JP2006083693A - Sprinkling heat exchange method for gentle pitched folded plate roof - Google Patents

Sprinkling heat exchange method for gentle pitched folded plate roof Download PDF

Info

Publication number
JP2006083693A
JP2006083693A JP2005254101A JP2005254101A JP2006083693A JP 2006083693 A JP2006083693 A JP 2006083693A JP 2005254101 A JP2005254101 A JP 2005254101A JP 2005254101 A JP2005254101 A JP 2005254101A JP 2006083693 A JP2006083693 A JP 2006083693A
Authority
JP
Japan
Prior art keywords
enclosure
heat medium
roof
water
shelf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254101A
Other languages
Japanese (ja)
Inventor
Takashi Takahashi
敬 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005254101A priority Critical patent/JP2006083693A/en
Publication of JP2006083693A publication Critical patent/JP2006083693A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein wetting unevenness tends to occur because a ridge becomes a shield in dispersing a heat medium in an oblique direction to the uneven surface of a roof and heat radiation loss into the atmosphere is large because particles fly in the open air. <P>SOLUTION: An enclosure 2 is provided away from the side edge of a projecting part 1 forming the ridge of the gentle pitched folded plate roof, and the enclosure is made a water storage region for storing a medium supplied from a sprinkling means 20. A shelf-like surface 1b is provided between a sidewall 2a of the enclosure and a side edge of the projecting part, and the heat medium is allowed to flow out to the surrounding shelf-like surface from orifices 2a provided at the enclosure. The heat medium is delivered to an inclined side face 3 at the foot of the projecting part over the side edge of the projecting part while being absorbed and spread by a liquid absorbing material 3a covering the shelf-like surface, flows down being held in the liquid absorbing material on the inclined side face, and is collected into a trough part 5 of the folded plate roof and drained flowing along the gradient. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、折半形式をした緩勾配屋根の散水熱交換方法、より具体的には緩勾配折半屋根の散水融雪方法および/または散水冷却方法に係る。豪雪地では、冬期に融雪目的のために利用し夏期には屋根冷却に用いることができる。
本明細書中では、説明の便宜上、融雪を事例とした説明がされている。
The present invention relates to a water spray heat exchange method for a gently sloping roof having a fold-and-half style, and more specifically to a water sprinkling snow melting method and / or a water sprinkling cooling method for a gently sloping fold roof. In heavy snow areas, it can be used for melting snow in the winter and for cooling the roof in the summer.
In the present specification, for the sake of convenience of explanation, the explanation is made taking snow melting as an example.

10分の1から100分の1といった緩勾配の凹凸折半屋根は屋根構造が単純で耐圧性に優れているため、規模の大きな建物に多く見られる屋根形式である。積雪量が2.5m程度までの耐雪屋根構造体として豪雪地域では汎用されている。
こうした大型の緩勾配折半屋根の融雪には地下水の散水方式が一般的であり、散水にはスプリンクラや噴射ノズル等の散布器を使用する事例が多く見られる。スプレイ散水は広範囲に拡散させることができるので、散布器を点在させておけば大規模な屋根面であっても想定される平均的積雪量の範囲内であればこれに対処することができる。
The unevenly folded half-roof roof with a gentle slope of 1/10 to 1/100 is a roof type that is often found in large-scale buildings because of its simple roof structure and excellent pressure resistance. As a snow-resistant roof structure with a snow cover of up to about 2.5 m, it is widely used in heavy snow areas.
The groundwater sprinkling system is generally used for melting snow on such a large gently-slanting folded roof, and there are many cases where sprinklers and spray nozzles are used. Spray spray can be diffused over a wide area, so if you have scattered sprayers, you can cope with this even if it is within the expected average snow cover even on a large roof surface. .

しかし、長時間わたり多量の雪が降り続くと融雪が追いつかず、屋根凹凸面に対する熱媒体の斜め方向への散布では尾根が遮蔽物になって濡れムラができやすく、また粒子が外気中を飛翔するため大気への放熱ロスが大きい。
また風雪が強くてスプレイ水が飛ばされてしまうときには散水の効果が失われる。このような状況下では雪溜りが拡大し残雪がつながって屋根表面を広範囲に雪が被り、下側にトンネルが形成され、やがては屋根全面が雪で覆われ積雪が拡大していく。降雪量は軽微な年と甚だしい年の差が大きく、また記録的な大豪雪に見舞われる可能性もあって予測困難なのが実態である。
However, if a lot of snow falls for a long time, the melting of the snow cannot catch up, and when the heat medium is applied to the uneven surface of the roof in an oblique direction, the ridges become shields and uneven wetting occurs, and the particles fly in the open air. Large loss of heat to the atmosphere.
Also, when the wind and snow are strong and the spray water is blown off, the effect of watering is lost. Under these circumstances, the snow pool expands, the remaining snow is connected, the roof surface is covered with snow over a wide area, a tunnel is formed on the lower side, and eventually the entire roof is covered with snow, and snow accumulation expands. The actual amount of snowfall is difficult to predict due to the large difference between a light year and a severe year, and the possibility of a record heavy snowfall.

