JP2006083992A - Mechanical seal cooler - Google Patents

Mechanical seal cooler Download PDF

Info

Publication number
JP2006083992A
JP2006083992A JP2004271538A JP2004271538A JP2006083992A JP 2006083992 A JP2006083992 A JP 2006083992A JP 2004271538 A JP2004271538 A JP 2004271538A JP 2004271538 A JP2004271538 A JP 2004271538A JP 2006083992 A JP2006083992 A JP 2006083992A
Authority
JP
Japan
Prior art keywords
sacrificial anode
shell
core material
cooling tube
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004271538A
Other languages
Japanese (ja)
Other versions
JP4130184B2 (en
Inventor
Masaki Miyamoto
正樹 宮本
Shigeyuki Fujinaga
繁行 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2004271538A priority Critical patent/JP4130184B2/en
Publication of JP2006083992A publication Critical patent/JP2006083992A/en
Application granted granted Critical
Publication of JP4130184B2 publication Critical patent/JP4130184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanical seal cooler for maintaining the effects of a sacrifice anode material for a long period while preventing the corrosion of a shell. <P>SOLUTION: The mechanical seal cooler comprises the shell 2 having a flow-in port 11 and a flow-out port 12 for cooling water, a cooling tube 3 provided in the shell 2 for the flow of high temperature fluid, a sacrifice anode rod 5 for preventing the electric corrosion of the shell 2 and the cooling tube 3, and a core material 6 via which the sacrifice anode rod 5 is arranged in the shell 2. The cooling tube 3 is formed of a metal having more electropositive potential than that of the shell 2, the core material 6 formed of a metal having the same potential as that of the shell 2 is mounted in the shell 2, and the sacrifice anode rod 5 is adhered and fitted to the core material 6, thus suppressing an increase in the contact resistance of a boundary portion 16 therebetween. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化学工業用機械やポンプ、その他の各種機械の回転軸部に設けられたメカニカルシール用のクーラーに関する。   The present invention relates to a cooler for a mechanical seal provided on a rotary shaft portion of a machine for chemical industry, a pump, or other various machines.

従来、化学工業用機械等の回転軸部に設けられたメカニカルシールに使用するフラッシング流体の液温が高い場合、クーラーを用いてこのフラッシング流体を冷却している。ここで用いられるクーラーは、密封されたシェル(密封筒体)の内部に冷却用チューブを設け、この冷却用チューブに高温のフラッシング流体を流すと共に、冷却チューブの外側にシェルの内部に導入された冷却水を満たすことにより、上記冷却チューブを介して高温のフラッシング流体と冷却水との間で熱交換を行い、フラッシング流体の液温を下げてメカニカルシールの冷却を行うものである。   Conventionally, when the liquid temperature of a flushing fluid used for a mechanical seal provided in a rotary shaft portion of a chemical industrial machine or the like is high, the flushing fluid is cooled using a cooler. The cooler used here is provided with a cooling tube inside a sealed shell (sealed cylinder), and a high-temperature flushing fluid is allowed to flow through the cooling tube and introduced into the shell outside the cooling tube. By filling the cooling water, heat exchange is performed between the high-temperature flushing fluid and the cooling water through the cooling tube, and the temperature of the flushing fluid is lowered to cool the mechanical seal.

ところが、現在、石油化学や精製工場をはじめ各工場で使用している冷却水は、クーリングタワーで工場内に配水される循環水を使用しているため、防錆剤やSi,Ca等の硬質物を含んでいる場合が多く、またクーラーの冷却チューブの入口と出口では温度差が大きいため、冷却チューブの外周面に多量の上記硬質物が付着し、堆積する。その結果、クーラーの熱効率が低下し、高温のフラッシング流体を十分に冷却させることができず、メカニカルシールのトラブルにつながる。そこで、図4に示すように冷却チューブ30の外周面やシェル31内面等に所定厚さのフッ素樹脂32をコーティングすることで、冷却水に含まれる硬質物が冷却チューブ30やシェル31に付着するのを防止したクーラー33が提案されている(例えば、特許文献1参照)。   However, the cooling water currently used in petrochemical and refinery factories uses circulating water distributed in the factory by the cooling tower, so rust inhibitors and hard materials such as Si and Ca are used. In addition, since there is a large temperature difference between the inlet and outlet of the cooling tube of the cooler, a large amount of the hard material adheres to and accumulates on the outer peripheral surface of the cooling tube. As a result, the thermal efficiency of the cooler is reduced, and the high-temperature flushing fluid cannot be sufficiently cooled, resulting in a mechanical seal trouble. Therefore, as shown in FIG. 4, the hard material contained in the cooling water adheres to the cooling tube 30 and the shell 31 by coating the outer peripheral surface of the cooling tube 30 and the inner surface of the shell 31 with a fluororesin 32 having a predetermined thickness. The cooler 33 which prevented that is proposed (for example, refer patent document 1).

