electrode Download PDF

Info

Publication number
JP2006084375A
JP2006084375A JP2004270773A JP2004270773A JP2006084375A JP 2006084375 A JP2006084375 A JP 2006084375A JP 2004270773 A JP2004270773 A JP 2004270773A JP 2004270773 A JP2004270773 A JP 2004270773A JP 2006084375 A JP2006084375 A JP 2006084375A
Authority
JP
Japan
Prior art keywords
electrode
voltage
boundary
electrolyte solution
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004270773A
Other languages
Japanese (ja)
Inventor
Katsuya Okumura
勝弥 奥村
Minoru Inai
穣 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Octec Inc
Original Assignee
Horiba Ltd
Octec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Octec Inc filed Critical Horiba Ltd
Priority to JP2004270773A priority Critical patent/JP2006084375A/en
Publication of JP2006084375A publication Critical patent/JP2006084375A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide various methods relevant to measurement using polarography with favorable sensitivity improving repeatability of measurement accuracy, and providing recycling of an electrode without requiring labor or work for polishing by properly processing a surface of the electrode. <P>SOLUTION: The electrode provided by an activation process of dipping an electrode material which is crystalline carbon in an electrolyte solution, and applying a first boundary voltage which is a voltage of a boundary wherein oxidation of a first negative ion occurs is used as a first working electrode 1. There are provided: a measurement process of carrying out the measurement using polarography; and a conditioning processing of removing substances attached to the working electrode 1 by applying a second boundary voltage which is a voltage of a boundary wherein oxidation of a second negative ion occurs, and the same or below the first boundary voltage to the first working electrode 1 after the measurement process. The negative ions derived from the electrolyte solution and oxidized by the voltage the same or below the first boundary voltage are the same that negative ions included in a supporting electrolyte solution used in the conditioning process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、結晶性炭素を電極に用い、電気化学的手法により物質を定性、定量的に測定する方法、及びその測定に好適な電極活性化方法、電極製造方法、電極コンディショニング方法等に関わるものである。   The present invention relates to a method for qualitatively and quantitatively measuring a substance by an electrochemical method using crystalline carbon as an electrode, and an electrode activation method, an electrode manufacturing method, an electrode conditioning method, and the like suitable for the measurement. It is.

ポーラログラフ法等の濃度測定方法では、従来は特許文献1に示すように水銀滴下電極を用いるか、ガラス状カーボンを電極として水銀塩溶液を添加して用いている。しかし、自然環境への水銀などの重金属が与える影響が正しく理解されたことにより、生態系に与える悪影響が著しいとされ、現在水銀使用の廃絶が望まれている。   Conventionally, in a concentration measurement method such as a polarographic method, a mercury dropping electrode is used as shown in Patent Document 1, or a mercury salt solution is added using glassy carbon as an electrode. However, due to the correct understanding of the effects of heavy metals such as mercury on the natural environment, the adverse effects on the ecosystem are considered to be significant, and the abolition of mercury use is now desired.

そこで、ガラス状カーボンや導電性ダイヤモンドを原料とする電極を用いた測定が行われる。   Therefore, measurement using an electrode made of glassy carbon or conductive diamond as a raw material is performed.

しかし、ガラス状カーボン等では、測定物質等が電極表面に吸着等し、電極の感度が低下する。この感度を回復させるため、測定時とは逆の高い電圧を掛けることでコンディショニングし、吸着した物質などを溶液中に再溶解させているが、電極の感度を十分には回復させることができないため、電極を研磨し新しい表面を出すことで電極を再利用している。   However, in the case of glassy carbon or the like, the measurement substance or the like is adsorbed on the electrode surface and the sensitivity of the electrode is lowered. In order to recover this sensitivity, conditioning is performed by applying a high voltage opposite to that during measurement, and the adsorbed substances are redissolved in the solution, but the sensitivity of the electrode cannot be fully recovered. The electrode is reused by polishing the electrode and exposing a new surface.

しかし、このような方法を用いるなら、研磨を行う手間や装置が必要となるだけでなく、研磨の具合に測定精度が左右される。またその精度を電極の新造時近くにまで回復させるには水銀が不可欠である。
特開昭61−210940号公報
However, if such a method is used, not only the labor and apparatus for performing polishing are required, but also the measurement accuracy depends on the degree of polishing. Mercury is indispensable to restore the accuracy to near the time of new electrode construction.
JP-A-61-210940

そこで本発明は、電極の表面を適切に処理することで研磨に要する手間や装置を必要とせず、水銀を用いずに電極の再利用を可能とし、更に感度が良く、測定精度の再現性を向上させる測定に関する方法の提供をその主たる課題としたものである。   Therefore, the present invention does not require the labor and equipment required for polishing by appropriately treating the surface of the electrode, enables the electrode to be reused without using mercury, has higher sensitivity, and allows the reproducibility of measurement accuracy. The main challenge is to provide methods for improved measurement.