設備能力に余力を持たせるために、散布器の設置間隔を狭めたり散水量を多くするなど熱の投入量を増やす方法にも限界がある。豪雪地帯での散水量として1平米あたり毎分0.5リットル程度なら多いとは言えないが、この水量でも4千〜5千平米の屋根では毎分2トン以上が消費される。1物件あたりの消費量としては時間あたり120トン以上、日量では約3000トンにもなり、これが数日も続けばその水量は尋常ではなく、大型屋根での地下水利用は恒常的な設備にはなりにくい。  There is a limit to how to increase the amount of heat input, such as by reducing the installation interval of the spreader or increasing the amount of water spray, in order to make room for the facility capacity. If it is about 0.5 liters per square meter per square meter as the amount of water sprayed in the heavy snowy area, this amount of water will consume more than 2 tons per minute on a 4,000 to 5,000 square meter roof. The amount of consumption per property is over 120 tons per hour and the daily amount is about 3000 tons. If this continues for several days, the amount of water is not normal, and the use of groundwater on large roofs is a permanent facility. Hard to become.

豪雪地に大型工場を誘致する場合、この課題は大きな障害である。新たに井戸を掘削するには規制があって許可がされないこともある。ボイラー加熱方式を採用するには有資格者の管理する大型ボイラーの導入と高額の燃費を覚悟しなければならない。  This is a major obstacle when attracting large factories in heavy snow. There are restrictions on the drilling of new wells, which may not be permitted. In order to adopt the boiler heating method, it is necessary to prepare a large boiler managed by a qualified person and to prepare for high fuel efficiency.

この解決策として、凹凸屋根に平板を設置して平坦面を形成して融雪する方法につき評価してきた。この方法は、平坦面であるから融雪性能には優れていはいるものの、事実上、屋根の葺きなおしに相当し工事費の嵩む難点がある。
特開2004−149782
As a solution to this, a method has been evaluated in which a flat plate is formed on an uneven roof to form a flat surface and melt snow. Although this method is a flat surface and has excellent snow melting performance, it is practically equivalent to refurbishing the roof and has the disadvantage of increasing construction costs.
JP 2004-149784 A

解決しようとする問題点は、折半屋根の頂上部を跨がって敷設する平板はそれ自体が耐雪強度を備えた軽量な部材要素であって、しかも風圧対策を考慮に入れて屋根の支保構造に安定的に固定しておかなければならないので設置費用が高額になり、大型の折半屋根に採用するには費用対効果の観点から著しく困難である。  The problem to be solved is that the flat plate laid across the top of the folding roof is a lightweight member element that itself has snow-resistant strength, and the roof support structure taking into account wind pressure countermeasures Therefore, the installation cost becomes high, and it is extremely difficult to adopt it for a large folding roof from the viewpoint of cost effectiveness.

本発明は、熱媒体を屋根面に広く均一に分布させるために、多く雪を被る尾根の凸部に投入初期の熱媒体を滞留させながら、尾根頂上部の融雪と周辺への散水を同時に行ない屋根全面を融雪することを主要な特徴とする。  In order to distribute the heat medium widely and uniformly on the roof surface, the present invention simultaneously melts snow at the top of the ridge and waters the surrounding area while retaining the heat medium at the initial stage of the ridge on the ridge that is covered with much snow. The main feature is to melt snow on the entire roof.

