JP2006083615A - Radio wave absorber - Google Patents

Radio wave absorber Download PDF

Info

Publication number
JP2006083615A
JP2006083615A JP2004270023A JP2004270023A JP2006083615A JP 2006083615 A JP2006083615 A JP 2006083615A JP 2004270023 A JP2004270023 A JP 2004270023A JP 2004270023 A JP2004270023 A JP 2004270023A JP 2006083615 A JP2006083615 A JP 2006083615A
Authority
JP
Japan
Prior art keywords
radio wave
powder
wave absorber
cementitious
ilmenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004270023A
Other languages
Japanese (ja)
Inventor
Takeo Kikuchi
健雄 菊地
Masahiro Koshida
雅浩 越田
Yoshinori Kuroda
芳憲 黒田
Koji Hamamoto
康二 濱本
Akinari Akune
昭成 阿久根
Saburo Haneda
三郎 羽田
Hirofumi Azuma
宏文 東
Hitoshi Nishida
斉 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKO BUSSAN KK
SHOWA GIKEN KK
SOKO SEIREN KK
Nikko Co Ltd
Nozawa Corp
Nikko KK
Original Assignee
DAIKO BUSSAN KK
SHOWA GIKEN KK
SOKO SEIREN KK
Nikko Co Ltd
Nozawa Corp
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKO BUSSAN KK, SHOWA GIKEN KK, SOKO SEIREN KK, Nikko Co Ltd, Nozawa Corp, Nikko KK filed Critical DAIKO BUSSAN KK
Priority to JP2004270023A priority Critical patent/JP2006083615A/en
Publication of JP2006083615A publication Critical patent/JP2006083615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorber non-inflammable with thin thickness and excellent in oblique incidence characteristics of radio wave and low in cost. <P>SOLUTION: The radio wave absorber is formed of a hardened body containing cement powder or silica powder as a main raw material, and natural sandy titanic iron ore is used as a radio wave absorbing material for a part of aggregate mixed in the cement and silica. After mixing and forming, the hardened body is formed by a calcium silicate hydrate, and radio wave in a range of frequency band 2-7 GHz is absorbed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電波吸収体に関し、詳しくは建築物における無線LAN対策用の内外装材、及び土木における道路・トンネルなど高度道路交通システム(ITS:Intelligent Transport Systems)及び専用狭域通信(DSRC:Dedicated Short Range Communication)対策用の外装材として使用し、それぞれの電波障害を軽減する不燃性の電波吸収体に関する。   The present invention relates to a radio wave absorber, and more specifically, interior and exterior materials for wireless LAN countermeasures in buildings, intelligent transport systems (ITS) such as roads and tunnels in civil engineering, and dedicated short-range communication (DSRC). It is related to non-combustible radio wave absorbers that are used as exterior materials for measures against range communication and reduce each radio interference.

従来、電波障害対策用として開発された電波吸収体には、合成樹脂材やゴム材に磁性材料を練り混ぜ板状に成形したものや、不燃性を付与する為に前記成形体の表面にケイ酸カルシウム板のような不燃材を貼り付けたもの(例えば、特許文献1参照)、或いは叉、不燃性があるガラス発泡体による厚さ30mm以上のλ/4法電波吸収体等が存在する。   Conventionally, radio wave absorbers developed for countermeasures against radio wave interference include a synthetic resin material or rubber material mixed with a magnetic material and molded into a plate shape, or a surface of the molded body to impart nonflammability. There are λ / 4-method wave absorbers with a thickness of 30 mm or more made of non-flammable glass foam, or a non-flammable material such as a calcium oxide plate attached thereto (see, for example, Patent Document 1).

しかしながら、合成樹脂材やゴム材からなる電波吸収体は燃焼性を有し、複層であるため生産工程上コストが高価になるという問題を有する。
叉、不燃性のものでは、全体の厚みが厚く電波の斜入射特性が悪いという問題を有する。
However, the radio wave absorber made of a synthetic resin material or a rubber material has a combustibility and has a problem that the cost is high in the production process because it is a multilayer.
In addition, non-combustible materials have a problem that the overall thickness is large and the oblique incidence characteristics of radio waves are poor.