また、地理的要因で工業用水の確保が難しい状況下においては、海水が冷却水として用いられており、この場合ステンレス等からなる冷却チューブが応力腐食割れを起こすことがある。これを防止するために、冷却チューブの構成材としてチタンが用いられている。しかし、海水中で自然電位の低い卑な金属(アノード)からなるシェル等に対して、自然電位の高い貴な金属(カソード)からなる上記チタンを使用すると、チタン製の冷却チューブとシェル、その他の配管部材との間で発生する電位差によりシェル等に異種金属接触腐食(電食)が生じる。このような腐食を防止するため、図5(a)に示すように、シェル50の長手方向に延びる円筒形状の犠牲陽極棒51を配置し、この犠牲陽極棒51を長い取付ボルト52によってシェル50に固定することが考えられる。
特開平8−135800号公報
In addition, when it is difficult to secure industrial water due to geographical factors, seawater is used as cooling water, and in this case, a cooling tube made of stainless steel or the like may cause stress corrosion cracking. In order to prevent this, titanium is used as a constituent material of the cooling tube. However, when the above titanium made of a noble metal (cathode) with a high natural potential is used against a shell made of a base metal (anode) with a low natural potential in seawater, a titanium cooling tube and shell, etc. Due to the potential difference generated between the pipe member and the pipe member, corrosion of different metals (electric corrosion) occurs on the shell or the like. In order to prevent such corrosion, a cylindrical sacrificial anode rod 51 extending in the longitudinal direction of the shell 50 is disposed as shown in FIG. It is possible to fix to.
JP-A-8-135800

しかしながら、図4に示す上記クーラー33では、コーティングされていない各部材の隙間や、メンテナンス時の当てキズによるフッ素樹脂32の損傷部分へ海水が浸入することで、シェル31の腐食が進行していくという問題がある。
また、犠牲陽極棒を使用している図5(a)の上記クーラーでは、図5(b)に示すように犠牲陽極棒51が痩せてきた場合、この犠牲陽極棒51と取付ボルト52との間に隙間Sができ、海水中の不純物等がこの隙間に介在することで、接触抵抗が増大し犠牲陽極棒51としての効果が十分発揮できなくなり、結果としてシェル50の腐食が発生する。
そこで、本発明はこのような従来技術の問題点に鑑み、シェル(密封筒体)の腐食を防止すると共に、犠牲陽極材の効果を長期間に亘って維持することができるメカニカルシール用クーラーを得ることを目的とする。
However, in the cooler 33 shown in FIG. 4, the corrosion of the shell 31 proceeds as seawater enters the gaps between the uncoated members and the damaged portions of the fluororesin 32 due to scratches during maintenance. There is a problem.
5A using the sacrificial anode rod, when the sacrificial anode rod 51 is thinned as shown in FIG. 5B, the sacrificial anode rod 51 and the mounting bolt 52 A gap S is formed between them, and impurities and the like in seawater are interposed in the gap, so that the contact resistance is increased and the effect as the sacrificial anode rod 51 cannot be sufficiently exerted. As a result, the shell 50 is corroded.
Therefore, in view of the problems of the prior art, the present invention provides a mechanical seal cooler that can prevent the corrosion of the shell (sealed cylinder) and maintain the effect of the sacrificial anode material over a long period of time. The purpose is to obtain.

上記目的を達成するため、本発明は次の技術的手段を講じた。
すなわち、本発明は、冷却水の流入口と流出口とを有する密封筒体と、この密封筒体の内部に設けられかつ高温流体を流動させる冷却チューブと、前記密封筒体及び前記冷却チューブの電食を防止する犠牲陽極材と、この犠牲陽極材を前記密封筒体の内部に配置するための芯材とを備え、前記冷却チューブが、前記密封筒体に対して貴な電位を有する金属からなり、前記芯材が、前記密封筒体に対して同じ若しくは卑であり、かつ前記犠牲陽極材に対して貴である電位を有する金属からなり、前記犠牲陽極材が、前記冷却水が浸入しない程度に前記芯材に密着して固定されていることを特徴とする。
In order to achieve the above object, the present invention takes the following technical means.
That is, the present invention provides a sealed cylinder having an inlet and an outlet of cooling water, a cooling tube provided inside the sealed cylinder and allowing a high-temperature fluid to flow, and the sealing cylinder and the cooling tube. A metal having a sacrificial anode material for preventing electrolytic corrosion and a core material for disposing the sacrificial anode material inside the sealed cylindrical body, wherein the cooling tube has a noble potential with respect to the sealed cylindrical body The core material is made of a metal having the same or base with respect to the sealed cylinder and a noble potential with respect to the sacrificial anode material, and the sacrificial anode material is infiltrated with the cooling water. It is characterized by being fixed in close contact with the core material to such an extent that it does not occur.