すなわち本発明は、所定の物質と支持電解質とを溶媒に溶解しているものである支持電解質溶液に、結晶性炭素を備える電極である作用極と、その対となる電極である対極とを浸漬して電圧を印加し、流れる電流量及び/又はその変化位置を測定することで前記所定の物質の定量及び/又は定性を行うポーラログラフ法を用いた測定方法であって、電極となる結晶性炭素である電極原料を電解質溶液に浸漬し、前記電解質溶液に由来する所定の第1の陰イオンの酸化が起こる境界となる電圧である第1境界電圧を、所定時間加える活性化工程により得られる前記電極を作用極とし、ポーラログラフ法を用いた測定を行う測定工程と、前記測定工程の後に、前記支持電解質又は前記溶媒に由来する所定の第2の陰イオンの酸化が起こる境界となり、且つ前記第1境界電圧以下の電圧である第2境界電圧より所定量だけ大きい電圧である第2境界消耗側電圧を作用極に所定時間印加することで、作用極の表面に付着した物質を取り除くコンディショニング工程とを備え、前記活性化工程で用いる前記電解質溶液に由来し、且つ前記第1境界電圧以下の電圧で酸化される陰イオンの一部又は全部が、前記コンディショニング工程で用いる支持電解質溶液に含まれる陰イオンと共通であることを特徴とするものである。   That is, the present invention immerses a working electrode, which is an electrode comprising crystalline carbon, and a counter electrode, which is a pair of electrodes, in a supporting electrolyte solution in which a predetermined substance and a supporting electrolyte are dissolved in a solvent. A measurement method using a polarographic method for quantifying and / or qualifying the predetermined substance by applying a voltage and measuring a flowing current amount and / or a change position thereof, and a crystalline carbon serving as an electrode The electrode raw material is immersed in an electrolyte solution, and obtained by an activation step in which a first boundary voltage, which is a voltage at which a predetermined first anion derived from the electrolyte solution oxidizes, is applied for a predetermined time. A measurement step in which measurement is performed using a polarographic method with an electrode as a working electrode, and a boundary where oxidation of a predetermined second anion derived from the supporting electrolyte or the solvent occurs after the measurement step. And applying a second boundary consumption side voltage, which is a voltage larger than the second boundary voltage, which is a voltage equal to or lower than the first boundary voltage, by a predetermined amount to the working electrode for a predetermined time, thereby causing a substance attached to the surface of the working electrode to A supporting electrolyte solution used in the conditioning step, wherein a part or all of anions derived from the electrolyte solution used in the activation step and oxidized at a voltage equal to or lower than the first boundary voltage are provided. It is characterized by being common to the anions contained in.

このような濃度測定方法であれば、例えばダイヤモンドや熱分解グラファイトといった結晶性炭素を電極原料として用いるため、水銀を使用しなくても済む。また、活性化工程において電極原料の表面が、例えば電解質溶液中の陰イオンによって終端化され、電極の感度が向上すると考えられる。   With such a concentration measuring method, for example, crystalline carbon such as diamond or pyrolytic graphite is used as an electrode raw material, so that it is not necessary to use mercury. Further, it is considered that the surface of the electrode raw material is terminated by, for example, an anion in the electrolyte solution in the activation step, and the sensitivity of the electrode is improved.

また測定工程の後にコンディショニング工程を行うことで、例えば第2境界消耗側電圧で反応性を増した陰イオンが電極表面付近に多数存在し電極に吸着している物質と反応し、電極表面に吸着等している物質をより確実に取り除くことができると考えられる。   In addition, by performing the conditioning process after the measurement process, for example, many anions whose reactivity has been increased by the second boundary consumption side voltage are present in the vicinity of the electrode surface, react with the substance adsorbed on the electrode, and adsorb on the electrode surface It is thought that the same substances can be removed more reliably.

そして、活性化工程の電解質溶液と、濃度測定工程の支持電解質溶液とで共通の陰イオンを用いているなら、コンディショニング工程において、例えば水溶液中の陰イオンが電極表面と反応した場合にも電極表面の組成を大きく変えることは無く、感度の低下が起こりにくいと考えられる。   If a common anion is used in the electrolyte solution in the activation step and the supporting electrolyte solution in the concentration measurement step, the electrode surface can be used in the conditioning step even when an anion in the aqueous solution reacts with the electrode surface. It is considered that the sensitivity is not easily lowered without significantly changing the composition.

更に、このような方法を用いれば高い感度で再現性良く測定可能なことが実験より判明している。   Furthermore, experiments have shown that such a method can be measured with high sensitivity and good reproducibility.

このコンディショニング工程で用いられる電極コンディショニング方法は、前記測定方法に用いることができるだけでなく、例えば精度良く電極表面に付着した物質を取り除くことを可能とすると考えられ、再現性の良い測定を可能とする。   The electrode conditioning method used in this conditioning step can be used not only for the measurement method, but also for example, it is considered that it is possible to remove substances adhering to the electrode surface with high accuracy, enabling measurement with good reproducibility. .

更に、前記支持電解質溶液が塩化物イオンを溶解しているものであり、作用極にSCE基準で0.05V以上0.1V以下の電圧を印加することで、作用極の表面に付着した物質を取り除くことを特徴とするものであれば、例えば酸化力が強い高い元素である塩素を電極表面に付着した物質を取り除くのに用いることができるため、より効果的に電極表面に付着した物質を取り除くことが可能となると考えられる。   Further, the supporting electrolyte solution dissolves chloride ions. By applying a voltage of 0.05 V or more and 0.1 V or less on the SCE basis to the working electrode, a substance attached to the surface of the working electrode is removed. If it is characterized by removal, for example, chlorine, which is a highly oxidizing element, can be used to remove substances that adhere to the electrode surface, so that the substances attached to the electrode surface can be removed more effectively. It will be possible.

一方、活性化工程で用いられる電極活性化方法は、この方法によって活性化された電極を前記測定方法で用いる作用極として好適に用いることを可能とするだけでなく、例えば溶媒と電解質とを適切に選ぶことで、電解質溶液中のイオンを用いて、電極の表面を任意の組成で終端化することが可能となるため、適切な組成となるよう終端化を行い高い感度の電極を得ることを可能とすると考えられる。   On the other hand, the electrode activation method used in the activation step not only allows the electrode activated by this method to be suitably used as a working electrode used in the measurement method, but also appropriately uses, for example, a solvent and an electrolyte. Therefore, it is possible to terminate the surface of the electrode with any composition using ions in the electrolyte solution. It is considered possible.

そして、表面の活性化を一様に行うためには、前記電極原料の前記電解質溶液との接触面を鏡面化した後に、前記第1境界電圧を印加することが好ましい。   In order to uniformly activate the surface, it is preferable to apply the first boundary voltage after mirroring the contact surface of the electrode material with the electrolyte solution.

更に、電極活性化方法が、前記電極原料に前記第1境界電圧を印加している印加工程と、前記電極原料への前記第1境界電圧の印加を休止している休止工程とを備え、前記印加工程を複数備えおり、通算で前記所定時間、前記第1境界電圧を印加することで、電極表面の終端化を制御することが可能となると考えられる。   Furthermore, the electrode activation method includes an application step of applying the first boundary voltage to the electrode raw material, and a pause step of stopping application of the first boundary voltage to the electrode raw material, It is considered that the termination of the electrode surface can be controlled by providing a plurality of application steps and applying the first boundary voltage for the predetermined time in total.