また、不燃性を有する電波吸収体として、Mg−Zn系フェライトおよび/またはNi−Zn系フェライトからなる骨材を配合したセメント質粉末叉はケイ酸質粉末を主原料とする硬化体の電波吸収体が提案されている(例えば、特許文献2参照)。
その特許文献2に記載のセメント質粉末叉はケイ酸質粉末を主原料とする硬化体は、テレビのUHF放送用の周波数帯域(470〜770MHz)で電波吸収性能が優れるもので、無線LANで使用する2つの周波数帯(2.5GHz帯、5.2GHz帯)やITS、DSRCの周波数帯(5.8GHz帯)においては電波吸収の効果は期待できないものである。
従って、無線LANやITS、DSRC対策用の外装材としては有効なものではない。
Further, as a non-combustible radio wave absorber, radio wave absorption of a hardened body mainly composed of cementitious powder or siliceous powder containing an aggregate made of Mg—Zn ferrite and / or Ni—Zn ferrite. A body has been proposed (see, for example, Patent Document 2).
The hardened body mainly composed of cementitious powder or siliceous powder described in Patent Document 2 has excellent radio wave absorption performance in the frequency band (470 to 770 MHz) for television UHF broadcasting. In the two frequency bands used (2.5 GHz band and 5.2 GHz band) and the frequency bands of ITS and DSRC (5.8 GHz band), the effect of radio wave absorption cannot be expected.
Therefore, it is not effective as an exterior material for wireless LAN, ITS, or DSRC.

特開平6−240777号公報JP-A-6-240777 特開2002−294900号公報JP 2002-294900 A

本発明は上記した従来の技術が有する問題点に鑑みてなされたもので、その目的とするところは、不燃性で、且つ厚さが薄く、電波の斜入射特性に優れた安価な電波吸収体を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an inexpensive radio wave absorber that is nonflammable and thin in thickness and excellent in oblique incidence characteristics of radio waves. Is to provide.

本発明者等は、量産化ということを前提に検討し、従来のセメント質粉末叉はケイ酸質粉末を主原料とする板の成形技術(例えば、押し出し法、抄造法、加圧法等)を使い、その配合組成中の骨材の一部を、安価に入手できる天然に産出する砂状のチタン鉄鉱、例えばイルメナイトを電波吸収材料として置き換え、練り混ぜて成形し、水硬性により硬化体とした。
そして、無線LANやITS、DSRC対策用としての電波吸収特性と成形強度及び製品必要強度等を考慮し、電波吸収材料(イルメナイト)とセメントの配合比を調整したものである。その結果、不燃性があり、薄くて電波の斜入射特性に優れた機能を示すことを見出した。
即ち、本発明の電波吸収体は、セメント質粉末叉はケイ酸質粉末を主原料とする硬化体からなる電波吸収体であって、セメント質粉末叉はケイ酸質粉末に配合する骨材の一部に、電波吸収材料として天然に産出する砂状のチタン鉄鉱を使用し、これを混合して成形した後、ケイ酸カルシウム水和物により硬化体とした、周波数帯域2〜7GHzの範囲の電波を吸収することを特徴とする(請求項1)。
上記電波吸収材料のチタン鉄鉱は、成形に支障とならない粒径のもので、その粒径は10μm〜500μmのものが好適である。尚、上記セメント質粉末叉はケイ酸質粉末を主原料とする硬化体製品の一般名称としてスレート板、ケイ酸カルシウム板、押出し成形板及びPC(プレキャストコンクリート)板等が挙げられる。また、これ等の硬化体には無機質(金属以外)及び有機質繊維を適宜配合することができる。
上記主原料のセメント質粉末とは、ケイ酸質粉末を含有するものも含むものである。
The present inventors have studied on the premise of mass production, and have used conventional molding technology (for example, extrusion method, papermaking method, pressure method, etc.) of plates made mainly of cementitious powder or siliceous powder. A part of the aggregate in the composition is replaced with a naturally-occurring sandy iron ore, such as ilmenite, which can be obtained at a low price, as an electromagnetic wave absorbing material, kneaded and molded into a hardened body by hydraulic properties .
Then, the mixing ratio of the radio wave absorbing material (ilmenite) and the cement is adjusted in consideration of radio wave absorption characteristics, molding strength, required product strength, etc. for wireless LAN, ITS, and DSRC. As a result, it was found that it is nonflammable, thin and has an excellent function of oblique incidence of radio waves.
That is, the radio wave absorber of the present invention is a radio wave absorber composed of a hardened body mainly made of cementitious powder or siliceous powder, and is an aggregate of the cement blended in the cementitious powder or siliceous powder. In part, using sandy iron ore naturally produced as an electromagnetic wave absorbing material, after mixing and molding this, a hardened body with calcium silicate hydrate, in the frequency range of 2-7GHz It absorbs radio waves (claim 1).
Titanium ore as the radio wave absorbing material has a particle size that does not hinder molding, and the particle size is preferably 10 μm to 500 μm. In addition, slate plates, calcium silicate plates, extruded plates, PC (precast concrete) plates, and the like are given as general names of the above-mentioned hardened products mainly containing cementitious powder or siliceous powder. In addition, inorganic materials (other than metals) and organic fibers can be appropriately blended in these cured products.
The main raw material cementitious powder includes those containing siliceous powder.