上記本発明のメカニカルシール用クーラーによれば、密封筒体が冷却チューブに対して卑な電位を有し、芯材が当該密封筒体に対して同じ若しくは卑であり、かつ犠牲陽極材に対して貴な電位を有しているので、冷却チューブ、密封筒体及び芯材の異種金属接触腐食(電食)が犠牲陽極材によって防止される。また、犠牲陽極材が、芯材との間に冷却水が浸入しない程度に当該芯材に密着して嵌合されているので、犠牲陽極材と芯材との間(境界部)に冷却水が入り込めず当該境界部における異種金属接触腐食は起こらない。したがって、異種金属接触腐食は、犠牲陽極材の上記境界部以外のみから発生する。このことから、犠牲陽極材と芯材との間の隙間形成による接触抵抗の上昇を招くことがなく、犠牲陽極材の効果を長期間(犠牲陽極材の寿命期間)に亘って維持することができる。これにより、シェルや冷却チューブの腐食を長期間に亘って防止することができ、さらに、芯材が腐食しないので、犠牲陽極材の脱落等も防止することができる。   According to the above-described mechanical seal cooler of the present invention, the sealed cylinder has a base potential with respect to the cooling tube, the core is the same or base with respect to the sealed cylinder, and the sacrificial anode material Therefore, the sacrificial anode material prevents the different metal contact corrosion (electric corrosion) of the cooling tube, the sealing cylinder, and the core material. Further, since the sacrificial anode material is closely fitted to the core material so that the cooling water does not enter between the core material, the cooling water is provided between the sacrificial anode material and the core material (boundary portion). Does not enter, and no foreign metal contact corrosion occurs at the boundary. Therefore, dissimilar metal contact corrosion occurs only from the boundary portion of the sacrificial anode material. From this, it is possible to maintain the effect of the sacrificial anode material over a long period (the lifetime of the sacrificial anode material) without causing an increase in contact resistance due to the formation of a gap between the sacrificial anode material and the core material. it can. Thereby, corrosion of a shell and a cooling tube can be prevented over a long period of time, and further, since the core material does not corrode, it is possible to prevent the sacrificial anode material from dropping off.

また、上記本発明において、前記犠牲陽極材は、柱形状を呈すると共に密封筒体の長手方向に沿って配置されていることが好ましい。このように、犠牲陽極材が密封筒体の長手方向に沿って配置されることで、密封筒体に対する犠牲陽極材の効果が高まり、密封筒体の異種金属接触腐食を効果的に防止することができる。   Moreover, in the said invention, it is preferable that the said sacrificial anode material is arrange | positioned along the longitudinal direction of a sealing cylinder while exhibiting column shape. As described above, the sacrificial anode material is arranged along the longitudinal direction of the sealed cylindrical body, so that the effect of the sacrificial anode material on the sealed cylindrical body is enhanced, and the dissimilar metal contact corrosion of the sealed cylindrical body is effectively prevented. Can do.

上記のように密封筒体の長手方向に沿って配置した犠牲陽極材の長さ寸法が、密封筒体の長さ寸法の1/4以上であることが好ましい。例えば、密封筒体を構成する両端のプレート材のうち、冷却チューブが溶接される一方側のプレート材を冷却チューブと同じ金属で構成し、他方側のプレート材に犠牲陽極材を取り付けた場合、犠牲陽極材の先端から一方側のプレートまでの距離が遠いと当該プレートの異種金属接触腐食が起こるおそれがある。そのため、犠牲陽極材の長さ寸法を密封筒体の長さ寸法の1/4以上とし、犠牲陽極材の先端から上記プレートまでの距離を近くすることで、当該プレートの異種金属接触腐食を確実に防止することができる。   As described above, it is preferable that the length dimension of the sacrificial anode material arranged along the longitudinal direction of the sealed cylinder is ¼ or more of the length dimension of the sealed cylinder. For example, among the plate materials at both ends constituting the sealed cylinder, the plate material on one side to which the cooling tube is welded is made of the same metal as the cooling tube, and the sacrificial anode material is attached to the plate material on the other side, If the distance from the tip of the sacrificial anode material to the one side plate is long, there is a possibility that the different metal contact corrosion of the plate occurs. For this reason, the length of the sacrificial anode material is set to 1/4 or more of the length of the sealed cylinder, and the distance from the tip of the sacrificial anode material to the above plate is reduced, so that different metal contact corrosion of the plate is ensured. Can be prevented.

また、犠牲陽極材と芯材とを密着させるために、犠牲陽極材を芯材に一体成形することが好ましい。例えば射出成形等により一体成形すれば、犠牲陽極材と芯材とを簡易かつ確実に密着させることができるからである。   In order to make the sacrificial anode material and the core material come into close contact with each other, it is preferable that the sacrificial anode material is integrally formed with the core material. This is because, for example, by integrally molding by injection molding or the like, the sacrificial anode material and the core material can be easily and reliably adhered.

上記本発明において、密封筒体に当該密封筒体の外部に貫通しない取付部が設けられ、芯材が当該取付部を介して密封筒体に取り付けられていることが好ましい。この場合、芯材が、密封筒体の外部に貫通していない取付部を介して取り付けられているので、冷却水が取付部から漏れるのを防ぐことができる。   In the present invention, it is preferable that the sealing cylinder is provided with an attachment portion that does not penetrate outside the sealing cylinder, and the core member is attached to the sealing cylinder via the attachment portion. In this case, since the core member is attached via the attachment portion that does not penetrate to the outside of the sealed cylindrical body, it is possible to prevent the cooling water from leaking from the attachment portion.

上記の通り、本発明によれば、犠牲陽極材と芯材との間の接触抵抗の上昇を抑えたので、シェルの腐食が防止され、かつ犠牲陽極材の効果を長期間に亘って維持することができる。   As described above, according to the present invention, since the increase in contact resistance between the sacrificial anode material and the core material is suppressed, the corrosion of the shell is prevented and the effect of the sacrificial anode material is maintained over a long period of time. be able to.