屋根の尾根の表面積は小さいので供給される熱媒体の水量が少なくても尾根の凸部には熱媒体の溜りを確実に形成でき、頂上部に積もった雪を溶かしながら熱媒体を尾根の縁に沿って細かく分散して裾野の傾斜側面に流下させ、傾斜側面の吸液材に保水拡散させ保水材に付着した雪層を留めた状態のまま溶かすことができる。
勾配に沿って縦に伸び間隔をおいて並列する長細い尾根を用いるため、結果的に1つの広い融雪面を規則性を持たせて配置した少ない散水量に見合う面積に小分けしたことに相当し、これら融雪面から周辺の裾野の傾斜側面に均等に熱媒体を分配するため散水は凹凸全面にわたり均一であり、効率よく短時間で融雪を行える。けじめよく散水をきりあげられるから熱媒体を無駄に流さなくてすむ。限られた量の熱媒体を有効に利用できる利点がある。
Since the surface area of the roof ridge is small, even if the amount of heat medium supplied is small, the heat medium pool can be reliably formed on the convex part of the ridge, and the heat medium is melted into the top of the ridge while melting the snow on the top. Can be finely dispersed along the slope and flow down to the inclined side surface of the skirt, and can be melted while retaining the snow layer attached to the water retaining material by retaining and diffusing water in the liquid absorbing material on the inclined side surface.
Since long ridges are used that are parallel to each other along the gradient, the result is that one wide snowmelt surface is subdivided into areas that correspond to the small amount of water sprayed with regularity. Since the heat medium is evenly distributed from these snow-melting surfaces to the inclined side surfaces of the surrounding skirts, the water spray is uniform over the entire uneven surface, and the snow melting can be performed efficiently and in a short time. Since the sprinkling can be done very well, you do not have to waste the heat medium. There is an advantage that a limited amount of heat medium can be effectively used.

熱媒体をムラなく散布するのが困難な凹凸屋根面に熱媒体を広く拡散させて確実に融雪するという目的を、屋根の様式を変更せずそのままの形態で行なう手順の下で実現した。  The purpose of spreading the heat medium widely on the uneven roof surface, where it is difficult to spread the heat medium evenly, to ensure that the snow melts, was realized under the same procedure without changing the roof style.

図1は、本発明の散水熱交換方法を示す簡略説明図である。
緩勾配の折半屋根の尾根の頂上部または凸所1の中間部は、流動する熱媒体を溜め置きながら周囲に流出させる貯水区域が占め、そして貯水区域は尾根がそうであるように並列して位置している。
貯水区域は、図2に示すように、尾根を形成する凸所1に囲み2を設けて形成されている。そのため、囲みの経路は尾根の凸所に沿った縦方向の勾配を備えている。囲み2を構成するものとして、例えば、足で踏み付けても損傷しにくいゴムや合成樹脂、あるいは剛性のあるアルミ等の押出し成形品のチャンネル材を使用することができる。他に、長尺の棒状部材やアングルを用いて土手や仕切りを形作り、チャンネル材の場合と同様の熱媒体の溜る囲み2を構成してもよい。
FIG. 1 is a simplified explanatory diagram showing the water spray heat exchange method of the present invention.
The top of the ridge of the gently-splitting folding roof or the middle of the convexity 1 is occupied by a water storage area where the flowing heat medium is stored and drained to the surroundings, and the water storage area is parallel to that of the ridge. positioned.
As shown in FIG. 2, the water storage area is formed by providing an enclosure 2 on the convex portion 1 forming the ridge. Therefore, the enclosed path has a vertical gradient along the ridge convexity. As the material of the enclosure 2, for example, a channel material of an extrusion-molded product such as rubber or synthetic resin which is difficult to be damaged even if it is stepped on with a foot or rigid aluminum can be used. In addition, a bank or a partition may be formed using a long rod-like member or angle, and the enclosure 2 in which the heat medium is accumulated may be configured in the same manner as in the case of the channel material.

囲み2の側壁2aにはオリフィス2bが間隔をおいて形成されている。オリフィス2bは図示のようなスリットの他、Vカット、円形穴といった形態の流出供給口である。
囲みの上流側に供給される熱媒体は勾配に沿って移動しながら囲み内に貯水され、側部に設けたオリフィス2bから周囲に流出していく(図3)。囲み2は上向きに開放されているので降る雪は熱媒体に接触し、また囲み内に積もってしまった雪は熱媒体の流入により急速に溶解する。
In the side wall 2a of the enclosure 2, orifices 2b are formed at intervals. The orifice 2b is an outflow supply port in the form of a V-cut or a circular hole in addition to the slit as shown.
The heat medium supplied to the upstream side of the enclosure is stored in the enclosure while moving along the gradient, and flows out from the orifice 2b provided on the side (FIG. 3). Since the enclosure 2 is opened upward, the falling snow comes into contact with the heat medium, and the snow accumulated in the enclosure is rapidly dissolved by the inflow of the heat medium.