叉、前記セメントと電波吸収材料の配合比は、セメント質粉末叉はケイ酸質粉末の主原料の配合量が20wt%〜40wt%、チタン鉄鉱の配合量は20wt%〜60wt%の範囲とする(請求項2)。
更に、前記硬化体の板厚は5mm〜20mmの範囲とし、電波の斜入射角度0°〜60°の範囲で反射減衰量が15dB以上の性能を有するように構成する(請求項3)。
In addition, the blending ratio of the cement and the radio wave absorbing material is such that the blending amount of the main material of cementitious powder or siliceous powder is 20 wt% to 40 wt%, and the blending amount of titanite is 20 wt% to 60 wt%. (Claim 2).
Further, the thickness of the cured body is in the range of 5 mm to 20 mm, and the reflection attenuation amount is 15 dB or more in the range of the oblique incident angle of radio waves from 0 ° to 60 °.

本発明の電波吸収体は、有機物を使用しないため不燃性で、しかも薄く、電波の斜入時における電波吸収特性に優れた電波吸収体を提供できる。そして、従来のセメント質板叉はケイ酸質板の成形技術及び成形設備を使用でき、それにより大量生産が可能で、建築物及び土木で使用することができる安価な電波吸収体を供給できる。   The radio wave absorber of the present invention can provide a radio wave absorber that is nonflammable because it does not use an organic substance, is thin, and has excellent radio wave absorption characteristics when the radio wave is obliquely inserted. In addition, conventional cement board or siliceous board molding technology and equipment can be used, thereby enabling mass production and supplying inexpensive radio wave absorbers that can be used in buildings and civil engineering.

以下、本発明に係る電波吸収体の実施の形態について説明する。
本発明の電波吸収体は、セメント質粉末叉はケイ酸質粉末を主原料とする硬化体からなる電波吸収体であって、セメント質粉末叉はケイ酸質粉末の主原料に配合する骨材の一部に、電波吸収材料として天然に産出する砂状のチタン鉄鉱、例えばイルメナイトを使用し、これを混合して成形した後、ケイ酸カルシウム水和物により硬化体としたものである。
そして、電波吸収特性と成形強度及び製品必要強度等を考慮し、電波吸収材料(イルメナイト)とセメントの配合比を調整する。特に、完成品の厚さ(肉厚)が薄く、電波の斜入射特性について調整した。
Hereinafter, embodiments of the radio wave absorber according to the present invention will be described.
The radio wave absorber of the present invention is a radio wave absorber composed of a hardened body mainly composed of cementitious powder or silicate powder, and is an aggregate to be blended with the main material of cementitious powder or silicate powder. In some of these, sandy iron ore naturally produced as a radio wave absorbing material, for example, ilmenite, is used, mixed and molded, and then hardened with calcium silicate hydrate.
Then, the mixing ratio of the radio wave absorbing material (ilmenite) and the cement is adjusted in consideration of the radio wave absorption characteristics, the molding strength, the required product strength, and the like. In particular, the thickness (wall thickness) of the finished product was thin, and the oblique incidence characteristics of radio waves were adjusted.