以下、図面を参照しつつ、本発明の実施形態を説明する。図1は、本発明の第1実施形態に係るメカニカルシール用クーラー1を示している。このメカニカルシール用クーラー(以下、クーラーという)は、化学工業用機械等の回転軸部に設けられたメカニカルシールのフラッシング流体の液温を冷却するために用いられているもので、冷却水の流入口11と流出口12とを有する密封筒体(シェル)2と、高温の流体を流動させる冷却チューブ3と、シェル2の内部に設けられた陽極部材4とによって主構成されている。また、当該陽極部材4は、犠牲陽極棒5(犠牲陽極材)と芯材6とからなっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a mechanical seal cooler 1 according to a first embodiment of the present invention. This mechanical seal cooler (hereinafter referred to as “cooler”) is used to cool the temperature of a flushing fluid of a mechanical seal provided on a rotary shaft of a chemical industrial machine or the like. It is mainly constituted by a sealed cylinder (shell) 2 having an inlet 11 and an outlet 12, a cooling tube 3 for flowing a high-temperature fluid, and an anode member 4 provided inside the shell 2. The anode member 4 includes a sacrificial anode rod 5 (sacrificial anode material) and a core material 6.

上記シェルの一端部(図1右側)が、ボルト及びナット7によって固定された円形側板8によって封じられており、他端部(図1左側)が、ボルト及びナット9によって固定されたフランジ10によって封じられている。上記円形側板8の中央部には流入口11が設けられており、この流入口11からシェルの中へ冷却水(海水)が流入する。また、シェルの外周の他端部近傍には流出口12が設けられており、上記流入口11から入った冷却水がシェル2の内部を循環してこの流出口12から出るようになっている。   One end (right side in FIG. 1) of the shell is sealed by a circular side plate 8 fixed by a bolt and nut 7, and the other end (left side in FIG. 1) is fixed by a flange 10 fixed by a bolt and nut 9. It is sealed. An inflow port 11 is provided at the center of the circular side plate 8, and cooling water (seawater) flows from the inflow port 11 into the shell. In addition, an outlet 12 is provided in the vicinity of the other end of the outer periphery of the shell, and cooling water that has entered from the inlet 11 circulates inside the shell 2 and exits from the outlet 12. .

また、高温の流体を流動させる上記冷却チューブ3は、シェル2の内周径よりも若干小さい径で、かつシェル2の長手方向を軸方向として周回するように設けられている。この冷却チューブ3の両端部は、フランジ10に設けられた流体入口部13と流体出口部14とにそれぞれ溶接して連結されている。断面L字形状の2つセットプレート15が、シェルの下部に所要間隔をあけて取り付けられており、このセットプレート15でクーラー1が所定場所に設置される。   The cooling tube 3 for flowing a high-temperature fluid has a diameter slightly smaller than the inner peripheral diameter of the shell 2 and is provided so as to circulate around the longitudinal direction of the shell 2 as an axial direction. Both ends of the cooling tube 3 are connected to a fluid inlet portion 13 and a fluid outlet portion 14 provided on the flange 10 by welding. Two set plates 15 having an L-shaped cross section are attached to the lower part of the shell with a required interval, and the cooler 1 is installed at a predetermined place by the set plates 15.

陽極部材4は、他部材(シェル等)の異種金属接触腐食(電食)を防止する犠牲陽極棒5と、この犠牲陽極棒5をシェル2の内部に配置する芯材6とから構成されている。このうち、犠牲陽極棒5は、芯材6に密着して嵌合(固定)されており、当該芯材6が、フランジ10側に向かって犠牲陽極棒5を串刺す状態で円形側板8に立設されている。すなわち、犠牲陽極棒5及び芯材6は、シェル2の長手方向に沿うようにして配置されており、このことからシェル2に対する犠牲陽極棒5の効果が高まり、シェル2の異種金属接触腐食を効果的に防止することができる。   The anode member 4 is composed of a sacrificial anode rod 5 for preventing dissimilar metal contact corrosion (electric corrosion) of other members (shell etc.) and a core material 6 for disposing the sacrificial anode rod 5 inside the shell 2. Yes. Among these, the sacrificial anode rod 5 is closely fitted (fixed) to the core material 6, and the core material 6 is attached to the circular side plate 8 in a state where the sacrificial anode rod 5 is skewed toward the flange 10 side. It is erected. That is, the sacrificial anode rod 5 and the core material 6 are arranged along the longitudinal direction of the shell 2, and this increases the effect of the sacrificial anode rod 5 on the shell 2, thereby preventing the dissimilar metal contact corrosion of the shell 2. It can be effectively prevented.