前記電解質溶液が塩化物イオンを溶解している水溶液であることを特徴とするものであれば、一般的に利用しやすい。   If the electrolyte solution is an aqueous solution in which chloride ions are dissolved, it is generally easy to use.

前記第1境界電圧が、前記電解質溶液に含まれる水を酸化し酸素ガスを発生させる境界となる電圧である酸素発生境界電圧であることを特徴とするものであれば、例えば電極表面を酸素終端化することが可能であり、電極表面の親水性を好適に高めることができ、特に測定工程で水溶液を利用する場合に適していると考えられる。   If the first boundary voltage is an oxygen generation boundary voltage that is a voltage that oxidizes water contained in the electrolyte solution and generates oxygen gas, for example, the electrode surface may be oxygen-terminated. It is possible to improve the hydrophilicity of the electrode surface, and it is considered to be particularly suitable when an aqueous solution is used in the measurement process.

そして、前記電極原料に用いられる結晶性炭素が、熱分解グラファイトであり、SCE基準で1.6V以下の電圧を印加することで前記電極原料の表面を活性化することを特徴とするものであれば、例えば表面の終端化を行う際に、酸素原子等が電極の内部にまで進入し反応することがないため、活性化を好適に行えると考えられる。   The crystalline carbon used in the electrode material is pyrolytic graphite, and the surface of the electrode material is activated by applying a voltage of 1.6 V or less on the basis of SCE. For example, when the surface is terminated, oxygen atoms or the like do not enter and react with the inside of the electrode, so that the activation can be suitably performed.

このような方法を用いれば、水銀を用いず、研磨に要する手間や装置を必要とせずに、再現性よく高感度な測定を可能とすることができる。   By using such a method, it is possible to perform highly sensitive measurement with good reproducibility without using mercury and without requiring labor and equipment required for polishing.

以下、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本実施形態では、結晶性炭素を原料とする電極である作用極1を活性化する活性化工程と、活性化された作用極1を用いてポーラログラフ法により所定の物質の濃度測定を行う濃度測定工程と、濃度測定後に作用極1に吸着等した物質を除去するコンディショニング工程とを行う。   In the present embodiment, an activation step of activating a working electrode 1 that is an electrode made of crystalline carbon as a raw material, and a concentration measurement in which the concentration of a predetermined substance is measured by a polarographic method using the activated working electrode 1. A process and a conditioning process for removing substances adsorbed on the working electrode 1 after concentration measurement are performed.

以下に各工程を詳細に説明する。   Each step will be described in detail below.

活性化工程では、電極原料に結晶性炭素の一つである熱分解性炭素を用い、前記電極原料を、電解質である塩化カリウム(以下KCl)を純水に溶解しているものである電解質溶液に浸漬し、前記電解質溶液に含まれる所定の第1の陰イオンが電子の授受を開始する境界となる電圧である第1境界電圧を前記電極原料に所定時間印加する。図1に示すように、電解質溶液を満たしたセル4と、作用極1と、対極2と、参照極3とを備えた三端子式の装置を利用している。ポテンシオスタット5が直流電流を発生させ、電流計6から電流値をモニタできるようにしている。   In the activation step, an electrolyte solution in which pyrolytic carbon, which is one of crystalline carbons, is used as an electrode raw material, and the electrode raw material is obtained by dissolving potassium chloride (hereinafter referred to as KCl) as an electrolyte in pure water. Then, a first boundary voltage that is a voltage at which a predetermined first anion contained in the electrolyte solution starts to transfer electrons is applied to the electrode material for a predetermined time. As shown in FIG. 1, a three-terminal device including a cell 4 filled with an electrolyte solution, a working electrode 1, a counter electrode 2, and a reference electrode 3 is used. The potentiostat 5 generates a direct current so that the current value can be monitored from the ammeter 6.

結晶性炭素とは、ダイヤモンドやグラファイトを含むものである。熱分解グラファイトとは、グラファイトの一種であり、熱分解法により生成された炭素を、還元雰囲気で焼成再結晶化し、高純度化したものである。本実施形態では、パイロイド(登録商標)として入手可能な、直径2mmの円柱状とした熱分解グラファイトの接液面を、金属光沢が出るまで研磨することで鏡面化し、更に再結晶化したものを用いており、表面は水素終端化されている。また本実施形態で電極原料とは、活性化が未完了の状態にある電極を指すものである。   Crystalline carbon includes diamond and graphite. Pyrolytic graphite is a kind of graphite, which is obtained by calcination and recrystallization of carbon produced by a pyrolysis method in a reducing atmosphere. In this embodiment, the wetted surface of pyrolytic graphite that is available as Pyroid (registered trademark) in the form of a cylinder with a diameter of 2 mm is mirror-polished by polishing until a metallic luster appears, and further recrystallized. Used and the surface is hydrogen terminated. Moreover, in this embodiment, an electrode raw material refers to the electrode which has not been activated yet.

溶媒は純水とし、電解質溶液は約0.1mol/リットルであるKClの飽和溶液としている。これは後述する濃度測定工程に合わせたためである。   The solvent is pure water, and the electrolyte solution is a saturated solution of KCl at about 0.1 mol / liter. This is because it is adapted to the concentration measurement process described later.

また、第1境界電圧として、本実施形態では電極材料の溶媒に対する電位窓の上限となる電圧、つまり、前記電解質溶液に含まれる水を酸化し酸素ガスを発生させる境界となる約1.5Vの電圧である酸素発生境界電圧を印加するようにしている。なお、特に示さない限り電圧はSCE基準である。   Further, as the first boundary voltage, in this embodiment, the voltage that is the upper limit of the potential window with respect to the solvent of the electrode material, that is, the boundary that generates oxygen gas by oxidizing water contained in the electrolyte solution is about 1.5V. An oxygen generation boundary voltage, which is a voltage, is applied. Unless otherwise indicated, the voltage is based on SCE.