その結果、本発明で使用する電波吸収材料のチタン鉄鉱の粒径は10μm〜500μmであり、その配合量は20wt%〜60wt%の範囲とし、セメント質粉末叉はケイ酸質粉末の配合量は20wt%〜40wt%の範囲とする。また、成形する硬化体の厚さは5mm〜20mmの範囲とする。
以下、実施例について説明する。
As a result, the particle size of the iron ore of the radio wave absorbing material used in the present invention is 10 μm to 500 μm, the blending amount is in the range of 20 wt% to 60 wt%, and the blending amount of the cementitious powder or siliceous powder is The range is 20 wt% to 40 wt%. The thickness of the cured body to be molded is in the range of 5 mm to 20 mm.
Examples will be described below.

(1)電波吸収材料であるチタン鉄鉱(イルメナイト)の添加量を変化し、セメント質粉末の添加量を39wt%で一定に保ち、伝送線路理論で、ベクトルネットワークアナライザーを用いて、7D同軸管S−パラメーター法により電波吸収量・材料定数を測定した。その中で、配合比[イルメナイト:25wt%、セメント質粉末:39wt%]の整合厚さを求め、電波吸収特性及び斜入時における電波吸収量を計算により算出した。
電波吸収量(反射減衰量)・反射係数の算出式は下記の通りである。
(1) The amount of addition of titanite (ilmenite), which is a radio wave absorption material, is changed, the amount of cementitious powder is kept constant at 39 wt%, the transmission line theory is used, and a 7D coaxial tube S is used with a vector network analyzer. -Radio wave absorption and material constants were measured by the parameter method. Among them, the matching thickness of the blending ratio [Ilmenite: 25 wt%, cementitious powder: 39 wt%] was determined, and the radio wave absorption characteristics and the radio wave absorption amount during oblique insertion were calculated.
The calculation formula of the radio wave absorption amount (reflection attenuation amount) and the reflection coefficient is as follows.

Figure 2006083615
Figure 2006083615

上記チタン鉄鉱(イルメナイト)の添加量を0〜25wt%で変化させ、セメント質粉末の添加量39wt%一定による材料定数(ε’,ε”:複素比誘電率、μ’,μ”:複素比透磁率)及び電波吸収特性(反射減衰量dB)を図1に示す。
また、チタン鉄鉱(イルメナイト)の添加量を0〜25wt%で変化させ、セメント質粉末の添加量39wt%一定による整合厚さ特性を図2に示す。
更に、材料定数(厚さ一定)による電波吸収特性(計算値)を図3に示す。尚、サンプル1は、配合比(イルメナイト:30wt%、セメント質粉末:30wt%)厚さt=11.9mm、サンプル2は、配合比(イルメナイト:25wt%、セメント質粉末:39wt%)厚さt=14.5mmのものである。また、同サンプルの斜入射角度変化による電波吸収特性(円偏波)を図4に示す。
Material constant (ε ′, ε ″: complex relative dielectric constant, μ ′, μ ″: complex ratio) when the addition amount of the above ilmenite is varied from 0 to 25 wt% and the addition amount of cementitious powder is 39 wt%. The magnetic permeability and radio wave absorption characteristics (reflection loss dB) are shown in FIG.
FIG. 2 shows the matching thickness characteristics when the addition amount of titanite (ilmenite) is varied from 0 to 25 wt% and the addition amount of cementitious powder is constant 39 wt%.
Further, FIG. 3 shows radio wave absorption characteristics (calculated values) based on material constants (constant thickness). Sample 1 has a blending ratio (ilmenite: 30 wt%, cementitious powder: 30 wt%) thickness t = 11.9 mm, and sample 2 has a blending ratio (ilmenite: 25 wt%, cementitious powder: 39 wt%). t = 14.5 mm. In addition, FIG. 4 shows the radio wave absorption characteristics (circular polarization) of the sample according to the oblique incidence angle change.