犠牲陽極棒5は、内周部に芯材6が貫通した所要径の円筒形状を呈し、かつ、シェル2の長手方向寸法Lの約半分の長さで形成されている。なお、犠牲陽極棒5は、その長さ寸法Sがシェルの長さ寸法Lの1/4以上であるように構成することが好ましく、このようにすることで、フランジ10の異種金属接触腐食を確実に防止することができる。その理由は、犠牲陽極棒5の先端部5aからフランジ10までの距離f1を短くすることで、当該犠牲陽極棒5が、シェル2に腐食防止効果を及ぼしている状態下においても、フランジ10に対する電食防止効果を低下させないようにするためである。仮に、犠牲陽極棒5の先端部5aからフランジ10までの距離f1が長ければ、シェル2の異種金属接触腐食が防止される反面、フランジ10の異種金属接触腐食が発生するおそれがある。   The sacrificial anode rod 5 has a cylindrical shape with a required diameter through which the core member 6 penetrates in the inner peripheral portion, and is formed with a length about half the longitudinal dimension L of the shell 2. The sacrificial anode rod 5 is preferably configured such that its length dimension S is ¼ or more of the shell length dimension L, so that the dissimilar metal contact corrosion of the flange 10 is prevented. It can be surely prevented. The reason is that the distance f1 from the tip 5a of the sacrificial anode bar 5 to the flange 10 is shortened, so that the sacrificial anode bar 5 has a corrosion-inhibiting effect on the shell 2 even when the shell 2 is affected. This is in order not to lower the electrolytic corrosion prevention effect. If the distance f1 from the tip 5a of the sacrificial anode rod 5 to the flange 10 is long, the dissimilar metal contact corrosion of the shell 2 is prevented, but the dissimilar metal contact corrosion of the flange 10 may occur.

芯材6は、犠牲陽極棒5の内周径と同じ径を有する円柱形状を呈しており、犠牲陽極棒5の内周部に嵌合しかつ先端部6aを少し突出させる状態で配置されている。また、この芯材6は、その外周部で冷却水が浸入しない程度に犠牲陽極棒5と隙間無く密着している(図2(a)参照)。したがって、シェル2の内部に満たされた冷却水が、犠牲陽極棒5と芯材6との境界部16に介在することがないことから、当該境界部16における犠牲陽極棒5の溶解が起こらないようになっている。なお、犠牲陽極棒5と芯材6とを隙間の無いように互いに密着させるためには、例えば芯材6の周りに犠牲陽極材を射出成形によって一体成形すればよい。射出成形により一体化すれば、犠牲陽極棒5と芯材6とを簡易かつ確実に密着させることができるからである。また、犠牲陽極棒5の内周部と芯材6の外周部との間に締めしろを設けて、これらを締まりばめによって密着させてもよい。締りばめとするには、犠牲陽極棒5に芯材6をプレス等により圧入するか、焼きばめ等とすればよい。   The core member 6 has a cylindrical shape having the same diameter as the inner peripheral diameter of the sacrificial anode rod 5, and is disposed in a state of fitting to the inner peripheral portion of the sacrificial anode rod 5 and slightly projecting the tip portion 6 a. Yes. Further, the core material 6 is in close contact with the sacrificial anode rod 5 with no gap so that the cooling water does not enter at the outer peripheral portion (see FIG. 2A). Therefore, since the cooling water filled in the shell 2 does not intervene at the boundary portion 16 between the sacrificial anode rod 5 and the core material 6, the sacrificial anode rod 5 does not melt at the boundary portion 16. It is like that. In order to bring the sacrificial anode rod 5 and the core material 6 into close contact with each other without a gap, for example, the sacrificial anode material may be integrally formed around the core material 6 by injection molding. This is because the sacrificial anode rod 5 and the core material 6 can be easily and reliably brought into close contact if they are integrated by injection molding. Further, a margin may be provided between the inner peripheral portion of the sacrificial anode rod 5 and the outer peripheral portion of the core member 6, and these may be brought into close contact by an interference fit. In order to achieve an interference fit, the core material 6 may be press-fitted into the sacrificial anode rod 5 by pressing or the like, or a shrink fit may be used.

また、芯材6の基端部6bにはネジ部17が形成されており、このネジ部17と円形測板8の内面に形成されたネジ穴18(取付部)とが互いに螺合することにより、芯材6が円形側板8に取り付けられている。上記ネジ穴18は、円形側板8の径方向中心部から径外側へ少しずれたところに設けられており、陽極部材4が、シェル2の軸心からずれるように配置されている。これにより、犠牲陽極棒5が、冷却チューブ3に近くなり当該冷却チューブ3の電食防止効果を高めることができる。また、このネジ穴18は、円形側板8の外面には貫通していない。したがって、シェル2の内部の流体が螺合部分19に侵入しても、シェル2の外部へ漏れ出すことがなく、ネジ穴18(取付部)における流体の漏れを確実に防止することができる。さらに、図1の拡大図に示すように、芯材6のネジ部17に緩み止め用のナット20が螺合しており、このナット20が円形側板8側に締め付けられる力によって、芯材6が緩むのが防止されている。これにより、芯材6をシェル2に簡単に取り付けることができ、かつ、シェル2に対する芯材6の緩みが防止され、クーラー1の長期間の使用における信頼性を確保することができる。   Further, a screw portion 17 is formed at the base end portion 6b of the core member 6, and the screw portion 17 and a screw hole 18 (attachment portion) formed on the inner surface of the circular measuring plate 8 are screwed together. Thus, the core member 6 is attached to the circular side plate 8. The screw hole 18 is provided at a position slightly deviated from the radial center of the circular side plate 8 to the outside of the diameter, and the anode member 4 is arranged so as to deviate from the axis of the shell 2. Thereby, the sacrificial anode rod 5 becomes close to the cooling tube 3, and the electric corrosion prevention effect of the cooling tube 3 can be enhanced. Further, the screw hole 18 does not penetrate the outer surface of the circular side plate 8. Therefore, even if the fluid inside the shell 2 enters the threaded portion 19, the fluid does not leak out of the shell 2, and fluid leakage in the screw hole 18 (attachment portion) can be reliably prevented. Further, as shown in the enlarged view of FIG. 1, a nut 20 for preventing loosening is screwed into the screw portion 17 of the core member 6, and the core member 6 is tightened by a force by which the nut 20 is tightened to the circular side plate 8 side. Is prevented from loosening. Thereby, the core material 6 can be easily attached to the shell 2, the loosening of the core material 6 with respect to the shell 2 is prevented, and the reliability of the cooler 1 in long-term use can be ensured.