この活性化工程は、前記電極原料に第1境界電圧を印加している印加工程と、電極原料への第1境界電圧の印加を休止している休止工程とを備えており、印加工程と休止工程とを交互に繰り返すことで電極原料に、所定時間、第1境界電圧を印加し、電極材料の活性化を制御するようにしている。各印加工程は連続約1時間、各休止工程は連続約23時間とし、1日で1ターンとしている。また、休止工程では電極原料を電極として試用して後述する濃度測定工程を行い、−1V以上1.5V未満の電圧を掃引し、サンプルの濃度を計測することで感度試験を行う。例えば、Cu2+へ電離するサンプルを電解質と等量混和した溶液を用いて、10ppbの銅に対し約6μA以上の電流が流れることを電極原料の活性化完了の基準としている。該基準では活性化完了までには計約20回の印加工程を設ける必要があるが、用途に応じて該基準や印加工程のターン数、第1境界電圧の印加時間を調節することが好ましい。 The activation process includes an application process in which a first boundary voltage is applied to the electrode material, and a pause process in which application of the first boundary voltage to the electrode material is suspended. By alternately repeating the steps, the first boundary voltage is applied to the electrode material for a predetermined time to control the activation of the electrode material. Each application process is continuous for about 1 hour, each rest process is continuous for about 23 hours, and one turn per day. Further, in the pause process, the electrode raw material is used as an electrode, a concentration measuring step described later is performed, a voltage of −1 V or more and less than 1.5 V is swept, and the sensitivity test is performed by measuring the concentration of the sample. For example, using a solution in which an equal amount of a sample ionized to Cu 2+ is mixed with an electrolyte, a current of about 6 μA or more flows with respect to 10 ppb of copper as a criterion for completion of activation of the electrode raw material. According to the standard, it is necessary to provide a total of about 20 application steps until the activation is completed, but it is preferable to adjust the reference, the number of turns of the application process, and the application time of the first boundary voltage according to the application.

なお、この電極原料の表面の活性化は、例えば電解質溶液中の陰イオンに由来する塩素や酸素等が適量ラジカル化し、水素終端を有する電極原料の表面の炭素原子へ取り付くことで終端化し、表面改質を行うことによると推定できる。そこで、このような状態を維持できるように第1境界電圧を定めるのが好ましい。更に言えば、溶出曲線のプラトー領域の端部付近を示す電圧で表面改質を行えば効率的であることが実験により判明している。この電圧は、例えばグラファイトであれば約1.4V〜1.6Vであり、改質が有効に行える帯域には0.2V〜0.3V程度の余裕がある。また、特に酸素ガスが発生し得る場合には1.6Vを超えないことが好ましい。この場合、また、活性化に用いる電解質溶液の組成と、後の濃度測定工程で用いる支持電解質溶液の組成とを一致又は類似させることが高感度な炭素電極を得るために好ましい。   In addition, activation of the surface of this electrode raw material is terminated by attaching an appropriate amount of, for example, chlorine or oxygen derived from anions in the electrolyte solution to the carbon atoms on the surface of the electrode raw material having a hydrogen termination, It can be estimated that the modification is performed. Therefore, it is preferable to determine the first boundary voltage so that such a state can be maintained. Furthermore, experiments have shown that it is efficient if surface modification is performed at a voltage indicating the vicinity of the end of the plateau region of the elution curve. This voltage is about 1.4 V to 1.6 V for graphite, for example, and there is a margin of about 0.2 V to 0.3 V in the band where the reforming can be effectively performed. Moreover, it is preferable not to exceed 1.6V especially when oxygen gas can be generated. In this case, it is also preferable to obtain a highly sensitive carbon electrode by making the composition of the electrolyte solution used for activation coincide with or similar to the composition of the supporting electrolyte solution used in the subsequent concentration measurement step.

濃度測定工程では、活性化工程で得られた電極である作用極1と、その対となるPt電極である対極2とを、支持電解質であるKClと、測定対象となるイオンとを純水に溶解しているものである支持電解質溶液に浸漬して電圧を印加し、溶液に流れる電流量及び/又はその変化位置を測定するポーラログラフ法を用いて所定の物質の濃度測定を行う。図1に示すように、溶液を満たしたセル4と、作用極1と、対極2と、Ag/AgClを用いた参照極3とを備えた三端子式の装置を利用している。   In the concentration measurement step, the working electrode 1 that is the electrode obtained in the activation step and the counter electrode 2 that is the Pt electrode that is a pair thereof, KCl that is the supporting electrolyte, and ions that are the measurement target are added to pure water. A concentration of a predetermined substance is measured using a polarographic method in which a voltage is applied by immersing in a supporting electrolyte solution that is dissolved, and a current amount flowing through the solution and / or a change position thereof is measured. As shown in FIG. 1, a three-terminal device including a cell 4 filled with a solution, a working electrode 1, a counter electrode 2, and a reference electrode 3 using Ag / AgCl is used.

本実施形態では、溶媒を純水とし、支持電解質溶液をKClの飽和溶液としている。なお、ここでは単に活性化工程で用いた電解質や電解質溶液と区別するために、支持電解質や支持電解質溶液と称して区別しており、物質的な相違を意味するものではない。また、ポーラログラフ法の一つであるストリッピングポーラログラフ法、より詳細には、金属イオン等を分析するストリッピングポーラログラフ法であるアノードストリッピング法を用い、濃度測定を行っている。   In the present embodiment, the solvent is pure water and the supporting electrolyte solution is a saturated solution of KCl. Here, in order to distinguish from the electrolyte and electrolyte solution used in the activation step, they are referred to as a supporting electrolyte and a supporting electrolyte solution, and do not mean a material difference. Further, the concentration measurement is performed using a stripping polarographic method which is one of polarographic methods, more specifically, an anode stripping method which is a stripping polarographic method for analyzing metal ions and the like.