(2) 電波吸収材料であるチタン鉄鉱(イルメナイト)の添加量を一定(30wt%)にして、セメント質粉末の添加量を変化させ、その電波吸収量・材料定数を測定した。その中で、配合比[イルメナイト:30wt%、セメント質粉末:30wt%]の整合厚さを求め、電波吸収特性及び斜入時における電波吸収量を計算により算出した。計算式は上記と同様である。
さらに、斜入射によるTE波、TM波の反射減衰量(実測値)をフリースペース法により測定した。その電波吸収特性をそれぞれ図9及び図10に示す。
上記セメント質粉末の添加量を10〜30wt%で変化させ、チタン鉄鉱(イルメナイト)添加量30wt%一定による材料定数及び電波吸収特性を図5に示す。
また、セメント質粉末の添加量を10〜30wt%で変化させ、チタン鉄鉱(イルメナイト)添加量30wt%一定による整合厚さ特性を図6に示す。
更に、チタン鉄鉱(イルメナイト)の添加量を30〜50wt%で変化させ、セメント質粉末の添加量11〜16wt%による材料定数及び電波吸収特性を図7に示す。
また、上記セメント質粉末の添加量を10〜30wt%で変化させ、チタン鉄鉱(イルメナイト)添加量30wt%一定による材料定数、比重、及び電波吸収特性を図8に示す。
(2) The amount of radio wave absorption and material constants were measured by changing the addition amount of cementitious powder while keeping the addition amount of titanite (ilmenite) as a radio wave absorption material constant (30 wt%). Among them, the matching thickness of the blending ratio [ilmenite: 30 wt%, cementitious powder: 30 wt%] was determined, and the radio wave absorption characteristics and the radio wave absorption amount during oblique insertion were calculated. The calculation formula is the same as above.
Furthermore, the TE and TM wave return loss (measured value) due to oblique incidence was measured by the free space method. The radio wave absorption characteristics are shown in FIGS. 9 and 10, respectively.
FIG. 5 shows material constants and radio wave absorption characteristics when the addition amount of the cementitious powder is changed from 10 to 30 wt% and the titania (ilmenite) addition amount is constant 30 wt%.
FIG. 6 shows the matching thickness characteristics when the amount of cementitious powder added is changed from 10 to 30 wt% and the amount of titanite (ilmenite) added is constant 30 wt%.
Further, FIG. 7 shows material constants and radio wave absorption characteristics when the addition amount of titanite (ilmenite) is changed from 30 to 50 wt% and the addition amount of cementitious powder is 11 to 16 wt%.
FIG. 8 shows material constants, specific gravity, and radio wave absorption characteristics when the addition amount of the cementitious powder is changed from 10 to 30 wt% and the titania (ilmenite) addition amount is constant 30 wt%.

上記の如く構成した電波級数体は、図4に示すように配合比(イルメナイト:30wt%、セメント質粉末:30wt%)厚さt=11.9mmのものと、配合比(イルメナイト:25wt%、セメント質粉末:39wt%)厚さt=14.5mmのものは、何れも電波の入射角度0°〜60°の範囲で反射減衰量が15dB以上の性能を発揮することが確認できる。   As shown in FIG. 4, the radio wave series configured as described above has a blending ratio (ilmenite: 30 wt%, cementitious powder: 30 wt%) and a thickness t = 11.9 mm, and a blending ratio (ilmenite: 25 wt%, (Cementitious powder: 39 wt%) Thickness t = 14.5 mm can be confirmed to exhibit performance with a return loss of 15 dB or more in the range of the incident angle of radio waves from 0 ° to 60 °.