囲み2の貯水区域と凸所の縁との間は棚状の表面1aをしている。この棚状の表面は熱媒体の拡散区域を形成している。拡散区域の棚状の表面には吸液材3aが接着されている。棚状の表面1aは緩勾配をしているので、囲みのオリフィス2bから流出した熱媒体は棚状の表面の吸液材に乗ったまま吸収され拡散されて横に広がるようになる。従って、棚上に降る雪は拡散した熱媒体に接触して溶解し、既に積もっている雪はオリフィスから流出して拡散する熱媒体と雪層の底面が接触し雪層は下側から溶解していく。  Between the water storage area of the enclosure 2 and the edge of the convexity, a shelf-like surface 1a is formed. This shelf-like surface forms a heat medium diffusion zone. The liquid absorbing material 3a is bonded to the shelf-shaped surface of the diffusion area. Since the shelf-like surface 1a has a gentle slope, the heat medium flowing out from the surrounding orifice 2b is absorbed and diffused while riding on the liquid-absorbing material on the shelf-like surface and spreads laterally. Therefore, the snow falling on the shelf contacts and melts the diffused heat medium, and the already accumulated snow flows out of the orifice and the bottom of the snow layer contacts the diffused heat medium and the snow layer melts from below. To go.

図示の例では、チャンネル材2aは残水させないために内部の底2dが両側にかけて傾斜している。また、チャンネル材は両側にリブ2cを備え、吸液材はこのリブ2cを覆っている。オリフィス2bを通り抜けリブ2cの勾配に誘導され熱媒体は拡散しながら凸所の側縁に向けて移動していく。  In the example shown in the figure, the channel member 2a is inclined so that the inner bottom 2d is inclined on both sides in order not to leave residual water. The channel material has ribs 2c on both sides, and the liquid absorbing material covers the ribs 2c. The heat medium passes through the orifice 2b and is guided by the gradient of the rib 2c, and moves toward the convex side edge while diffusing.

前記吸液材には、例えば、黒板塗料のような吸水性塗料、吹付けモルタル、繊維質の布を使用することができる。繊維布を使用する場合、裏面に塗布した粘着剤や接着剤により貼りつけて設置することができる。繊維素材には耐候性の観点から、例えば、平織織布を使用することができる。  As the liquid absorbing material, for example, water-absorbing paint such as blackboard paint, spray mortar, and fibrous cloth can be used. When using a fiber cloth, it can be installed by sticking with a pressure-sensitive adhesive or adhesive applied to the back surface. From the viewpoint of weather resistance, for example, a plain woven fabric can be used for the fiber material.

前記拡散区域から下がる尾根の傾斜側面3は熱媒体の流下区域であり、拡散区域と同様に吸液材3aが接着されている。
囲み2のオリフィス2bから流出した熱媒体は拡散区域の吸液材3aにより面状に拡散し、やがて凸所の側縁を越えながら均されて均等に流下していく。拡散区域から流下区域にいたる図示の吸液材は連続したものとして示してあるが、凸所側縁を境界としてそれぞれの区域に独立して設ける態様とすることもできる。
流下区域の吸液材は熱媒体を保水し、吸液材の表面に付着した雪は吸液材側から熱媒体を自吸して融けていく。吸液材が織布であれば雪の滑止めの性質は強く発揮され、吸液材に付着した雪をできるだけ止めたまま融かす働きをする。傾斜側面に降り積もった雪が斜面を滑り落ちて谷部を埋めてしまい、融雪の妨げとなることがない。
流下区域を流れ落ちた熱媒体は排水区域の谷部5に集まり屋根の勾配に沿って流下していく。
The inclined side surface 3 of the ridge descending from the diffusion area is a flow area of the heat medium, and the liquid absorbing material 3a is bonded in the same manner as the diffusion area.
The heat medium flowing out from the orifice 2b of the enclosure 2 is diffused in a planar shape by the liquid absorbing material 3a in the diffusion area, and eventually flows evenly while passing over the side edge of the convex portion. The illustrated liquid-absorbing material from the diffusion zone to the flow-down zone is shown as being continuous, but may be provided independently in each zone with the convex side edge as a boundary.
The liquid absorbing material in the flowing-down area retains the heat medium, and the snow adhering to the surface of the liquid absorbing material melts by sucking the heat medium from the liquid absorbing material side. If the liquid-absorbing material is a woven cloth, the anti-skid property of snow is exerted strongly, and it works to melt the snow adhering to the liquid-absorbing material as much as possible. Snow that has fallen on the sloping side surface slides down the slope and fills the valleys, and does not hinder snow melting.
The heat medium that has flowed down the flow area gathers in the valley 5 of the drainage area and flows down along the slope of the roof.

囲み2内への熱媒体の供給は、例えば、散水手段20を用いて行われる。図4に示すように、散水手段20は囲みの上流側に位置している。囲み内に供給された熱媒体は尾根の勾配に沿って下流側に移動しつつ囲み内に充満し、貯水されながらオリフィス2bより拡散区域に流出していく。
囲み2は下流側に止水壁2eを備え、囲み2を仕切っている。1つの囲みの縦方向長さは投入される熱媒体の温度にもよるが、例えば、投入される熱媒体が摂氏30度の温水2リットルとすれば約3.8メートル程である。囲みの止水壁2cに近接して排水孔2fが設置され、散水手段20からの給水を停止すれば、囲み末端の残水はやがて排水孔2fを通じて排出され、囲み内に熱媒体が残留しないようにしている。
The supply of the heat medium into the enclosure 2 is performed using, for example, the watering means 20. As shown in FIG. 4, the watering means 20 is located upstream of the enclosure. The heat medium supplied into the enclosure fills the enclosure while moving downstream along the slope of the ridge, and flows out from the orifice 2b to the diffusion area while being stored.
The enclosure 2 includes a water blocking wall 2e on the downstream side, and partitions the enclosure 2. Although the length of one enclosure in the vertical direction depends on the temperature of the heat medium to be charged, for example, if the heat medium to be charged is 2 liters of hot water of 30 degrees Celsius, it is about 3.8 meters. If the drainage hole 2f is installed close to the water blocking wall 2c of the enclosure and the water supply from the sprinkling means 20 is stopped, the residual water at the end of the enclosure will eventually be discharged through the drainage hole 2f, and no heat medium will remain in the enclosure. I am doing so.

図5と図6は、複数の散水手段20の設置形態と操作手順を説明している。
図5は屋根の斜視図である。融雪のための散水区域は複数のブロックに分割して扱われる。説明に用いる1200平米の屋根は横に5列、縦に6分割された合計30の融雪のためのブロック10を形成している。これらブロック10の各々に散水手段20が設置されている。散水手段20は、図示の例では散水ヘッダである。散水ヘッダの口径は40φ、これに連絡する給水管3の口径は25φである。
各ブロック10の面積は40平米、それぞれの散水手段20からは他から独立して1つの散水手段ごとに散水が行われる。1つの散水手段による散水量は1平米あたり約800cc、1ブロックあたり約32リットル/毎分である。
5 and 6 illustrate the installation form and operation procedure of the plurality of watering means 20.
FIG. 5 is a perspective view of the roof. The water spray area for melting snow is divided into multiple blocks. The roof of 1200 square meters used for explanation forms blocks 10 for melting snow in a total of 30 divided into 5 rows horizontally and 6 vertically. Water spraying means 20 is installed in each of these blocks 10. The watering means 20 is a watering header in the illustrated example. The diameter of the watering header is 40φ, and the diameter of the water supply pipe 3 connected to this is 25φ.
The area of each block 10 is 40 square meters, and watering is performed for each watering means independently from the other watering means 20. The amount of water sprayed by one watering means is about 800 cc per square meter and about 32 liters per minute per block.

個々の散水手段20に至る給水管30の途中位置には電動式の開閉弁4が配置されている。給水管30は主配管50に連結されている。主配管50は井戸もしくはボイラーに接続されている。ボイラーからの温水を使用する場合、処理時間を短縮するために摂氏30度から50度の高温水を使用することができる。ボイラーの能力は6万キロ級のものが使用される。  An electrically operated on-off valve 4 is arranged in the middle of the water supply pipe 30 that reaches the individual watering means 20. The water supply pipe 30 is connected to the main pipe 50. The main pipe 50 is connected to a well or a boiler. When using hot water from a boiler, hot water of 30 to 50 degrees Celsius can be used to reduce processing time. The boiler has a capacity of 60,000 km.

開閉弁40を開閉操作して順次に散水手段20に通水しブロック毎の散水操作が行なわれる。散水手段20と給水管30の相対的な位置関係から、給水管の凍結対策のために開閉弁40は3方弁が使われている。この3方弁は閉鎖状態で排水管30aから下流側の給水管30の排水を行なう。なお、開閉弁に二方弁と三方弁のいずれを使用するか、またこれら開閉弁を地上に設置するか屋根に置いておくかは単なる選択事項である。  The on-off valve 40 is opened and closed, and water is sequentially passed through the watering means 20 to perform watering operation for each block. From the relative positional relationship between the water spray means 20 and the water supply pipe 30, a three-way valve is used as the on-off valve 40 as a countermeasure against freezing of the water supply pipe. The three-way valve drains the water supply pipe 30 downstream from the drain pipe 30a in a closed state. Note that whether the two-way valve or the three-way valve is used as the on-off valve and whether the on-off valve is installed on the ground or placed on the roof are merely selection matters.

図6は、開閉弁の制御方法を示している。開閉弁40の各々は作動出力を発する出力時間可変のタイマーにより個々に開放時間をセットされている。図示の例では、開閉弁40への出力時間は、例えば20分である。最初のタイマーAが起動して開閉弁40を20分開放する。図9のタイマーAの管理する開閉弁40は、図8の屋根左端の最下段の散水手段20に至る給水管30の開閉を行なう。20分経過してタイマーAはタイムアップし開閉弁40を閉じる。数分の時間差をおいて後続のタイマーBが起動して開閉弁を、例えば20分開放し屋根左端の下から2段目の散水手段への温水の供給を開始する。20分経過してタイマーBはタイムアップし開閉弁を閉じる。同様に、タイマーC、D、E、Fの順に作動とタイムアップを順番に繰り返し、それぞれが分担する開閉弁を順番に開閉してより上段の散水手段に移行しながら散水を行なう。
タイマーGは屋根の左から2番目の列の最下段の散水手段20に至る給水管30の開閉を行なう。20分経過してタイマーGはタイムアップし開閉弁40を閉じる。数分の時間差をおいて後続のタイマー(図示せず)が起動して開閉弁(図示せず)を20分開放し、屋根の左から2番目の列の下から2段目の散水手段20への温水の供給を開始する。20分経過してこのタイマーはタイムアップし開閉弁を閉じる。同様に、後続のタイマーは順に作動とタイムアップを繰り返し、それぞれが分担する開閉弁を順番に開閉してより上段の散水手段に移行しながら散水を行なう。
FIG. 6 shows a method for controlling the on-off valve. Each of the on-off valves 40 is individually set to an open time by an output time variable timer for generating an operation output. In the illustrated example, the output time to the on-off valve 40 is, for example, 20 minutes. The first timer A starts and opens the on-off valve 40 for 20 minutes. The on-off valve 40 managed by the timer A in FIG. 9 opens and closes the water supply pipe 30 that reaches the lowest sprinkling means 20 at the left end of the roof in FIG. After 20 minutes, the timer A expires and the on-off valve 40 is closed. A subsequent timer B is started after a time difference of several minutes, and the on-off valve is opened for 20 minutes, for example, and supply of warm water from the bottom left end of the roof to the second stage watering means is started. After 20 minutes, timer B expires and closes the on-off valve. Similarly, the operation and time-up are repeated in the order of timers C, D, E, and F, and the on-off valves that are assigned to them are sequentially opened and closed, and water is sprayed while shifting to the upper watering means.
The timer G opens and closes the water supply pipe 30 leading to the lowest sprinkling means 20 in the second row from the left of the roof. After 20 minutes, the timer G expires and the on-off valve 40 is closed. After a time difference of several minutes, a subsequent timer (not shown) is activated to open the on-off valve (not shown) for 20 minutes, and the second sprinkling means 20 from the bottom of the second row from the left of the roof. Start supplying hot water to After 20 minutes, the timer expires and the open / close valve is closed. Similarly, the succeeding timer repeats operation and time-up in order, and opens and closes the on-off valves that are assigned to each of the timers in order to perform watering while shifting to the upper watering means.

前記タイマーのすべてがタイムアップした後、必要とあらば、これらのタイマーのすべてをリセットして再び最初のタイマーから順次に動作させる目的で、リセット手段X1を設置しておくことができる。リセット手段にはオン/オフ動作するリセットタイマーを使用できる。例えば、一連のタイマーがタイムアップしたままの状態でこれらタイマーの電源をオフにし、所定時間が経過してオン出力を発してタイマーの時系列動作を再開させることができる。
雪が降り続いている場合、または残雪状況に応じて、前記リセット手段X1の働きによりタイマーA〜の出力機能を回復させ、散水手段から散水を繰り返して行なえるようにできる。
X2は押しボタン式の手動のリセット手段を表している。目視により残雪が認められるときには、この押しボタンを押して一連のタイマーをリセットして散水を再開することもできる。
After all the timers have expired, if necessary, reset means X1 can be installed for the purpose of resetting all of these timers and starting them again sequentially from the first timer. A reset timer that performs an on / off operation can be used as the reset means. For example, it is possible to turn off the power of these timers while a series of timers have timed up, and to restart the time series operation of the timers by issuing an ON output after a predetermined time has elapsed.
When the snow continues, or according to the remaining snow condition, the output function of the timer A is restored by the function of the reset means X1, and water spraying can be repeated from the water sprinkling means.
X2 represents a push button type manual reset means. When remaining snow is visually recognized, the push button can be pressed to reset a series of timers and resume watering.