ストリッピングポーラログラフ法とは、作用極1と対極2とに電圧を印加し、溶液中のイオンを作用極1上に濃縮し、溶出させながら電流量及び/又はその変化位置を測定することで所定の物質の定量及び/又は定性をきわめて高感度に行う方法である。金属イオン等の分析を目的とし、作用極1上に金属イオン等を還元濃縮した後に酸化溶出させ、酸化電位や該電位で流れる電流や電気量を測定するアノードストリッピング法や、ハロゲンイオン等の分析を目的とし、アノードストリッピング法とは電気的に逆の操作を行うカソードストリッピング法等が含まれる。   The stripping polarographic method is a method in which a voltage is applied to the working electrode 1 and the counter electrode 2 to concentrate ions in the solution on the working electrode 1 and measure the amount of current and / or its change position while eluting the ions. It is a method for performing quantitative and / or qualitative analysis of these substances with extremely high sensitivity. For the purpose of analysis of metal ions, etc., the metal ions etc. are reduced and concentrated on the working electrode 1 and then oxidized and eluted to measure the oxidation potential, the current flowing at the potential and the quantity of electricity, and the halogen ions, etc. For the purpose of analysis, a cathode stripping method and the like that are electrically reversed from the anode stripping method are included.

このストリッピングポーラログラフ法を用いた濃度測定工程は、支持電解質溶液に窒素ガス等を溶解させ溶存酸素を取り除いた後、溶液を攪拌しつつイオンを作用極1上に濃縮させるデポジション工程と、溶液を静止させるレスト工程と、イオンを溶出させるストリッピング工程とを備えており、これらを前記の順序で行うものである。図2に各工程の時間と作用極に印加する電圧との関係を模式的に示す。   The concentration measurement step using the stripping polarographic method includes a deposition step in which nitrogen gas or the like is dissolved in the supporting electrolyte solution to remove dissolved oxygen, and then the ions are concentrated on the working electrode 1 while stirring the solution. And a stripping step for eluting ions, which are performed in the order described above. FIG. 2 schematically shows the relationship between the time of each step and the voltage applied to the working electrode.

デポジション工程では、例えば作用極1に−1Vの電圧を300秒間掛け、溶液中の金属イオンを作用極1表面に濃縮させる。   In the deposition step, for example, a voltage of −1 V is applied to the working electrode 1 for 300 seconds to concentrate metal ions in the solution on the surface of the working electrode 1.

レスト工程では、約30秒間溶液を静止させている。   In the rest process, the solution is kept stationary for about 30 seconds.

ストリッピング工程では、直流掃引に一定間隔でパルスを重ねる微分パルスポーラログラフ式を用い、−1Vから+0.05Vまで掃引し、その電流を測定することで溶出曲線を求めている。   In the stripping step, the elution curve is obtained by sweeping from -1 V to +0.05 V using a differential pulse polarographic equation in which pulses are superimposed on DC sweep at regular intervals and measuring the current.

図3、4及び図6は5回、10ppbのCu+を溶解している溶液を測定した場合に得られる溶出曲線を表すグラフであり、図3は活性化工程を全く行わない電極を、図4では9日目の電極を、図6では30日目の電極を用いた場合を示している。活性化工程を行わない純化パイロイドでは殆どピークが現れず、感度が低いことから、電極としては適当ではない。図5及び図7は、9日目と30日目の電極について、前記各測定で、ピークの高さの平均値を100として、測定毎のピークの高さを比で表示した、電極の感度の変化を示すグラフである。9日目の電極では1度目の測定で最も低い感度となっていることから、電極として未完成であり、また後述するコンディショニング工程よって感度が高まっていると考えられる。一方、30日目の電極では1度目の測定で最も高い感度となることから、活性化が完了していると考えられる。   3, 4 and 6 are graphs showing elution curves obtained when measuring a solution in which 10 ppb of Cu + is dissolved 5 times, and FIG. 3 shows an electrode without any activation step. Fig. 6 shows the case where the electrode on the 9th day is used, and Fig. 6 shows the case where the electrode on the 30th day is used. In the purified pyroid without the activation step, almost no peak appears and the sensitivity is low, so that it is not suitable as an electrode. FIG. 5 and FIG. 7 show the sensitivity of the electrodes for the electrodes on the 9th and 30th days, with the average peak height being 100 in each measurement and the ratio of the peak height for each measurement. It is a graph which shows the change of. The electrode on the 9th day has the lowest sensitivity in the first measurement, so that it is not completed as an electrode, and it is considered that the sensitivity is increased by the conditioning process described later. On the other hand, the electrode on the 30th day has the highest sensitivity in the first measurement, and it is considered that the activation has been completed.

コンディショニング工程では、濃度測定工程の後、支持電解質溶液に由来する第2の陰イオンの酸化が起こる境界となる電圧である第2境界電圧よりSCE基準で所定量だけ大きい電圧である第2境界消耗側電圧を作用極1に所定時間印加することで、前記作用極1の表面に付着した物質を取り除く。図1に示す、濃度測定工程で用いた装置をそのまま利用している。   In the conditioning process, after the concentration measurement process, the second boundary consumption is a voltage that is a predetermined amount larger than the second boundary voltage, which is a voltage at which the second anion derived from the supporting electrolyte solution is oxidized, on the SCE basis. By applying a side voltage to the working electrode 1 for a predetermined time, the substance adhering to the surface of the working electrode 1 is removed. The apparatus used in the concentration measurement step shown in FIG. 1 is used as it is.

本実施形態では、電解質溶液が塩化物イオンを溶解しているものであり、作用極1にSCE基準で+0.05V以上0.1V以下の電圧を約900秒間印加することで、前記作用極1の表面に付着した物質を取り除くようにしている。また、所定の第2の陰イオンは、所定の第1の陰イオンと同一のものであっても構わない。   In the present embodiment, the electrolyte solution dissolves chloride ions. By applying a voltage of +0.05 V or more and 0.1 V or less on the basis of the SCE to the working electrode 1 for about 900 seconds, the working electrode 1 The material attached to the surface is removed. The predetermined second anion may be the same as the predetermined first anion.