本発明の電波吸収体は、建築物における無線LAN対策用の内外装材、及び土木における道路、トンネル等のITS、DSRC対策用の外装材として利用拡大が望める。   The radio wave absorber of the present invention is expected to expand its use as an interior / exterior material for wireless LAN countermeasures in buildings and an exterior material for ITS / DSRC countermeasures for roads, tunnels, etc. in civil engineering.

チタン鉄鉱(イルメナイト)添加量変化(セメント質粉末添加量39wt%一定)による材料定数及び電波吸収特性を示すグラフ。The graph which shows the material constant and electromagnetic wave absorption characteristic by a titanium iron ore (ilmenite) addition amount change (a cementitious powder addition amount is 39 wt% constant). チタン鉄鉱(イルメナイト)添加量変化(セメント質粉末添加量39wt%一定)による整合厚さ特性を示すグラフ。The graph which shows the matching thickness characteristic by a titanium iron ore (ilmenite) addition amount change (a cementitious powder addition amount is 39 wt% constant). 材料定数(厚さ一定)による電波吸収特性(計算値)を示すグラフ。The graph which shows the electromagnetic wave absorption characteristic (calculated value) by a material constant (constant thickness). 斜入射角度変化による電波吸収特性(円偏波)を示すグラフ。The graph which shows the electromagnetic wave absorption characteristic (circular polarization) by an oblique incident angle change. セメント質粉末添加量変化(チタン鉄鉱(イルメナイト)添加量30wt%一定)による材料定数及び電波吸収特性を示すグラフ。The graph which shows the material constant and electromagnetic wave absorption characteristic by cementitious powder addition amount change (titanium iron (ilmenite) addition amount constant 30wt%). セメント質粉末添加量変化(チタン鉄鉱(イルメナイト)添加量30wt%一定)による整合厚さ特性を示すグラフ。The graph which shows the matching thickness characteristic by cementitious powder addition amount change (titanium iron (ilmenite) addition amount constant 30 wt%). チタン鉄鉱(イルメナイト)添加量変化(セメント質粉末添加量11〜16wt%)による材料定数及び電波吸収特性を示すグラフ。The graph which shows the material constant and electromagnetic wave absorption characteristic by a titanium iron ore (ilmenite) addition amount change (the amount of cementitious powder additions 11-16 wt%). セメント質粉末添加量変化(チタン鉄鉱(イルメナイト)添加量30wt%一定)による材料定数、比重、及び電波吸収特性を示すグラフ。The graph which shows the material constant, specific gravity, and electromagnetic wave absorption characteristic by cementitious powder addition amount change (titanium iron (ilmenite) addition amount constant 30 wt%). 斜入射によるTE波の電波吸収特性を示すグラフ。The graph which shows the electromagnetic wave absorption characteristic of TE wave by oblique incidence. 斜入射によるTM波の電波吸収特性を示すグラフ。The graph which shows the electric wave absorption characteristic of TM wave by oblique incidence.

Claims (3)

セメント質粉末叉はケイ酸質粉末を主原料とする硬化体からなる電波吸収体であって、セメント質粉末叉はケイ酸質粉末に配合する骨材の一部に、電波吸収材料として天然に産出する砂状のチタン鉄鉱を使用し、これを混合して成形した後、ケイ酸カルシウム水和物により硬化体とした、周波数帯域2〜7GHzの範囲の電波を吸収することを特徴とする電波吸収体。 It is a radio wave absorber made of a hardened material mainly composed of cementitious powder or siliceous powder, and is naturally used as a radio wave absorbing material on a part of the aggregate blended with cementitious powder or silicic powder. Radio waves characterized by absorbing radio waves in the frequency band of 2 to 7 GHz, which are formed by mixing and forming sandy ilmenite produced to form a hardened body with calcium silicate hydrate. Absorber. 前記セメント質粉末叉はケイ酸質粉末と電波吸収材料の配合比が、セメント質粉末叉はケイ酸質粉末の配合量20wt%〜40wt%、チタン鉄鉱配合量20wt%〜60wt%の範囲にあることを特徴とする請求項1記載の電波吸収体。 The blending ratio of the cementitious powder or siliceous powder and the radio wave absorbing material is in the range of 20 wt% to 40 wt% of the cementitious powder or siliceous powder and 20 wt% to 60 wt% of the titanite ore. The radio wave absorber according to claim 1. 前記硬化体の板厚が5mm〜20mmの範囲にあり、電波の斜入射角度0°〜60°の範囲で反射減衰量が15dB以上の性能を有することを特徴とする請求項1叉は2記載の電波吸収体。 The thickness of the cured body is in the range of 5 mm to 20 mm, and the return loss is 15 dB or more in the range of the oblique incident angle of radio waves from 0 ° to 60 °. Radio wave absorber.
JP2004270023A 2004-09-16 2004-09-16 Radio wave absorber Pending JP2006083615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270023A JP2006083615A (en) 2004-09-16 2004-09-16 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270023A JP2006083615A (en) 2004-09-16 2004-09-16 Radio wave absorber