Yはリセット手段X1の作動時間を予め決めておく時限タイマーである。この時限タイマーにより、リセット手段の繰返し動作を意図的に停止させるのを忘れても安全装置として機能し、不必要に散水を繰返すのをなくせる。
操作者が留守をするような場合、24時間のオン/オフタイマーZを作動させてリセット手段X1の動作開始時刻と終了時刻を予めセットしておくことができる。
Y is a timed timer for predetermining the operating time of the reset means X1. This timed timer functions as a safety device even if it forgets to intentionally stop the repeated operation of the reset means, and it is possible to eliminate unnecessary water sprinkling.
When the operator is away, the operation start time and end time of the reset means X1 can be set in advance by operating the 24-hour on / off timer Z.

散水手段の段数に関わりなく長尺の積雪面を処理できるため、小規模の井戸施設またはボイラー設備を使用して、工場、駅舎、公共施設のような数千平米から数万平米の長尺屋根はもとより数キロに及ぶ鉄道路床や路面にも応用できる。  Long snow cover can be processed regardless of the number of sprinkling means, so long-sized roofs of thousands to tens of thousands of square meters such as factories, station buildings, and public facilities using small well facilities or boiler facilities It can also be applied to railway floors and road surfaces that extend over several kilometers.

本発明の散水熱交換方法を示す簡略説明図である。  It is a simplified explanatory view showing the water spray heat exchange method of the present invention. 散水熱交換方法を実施する装備を施した折半屋根を示す。  Shown is a folded roof with equipment to implement the sprinkling heat exchange method. 図2の部分拡大図である。  FIG. 3 is a partially enlarged view of FIG. 2. 融雪装備を施した折半屋根の一部の平面図である。  It is a top view of a part of folding folding roof which gave snow melting equipment. 屋根を複数のブロックに分けて散水手段を配列した斜視図である。  It is the perspective view which divided the roof into a plurality of blocks and arranged watering means. 散水操作を制御する手段の説明図である。  It is explanatory drawing of the means to control watering operation.

符合の説明Explanation of sign

1 折半屋根の凸所
1b 棚状の表面
2 囲み
2a 側壁
2b オリフィス
3 傾斜側面
3a 吸液材
5 谷部
20 散水手段
1 convex half-fold roof 1b shelf-like surface 2 enclosure 2a side wall 2b orifice 3 inclined side surface 3a liquid absorbent 5 valley 20 watering means

Claims (3)

緩勾配の折半屋根の尾根を形成する凸所の側縁から離して囲みを設け、この囲みを散水手段より供給される熱媒体の溜る貯水区域とする一方、囲みの側壁と凸所の側縁との間に棚状の表面を設け、囲みに設けたオリフィスより周囲の棚状の表面に熱媒体を流出させ、棚状の表面を覆う吸液材に熱媒体を吸水させ拡散させながら凸所の側縁を越えて凸所の裾の傾斜側面に受け渡し、この傾斜側面の吸液材に保水させて流下させ、折半屋根の谷部に集め勾配に沿って流し排水する緩勾配折半屋根の散水熱交換方法。  An enclosure is provided apart from the side edge of the convexity that forms the ridge of the gently-slanting folded half roof, and this enclosure serves as a water storage area where the heat medium supplied from the sprinkling means accumulates, while the side wall of the enclosure and the side edge of the convexity A shelf-like surface is provided between the orifice, the heat medium flows out from the orifice provided in the enclosure to the surrounding shelf-like surface, and the heat-absorbing material that covers the shelf-like surface absorbs the heat medium and diffuses it. Water is transferred to the inclined side of the hem of the convexity beyond the side edge of the convexity, and the liquid absorbing material on this inclined side is allowed to flow down and flow down, gathered in the valley of the folded roof and drained along the slope, and drained. Heat exchange method. 請求項1に記載された緩勾配折半屋根の散水熱交換方法において、前記囲みはチャンネル材から構成され、内部の底が両側にむけて傾斜している緩勾配折半屋根の散水熱交換方法。  The water spray heat exchange method for a gently sloping folded half roof according to claim 1, wherein the enclosure is made of a channel material, and the bottom of the interior is inclined toward both sides. 請求項1に記載された緩勾配折半屋根の散水熱交換方法において、前記囲みは両側に凸所の側縁に向かう方向に傾斜したリブを備えている緩勾配折半屋根の散水熱交換方法。  The water-spreading heat exchange method for a gently-splitting folded half roof according to claim 1, wherein the enclosure includes ribs that are inclined on both sides in a direction toward the side edge of the convexity.
JP2005254101A 2004-08-15 2005-08-06 Sprinkling heat exchange method for gentle pitched folded plate roof Pending JP2006083693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254101A JP2006083693A (en) 2004-08-15 2005-08-06 Sprinkling heat exchange method for gentle pitched folded plate roof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004264706 2004-08-15
JP2005254101A JP2006083693A (en) 2004-08-15 2005-08-06 Sprinkling heat exchange method for gentle pitched folded plate roof

Publications (1)

Publication Number Publication Date
JP2006083693A true JP2006083693A (en) 2006-03-30

Family

ID=36162423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254101A Pending JP2006083693A (en) 2004-08-15 2005-08-06 Sprinkling heat exchange method for gentle pitched folded plate roof

Country Status (1)

Country Link
JP (1) JP2006083693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138700A (en) * 2005-10-18 2007-06-07 Takashi Takahashi Water spray heat exchanging method for gentle gradient folded plate roof
JP2008121398A (en) * 2006-11-13 2008-05-29 Takashi Takahashi Water spraying heat exchange method for half folded roof
JP2008215614A (en) * 2007-02-06 2008-09-18 Takashi Takahashi Water supply tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094723U (en) * 1973-12-25 1975-08-08
JPS57150134U (en) * 1981-03-16 1982-09-21
JPS6213643A (en) * 1985-07-09 1987-01-22 モブロン有限会社 Water sprinkling type snow melting apparatus
JPH08184216A (en) * 1994-12-28 1996-07-16 Takashi Takahashi Snow melting sheet
JP2000110270A (en) * 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd Roof cooling structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094723U (en) * 1973-12-25 1975-08-08
JPS57150134U (en) * 1981-03-16 1982-09-21
JPS6213643A (en) * 1985-07-09 1987-01-22 モブロン有限会社 Water sprinkling type snow melting apparatus
JPH08184216A (en) * 1994-12-28 1996-07-16 Takashi Takahashi Snow melting sheet
JP2000110270A (en) * 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd Roof cooling structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138700A (en) * 2005-10-18 2007-06-07 Takashi Takahashi Water spray heat exchanging method for gentle gradient folded plate roof
JP2008121398A (en) * 2006-11-13 2008-05-29 Takashi Takahashi Water spraying heat exchange method for half folded roof
JP2008215614A (en) * 2007-02-06 2008-09-18 Takashi Takahashi Water supply tube

Similar Documents

Publication Publication Date Title
KR102187898B1 (en) Bench to filter, store and drain rainwater
JP4665236B2 (en) Sprinkling heat exchange method for gently-splitting folded roof
JP3860827B2 (en) Evaporative heat cooling system using rainwater and method for suppressing temperature rise using rainwater
JP2006083693A (en) Sprinkling heat exchange method for gentle pitched folded plate roof
JP2009228316A (en) Roof snow melting apparatus and roof snow melting method
JPH11100803A (en) Wet pavement system
JP5057207B2 (en) Sprinkling heat exchange method for folding roof
JP2007132178A (en) Water spray heat exchange method of folded plate roof with gentle slope
JP2007107363A (en) Sprinkling heat-exchange method for gradual corrugated roof
JP4834888B2 (en) Sprinkling heat exchange method for gently-splitting folded roof
JP4984223B2 (en) Sprinkling heat exchange method for folding roof
JP2007303163A (en) Water supply system utilizing rainwater
JP4780388B2 (en) Sprinkling heat exchange method for gently-splitting folded roof
JP2002030703A (en) Hydrological-circulation structure of residence
JP2007262876A (en) Water sprinkling heat exchange method of folded-plate roof
JP4853640B2 (en) Sprinkling heat exchange method for gently-splitting folded roof
JP2003056135A (en) Rainwater using system
JP2007107364A (en) Sprinkling heat-exchange method for gradual corrugated roof
JP4742353B2 (en) Sprinkling snow melting method
KR101132544B1 (en) a cooling system of a roof
KR20190042142A (en) Mat with excellent water flow dispersing function
JP2007138684A (en) Water spray heat exchanging method for gentle gradient folded plate roof
JP2007126955A (en) Sprinkling heat exchange method for gentle pitched folded plate roof
JP4742354B2 (en) Sprinkling snow melting method
JP2004076541A (en) Rain water circulating roof cooling system by water mist jetting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726