なお、このコンディショニング工程を行うことにより、従来の、より高い電圧を印加するコンディショニング工程を行った場合より、濃度測定工程で測定される濃度値が優れた再現性を持つことが判明している。このことから、電解質消耗側境界電圧で例えばラジカル化し、反応性を増した適量の塩素が、作用極1に付着した金属と反応し、より確実に金属イオンとして溶解させていると推定できる。そこで、このような状態を維持できるように第2境界電圧を定めるのが好ましく、その帯域として例えばグラファイトであれば0.2V〜0.3V程度の余裕があると考えられる。また、例えば第2境界電圧が第1境界電圧以下であることから、第1境界電圧より大きい電圧で酸化される新たな陰イオンが電極の表面と反応することが無く、また、コンディショニング工程では活性化工程と同様KClの飽和溶液を用いていることから、電極の表面と塩素との反応が平衡状態となり、表面を終端化している原子の組成は大きく変化せず、電極の感度を大きく変えないと推定できる。   It has been found that by performing this conditioning process, the density value measured in the density measurement process has better reproducibility than when the conventional conditioning process for applying a higher voltage is performed. From this, it can be presumed that an appropriate amount of chlorine that has been radicalized, for example, increased in reactivity at the electrolyte consumption side boundary voltage reacts with the metal adhering to the working electrode 1 and is more reliably dissolved as metal ions. Therefore, it is preferable to determine the second boundary voltage so that such a state can be maintained. If the band is, for example, graphite, it is considered that there is a margin of about 0.2 V to 0.3 V. Further, for example, since the second boundary voltage is equal to or lower than the first boundary voltage, new anions that are oxidized at a voltage higher than the first boundary voltage do not react with the surface of the electrode, and are active in the conditioning process. Since the KCl saturated solution is used in the same way as the crystallization step, the reaction between the electrode surface and chlorine is in an equilibrium state, the composition of the atoms terminating the surface does not change significantly, and the sensitivity of the electrode does not change significantly. Can be estimated.

このような活性化工程とコンディショニング工程とを用いれば、水銀を用いず、高感度な電極を利用可能とし、更に電極再利用のための処理を簡易化することができる。   By using such an activation step and a conditioning step, it is possible to use a highly sensitive electrode without using mercury, and to simplify the process for electrode reuse.

なお、本発明は上記実施形態に限られない。   The present invention is not limited to the above embodiment.

例えば、熱分解グラファイトの代わりにガラス状黒鉛を用いても構わない。このようにすれば電極の原料のコストを下げることができる。   For example, glassy graphite may be used instead of pyrolytic graphite. In this way, the cost of the electrode raw material can be reduced.

塩化物イオンへ電離する電解質はKClに限らずNaClであっても構わない。陰イオンは塩化物イオンに限らず酸化力が強い他のハロゲンのイオン等であっても構わなく、複数の原子から成るもの、例えばタンパク質や、分極が大きな分子である酸素酸などに由来するイオン等であっても構わないと考えられる。 The electrolyte that is ionized to chloride ions is not limited to KCl, and may be NaCl. Anions are not limited to chloride ions but may be other halogen ions with strong oxidizing power, etc., or ions derived from multiple atoms such as proteins or oxygen acids that are highly polarized molecules Etc.

対極及び参照極はPtやAg/AgClに限るものではなく、一般的な電極を用いて構わない。 The counter electrode and the reference electrode are not limited to Pt or Ag / AgCl, and general electrodes may be used.

濃度測定工程は、測定対象に応じてアノードストリッピング法でなく、カソードストリッピング法であっても構わないし、ストリッピングポーラログラフ法でなく、ポーラログラフ法を用いても構わない。また濃度の測定に限らず、その他の定量や定性のための測定であってもよい。 The concentration measurement step may be a cathode stripping method instead of the anode stripping method depending on the measurement target, or a polarographic method instead of the stripping polarographic method. Further, the measurement is not limited to the concentration measurement, and may be other measurement for quantitative or qualitative purposes.

また、支持電解質溶液及び電解質溶液は、水溶液に限らない。また液体に限らず、ゲルや樹脂等であっても構わない。また電解質や支持電解質を要さないものである場合にはこれらを投入する必要はない。 Further, the supporting electrolyte solution and the electrolyte solution are not limited to aqueous solutions. Moreover, not only a liquid but gel, resin, etc. may be sufficient. In addition, when an electrolyte or supporting electrolyte is not required, it is not necessary to add them.

前記各構成の一部又は全部を適宣組み合わせてもよい。   A part or all of the above-described components may be appropriately combined.

その他本発明の趣旨を逸脱しない範囲で様々な変形が可能である。 Various other modifications are possible without departing from the spirit of the present invention.

本実施形態における活性化工程、濃度測定工程及びコンディショニング工程で用いられる装置を示す模式図。The schematic diagram which shows the apparatus used at the activation process in this embodiment, a density | concentration measurement process, and a conditioning process. 同実施形態における濃度測定工程で印加する電圧の遷移を示す濃度測定工程電圧遷移図。The density | concentration measurement process voltage transition diagram which shows the transition of the voltage applied at the density | concentration measurement process in the embodiment. 同実施形態における濃度測定方法を用い、活性化工程を行わない電極で炭素電極として試用し、5回10ppbのCu+を溶解した溶液を測定した場合に得られる溶出曲線を表すグラフ。The graph showing the elution curve obtained when using the density | concentration measuring method in the same embodiment, and using the electrode which does not perform an activation process as a carbon electrode, and measuring the solution which melt | dissolved 10 ppb Cu + 5 times. 同実施形態における濃度測定方法を用い、活性化工程9日目の電極で、5回10ppbのCu+を溶解した溶液を測定した場合に得られる溶出曲線を表すグラフ。The graph showing the elution curve obtained when the solution which melt | dissolved 10 ppb Cu + was measured 5 times with the electrode of the activation process 9th day using the concentration measuring method in the embodiment. 同実施形態における濃度測定方法を用い、活性化工程9日目の電極で、5回測定を行い、ピークの高さの平均値を100として、測定毎のピークの高さを比で表示した、炭素電極の感度の変化を示すグラフ。Using the concentration measurement method in the same embodiment, the measurement was performed 5 times with the electrode on the 9th day of the activation step, the average value of the peak height was set to 100, and the peak height for each measurement was displayed as a ratio. The graph which shows the change of the sensitivity of a carbon electrode. 同実施形態における濃度測定方法を用い、活性化工程30日目の電極で、5回10ppbのCu+を溶解した溶液を測定した場合に得られる溶出曲線を表すグラフ。The graph showing the elution curve obtained when the solution which melt | dissolved 10 ppb Cu + was measured 5 times with the electrode of the activation process 30th day using the concentration measuring method in the embodiment. 同実施形態における濃度測定方法を用い、活性化工程30日目の電極で、5回測定を行い、ピークの高さの平均値を100として、測定毎のピークの高さを比で表示した、炭素電極の感度の変化を示すグラフ。Using the concentration measurement method in the same embodiment, the measurement was performed 5 times with the electrode on the 30th day of the activation step, the average value of the peak height was set to 100, and the peak height for each measurement was displayed as a ratio. The graph which shows the change of the sensitivity of a carbon electrode.

符号の説明Explanation of symbols

1…作用極
2…対極
1 ... Working electrode 2 ... Counter electrode

Claims (9)

所定の物質と支持電解質とを溶媒に溶解しているものである支持電解質溶液に、結晶性炭素を備える電極である作用極と、その対となる電極である対極とを浸漬して電圧を印加し、流れる電流量及び/又はその変化位置を測定することで前記所定の物質の定量及び/又は定性を行うポーラログラフ法を用いた測定方法であって、
電極となる結晶性炭素である電極原料を電解質溶液に浸漬し、前記電解質溶液に由来する所定の第1の陰イオンの酸化が起こる境界となる電圧である第1境界電圧を、所定時間加える活性化工程により得られる前記電極を作用極とし、ポーラログラフ法を用いた測定を行う測定工程と、
前記測定工程の後に、前記支持電解質又は前記溶媒に由来する所定の第2の陰イオンの酸化が起こる境界となり、且つ前記第1境界電圧以下の電圧である第2境界電圧より所定量だけ大きい電圧である第2境界消耗側電圧を作用極に所定時間印加することで、作用極の表面に付着した物質を取り除くコンディショニング工程とを備え、
前記活性化工程で用いる前記電解質溶液に由来し、且つ前記第1境界電圧以下の電圧で酸化される陰イオンの一部又は全部が、前記コンディショニング工程で用いる支持電解質溶液に含まれる陰イオンと共通であることを特徴とするポーラログラフ法を用いた測定方法。
A voltage is applied by immersing a working electrode that is an electrode comprising crystalline carbon and a counter electrode that is a pair of electrodes in a supporting electrolyte solution in which a predetermined substance and a supporting electrolyte are dissolved in a solvent. A measurement method using a polarographic method for quantifying and / or qualifying the predetermined substance by measuring a flowing current amount and / or a change position thereof,
An activity of immersing an electrode raw material, which is crystalline carbon to be an electrode, in an electrolyte solution, and applying a first boundary voltage, which is a voltage at which a predetermined first anion derived from the electrolyte solution oxidizes, for a predetermined time A measurement step of performing a measurement using a polarographic method, with the electrode obtained by the conversion step as a working electrode;
After the measurement step, a voltage that becomes a boundary where oxidation of a predetermined second anion derived from the supporting electrolyte or the solvent occurs and is larger than a second boundary voltage that is a voltage equal to or lower than the first boundary voltage by a predetermined amount. And a conditioning process for removing substances adhering to the surface of the working electrode by applying the second boundary consumption side voltage to the working electrode for a predetermined time.
A part or all of the anion derived from the electrolyte solution used in the activation step and oxidized at a voltage equal to or lower than the first boundary voltage is common with the anion contained in the supporting electrolyte solution used in the conditioning step. A measuring method using a polarographic method, characterized by
所定の物質と支持電解質とを溶媒に溶解しているものである支持電解質溶液に、結晶性炭素を備える電極である作用極と、その対となる電極である対極とを浸漬して電圧を掃引し、流れる電流量及び/又はその変化位置を測定することで前記所定の物質の定量及び/又は定性を行うポーラログラフ法を行った後に作用極を回復させる方法であって、
前記支持電解質又は前記溶媒に由来する所定の第2の陰イオンの酸化が起こる境界となる電圧である第2境界電圧より所定量だけ大きい電圧である第2境界消耗側電圧を作用極に所定時間印加することで、前記作用極の表面に付着した物質を取り除くことを特徴とする電極コンディショニング方法。
Sweeping the voltage by immersing the working electrode, which is an electrode comprising crystalline carbon, and the counter electrode, which is a pair of electrodes, in a supporting electrolyte solution in which a predetermined substance and the supporting electrolyte are dissolved in a solvent And a method of recovering the working electrode after performing a polarographic method for quantifying and / or qualifying the predetermined substance by measuring a flowing current amount and / or a change position thereof,
A second boundary consumption side voltage, which is a voltage larger by a predetermined amount than a second boundary voltage, which is a boundary voltage at which oxidation of a predetermined second anion derived from the supporting electrolyte or the solvent occurs, is performed for a predetermined time. The electrode conditioning method characterized by removing the substance adhering to the surface of the said working electrode by applying.
前記支持電解質溶液が塩化物イオンを溶解しているものであり、作用極にSCE基準で0.05V以上0.1V以下の電圧を印加することで、作用極の表面に付着した物質を取り除くことを特徴とする請求項2記載の電極コンディショニング方法。 The supporting electrolyte solution is a solution in which chloride ions are dissolved, and the substance adhering to the surface of the working electrode is removed by applying a voltage of 0.05 V or more and 0.1 V or less on the SCE standard to the working electrode. The electrode conditioning method according to claim 2. 物質の定量及び/又は定性に用いられる電極の原料となる結晶性炭素である電極原料の表面を活性化する方法であって、
前記電極原料を、電解質を溶解した電解質水溶液に浸漬し、前記電解質水溶液に由来する所定の第1の陰イオンの酸化が起こる境界となる電圧である第1境界電圧を前記電極原料に所定時間印加することで、その表面を活性化することを特徴とする電極活性化方法。
A method of activating the surface of an electrode raw material that is crystalline carbon that is a raw material of an electrode used for quantitative and / or qualitative analysis of a substance,
The electrode raw material is immersed in an aqueous electrolyte solution in which an electrolyte is dissolved, and a first boundary voltage, which is a boundary at which oxidation of a predetermined first anion derived from the electrolytic aqueous solution occurs, is applied to the electrode raw material for a predetermined time. Then, the electrode activation method characterized by activating the surface.
前記電極原料の前記電解質水溶液との接触面を鏡面化した後に、前記第1境界電圧を印加し前記電極原料の表面を活性化することを特徴とする請求項4記載の電極活性化方法。 The electrode activation method according to claim 4, wherein after the contact surface of the electrode material with the electrolyte aqueous solution is mirror-finished, the first boundary voltage is applied to activate the surface of the electrode material. 前記電極原料に前記第1境界電圧を印加している印加工程と、前記電極原料への前記第1境界電圧の印加を休止している休止工程とを備え、前記印加工程を複数備えており、通算で前記所定時間、前記第1境界電圧を印加することを特徴とする請求項4又は5記載の電極活性化方法。 An application step of applying the first boundary voltage to the electrode material, and a pause step of stopping application of the first boundary voltage to the electrode material, comprising a plurality of the application steps, 6. The electrode activation method according to claim 4, wherein the first boundary voltage is applied for the predetermined time in total. 前記電解質水溶液が塩化物イオンを溶解している水溶液であることを特徴とする請求項4乃至6いずれか記載の電極活性化方法。 The electrode activation method according to claim 4, wherein the aqueous electrolyte solution is an aqueous solution in which chloride ions are dissolved. 前記第1境界電圧が、前記電解質水溶液に含まれる水を酸化し酸素ガスを発生させる境界となる電圧である酸素発生境界電圧であることを特徴とする請求項7記載の電極活性化方法。 The electrode activation method according to claim 7, wherein the first boundary voltage is an oxygen generation boundary voltage that is a voltage that oxidizes water contained in the electrolyte aqueous solution and generates oxygen gas. 請求項4乃至8いずれかの電極活性化方法を用いて電極を製造することを特徴とする電極製造方法。
An electrode manufacturing method comprising manufacturing an electrode using the electrode activation method according to claim 4.
JP2004270773A 2004-09-17 2004-09-17 Measuring method using crystalline carbon as electrode Pending JP2006084375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270773A JP2006084375A (en) 2004-09-17 2004-09-17 Measuring method using crystalline carbon as electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270773A JP2006084375A (en) 2004-09-17 2004-09-17 Measuring method using crystalline carbon as electrode

Publications (1)

Publication Number Publication Date
JP2006084375A true JP2006084375A (en) 2006-03-30

Family

ID=36162995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270773A Pending JP2006084375A (en) 2004-09-17 2004-09-17 Measuring method using crystalline carbon as electrode

Country Status (1)

Country Link
JP (1) JP2006084375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10812887B2 (en) 2007-06-01 2020-10-20 Freebit As Earpiece
JP7455249B1 (en) 2023-02-27 2024-03-25 住友化学株式会社 Electrochemical measurement method, electrochemical measurement device, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085600A (en) * 1994-06-17 1996-01-12 Kdk Corp Carbon electrode and its manufacture
JPH11333462A (en) * 1998-05-26 1999-12-07 Tacmina Corp Residual chlorine meter and liquid sterilizing apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085600A (en) * 1994-06-17 1996-01-12 Kdk Corp Carbon electrode and its manufacture
JPH11333462A (en) * 1998-05-26 1999-12-07 Tacmina Corp Residual chlorine meter and liquid sterilizing apparatus using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6009062704, R. Mark Wightman(外4名), "Methods to Improve Electrochemical Reversibility at Carbon Electrodes", Journal of the Electrochemical Society, 198407, Vol. 131, No. 7, p. 1578−1583 *
JPN6009062706, Xi Chu(外1名), "Surface modification of carbons for enhanced electrochemical activity", Materials Science & Engineering B, 19970905, Vol. B49, No. 1, p. 53−60 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10812887B2 (en) 2007-06-01 2020-10-20 Freebit As Earpiece
US11290799B2 (en) 2007-06-01 2022-03-29 Freebit As Earpiece
JP7455249B1 (en) 2023-02-27 2024-03-25 住友化学株式会社 Electrochemical measurement method, electrochemical measurement device, and program

Similar Documents

Publication Publication Date Title
Hocevar et al. Potentiometric stripping analysis at bismuth‐film electrode
Yosypchuk et al. Use of solid amalgam electrodes in nucleic acid analysis
Palchetti et al. Characterisation of screen-printed electrodes for detection of heavy metals
US4830713A (en) Regeneration method and device
Monterroso et al. Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential
Baś et al. New electrochemical sensor with the renewable silver annular band working electrode: Fabrication and application for determination of selenium (IV) by cathodic stripping voltammetry
Lima et al. Scanning electrochemical microscopy investigation of nitrate reduction at activated copper cathodes in acidic medium
Wang Electrochemical preconcentration
JP2004325441A (en) Analytical method
Espada-Bellido et al. Determination of chromium in estuarine waters by catalytic cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode
Stankovic et al. Determination of Pb and Cd in water by potentiometric stripping analysis (PSA)
Zhang et al. Simultaneous determination of indium and thallium ions by anodic stripping voltammetry using antimony film electrode
US7384535B2 (en) Bath analysis
Babauta et al. EQCM and surface pH studies on lanthanum accumulation on electrodes in aqueous solution
Tesařová et al. Potentiometric stripping analysis at antimony film electrodes
Neshkova et al. Ion-selective electrodes with sensors of electrolytically plated chalcogenide coatings: Part I. Copper ion-selective electrode based on plated copper selenide
JP2006084375A (en) Measuring method using crystalline carbon as electrode
Dieker et al. Behaviour of solid electrodes in normal and differential pulse voltammetric methods
JP4191303B2 (en) Simultaneous rapid measurement of trace concentrations of multiple metals
Ai et al. Preparation of Fluorine‐Doped Lead Dioxide Modified Electrodes for Electroanalytical Applications
JP2013113726A (en) Electrode, electrochemical analysis device and electrochemical analysis method
Baś et al. Rapid pretreatment of a solid silver electrode for routine analytical practice
Brainina et al. Long-lived sensors with replaceable surface for stripping voltammetric analysis: Part I
JP5281481B2 (en) Method and apparatus for electrochemical measurement of arsenic ion, and reagent set
Hepel et al. Cathodic stripping analysis complicated by adsorption processes: Determination of 2-thiouracil at a rotating silver disk electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720