Publications (1)

Publication Number Publication Date
JP2006083615A true JP2006083615A (en) 2006-03-30

Family

ID=36162353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270023A Pending JP2006083615A (en) 2004-09-16 2004-09-16 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP2006083615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095994A (en) * 2008-10-17 2010-04-30 Schoeck Bauteile Gmbh Concrete building structure, and block type thermal insulation structure and concrete building to which the building structure is applied

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095994A (en) * 2008-10-17 2010-04-30 Schoeck Bauteile Gmbh Concrete building structure, and block type thermal insulation structure and concrete building to which the building structure is applied

Similar Documents

Publication Publication Date Title
Guan et al. Cement based electromagnetic shielding and absorbing building materials
Ma et al. Electromagnetic wave absorption performance of magnesium phosphate cement functionalized by nano-Fe3O4 magnetic fluid and hollow glass microspheres
CN108793965B (en) Artificial lightweight aggregate based on ferrite wave-absorbing composite material and preparation method thereof
Xie et al. Electromagnetic wave absorption enhancement of carbon black/gypsum based composites filled with expanded perlite
Lu et al. TiO2 containing electromagnetic wave absorbing aggregate and its application in concrete
CN107488012B (en) Wet-mixed composite lightweight aggregate concrete and preparation method thereof
EA038281B1 (en) Building material mixture for shielding against electromagnetic radiation
Shen et al. Microwave absorption properties of cementitious composites containing carbonyl iron powder (CIP) and fly ash: Formation and effect of CIP core–shell structure
CN102731042A (en) Cement mortar board used for absorbing electromagnetic wave
Xie et al. Design and manufacture of a dual-functional exterior wall structure for 1.1–5 GHz electromagnetic radiation absorption
Shi et al. Synergistic utilization of porous coral sand and fly ash for multifunctional engineered cementitious composites with polyethylene fibers: Intensified electromagnetic wave absorption and mechanism
Rashad et al. Electrical properties of alkali-activated materials against Portland cement
JP4375987B2 (en) Molded body for radio wave absorber, method for producing the same, and radio wave absorber
Xie et al. Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent
JP2006083615A (en) Radio wave absorber
CN104891924B (en) A kind of gypsum-based microwave-absorbing composite material and preparation method thereof
CN107686319A (en) A kind of anti-electromagnetic radiation Thistle board and preparation method thereof
JPH10215097A (en) Radio wave absorption building material
KR101580763B1 (en) Heat insulation and the method of heat insulation
CN101386507A (en) Electro-magnetism proof cement mortar material and preparation method thereof
JPS58108603A (en) Radio wave absorber and method of producing same
RU2545585C1 (en) Radiation-proof structural concrete and method for production thereof
CN107555890B (en) Silica suspension, polymer cement waterproof slurry and preparation method thereof
KR100730597B1 (en) Ceramic Panel for Building Having Electromagnetic Wave in Broad Frequency Range and Manufacturing Method Thereof
JPS603106B2 (en) Method of laying radio wave absorbing asphalt composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717