上記各部材の構成材に関して、上記フランジ10及び冷却チューブ3は、シェル2に対して貴な電位(自然電位)を有する金属材料(カソード)であるチタンからなり、上記シェル2及び円形側板8は、いずれも冷却チューブ3に対して卑な電位を有する金属(アノード)であるステンレスからなっている。また、陽極部材4のうち芯材6は、シェル2と同じステンレスを用いており、犠牲陽極棒5にはこれよりも卑な電位を有するアルミニウムを採用している。なお、芯材6は、シェル2に対して同じ若しくは卑であり、かつ犠牲陽極棒5に対して貴である金属であればよい。冷却チューブ3にチタンを採用した理由は、ステンレス等を用いた場合に発生する応力腐食割れを、より電位の高いチタンを使用することで防止するためである。また、フランジ10にチタンを用いた理由は、当該フランジ10と冷却チューブ3とを溶接によって確実に連結するためである。シェル2、円形側板8にステンレスを用いたのはコスト面からであり、陽極部材4のうち芯材6にステンレスを用いたのは、シェル2と同様に腐食を避けて、犠牲陽極棒5をシェル2に対して長期にわたって支持するためである。なお、上記各部材の構成材は、本実施形態のものに限定するものではない。   Regarding the constituent materials of each member, the flange 10 and the cooling tube 3 are made of titanium which is a metal material (cathode) having a noble potential (natural potential) with respect to the shell 2, and the shell 2 and the circular side plate 8 are These are all made of stainless steel, which is a metal (anode) having a base potential with respect to the cooling tube 3. Further, the core member 6 of the anode member 4 is made of the same stainless steel as that of the shell 2, and the sacrificial anode rod 5 is made of aluminum having a base potential lower than that. The core material 6 may be any metal that is the same or base with respect to the shell 2 and is noble with respect to the sacrificial anode rod 5. The reason why titanium is used for the cooling tube 3 is to prevent stress corrosion cracking that occurs when stainless steel or the like is used by using titanium having a higher potential. The reason why titanium is used for the flange 10 is to securely connect the flange 10 and the cooling tube 3 by welding. The stainless steel is used for the shell 2 and the circular side plate 8 because of the cost, and the stainless steel is used for the core member 6 among the anode members 4 to avoid corrosion and to prevent the sacrificial anode rod 5 from being used. This is to support the shell 2 for a long time. In addition, the constituent material of each said member is not limited to the thing of this embodiment.

上記本実施形態のクーラー1は、各種機械の回転軸部に設けられたメカニカルシールのフラッシング流体の温度が高くなる場合に、フラッシングラインに設置されるものである。冷却水(例えば、海水)は円形側板8の流入口11からシェル2の内部へ流入し、流出口12から流出する一方、高温のフラッシング流体は、フランジ10の流体入口部13から冷却チューブ3に流入し、シェル2の内部を周回しながら上記冷却水と間で熱交換を行う。この熱交換によってフラッシング流体は冷却され、流体出口部14から排出され、メカニカルシール(図示省略)側へ送られる。 The cooler 1 of the present embodiment is installed in the flushing line when the temperature of the flushing fluid in the mechanical seal provided in the rotary shaft portion of various machines becomes high. Cooling water (for example, seawater) flows into the inside of the shell 2 from the inlet 11 of the circular side plate 8 and flows out of the outlet 12, while hot flushing fluid flows from the fluid inlet 13 of the flange 10 to the cooling tube 3. Inflow and heat exchange with the cooling water while circulating around the inside of the shell 2. By this heat exchange, the flushing fluid is cooled, discharged from the fluid outlet 14, and sent to the mechanical seal (not shown) side.

上記本実施形態のクーラー1によれば、シェル2(密封筒体)が、冷却チューブ3に対して卑な電位を有する金属からなり、芯材6がシェル2に対して同じ電位をもっているので、犠牲陽極棒5によって冷却チューブ3、シェル2及び芯材6の異種金属接触腐食を防止することができる。また、犠牲陽極棒5が芯材6に密着して嵌合されているので、犠牲陽極棒5と芯材6との境界部16(接合部)に流体が入り込めず、当該境界部16における異種金属接触腐食は起こらない。したがって、異種金属接触腐食は、前記接合部16以外のみ、すなわち図2(b)の矢印で示すように犠牲陽極棒5の外周面5bや端面5cのみから発生する。このことから、境界部16において犠牲陽極棒5の溶解による隙間ができることがなく、例えば海水中の不純物が介在することもない。不純物が介在することがないので、犠牲陽極棒5と芯材6と間の接触抵抗の上昇を招くことがなく、犠牲陽極棒5の効果が低下せず、当該効果を長期間(犠牲陽極棒5の寿命期間)に亘って維持することができる。これにより、芯材6の腐食が防止され、クーラー1の長期使用による犠牲陽極棒5の脱落等を防止することができ、シェル2や冷却チューブ3の腐食を長期間に亘って防止することができる。   According to the cooler 1 of the present embodiment, the shell 2 (sealed cylinder) is made of a metal having a base potential with respect to the cooling tube 3, and the core member 6 has the same potential with respect to the shell 2. The sacrificial anode 5 can prevent different metal contact corrosion of the cooling tube 3, the shell 2 and the core material 6. In addition, since the sacrificial anode rod 5 is closely fitted to the core material 6, fluid cannot enter the boundary portion 16 (joint portion) between the sacrificial anode rod 5 and the core material 6, and the boundary portion 16 Dissimilar metal contact corrosion does not occur. Accordingly, the dissimilar metal contact corrosion occurs only from the outer peripheral surface 5b and the end surface 5c of the sacrificial anode rod 5, as shown by the arrows in FIG. For this reason, there is no gap due to the dissolution of the sacrificial anode rod 5 at the boundary portion 16, and for example, impurities in seawater do not intervene. Since no impurities are present, the contact resistance between the sacrificial anode rod 5 and the core material 6 is not increased, the effect of the sacrificial anode rod 5 is not lowered, and the effect is maintained for a long time (sacrificial anode rod). 5 lifetimes). Thereby, the core material 6 is prevented from being corroded, the sacrificial anode rod 5 can be prevented from falling off due to the long-term use of the cooler 1, and the shell 2 and the cooling tube 3 can be prevented from corroding for a long time. it can.

なお、上記実施形態は例示であり、限定的なものではない。例えば、図3に示すように犠牲陽極棒5の数を変更するため、犠牲陽極棒5及び芯材6からなる陽極部材4を、円形側板8の径方向中央部を中心として周方向で等間隔に3カ所設けるようにしてもよい。また、犠牲陽極棒5の形状を変えてその表面積を増やし、電食防止効果を高めてもよい。さらに、上記実施形態では犠牲陽極材を円筒形状としたが、例えば断面方形状や、その他各種の形状としてもよい。   In addition, the said embodiment is an illustration and is not limited. For example, as shown in FIG. 3, in order to change the number of sacrificial anode rods 5, the anode members 4 composed of the sacrificial anode rods 5 and the core material 6 are equally spaced in the circumferential direction around the radial center of the circular side plate 8. You may make it provide three places. In addition, the shape of the sacrificial anode rod 5 may be changed to increase its surface area, thereby enhancing the effect of preventing electrolytic corrosion. Furthermore, although the sacrificial anode material has a cylindrical shape in the above embodiment, it may have a cross-sectional square shape or other various shapes.

本発明の第1実施形態に係るメカニカルシール用クーラーの断面図である。It is sectional drawing of the cooler for mechanical seals which concerns on 1st Embodiment of this invention. (a)は、陽極部材の径方向断面図であり、(b)は、同陽極部材の長手方向の一部決裁断面図である。(A) is radial direction sectional drawing of an anode member, (b) is a partial decision sectional drawing of the longitudinal direction of the anode member. 第2実施形態に係る陽極部材の配置説明図である。It is arrangement | positioning explanatory drawing of the anode member which concerns on 2nd Embodiment. 従来技術におけるクーラーの断面図である。It is sectional drawing of the cooler in a prior art. (a)は、他の従来技術におけるクーラーの断面図であり、(b)は同クーラーの犠牲陽極材が溶解した状態を示す説明図である。(A) is sectional drawing of the cooler in another prior art, (b) is explanatory drawing which shows the state which the sacrificial anode material of the cooler melt | dissolved.

符号の説明Explanation of symbols

1 メカニカルシール用クーラー
2 シェル(密封筒体)
3 冷却チューブ
4 陽極部材
5 犠牲陽極棒
6 芯材
16 境界部
18 ネジ穴
20 ナット(緩み止め用)
1 Cooler for mechanical seal 2 Shell (sealed cylinder)
3 Cooling tube 4 Anode member 5 Sacrificial anode rod 6 Core material 16 Boundary portion 18 Screw hole 20 Nut (for loosening prevention)

Claims (5)

冷却水の流入口と流出口とを有する密封筒体と、この密封筒体の内部に設けられかつ高温流体を流動させる冷却チューブと、前記密封筒体及び前記冷却チューブの電食を防止する犠牲陽極材と、この犠牲陽極材を前記密封筒体の内部に配置するための芯材とを備え、
前記冷却チューブが、前記密封筒体に対して貴な電位を有する金属からなり、前記芯材が、前記密封筒体に対して同じ若しくは卑であり、かつ前記犠牲陽極材に対して貴である電位を有する金属からなり、
前記犠牲陽極材が、前記冷却水が浸入しない程度に前記芯材に密着して固定されていることを特徴とするメカニカルシール用クーラー。
A sealed cylinder having an inlet and an outlet for cooling water, a cooling tube provided inside the sealed cylinder and allowing a high-temperature fluid to flow, and sacrifice for preventing electrolytic corrosion of the sealed cylinder and the cooling tube An anode material, and a core material for disposing the sacrificial anode material inside the sealed cylinder,
The cooling tube is made of a metal having a noble potential with respect to the sealed cylinder, and the core material is the same or base with respect to the sealed cylinder and is noble with respect to the sacrificial anode material. Made of a metal with potential,
The mechanical seal cooler, wherein the sacrificial anode material is fixed in close contact with the core material to such an extent that the cooling water does not enter.
前記犠牲陽極材が、柱形状を呈すると共に前記密封筒体の長手方向に沿って配置されている請求項1に記載のメカニカルシール用クーラー。   The cooler for mechanical seals according to claim 1, wherein the sacrificial anode material has a columnar shape and is disposed along a longitudinal direction of the sealed cylindrical body. 前記犠牲陽極材の長さ寸法が、前記密封筒体の長さ寸法の1/4以上である請求項2に記載のメカニカルシール用クーラー。   The cooler for a mechanical seal according to claim 2, wherein a length dimension of the sacrificial anode material is ¼ or more of a length dimension of the sealed cylindrical body. 前記犠牲陽極材が、前記芯材に一体成形されている請求項1〜3のいずれかに記載のメカニカルシール用クーラー。   The cooler for mechanical seals according to any one of claims 1 to 3, wherein the sacrificial anode material is integrally formed with the core material. 前記密封筒体に当該密封筒体の外部に貫通しない取付部が設けられ、前記芯材が当該取付部を介して前記密封筒体に取り付けられている請求項1〜4のいずれかに記載のメカニカルシール用クーラー。   The attachment part which does not penetrate to the exterior of the said sealing cylinder in the said sealing cylinder, and the said core material is attached to the said sealing cylinder via the said attachment part. Cooler for mechanical seal.
JP2004271538A 2004-09-17 2004-09-17 Cooler for mechanical seal Expired - Fee Related JP4130184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271538A JP4130184B2 (en) 2004-09-17 2004-09-17 Cooler for mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271538A JP4130184B2 (en) 2004-09-17 2004-09-17 Cooler for mechanical seal

Publications (2)

Publication Number Publication Date
JP2006083992A true JP2006083992A (en) 2006-03-30
JP4130184B2 JP4130184B2 (en) 2008-08-06

Family

ID=36162657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271538A Expired - Fee Related JP4130184B2 (en) 2004-09-17 2004-09-17 Cooler for mechanical seal

Country Status (1)

Country Link
JP (1) JP4130184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031917A (en) * 2010-07-29 2012-02-16 Nippon Pillar Packing Co Ltd Cooler for cooling mechanical seal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040463A (en) * 2015-08-21 2017-02-23 イーグル工業株式会社 Cooler for mechanical seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031917A (en) * 2010-07-29 2012-02-16 Nippon Pillar Packing Co Ltd Cooler for cooling mechanical seal

Also Published As

Publication number Publication date
JP4130184B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP5271260B2 (en) Mechanical seal device
JP2007308747A (en) Stave cooler for blast furnace
US8967234B2 (en) Tube plug for a heat exchanger tube
JP4130184B2 (en) Cooler for mechanical seal
CN105331982B (en) A kind of sacrificial anode structure and its etch state inspection method
US11578412B1 (en) Sacrificial anodes for cathodic protection for production vessels, storage vessels and other steel structures
JP4577487B2 (en) Mechanical seal device
US10082337B2 (en) Shell-and-tube heat exchanger with seal for isolating shell from tube fluid
KR101205366B1 (en) Sacrificial anode apparatus for ship
KR200447300Y1 (en) The Bearing Oil Cooler for Motor of The Vertical Pump
JP4029764B2 (en) Stave cooler
JP4646829B2 (en) Hydraulic cylinder rod cooling system
CN211778178U (en) Packing cavity sleeve and filter for nuclear power plant
JP2012092917A (en) Ball screw device
JP4620409B2 (en) Anti-corrosion device for small-diameter piping system valve or pump inner surface
CN105135104B (en) Sacrifice flange for sea water service system
JP2018115369A (en) Stave cooler and method for repairing the same
JP7403869B2 (en) Sealing equipment for heat transfer tubes of heat exchangers
JP6539860B2 (en) Stab cooler
KR200324484Y1 (en) The structure of nozzle for chemistry fluid tank made of high quality
JP5727169B2 (en) Cooler for mechanical seal cooling
CN210951891U (en) Constant-temperature water tank for water heater
KR20060078730A (en) Inlet and outlet connection structure of oil cooler
JP7350752B2 (en) Electric machines and their manufacturing methods
KR20110137122A (en) The circulating water connecting member for the latent heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Ref document number: 4130184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees