JP2006083332A - Vinyl chloride copolymer resin, method for producing the same and its resin composition - Google Patents
Vinyl chloride copolymer resin, method for producing the same and its resin composition Download PDFInfo
- Publication number
- JP2006083332A JP2006083332A JP2004271444A JP2004271444A JP2006083332A JP 2006083332 A JP2006083332 A JP 2006083332A JP 2004271444 A JP2004271444 A JP 2004271444A JP 2004271444 A JP2004271444 A JP 2004271444A JP 2006083332 A JP2006083332 A JP 2006083332A
- Authority
- JP
- Japan
- Prior art keywords
- vinyl chloride
- copolymer resin
- polymerization
- mma
- butyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Graft Or Block Polymers (AREA)
Abstract
Description
本発明は塩化ビニル系モノマーとアクリル酸−n−ブチル/メタクリル酸メチル共重合体とを共重合してなる塩化ビニル系共重合樹脂及びその製造方法並びにその樹脂組成物に関するものであり、さらに詳しくは、耐衝撃性及び溶融流動特性に優れ、さらに透明性に優れた、塩化ビニル系共重合樹脂、及びその製造方法、並びにその樹脂組成物に関する。 The present invention relates to a vinyl chloride copolymer resin obtained by copolymerizing a vinyl chloride monomer and an acrylic acid-n-butyl / methyl methacrylate copolymer, a method for producing the same, and a resin composition thereof. Relates to a vinyl chloride copolymer resin excellent in impact resistance and melt flow characteristics, and further excellent in transparency, a method for producing the same, and a resin composition thereof.
塩化ビニル樹脂はその特性を生かして種々の成形品に汎用されており、各用途に応じた種々の特性が要求されている。このような要求特性としては、例えば電線被覆、ラップフィルム、シート等といった軟質用途分野における製品では、高い体積固有抵抗値、良好な可塑剤吸収性、フィッシュアイの低減、等が挙げられ、パイプ、継手、窓枠、工業用透明板、フィルム等といった硬質用途分野においては、種々成形体に加工する際の加工性・熱的安定性、成形後の引張強度や衝撃強度等の基本物性、等が良好であることが求められる。これらの要求特性を改良するために様々な工夫がなされてきており、これまでに開示された技術として、例えば硬質用途分野における耐衝撃性及び成形加工性向上のために、塩化ビニル系樹脂にメタクリル酸メチル−ブタジエン−スチレン共重合体(以下MBS樹脂と略す)または塩素化ポリエチレンを添加する方法(特許文献1)が開示されている。しかしながらこの方法では各種強化剤や添加剤を配合しており、概して多種多量の強化剤や添加剤が必要となるためコストがかかり、また成形品を得ようとする際に、成形加工時の溶融流動特性が悪いため、例えば押出成形機のモーター負荷が高くなるなど製造条件面での問題も生じる。 Vinyl chloride resins are widely used in various molded products taking advantage of their characteristics, and various characteristics are required for each application. As such required characteristics, for example, in products in a flexible application field such as electric wire coating, wrap film, sheet, etc., high volume resistivity, good plasticizer absorbability, fish eye reduction, etc., pipes, In hard application fields such as joints, window frames, industrial transparent plates, films, etc., there are workability and thermal stability when processing into various molded products, basic physical properties such as tensile strength and impact strength after molding, etc. It is required to be good. Various attempts have been made to improve these required characteristics. As a technique disclosed so far, for example, in order to improve impact resistance and molding processability in a hard application field, a vinyl chloride resin is methacrylic. A method (Patent Document 1) of adding an acid methyl-butadiene-styrene copolymer (hereinafter abbreviated as MBS resin) or chlorinated polyethylene is disclosed. However, in this method, various reinforcing agents and additives are blended, which generally requires a large amount of reinforcing agents and additives, which is costly. Since the flow characteristics are poor, there are also problems in terms of manufacturing conditions such as an increase in the motor load of the extruder.
これら多種多量の強化剤や添加剤を配合することなく要求特性を改良する方策として、例えば耐衝撃性及び曲げ弾性率向上のために、(共)重合体の2次転移温度が−10℃以下であるアルキルアクリレート及び/又はアルキルメタクリレート80〜99.5重量%と、これらと共重合可能な多官能性モノマー20〜0.5重量%を乳化重合法により共重合して得られたアクリル系共重合体の存在下に塩化ビニルモノマーを重合する方法(特許文献2)や、耐衝撃性及び耐疲労性向上のために、単独重合体のガラス転移温度が−140℃以上0℃未満である少なくとも1種類の(メタ)アクリレートモノマー及び必要に応じて添加されるその他のラジカル重合性モノマーからなる混合モノマー100重量部と、多官能性モノマー0.1〜10重量部とからなる、乳化重合法により得られたアクリル系共重合体に塩化ビニル系モノマーをグラフト共重合して得た樹脂を硬質塩化ビニル管とする方法(特許文献3)、等が開示されている。しかしながらこれらの方法では、いずれもアクリル系共重合体を従来公知の一般的な乳化重合法により得ており、その後に塩化ビニルモノマーと共重合して得られた塩化ビニル系共重合樹脂中に、これらアクリル系共重合体が粒子状で存在するため、該塩化ビニル系共重合樹脂について耐衝撃性の向上に寄与することは開示されているが、成形加工時の溶融流動特性向上、及び透明性に結び付くような技術的な開示はない。
本発明は、耐衝撃性及び溶融流動特性に優れ、さらに透明性に優れた、塩化ビニル系共重合樹脂、及びその製造方法、並びにその樹脂組成物を提供することを課題とする。 An object of the present invention is to provide a vinyl chloride copolymer resin excellent in impact resistance and melt flow characteristics, and further excellent in transparency, a method for producing the same, and a resin composition thereof.
本発明者は鋭意研究の結果、塊状重合法、溶液重合法、及び懸濁重合法から選ばれた1種の方法で製造したアクリル酸−n−ブチル/メタクリル酸メチル共重合体を用いることにより上記課題を達成できることを見出し、本発明を完成した。
すなわち本発明は、
(1)(A)塩化ビニル系モノマーと、(B)塊状重合法、溶液重合法、及び懸濁重合法から選ばれた1種の方法で製造された、アクリル酸−n−ブチル/メタクリル酸メチル共重合体、を共重合することを特徴とする塩化ビニル系共重合樹脂(請求項1)、
(2)(A)塩化ビニル系モノマーと(B)アクリル酸−n−ブチル/メタクリル酸メチル共重合体の比率が、(A)/(B)=99.5重量%/0.5重量%〜60重量%/40重量%の範囲であることを特徴とする、請求項1に記載の塩化ビニル系共重合樹脂(請求項2)、
(3)アクリル酸−n−ブチル/メタクリル酸メチル共重合体を構成するアクリル酸−n−ブチル成分とメタクリル酸メチル成分の比率が、アクリル酸−n−ブチル成分/メタクリル酸メチル成分=5重量%/95重量%〜70重量%/30重量%の範囲であることを特徴とする、請求項1〜2のいずれかに記載の塩化ビニル系共重合樹脂(請求項3)、
(4)(A)塩化ビニル系モノマーと、(B)塊状重合法、溶液重合法、及び懸濁重合法から選ばれた1種の方法で製造された、アクリル酸−n−ブチル/メタクリル酸メチル共重合体、を水性媒体中で共重合することを特徴とする、請求項1〜3のいずれかに記載の塩化ビニル系共重合樹脂の製造方法(請求項4)、
(5)請求項1〜3のいずれかに記載の塩化ビニル系共重合樹脂を含有することを特徴とする、塩化ビニル系共重合樹脂組成物(請求項5)、
に関する。
As a result of diligent research, the inventor has used an acrylic acid-n-butyl / methyl methacrylate copolymer produced by one method selected from a bulk polymerization method, a solution polymerization method, and a suspension polymerization method. The inventors have found that the above problems can be achieved and have completed the present invention.
That is, the present invention
(1) (A) vinyl chloride monomer and (B) acrylic acid-n-butyl / methacrylic acid produced by one method selected from bulk polymerization method, solution polymerization method and suspension polymerization method A vinyl chloride copolymer resin characterized by copolymerizing a methyl copolymer (claim 1),
(2) The ratio of (A) vinyl chloride monomer and (B) acrylic acid-n-butyl / methyl methacrylate copolymer is (A) / (B) = 99.5 wt% / 0.5 wt% The vinyl chloride copolymer resin according to claim 1 (claim 2), characterized in that it is in the range of -60 wt% / 40 wt%.
(3) Ratio of acrylic acid-n-butyl component and methyl methacrylate component constituting the acrylic acid-n-butyl / methyl methacrylate copolymer is acrylic acid-n-butyl component / methyl methacrylate component = 5 wt. % / 95% by weight to 70% by weight / 30% by weight of the vinyl chloride copolymer resin according to any one of claims 1 to 2 (claim 3),
(4) (A) vinyl chloride monomer and (B) acrylic acid-n-butyl / methacrylic acid produced by one method selected from bulk polymerization, solution polymerization, and suspension polymerization The method for producing a vinyl chloride copolymer resin according to any one of claims 1 to 3, wherein the methyl copolymer is copolymerized in an aqueous medium (claim 4),
(5) A vinyl chloride copolymer resin composition comprising the vinyl chloride copolymer resin according to any one of claims 1 to 3 (claim 5),
About.
本発明によれば、耐衝撃性及び成形加工時の溶融流動特性に優れ、さらに透明性に優れた塩化ビニル系共重合樹脂及びその樹脂組成物を容易に得ることができる。 According to the present invention, it is possible to easily obtain a vinyl chloride copolymer resin and a resin composition thereof that are excellent in impact resistance and melt flow characteristics at the time of molding, and further excellent in transparency.
本発明で使用される塩化ビニル系モノマーとしては特に限定はなく、例えば塩化ビニルモノマー、塩化ビニリデンモノマー、酢酸ビニルモノマーまたはこれらの混合物、または、この他にこれらと共重合可能で、好ましくは重合後の重合体主鎖に反応性官能基を有しないモノマー、例えばエチレン、プロピレンなどのα−オレフィン類から選ばれる1種または2種以上の混合物を使用しても良い。2種以上の混合物を使用する場合は、塩化ビニル系モノマー全体に占める塩化ビニルモノマーの含有率を50重量%以上、特に70重量%以上とすることが好ましい。中でも得られる共重合樹脂の物性等から、塩化ビニルモノマーあるいは塩化ビニリデンモノマーのいずれか1種のみを使用することが好ましく、塩化ビニルモノマーを使用することがさらに好ましい。 The vinyl chloride monomer used in the present invention is not particularly limited. For example, vinyl chloride monomer, vinylidene chloride monomer, vinyl acetate monomer or a mixture thereof, or other copolymerizable with these, preferably after polymerization. A monomer having no reactive functional group in the polymer main chain, for example, one or a mixture of two or more selected from α-olefins such as ethylene and propylene may be used. When using 2 or more types of mixtures, it is preferable that the content rate of the vinyl chloride monomer which occupies for the whole vinyl chloride monomer is 50 weight% or more, especially 70 weight% or more. Among these, it is preferable to use only one of vinyl chloride monomer and vinylidene chloride monomer, and more preferable to use vinyl chloride monomer, from the physical properties of the copolymer resin obtained.
また本発明で使用されるアクリル酸−n−ブチル/メタクリル酸メチル共重合体を得る際の重合方法については、重合方法として塊状重合法、溶液重合法、懸濁重合法を用いた場合に、その後の工程を経て製造される塩化ビニル系共重合樹脂の溶融流動特性が向上するという現象を見出した。このような効果を奏するものであれば、重合方法などについて特に制約されるものではないが、塊状重合法、溶液重合法、懸濁重合法のいずれかの方法が好ましい。 Moreover, about the polymerization method at the time of obtaining acrylic acid-n-butyl / methyl methacrylate copolymer used by this invention, when a bulk polymerization method, a solution polymerization method, and a suspension polymerization method are used as a polymerization method, The present inventors have found a phenomenon that the melt flow characteristics of a vinyl chloride copolymer resin produced through subsequent processes are improved. As long as such effects are exhibited, the polymerization method is not particularly limited, but any one of a bulk polymerization method, a solution polymerization method, and a suspension polymerization method is preferable.
塊状重合法は特に限定されず、本発明の目的を損なわない範囲の方法で行うことができ、例えば、ジャケットを備えた重合反応器内に、アクリル酸−n−ブチル及びメタクリル酸メチル並びに重合開始剤を投入し、反応器内の空気を排除したのちジャケットにより反応器内を加熱して重合反応を行う。 The bulk polymerization method is not particularly limited, and can be carried out by a method within a range that does not impair the object of the present invention. For example, in a polymerization reactor equipped with a jacket, acrylic acid-n-butyl and methyl methacrylate and polymerization start After the agent is added and the air in the reactor is removed, the inside of the reactor is heated by a jacket to carry out the polymerization reaction.
塊状重合法で用いられる重合開始剤は、アクリル酸−n−ブチル及びメタクリル酸メチルに可溶であることが好ましく、このような重合開始剤としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、その他のアゾ系またはジアゾ系重合開始剤;ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、イソプロピルパーオキシカーボネート、その他の有機過酸化物系重合開始剤が挙げられ、これらは単独で用いても良いし2種以上を組み合わせて用いても良い。 The polymerization initiator used in the bulk polymerization method is preferably soluble in n-butyl acrylate and methyl methacrylate. As such a polymerization initiator, 2,2′-azobisisobutyronitrile is used. 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators; Examples thereof include oxide, methyl ethyl ketone peroxide, isopropyl peroxycarbonate, and other organic peroxide polymerization initiators. These may be used alone or in combination of two or more.
また溶液重合法も特に限定されず、本発明の目的を損なわない範囲の方法で行うことができ、例えば、ジャケット及び攪拌機を備えた重合反応器内に、(ア)アクリル酸−n−ブチル及びメタクリル酸メチル、(イ)アクリル酸−n−ブチル及びメタクリル酸メチル並びに得られるアクリル酸−n−ブチル/メタクリル酸メチル共重合体の3物質を全て溶解し得る有機溶剤、(ウ)重合開始剤、を投入し、反応器内の空気を排除したのちジャケットにより反応器内を加熱して重合反応を行う。 Further, the solution polymerization method is not particularly limited, and can be carried out by a method within a range that does not impair the object of the present invention. For example, in a polymerization reactor equipped with a jacket and a stirrer, (a) acrylic acid-n-butyl and An organic solvent capable of dissolving all three substances of methyl methacrylate, (b) acrylic acid-n-butyl and methyl methacrylate and the resulting acrylic acid-n-butyl / methyl methacrylate copolymer, (c) a polymerization initiator Then, after the air in the reactor is removed, the inside of the reactor is heated by a jacket to carry out the polymerization reaction.
溶液重合法で用いられる有機溶剤としては、アクリル酸−n−ブチル及びメタクリル酸メチル並びに得られるアクリル酸−n−ブチル/メタクリル酸メチル共重合体の3物質を全て溶解し得るものであれば特に限定はなく、例えば炭化水素類(トルエン、キシレン、n−ヘキサン、シクロヘキサン等)、酢酸エステル類(酢酸エチル、酢酸ブチル等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセト酢酸エチル、アセチルアセトン等)が挙げられ、これらは単独で用いても良いし2種以上を混合して用いても良い。 As the organic solvent used in the solution polymerization method, particularly, as long as it can dissolve all three substances of acrylic acid-n-butyl and methyl methacrylate and the obtained acrylic acid-n-butyl / methyl methacrylate copolymer, There is no limitation, for example, hydrocarbons (toluene, xylene, n-hexane, cyclohexane, etc.), acetates (ethyl acetate, butyl acetate, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetoacetate, acetylacetone, etc.) These may be used alone or in combination of two or more.
また溶液重合法で用いられる重合開始剤は、アクリル酸−n−ブチル及びメタクリル酸メチルに可溶であることが好ましく、このような重合開始剤としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、その他のアゾ系またはジアゾ系重合開始剤;ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、イソプロピルパーオキシカーボネート、その他の有機過酸化物系重合開始剤が挙げられ、これらは単独で用いても良いし2種以上を組み合わせて用いても良い。 The polymerization initiator used in the solution polymerization method is preferably soluble in acrylic acid-n-butyl and methyl methacrylate. As such a polymerization initiator, 2,2′-azobisisobutyro is used. Nitrile, 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators; benzoyl Examples thereof include peroxide, methyl ethyl ketone peroxide, isopropyl peroxycarbonate, and other organic peroxide polymerization initiators. These may be used alone or in combination of two or more.
さらに懸濁重合法も特に限定されず、本発明の目的を損なわない範囲の方法で行うことができ、例えば、ジャケット及び攪拌機を備えた重合反応器内に、純水及び懸濁分散剤を投入し、反応器内の空気を排除したのち攪拌下にアクリル酸−n−ブチル及びメタクリル酸メチル並びに重合開始剤を装入し、ジャケットにより反応器内を加熱して重合反応を行う。 Further, the suspension polymerization method is not particularly limited, and can be carried out by a method within a range that does not impair the object of the present invention. For example, pure water and a suspension dispersant are charged into a polymerization reactor equipped with a jacket and a stirrer. Then, after the air in the reactor is removed, -n-butyl acrylate and methyl methacrylate and a polymerization initiator are charged with stirring, and the inside of the reactor is heated by a jacket to carry out a polymerization reaction.
懸濁重合法で用いられる懸濁分散剤としては、部分鹸化ポリ酢酸ビニル、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ポリエチレンオキサイド、ポリビニルピロリドン、ポリアクリル酸、酢酸ビニル−マレイン酸共重合体、スチレン−マレイン酸共重合体、ゼラチン、デンプン等の有機高分子化合物;硫酸カルシウム、燐酸三カルシウム等の水難溶性無機微粒子が使用可能で、これらは単独または2種以上を組み合わせて用いることができる。 Examples of the suspension dispersant used in the suspension polymerization method include partially saponified polyvinyl acetate, methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, polyethylene oxide, polyvinyl pyrrolidone, polyacrylic acid, vinyl acetate-maleic acid copolymer, styrene- Organic polymer compounds such as maleic acid copolymer, gelatin and starch; poorly water-soluble inorganic fine particles such as calcium sulfate and tricalcium phosphate can be used, and these can be used alone or in combination of two or more.
また懸濁重合法で用いられる重合開始剤は、アクリル酸−n−ブチル及びメタクリル酸メチルに可溶であることが好ましく、このような重合開始剤としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、その他のアゾ系またはジアゾ系重合開始剤;ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、イソプロピルパーオキシカーボネート、その他の有機過酸化物系重合開始剤が挙げられ、これらは単独で用いても良いし2種以上を組み合わせて用いても良い。 The polymerization initiator used in the suspension polymerization method is preferably soluble in acrylic acid-n-butyl and methyl methacrylate. As such a polymerization initiator, 2,2′-azobisisobutyrate is used. Nitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis-4-methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators; Examples thereof include benzoyl peroxide, methyl ethyl ketone peroxide, isopropyl peroxycarbonate, and other organic peroxide polymerization initiators. These may be used alone or in combination of two or more.
本発明で使用されるアクリル酸−n−ブチル/メタクリル酸メチル共重合体を構成するアクリル酸−n−ブチル成分とメタクリル酸メチル成分の比率は、本発明の目的を損なわない範囲であれば特に制約はないが、アクリル酸−n−ブチル成分/メタクリル酸メチル成分=5重量%/95重量%〜70重量%/30重量%の範囲であることが好ましい。アクリル酸−n−ブチル成分とメタクリル酸メチル成分の比率が、アクリル酸−n−ブチル成分/メタクリル酸メチル成分=5重量%/95重量%〜70重量%/30重量%の範囲であれば、該共重合体と塩化ビニル系モノマーとを共重合させて得られる塩化ビニル系共重合樹脂の耐衝撃性、溶融流動特性、及び透明性向上の効果にバランスが取れる上、共重合反応も安定である。 The ratio of the acrylic acid-n-butyl component and the methyl methacrylate component constituting the acrylic acid-n-butyl / methyl methacrylate copolymer used in the present invention is particularly within the range that does not impair the object of the present invention. Although there is no restriction | limiting, It is preferable that it is the range of acrylic acid-n-butyl component / methyl methacrylate component = 5 weight% / 95 weight%-70 weight% / 30 weight%. If the ratio of the acrylic acid-n-butyl component and the methyl methacrylate component is in the range of acrylic acid-n-butyl component / methyl methacrylate component = 5 wt% / 95 wt% to 70 wt% / 30 wt%, The effects of improving the impact resistance, melt flow characteristics and transparency of the vinyl chloride copolymer resin obtained by copolymerizing the copolymer and vinyl chloride monomer can be balanced, and the copolymerization reaction is also stable. is there.
本発明の塩化ビニル系共重合樹脂における、(A)塩化ビニル系モノマーと(B)アクリル酸−n−ブチル/メタクリル酸メチル共重合体の比率[(A)/(B)]は、本発明の目的を損なわない範囲であれば特に制約はないが、好ましくは(A)/(B)=99.5重量%/0.5重量%〜60重量%/40重量%であり、更に好ましくは(A)80〜97重量%及び(B)3〜20重量%である。(B)の比率が0.5重量%〜40重量%の範囲では、耐衝撃性、溶融流動特性、及び透明性向上の効果にバランスが取れる上、共重合反応も安定である。さらに3重量%〜20重量%の範囲であれば、得られる塩化ビニル系共重合体が粉粒体になり、加工方法の自由度が増すと共に、透明性がより良好となる。
本発明の塩化ビニル系共重合樹脂の平均重合度または平均分子量は、本発明の効果を奏する範囲であれば特に限定されないが、衝撃強度と成形加工性のバランスから、JIS K 7367−2に従って測定したK値が50〜95であることが好ましく、55〜90であることがさらに好ましい。また、平均粒径としては特に限定されないが、通常0.01〜500μmの範囲であり、好ましくは0.1〜300μmの範囲である。
The ratio [(A) / (B)] of (A) vinyl chloride monomer and (B) acrylic acid-n-butyl / methyl methacrylate copolymer in the vinyl chloride copolymer resin of the present invention is as follows. There is no particular limitation as long as it does not impair the purpose, but preferably (A) / (B) = 99.5 wt% / 0.5 wt% to 60 wt% / 40 wt%, more preferably (A) 80 to 97% by weight and (B) 3 to 20% by weight. When the ratio of (B) is in the range of 0.5 wt% to 40 wt%, the effects of improving impact resistance, melt flow characteristics, and transparency can be balanced, and the copolymerization reaction is also stable. Furthermore, if it is the range of 3 weight%-20 weight%, the obtained vinyl chloride type | system | group copolymer will become a granular material, and transparency will become more favorable while the freedom degree of a processing method increases.
The average degree of polymerization or the average molecular weight of the vinyl chloride copolymer resin of the present invention is not particularly limited as long as the effects of the present invention are achieved, but it is measured according to JIS K 7367-2 from the balance of impact strength and moldability. The K value is preferably 50 to 95, and more preferably 55 to 90. Moreover, although it does not specifically limit as an average particle diameter, Usually, it is the range of 0.01-500 micrometers, Preferably it is the range of 0.1-300 micrometers.
本発明の塩化ビニル系共重合樹脂の製造方法については、特に制約はないが、重合反応熱の除熱や暴走反応の抑制といった重合制御の簡便性から、水性媒体中での共重合が好ましく、そのような重合方法としては、例えば、懸濁重合法、微細懸濁重合法、乳化重合法等の製造方法が挙げられる。特に好ましくは、粒子制御の簡便性、残存モノマーや嵩比重等を考慮した塩化ビニル系共重合樹脂の諸物性の点より、懸濁重合法または微細懸濁重合法で製造されることである。 The method for producing the vinyl chloride copolymer resin of the present invention is not particularly limited, but copolymerization in an aqueous medium is preferable from the viewpoint of simplicity of polymerization control such as removal of polymerization reaction heat and suppression of runaway reaction, Examples of such polymerization methods include production methods such as suspension polymerization, fine suspension polymerization, and emulsion polymerization. Particularly preferred is a suspension polymerization method or a fine suspension polymerization method from the viewpoint of various physical properties of the vinyl chloride copolymer resin in consideration of the ease of particle control, residual monomer, bulk specific gravity and the like.
本発明の塩化ビニル系共重合樹脂を製造する際に用いられる懸濁重合法または微細懸濁重合法は、本発明の目的を損なわない範囲の方法で行うことができ、原料の仕込みも本発明の目的を損なわない範囲の技術を任意に用いることができる。例えば最も一般的な方法として、先に水を仕込んだのち塩化ビニル系モノマー及びアクリル酸−n−ブチル/メタクリル酸メチル共重合体を仕込む方法、重合温度まで昇温する時間を短縮する目的で先に塩化ビニル系モノマー及びアクリル酸−n−ブチル/メタクリル酸メチル共重合体を仕込んだのち温水を仕込む方法、さらに仕込み及び昇温時間を短縮する目的で塩化ビニル系モノマー及びアクリル酸−n−ブチル/メタクリル酸メチル共重合体と温水を同時に仕込む方法等を用いることができる。 The suspension polymerization method or fine suspension polymerization method used in producing the vinyl chloride copolymer resin of the present invention can be carried out by a method within a range that does not impair the object of the present invention, and charging of raw materials is also performed in the present invention. Any technique that does not impair the purpose can be used. For example, as the most general method, a method in which water is first charged and then a vinyl chloride monomer and an acrylic acid-n-butyl / methyl methacrylate copolymer are charged. A method of charging warm water after adding a vinyl chloride monomer and an acrylic acid-n-butyl / methyl methacrylate copolymer to a vinyl chloride monomer and an acrylic acid-n-butyl for the purpose of shortening the charging time and heating time / A method of charging methyl methacrylate copolymer and warm water simultaneously can be used.
また本発明の塩化ビニル系共重合樹脂を製造する際に用いられる懸濁重合法または微細懸濁重合法においては、懸濁分散剤として、本発明の目的を損なわない範囲のものを特に限定されずに使用することができる。そのような懸濁分散剤としては、例えば、部分鹸化ポリ酢酸ビニル;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース等の水溶性セルロースエーテル;ポリエチレンオキサイド;ポリビニルピロリドン;ポリアクリル酸;酢酸ビニル−マレイン酸共重合体;スチレン−マレイン酸共重合体;ゼラチン;デンプン、等の有機高分子分散剤が使用可能であり、これらは単独または2種以上を組み合わせて使用することができる。 Further, in the suspension polymerization method or fine suspension polymerization method used in producing the vinyl chloride copolymer resin of the present invention, the suspension dispersant is particularly limited in a range not impairing the object of the present invention. Can be used without. Examples of such suspending and dispersing agents include partially saponified polyvinyl acetate; water-soluble cellulose ethers such as methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and carboxymethylcellulose; polyethylene oxide; polyvinylpyrrolidone; polyacrylic acid; Organic polymer dispersants such as vinyl acetate-maleic acid copolymer; styrene-maleic acid copolymer; gelatin; starch and the like can be used, and these can be used alone or in combination of two or more.
さらに本発明の塩化ビニル系共重合樹脂を製造する際に用いられる懸濁重合法または微細懸濁重合法においては、重合開始剤として、特に限定されずに本発明の目的を損なわない範囲の油溶性重合開始剤を添加すれば良いが、これらの開始剤のうち10時間半減期温度が30〜65℃のものを1種または2種以上使用するのが好ましい。このような重合開始剤としては、例えば、アセチルシクロヘキシルスルフォニルパーオキサイド、2,4,4−トリメチルペンチル−2−パーオキシネオデカノエート、ジイソプロピルパーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ブチルパーオキシピバレート、t−ブチルパーオキシネオデカノエイト、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ジラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド等の有機過酸化物系重合開始剤;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)等のアゾ系重合開始剤が挙げられ、これらは単独または2種以上を組み合わせて使用することができる。これら油溶性重合開始剤は特に制約のない状態で添加することができるが、例えば有機溶剤に溶解して使用する場合には、その有機溶剤の例としては、トルエン、キシレン、ベンゼン等の芳香族炭化水素;ヘキサン、イソパラフィン等の脂肪族炭化水素;アセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル、ジオクチルフタレート等のエステル類が挙げられ、これらは単独または2種以上を組み合わせて使用することができる。 Furthermore, in the suspension polymerization method or the fine suspension polymerization method used in producing the vinyl chloride copolymer resin of the present invention, the polymerization initiator is not particularly limited and is an oil within a range not impairing the object of the present invention. A soluble polymerization initiator may be added, but it is preferable to use one or more of these initiators having a 10-hour half-life temperature of 30 to 65 ° C. Examples of such polymerization initiators include acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyneodecanoate, diisopropyl peroxydicarbonate, di (2-ethylhexyl) peroxydioxide. Carbonate, t-butylperoxypivalate, t-butylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, dilauroyl peroxide, 3,5,5-trimethyl Organic peroxide polymerization initiators such as hexanoyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2 Azo polymerization initiators such as' -azobis- (2,4-dimethylvaleronitrile) Is, it may be used alone or in combination of two or more. These oil-soluble polymerization initiators can be added without any particular restrictions. For example, when used by dissolving in an organic solvent, examples of the organic solvent include aromatics such as toluene, xylene, and benzene. Hydrocarbons; Aliphatic hydrocarbons such as hexane and isoparaffin; Ketones such as acetone and methyl ethyl ketone; Esters such as ethyl acetate, butyl acetate and dioctyl phthalate are used, and these should be used alone or in combination of two or more. Can do.
さらに塩化ビニル系樹脂の製造に通常使用される抗酸化剤、重合度調節剤、連鎖移動剤、pH調節剤、ゲル化性改良剤、帯電防止剤、乳化剤、安定剤、スケール防止剤等やこれらの仕込量及び仕込方法も、本発明の目的を損なわない範囲の技術をなんら支障なく任意に用いることができる。 In addition, antioxidants, polymerization degree regulators, chain transfer agents, pH regulators, gelling agents, antistatic agents, emulsifiers, stabilizers, scale inhibitors, etc. that are commonly used in the production of vinyl chloride resins As for the preparation amount and the preparation method, a technique within a range that does not impair the object of the present invention can be arbitrarily used without any problem.
重合温度条件は特に限定しないが、好ましくはJIS K 7367−2に従って測定したK値が50〜95となる塩化ビニル系樹脂を製造する際の条件である30〜70℃で重合を行う。 The polymerization temperature condition is not particularly limited, but the polymerization is preferably carried out at 30 to 70 ° C., which is a condition for producing a vinyl chloride resin having a K value of 50 to 95 measured according to JIS K 7367-2.
また重合反応熱の除去は、本発明の目的を損なわない範囲の方式、例えば外部あるいは内部ジャケットによる除熱、通水バッフル等による除熱、還流凝縮器による方法等を、単独あるいは必要に応じ適宜組み合わせて利用すれば良い。 Further, the polymerization reaction heat can be removed by a method within a range that does not impair the object of the present invention, for example, heat removal by an external or internal jacket, heat removal by a water baffle, a method using a reflux condenser, etc. Use in combination.
このような製造方法によれば、該共重合樹脂はラテックス状あるいはスラリー状で得られるが、これを乾燥して粉粒体の共重合樹脂を得る方法としては特に制約はなく、例えば、ラテックスをスプレー乾燥法により乾燥する方法、スラリーを脱水したのち流動乾燥法により乾燥する方法、等が挙げられる。 According to such a production method, the copolymer resin can be obtained in the form of a latex or a slurry. However, there is no particular limitation on the method of drying the copolymer resin to obtain a granular copolymer resin. Examples include a method of drying by a spray drying method, a method of dehydrating a slurry and then drying by a fluidized drying method, and the like.
本発明の塩化ビニル系共重合樹脂は、耐衝撃性及び溶融流動特性に優れ、さらに透明性に優れるという特性を有しているため、このような特性を必要とする用途に利用することができ、例えば、パイプ、継手、窓枠、工業用透明板、フィルム、電線被覆、ラップフィルム、シート等あらゆる分野に好適に利用することができる。このような成形品を得るための塩化ビニル系共重合樹脂組成物も、また本発明の1つである。 Since the vinyl chloride copolymer resin of the present invention has excellent impact resistance and melt flow characteristics, and further excellent transparency, it can be used for applications that require such characteristics. For example, it can be suitably used in various fields such as pipes, joints, window frames, industrial transparent plates, films, electric wire coatings, wrap films, and sheets. A vinyl chloride copolymer resin composition for obtaining such a molded article is also one aspect of the present invention.
本発明の塩化ビニル系共重合樹脂組成物には、本発明の塩化ビニル系共重合樹脂を必須成分とし、必要に応じ熱安定剤、滑剤、安定化助剤、加工助剤、充填剤、酸化防止剤、光安定剤、顔料、可塑剤等を、本発明の目的を損なわない範囲で適宜配合することができる。 The vinyl chloride copolymer resin composition of the present invention contains the vinyl chloride copolymer resin of the present invention as an essential component, and if necessary, a heat stabilizer, a lubricant, a stabilization aid, a processing aid, a filler, an oxidation agent. An inhibitor, a light stabilizer, a pigment, a plasticizer, and the like can be appropriately blended within a range that does not impair the object of the present invention.
熱安定剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような熱安定剤としては、例えばジメチル錫メルカプト、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレートポリマー等の有機錫安定剤;ステアリン酸鉛、二塩基性亜燐酸鉛、三塩基性硫酸鉛等の鉛系安定剤;カルシウム−亜鉛系安定剤;バリウム−亜鉛系安定剤;カドミウム−バリウム系安定剤等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 It does not specifically limit as a heat stabilizer, The thing of the range which does not impair the objective of this invention can be used. Examples of such heat stabilizers include dimethyl tin mercapto, dibutyl tin mercapto, dioctyl tin mercapto, dibutyl tin malate, dibutyl tin malate polymer, dioctyl tin malate, dioctyl tin malate polymer, dibutyl tin laurate, dibutyl tin laurate. Organic tin stabilizers such as polymers; lead stabilizers such as lead stearate, dibasic lead phosphite and tribasic lead sulfate; calcium-zinc stabilizers; barium-zinc stabilizers; cadmium-barium stabilizers An agent etc. are mentioned, These may be used independently or may use 2 or more types together. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
また滑剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような滑剤としては、例えばパラフィンワックス系滑剤、ポリオレフィンワックス系滑剤、ステアリン酸系滑剤、アルコール系滑剤、エステル系滑剤等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Moreover, it does not specifically limit as a lubricant, The thing of the range which does not impair the objective of this invention can be used. Examples of such lubricants include paraffin wax-based lubricants, polyolefin wax-based lubricants, stearic acid-based lubricants, alcohol-based lubricants, and ester-based lubricants. These may be used alone or in combination of two or more. good. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
さらに安定化助剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような安定化助剤としては、例えばエポキシ化大豆油、エポキシ化アマニ油、エポキシ化テトラヒドロフタレート、エポキシ化ポリブタジエン、燐酸エステル等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Furthermore, it does not specifically limit as a stabilizing aid, The thing of the range which does not impair the objective of this invention can be used. Examples of such stabilizing aids include epoxidized soybean oil, epoxidized linseed oil, epoxidized tetrahydrophthalate, epoxidized polybutadiene, and phosphoric acid ester. These may be used alone or in combination of two or more. May be. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
また加工助剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような加工助剤としては、例えばアクリル酸−n−ブチル/メタクリル酸メチル共重合体、アクリル酸−2−エチルヘキシル/メタクリル酸メチル共重合体、アクリル酸−2−エチルヘキシル/メタクリル酸メチル/メタクリル酸−n−ブチル共重合体等のアクリル系加工助剤等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Moreover, it does not specifically limit as a processing aid, The thing of the range which does not impair the objective of this invention can be used. Examples of such processing aids include acrylic acid-n-butyl / methyl methacrylate copolymer, acrylic acid-2-ethylhexyl / methyl methacrylate copolymer, acrylic acid-2-ethylhexyl / methyl methacrylate / methacrylic acid. Examples thereof include acrylic processing aids such as acid-n-butyl copolymer, and these may be used alone or in combination of two or more. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
さらに充填剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような充填剤としては、例えば炭酸カルシウム、炭酸マグネシウム、炭酸リチウム、カオリングレー、石膏、マイカ、タルク、水酸化マグネシウム、珪酸カルシウム、硼砂等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Furthermore, it does not specifically limit as a filler, The thing of the range which does not impair the objective of this invention can be used. Examples of such fillers include calcium carbonate, magnesium carbonate, lithium carbonate, kaolin clay, gypsum, mica, talc, magnesium hydroxide, calcium silicate, borax and the like, and these may be used alone or in combination of two or more. May be used in combination. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
また酸化防止剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような酸化防止剤としては、例えばフェノール系抗酸化剤等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Moreover, it does not specifically limit as an antioxidant, The thing of the range which does not impair the objective of this invention can be used. Examples of such antioxidants include phenolic antioxidants, and these may be used alone or in combination of two or more. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
さらに光安定剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような光安定剤としては、例えばサリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤;ヒンダードアミン系の光安定剤等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Furthermore, it does not specifically limit as a light stabilizer, The thing of the range which does not impair the objective of this invention can be used. Examples of such light stabilizers include salicylic acid ester-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based UV absorbers; hindered amine-based light stabilizers, and the like. You may use the above together. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
また顔料としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような顔料としては、例えばアゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料;酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアン化物系等の無機顔料等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Moreover, it does not specifically limit as a pigment, The thing of the range which does not impair the objective of this invention can be used. Examples of such pigments include organic pigments such as azo, phthalocyanine, selenium and dye lakes; inorganic pigments such as oxides, molybdenum chromates, sulfides / selenides, ferrocyanides, etc. These may be used alone or in combination of two or more. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
さらに可塑剤としては、特に限定されず、本発明の目的を損なわない範囲のものを用いることができる。そのような可塑剤としては、例えばジ−2−エチルヘキシルフタレート、ジ−n−オクチルフタレート、ジイソノニルフタレート、ジブチルフタレート等のフタル酸エステル系可塑剤;トリクレジルフォスフェート、トリキシリルホスフェート、トリフェニルフォスフェート等のリン酸エステル系可塑剤;ジ−2−エチルヘキシルアジペート、ジ−2−エチルヘキシルセバケート等の脂肪酸エステル系可塑剤等が挙げられ、これらは単独で用いても2種以上を併用しても良い。またその使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 Furthermore, it does not specifically limit as a plasticizer, The thing of the range which does not impair the objective of this invention can be used. Examples of such plasticizers include phthalate plasticizers such as di-2-ethylhexyl phthalate, di-n-octyl phthalate, diisononyl phthalate, and dibutyl phthalate; tricresyl phosphate, trixyl phosphate, triphenyl phosphate Phosphate plasticizers such as fetes; fatty acid ester plasticizers such as di-2-ethylhexyl adipate and di-2-ethylhexyl sebacate, etc., and these may be used alone or in combination of two or more. Also good. Further, the amount used is not particularly limited as long as the object of the present invention is not impaired.
その他、本発明の目的を損なわない範囲の難燃剤、帯電防止剤、強化剤、改質剤等も必要に応じて制限なしに配合することができ、その使用量も特に限定されず、本発明の目的を損なわない範囲であれば良い。 In addition, flame retardants, antistatic agents, reinforcing agents, modifiers and the like within a range that does not impair the object of the present invention can be blended without limitation, and the amount used is not particularly limited. As long as the purpose is not impaired.
本発明の塩化ビニル系樹脂組成物の製造方法には特に限定はなく、塩化ビニル系共重合樹脂を所定量配合し、要すれば使用される各種添加剤(熱安定剤、滑剤、安定化助剤、加工助剤、充填剤、酸化防止剤、光安定剤、顔料、可塑剤、さらには難燃剤、帯電防止剤、強化剤、改質剤等)を配合したものを、例えばリボンブレンダー、スーパーミキサー、タンブラーミキサー、バンバリーミキサー、ヘンシェルミキサー、ミキシングロール等の混合機及び/または混合混練機等を用いて、ホットブレンドまたはコールドブレンド等の常法によって均一に混合または混合混練するなどの方法で製造すれば良い。その際の配合順序等に特に限定はなく、本発明の目的を損なわない範囲の技術を任意に用いることができる。例えば塩化ビニル系共重合樹脂及び各種添加剤を一括して配合する方法、液状の添加剤を均一に配合する目的で先に塩化ビニル系共重合樹脂及び粉粒体の各種添加剤を配合したのち液状添加剤を配合する方法または先に塩化ビニル系共重合樹脂を配合したのち液状添加剤を配合し、最後に粉粒体の各種添加剤を配合する方法、さらに、まず各種添加剤を配合し、次いで塩化ビニル系共重合樹脂を配合する方法、等を用いることができる。 The method for producing the vinyl chloride resin composition of the present invention is not particularly limited, and a predetermined amount of vinyl chloride copolymer resin is blended, and if necessary, various additives (heat stabilizer, lubricant, stabilization aid). Additives, processing aids, fillers, antioxidants, light stabilizers, pigments, plasticizers, flame retardants, antistatic agents, reinforcing agents, modifiers, etc.), for example, ribbon blenders, super Manufactured by a method such as mixing or kneading uniformly by a conventional method such as hot blending or cold blending using a mixer, tumbler mixer, Banbury mixer, Henschel mixer, mixing roll, etc. and / or a mixing kneader. Just do it. There is no particular limitation on the blending order and the like at that time, and any technique within the range not impairing the object of the present invention can be used. For example, after blending vinyl chloride copolymer resin and various additives for the purpose of blending vinyl chloride copolymer resin and various additives at once, and for the purpose of uniformly blending liquid additives. A method of blending a liquid additive or a method of blending a liquid additive after first blending a vinyl chloride copolymer resin, and finally blending various additives of a granular material, and further blending various additives first. Then, a method of blending a vinyl chloride copolymer resin, etc. can be used.
このようにして製造された本発明の塩化ビニル系共重合樹脂組成物は、そのまま各種成形加工に供しても良いし、さらにコニーダー、押出機、ペレタイザー等の混練機および/または混練造粒機等を用いて混練または混練造粒したのち、各種成形加工に供しても良い。 The vinyl chloride copolymer resin composition of the present invention thus produced may be used for various molding processes as it is, and further, kneaders such as a kneader, an extruder, a pelletizer, and / or a kneading granulator, etc. After being kneaded or kneaded and granulated using, it may be subjected to various molding processes.
本発明の塩化ビニル系共重合樹脂組成物は、ブリスター包装製品、レザー製品、農ビフィルム、シュリンクフィルム、各種シート等のカレンダー製品;塩ビ鋼板等の基材へのラミネートフィルム;積層プレスシート等の積層用原反;パイプ、平板、波板、フィルム、テープ、シート、発泡ボードまたはシート、窓枠、その他異形プロファイル等の押出成形品;継手、バルブ等の射出成形品;ボトル、ダクトブーツ、ベローズ等のブロー成形品;玩具、看板、仮面、プレスマット等の真空成形品、等の各種製品に成形加工されて用いられる。 The vinyl chloride copolymer resin composition of the present invention includes blister packaging products, leather products, agricultural films, shrink films, calendar products such as various sheets, laminated films on substrates such as PVC steel sheets, and laminated press sheets. Raw materials: Pipes, flat plates, corrugated sheets, films, tapes, sheets, foamed boards or sheets, window frames, other molded products such as irregular profiles, injection molded products such as joints, valves, bottles, duct boots, bellows, etc. Blow-molded products: Used to be molded into various products such as toys, signboards, masks, vacuum-molded products such as press mats, etc.
次に本発明を実施例に基づいて詳細に説明するが、本発明は以下の実施例に限定されるものではない。ここで、特に断りのない限り、実施例中の「部」は「重量部」を意味する。なお耐衝撃性、溶融流動特性、及び透明性の測定方法は下記の通りである。
(イ)耐衝撃性
JIS K7110に規定のアイゾット衝撃強さ試験方法に準じ、タイプ1の試験片に切削加工でタイプAのノッチを付けた試験片を用いて、23℃及び0℃におけるアイゾット衝撃強さ(以下Izod衝撃強さと記す。単位はkJ/m2。)を求めて評価する。なお23℃での測定の際は、室温23℃及び相対湿度50%の恒温恒湿室中に48時間静置した試験片を用いる。また0℃での測定の際は、室温23℃及び相対湿度50%の恒温恒湿室中に48時間静置した試験片を、さらに0℃に調整した液槽に5分間浸漬したものを用い、液槽から取り出したのち5秒以内に衝撃を与える。
(ロ)溶融流動特性
JIS K7210附属書Cに規定の熱可塑性樹脂の流れ試験方法に準じ、(株)島津製作所製高化式フローテスタCFT−500C形を用いて、試験温度180℃、ダイ長さ1mm、ダイ直径1mm、試験荷重9.8×102Nの条件で1秒間当たりの樹脂の流れ値(以下これを高化式B法フロー値と略す。単位はml/s×10-2。)を求めて評価する。
(ハ)透明性
JIS K7136に規定の透明材料のヘーズの求め方及びJIS K7361−1に規定の透明材料の全光線透過率の試験方法に準じ、日本電色工業(株)製濁度計NDH−300A型を用いて、室温23℃及び相対湿度50%の恒温恒湿室中に48時間静置した厚み1mmの試験片のヘーズ(以下Hazeと記す。)及び全光線透過率(以下T%と記す。単位は%。)を求めて評価する。
EXAMPLES Next, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example. Here, unless otherwise specified, “parts” in the examples means “parts by weight”. The methods for measuring impact resistance, melt flow characteristics, and transparency are as follows.
(B) Impact resistance Izod impact at 23 ° C and 0 ° C using a test piece with a type A notch cut into a type 1 test piece according to the JIS K7110 Izod impact strength test method The strength (hereinafter referred to as Izod impact strength, the unit is kJ / m 2 ) is determined and evaluated. In the measurement at 23 ° C., a test piece that is allowed to stand for 48 hours in a constant temperature and humidity chamber at a room temperature of 23 ° C. and a relative humidity of 50% is used. In the measurement at 0 ° C., a test piece that was allowed to stand for 48 hours in a constant temperature and humidity chamber with a room temperature of 23 ° C. and a relative humidity of 50% was immersed in a liquid bath adjusted to 0 ° C. for 5 minutes. The impact is given within 5 seconds after taking out from the liquid tank.
(B) Melt flow characteristics In accordance with the flow test method for thermoplastic resin specified in JIS K7210 Annex C, using a Koka type flow tester CFT-500C manufactured by Shimadzu Corporation, a test temperature of 180 ° C. and a die length The resin flow value per second under the conditions of 1 mm in length, 1 mm in die diameter, and test load of 9.8 × 10 2 N (hereinafter abbreviated as Koka type B method flow value. The unit is ml / s × 10 −2 .) For evaluation.
(C) Transparency According to the method for determining the haze of a transparent material specified in JIS K7136 and the test method for the total light transmittance of a transparent material specified in JIS K7361-1, a turbidimeter NDH manufactured by Nippon Denshoku Industries Co., Ltd. A haze (hereinafter referred to as Haze) and total light transmittance (hereinafter referred to as T%) of a 1 mm-thick test piece that was allowed to stand for 48 hours in a constant temperature and humidity chamber at a room temperature of 23 ° C. and a relative humidity of 50% using the −300A type. (The unit is%.)
<アクリル酸−n−ブチル/メタクリル酸メチル共重合体の製造方法>
アクリル酸−n−ブチル/メタクリル酸メチル共重合体の製造は、下記の手順に従って行った。なお、得られたアクリル酸−n−ブチル/メタクリル酸メチル共重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下GPCと略す)で測定したポリスチレン換算値等でいずれも約10万であった。このGPC測定の際には、Waters社製GPCシステム(製品名510)を用い、クロロホルムを移動相として、昭和電工(株)製Shodex K−802.5及びK−804(ポリスチレンゲルカラム)を使用し、室温環境下で測定した。
<Method for producing acrylic acid-n-butyl / methyl methacrylate copolymer>
The acrylic acid-n-butyl / methyl methacrylate copolymer was produced according to the following procedure. The weight average molecular weight of the obtained acrylic acid-n-butyl / methyl methacrylate copolymer was about 100,000 in terms of polystyrene measured by gel permeation chromatography (hereinafter abbreviated as GPC). It was. For this GPC measurement, a Waters GPC system (product name 510) was used, and Shodex K-802.5 and K-804 (polystyrene gel column) manufactured by Showa Denko KK were used with chloroform as the mobile phase. And measured in a room temperature environment.
(製造例1)溶液重合法によるアクリル酸−n−ブチル/メタクリル酸メチル共重合体の製造(その1)
還流管、攪拌機及びジャケットを備えた2Lセパラブルフラスコに、アクリル酸−n−ブチル(以下BAと略す)50部、メタクリル酸メチル(以下MMAと略す)50部、イソプロピルアルコール50部、酢酸エチル50部、ベンゾイルパーオキサイド0.2部、ラウリルパーオキサイド2.5部を仕込み、反応容器内を窒素置換した。次いで攪拌しながらジャケットに温水を通じて反応容器内温を65℃まで昇温し反応を開始した。8時間後内温を75℃まで昇温し4時間攪拌を継続した。反応開始から12時間経過したところで反応を終了させ、揮発分を減圧留去することにより、粘凋液状のBA/MMA共重合体(以下P(BA/MMA)−1と略す)を得た。
(Production Example 1) Production of acrylic acid-n-butyl / methyl methacrylate copolymer by solution polymerization method (Part 1)
In a 2 L separable flask equipped with a reflux tube, a stirrer and a jacket, 50 parts of n-butyl acrylate (hereinafter abbreviated as BA), 50 parts of methyl methacrylate (hereinafter abbreviated as MMA), 50 parts of isopropyl alcohol, 50 of ethyl acetate Part, 0.2 part of benzoyl peroxide and 2.5 parts of lauryl peroxide were charged, and the inside of the reaction vessel was purged with nitrogen. Next, the temperature in the reaction vessel was raised to 65 ° C. through warm water through the jacket while stirring to initiate the reaction. After 8 hours, the internal temperature was raised to 75 ° C., and stirring was continued for 4 hours. When 12 hours had elapsed from the start of the reaction, the reaction was terminated, and the volatile matter was distilled off under reduced pressure to obtain a viscous liquid BA / MMA copolymer (hereinafter abbreviated as P (BA / MMA) -1).
(製造例2)懸濁重合法によるBA/MMA共重合体の製造
還流管、攪拌機及びジャケットを備えた2Lセパラブルフラスコに、純水300部及び鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.7部を仕込み、反応容器内を窒素置換した。次いで攪拌しながらBA50部、MMA50部及び2,2’−アゾビスイソブチロニトリル0.9部を仕込み、ジャケットに温水を通じて反応容器内温を70℃まで昇温し反応を開始した。4時間後冷却して反応を終了させ、反応物を固液分離したのち純水で充分洗浄し、乾燥してゴム状のBA/MMA共重合体(以下P(BA/MMA)−2と略す)を得た。
Production Example 2 Production of BA / MMA Copolymer by Suspension Polymerization Method In a 2 L separable flask equipped with a reflux tube, a stirrer and a jacket, 300 parts of pure water, a saponification degree of about 80 mol%, and an average polymerization degree of about 2000 The partially saponified polyvinyl acetate 0.7 part was charged and the inside of the reaction vessel was purged with nitrogen. Next, 50 parts of BA, 50 parts of MMA and 0.9 part of 2,2′-azobisisobutyronitrile were charged with stirring, and the reaction was started by raising the temperature in the reaction vessel to 70 ° C. through warm water in the jacket. After cooling for 4 hours, the reaction was terminated, and the reaction product was separated into solid and liquid, washed thoroughly with pure water, dried and a rubbery BA / MMA copolymer (hereinafter abbreviated as P (BA / MMA) -2). )
(製造例3)塊状重合法によるBA/MMA共重合体の製造
ジャケットを備えた2Lセパラブルフラスコに、BA50部、MMA50部及び2,2’−アゾビスイソブチロニトリル0.3部を仕込み、反応容器内を窒素置換した。次いでジャケットに温水を通じて反応容器内温を60℃まで昇温し反応を開始した。8時間後冷却して反応を終了させ、塊状のBA/MMA共重合体(以下P(BA/MMA)−3と略す)を得た。
(Production Example 3) Production of BA / MMA copolymer by bulk polymerization method A 2 L separable flask equipped with a jacket was charged with 50 parts of BA, 50 parts of MMA and 0.3 part of 2,2′-azobisisobutyronitrile. The inside of the reaction vessel was purged with nitrogen. Subsequently, the temperature inside the reaction vessel was raised to 60 ° C. through warm water through the jacket to start the reaction. The reaction was terminated by cooling after 8 hours to obtain a bulk BA / MMA copolymer (hereinafter abbreviated as P (BA / MMA) -3).
(製造例4)溶液重合法によるBA/MMA共重合体の製造(その2)
製造例1で使用のBA量を5部としMMA量を95部とした以外は、製造例1と同様の製造方法にて、塊状のBA/MMA共重合体(以下P(BA/MMA)−4と略す)を得た。
Production Example 4 Production of BA / MMA Copolymer by Solution Polymerization Method (Part 2)
A bulk BA / MMA copolymer (hereinafter referred to as P (BA / MMA)-) was produced by the same production method as in Production Example 1 except that the amount of BA used in Production Example 1 was changed to 5 parts and the amount of MMA was changed to 95 parts. Abbreviated as 4).
(製造例5)溶液重合法によるBA/MMA共重合体の製造(その3)
製造例1で使用のBA量を30部としMMA量を70部とした以外は、製造例1と同様の製造方法にて、ゴム状のBA/MMA共重合体(以下P(BA/MMA)−5と略す)を得た。
Production Example 5 Production of BA / MMA Copolymer by Solution Polymerization Method (Part 3)
A rubbery BA / MMA copolymer (hereinafter referred to as P (BA / MMA)) was produced by the same production method as in Production Example 1 except that the BA amount used in Production Example 1 was 30 parts and the MMA amount was 70 parts. Abbreviated to -5).
(製造例6)溶液重合法によるBA/MMA共重合体の製造(その4)
製造例1で使用のBA量を70部としMMA量を30部とした以外は、製造例1と同様の製造方法にて、液状のBA/MMA共重合体(以下P(BA/MMA)−6と略す)を得た。
Production Example 6 Production of BA / MMA Copolymer by Solution Polymerization Method (Part 4)
A liquid BA / MMA copolymer (hereinafter referred to as P (BA / MMA)-) was produced by the same production method as in Production Example 1 except that the BA amount used in Production Example 1 was 70 parts and the MMA amount was 30 parts. 6).
(製造例7)乳化重合法によるBA/MMA共重合体の製造
滴下管、攪拌機及びジャケットを備えた2Lセパラブルフラスコに、予め純水に溶解したジオクチルスルホコハク酸ナトリウム0.8部及び過硫酸カリウム0.05部を仕込み、さらに純水を加えて純水の全量を200部としたのち、反応容器内を窒素置換した。次いで攪拌しながらジャケットに温水を通じて反応容器内温を70℃まで昇温し、攪拌を継続しながらBA50部及びMMA50部を1時間当たり合計20部程度の速度で滴下した。滴下終了後90分間、反応容器内温を70℃に保ったまま攪拌を継続し、そののち冷却してBA/MMA共重合体(以下P(BA/MMA)−7と略す)のラテックスを得た。このラテックスの一部を攪拌しながら抜き取り、塩化カルシウム水溶液を加えて塩析凝固させ、固液分離したのち水洗乾燥して求めたラテックスの固形分濃度は約30重量%であった。
(Production Example 7) Production of BA / MMA copolymer by emulsion polymerization method In a 2 L separable flask equipped with a dropping tube, a stirrer and a jacket, 0.8 part of sodium dioctylsulfosuccinate previously dissolved in pure water and potassium persulfate 0.05 part was added and pure water was added to make the total amount of pure water 200 parts, and then the inside of the reaction vessel was purged with nitrogen. Next, the temperature inside the reaction vessel was raised to 70 ° C. through warm water through the jacket while stirring, and 50 parts of BA and 50 parts of MMA were added dropwise at a rate of about 20 parts per hour while continuing stirring. Stirring was continued for 90 minutes while maintaining the internal temperature of the reaction vessel at 70 ° C. after the completion of the dropping, and then cooled to obtain a latex of BA / MMA copolymer (hereinafter abbreviated as P (BA / MMA) -7). It was. A part of this latex was taken out while stirring, added with an aqueous calcium chloride solution, salted out and solidified, solid-liquid separated, washed with water and dried to obtain a solids concentration of about 30% by weight.
(製造例8) 溶液重合法によるポリ(アクリル酸−n−ブチル)の製造
還流管、攪拌機及びジャケットを備えた2Lセパラブルフラスコに、BA100部、トルエン50部、酢酸エチル50部、ベンゾイルパーオキサイド0.3部を仕込み、反応容器内を窒素置換した。次いで攪拌しながらジャケットに温水を通じて反応容器内温を70℃まで昇温し反応を開始した。5時間後内温を75℃まで昇温し2時間攪拌を継続した。反応開始から7時間経過したところで反応を終了させ、揮発分を減圧留去することにより、液状のポリ(アクリル酸−n−ブチル)(以下PBAと略す)を得た。
(Production Example 8) Production of poly (acrylic acid-n-butyl) by a solution polymerization method In a 2 L separable flask equipped with a reflux tube, a stirrer and a jacket, 100 parts of BA, 50 parts of toluene, 50 parts of ethyl acetate, benzoyl peroxide 0.3 parts was charged, and the inside of the reaction vessel was purged with nitrogen. Next, the temperature in the reaction vessel was raised to 70 ° C. through warm water through the jacket while stirring to initiate the reaction. After 5 hours, the internal temperature was raised to 75 ° C. and stirring was continued for 2 hours. When 7 hours had elapsed from the start of the reaction, the reaction was terminated, and volatile components were distilled off under reduced pressure to obtain liquid poly (acrylic acid-n-butyl) (hereinafter abbreviated as PBA).
(製造例9) 溶液重合法によるポリメタクリル酸メチルの製造
製造例8で使用のBAをMMAとした以外は、製造例8と同様の製造方法にて、塊状のポリメタクリル酸メチル(以下PMMAと略す)を得た。
(Production Example 9) Production of polymethyl methacrylate by a solution polymerization method Except that BA used in Production Example 8 was changed to MMA, bulk polymethyl methacrylate (hereinafter referred to as PMMA) was produced by the same production method as Production Example 8. Abbreviated).
(実施例1)
ジャケット及び攪拌機を備えた内容量25リットルのステンレス鋼製重合機に、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.1部、t−ブチルパーオキシネオデカノエイト0.03部、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート0.01部を仕込み、脱気後に93部の塩化ビニルモノマー及び7部のP(BA/MMA)−1を仕込んだのち60℃の温水150部を仕込み、重合温度57℃で約6時間重合した。重合機内の未反応モノマーを回収したのち重合機を冷却し、スラリーを払い出した。得られたスラリーを脱水して熱風乾燥機にて55℃で24時間乾燥し、塩化ビニル/{P(BA/MMA)−1}グラフト共重合樹脂Aを白色の粉末として得た。
Example 1
In a stainless steel polymerization machine having a volume of 25 liters equipped with a jacket and a stirrer, 0.1 part of partially saponified polyvinyl acetate having a degree of saponification of about 80 mol% and an average degree of polymerization of about 2000, t-butylperoxyneodecanoate 0.03 parts, 0.01 parts of 1,1,3,3-tetramethylbutylperoxyneodecanoate are charged, and after degassing, 93 parts of vinyl chloride monomer and 7 parts of P (BA / MMA) -1 Then, 150 parts of warm water at 60 ° C. was charged, and polymerization was carried out at a polymerization temperature of 57 ° C. for about 6 hours. After recovering unreacted monomers in the polymerization machine, the polymerization machine was cooled and the slurry was discharged. The obtained slurry was dehydrated and dried in a hot air dryer at 55 ° C. for 24 hours to obtain vinyl chloride / {P (BA / MMA) -1} graft copolymer resin A as a white powder.
次いで得られた共重合樹脂A100部に対し、有機錫系熱安定剤(TVS#8831:日東化成(株)製、ジオクチル錫メルカプト)1.5部、滑剤(カルコール86:花王(株)製、ステアリルアルコール)1.0部を配合して塩化ビニル系共重合樹脂組成物を得、該組成物を日本ロール(株)製H0S−2103型8インチロール(外径約20cm)を用いて180℃、3分間ロールの条件で厚さ約1mmのロールシートを作製した。得られたロールシートを三分し、1点目は所定の大きさに切り分けたのち数十枚重ね合わせ、神藤金属工業(株)製シンドー式SF型油圧プレス機を用いて185℃、圧力5MPaで約10分間プレスして厚さ5mmのテストプレートを作製し、次いで切削加工にて耐衝撃性評価用テストサンプルを作り測定に供した。また2点目は約3mm角に細断して溶融流動特性の測定に供した。さらに3点目は所定の大きさに切り分けたのち数枚重ね合わせ、神藤金属工業社製シンドー式SF型油圧プレス機を用いて185℃、圧力5MPaで約10分間プレスして厚さ1mmのテストプレートを作製し、透明性の評価に供した。結果を表1に記す。 Next, with respect to 100 parts of the obtained copolymer resin A, 1.5 parts of an organic tin heat stabilizer (TVS # 8831: manufactured by Nitto Kasei Co., Ltd., dioctyltin mercapto), a lubricant (Calcoal 86: manufactured by Kao Corporation), 1.0 part of stearyl alcohol) is blended to obtain a vinyl chloride copolymer resin composition, and the composition is 180 ° C. using a H0S-2103 type 8-inch roll (outer diameter: about 20 cm) manufactured by Nippon Roll Co., Ltd. A roll sheet having a thickness of about 1 mm was produced under the condition of a roll for 3 minutes. The obtained roll sheet was divided into three parts, the first point was cut into a predetermined size, and then several tens of sheets were stacked, and 185 ° C., pressure 5 MPa using Shindo SF type hydraulic press machine manufactured by Shindo Metal Industry Co., Ltd. Was pressed for about 10 minutes to prepare a test plate having a thickness of 5 mm, and then a test sample for impact resistance evaluation was prepared by cutting and used for measurement. The second point was cut into approximately 3 mm squares and used for measurement of melt flow characteristics. The third point is cut into a predetermined size and then stacked several times. Using a Shindo SF hydraulic press manufactured by Shindo Metal Industry Co., Ltd., press for about 10 minutes at 185 ° C. and 5 MPa pressure to test the thickness of 1 mm. A plate was prepared and subjected to transparency evaluation. The results are shown in Table 1.
(実施例2)
実施例1の重合に用いた塩化ビニルモノマーの量を99.5部とし、P(BA/MMA)−1の量を0.5部とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−1}グラフト共重合樹脂Bを白色の粉末として得た。
(Example 2)
The same production method as in Example 1 except that the amount of the vinyl chloride monomer used in the polymerization of Example 1 was 99.5 parts and the amount of P (BA / MMA) -1 was 0.5 parts. , Vinyl chloride / {P (BA / MMA) -1} graft copolymer resin B was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例3)
実施例1の重合に用いた塩化ビニルモノマーの量を80部とし、P(BA/MMA)−1の量を20部とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−1}グラフト共重合樹脂Cを白色の粉末として得た。
(Example 3)
Except for the amount of vinyl chloride monomer used in the polymerization of Example 1 being 80 parts and the amount of P (BA / MMA) -1 being 20 parts, the same production method as in Example 1 was used. {P (BA / MMA) -1} graft copolymer resin C was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例4)
実施例1の重合に用いた塩化ビニルモノマーの量を60部とし、P(BA/MMA)−1の量を40部とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−1}グラフト共重合樹脂Dを白色の粉末として得た。
Example 4
Except that the amount of the vinyl chloride monomer used in the polymerization of Example 1 was 60 parts and the amount of P (BA / MMA) -1 was 40 parts, the same production method as Example 1 was used. {P (BA / MMA) -1} graft copolymer resin D was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例5)
実施例1〜4のいずれかで用いたものと同様のステンレス鋼製重合機に、純水150部、鹸化度約80モル%、平均重合度約2000の部分鹸化ポリ酢酸ビニル0.08部、平均分子量約450万のポリエチレンオキサイド0.0015部、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート0.05部を仕込み、脱気後に93部の塩化ビニルモノマー及び7部のP(BA/MMA)−1を仕込み、重合温度33℃で約15時間重合した。重合機内の未反応モノマーを回収したのち重合機を冷却し、スラリーを払い出した。得られたスラリーを脱水して熱風乾燥機にて55℃で24時間乾燥し、塩化ビニル/{P(BA/MMA)−1}グラフト共重合樹脂Eを白色の粉末として得た。
(Example 5)
In a stainless steel polymerization machine similar to that used in any of Examples 1 to 4, 150 parts of pure water, 0.08 part of partially saponified polyvinyl acetate having a degree of saponification of about 80 mol% and an average degree of polymerization of about 2000, 0.0015 part of polyethylene oxide having an average molecular weight of about 4.5 million, 0.05 part of 1,1,3,3-tetramethylbutylperoxyneodecanoate are charged, and after degassing, 93 parts of vinyl chloride monomer and 7 parts of P (BA / MMA) -1 was charged and polymerized at a polymerization temperature of 33 ° C. for about 15 hours. After recovering unreacted monomers in the polymerization machine, the polymerization machine was cooled and the slurry was discharged. The obtained slurry was dehydrated and dried in a hot air dryer at 55 ° C. for 24 hours to obtain vinyl chloride / {P (BA / MMA) -1} graft copolymer resin E as a white powder.
次いで得られた共重合樹脂D100部に対し可塑剤としてDOP(製品名DOP、(株)ジェイ・プラス製)を20部配合した以外は、実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 Next, roll / press processing was performed in the same manner as in Example 1 except that 20 parts of DOP (product name: DOP, manufactured by J Plus Co., Ltd.) as a plasticizer was blended with 100 parts of the obtained copolymer resin D. The impact resistance, melt flow properties and transparency were evaluated. The results are shown in Table 1.
(実施例6)
実施例1〜5のいずれかで用いたものと同様のステンレス鋼製重合機に、鹸化度約88モル%、平均重合度約3500の部分鹸化ポリ酢酸ビニル0.3部、鹸化度約78モル%、平均重合度約900の部分鹸化ポリ酢酸ビニル0.15部、メトキシル基含量約20モル%、ヒドロキシプロポキシル基含量約8モル%、2%水溶液の20℃における粘度が約30000mPa・sであるヒドロキシプロピルメチルセルロース0.02部、ステアリン酸−n−ブチル0.6部、t−ブチルパーオキシネオデカノエイト0.02部、3,5,5−トリメチルヘキサノイルパーオキサイド0.02部を仕込み、脱気後に93部の塩化ビニルモノマー及び7部のP(BA/MMA)−1を仕込んだのち60℃の温水400部を仕込み、重合温度64℃で約6時間重合した。重合機内の未反応モノマーを回収したのち重合機を冷却し、ラテックスを払い出した。得られたラテックスを脱水して熱風乾燥機にて55℃で24時間乾燥し、塩化ビニル/{P(BA/MMA)−1}グラフト共重合樹脂Fを白色の粉末として得た。
(Example 6)
A stainless steel polymerization machine similar to that used in any of Examples 1 to 5 was charged with 0.3 part of partially saponified polyvinyl acetate having a degree of saponification of about 88 mol% and an average degree of polymerization of about 3500, and a degree of saponification of about 78 mol %, Partially saponified polyvinyl acetate having an average degree of polymerization of about 900, 0.15 part of saponified polyvinyl acetate, methoxyl group content of about 20 mol%, hydroxypropoxyl group content of about 8 mol%, and 2% viscosity at 20 ° C. of about 30000 mPa · s. 0.02 part of certain hydroxypropyl methylcellulose, 0.6 part of stearic acid-n-butyl, 0.02 part of t-butylperoxyneodecanoate, 0.02 part of 3,5,5-trimethylhexanoyl peroxide After charging and degassing, 93 parts of vinyl chloride monomer and 7 parts of P (BA / MMA) -1 were charged, and then 400 parts of 60 ° C. warm water was added, and the polymerization temperature was 64 ° C. It was polymerized 6 hours. After recovering the unreacted monomer in the polymerization machine, the polymerization machine was cooled and the latex was discharged. The obtained latex was dehydrated and dried in a hot air dryer at 55 ° C. for 24 hours to obtain vinyl chloride / {P (BA / MMA) -1} graft copolymer resin F as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例7)
実施例1の重合に用いたP(BA/MMA)−1を製造例2のP(BA/MMA)−2とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−2}グラフト共重合樹脂Gを白色の粉末として得た。
(Example 7)
Except that P (BA / MMA) -1 used in the polymerization of Example 1 was changed to P (BA / MMA) -2 of Production Example 2, vinyl chloride / {P (BA / MMA) -2} Graft copolymer resin G was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例8)
実施例1の重合に用いたP(BA/MMA)−1を製造例3のP(BA/MMA)−3とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−3}グラフト共重合樹脂Hを白色の粉末として得た。
(Example 8)
Except that P (BA / MMA) -1 used in the polymerization of Example 1 was changed to P (BA / MMA) -3 of Production Example 3, vinyl chloride / {P (BA / MMA) -3} graft copolymer resin H was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例9)
実施例1の重合に用いたP(BA/MMA)−1を製造例4のP(BA/MMA)−4とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−4}グラフト共重合樹脂Iを白色の粉末として得た。
Example 9
Except that P (BA / MMA) -1 used in the polymerization of Example 1 was changed to P (BA / MMA) -4 of Production Example 4, vinyl chloride / {P (BA / MMA) -4} Graft copolymer resin I was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例10)
実施例1の重合に用いたP(BA/MMA)−1を製造例5のP(BA/MMA)−5とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−5}グラフト共重合樹脂Jを白色の粉末として得た。
(Example 10)
Except that P (BA / MMA) -1 used in the polymerization of Example 1 was changed to P (BA / MMA) -5 of Production Example 5, vinyl chloride / {P (BA / MMA) -5} graft copolymer resin J was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(実施例11)
実施例1の重合に用いたP(BA/MMA)−1を製造例6のP(BA/MMA)−6とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−6}グラフト共重合樹脂Kを白色の粉末として得た。
(Example 11)
Except that P (BA / MMA) -1 used in the polymerization of Example 1 was changed to P (BA / MMA) -6 of Production Example 6, vinyl chloride / {P (BA / MMA) -6} graft copolymer resin K was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
(比較例1)
実施例1の重合に用いた塩化ビニルモノマーの量を100部とし、P(BA/MMA)−1を未使用とした以外は、実施例1と同様の製造方法にて、塩化ビニル単独重合樹脂を白色の粉末として得た。
(Comparative Example 1)
A vinyl chloride homopolymer resin was produced in the same manner as in Example 1 except that the amount of the vinyl chloride monomer used in the polymerization of Example 1 was 100 parts and P (BA / MMA) -1 was not used. Was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
Izod衝撃強さ及び高化式B法フロー値がいずれも低く、好ましくない。 Both the Izod impact strength and the Koka type B method flow value are low, which is not preferable.
(比較例2)
比較例1で得られた塩化ビニル単独重合樹脂100部に対し耐衝撃改良剤としてMBS樹脂(カネエースB56:(株)カネカ製)3部を配合した以外は、実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。
(Comparative Example 2)
Compounded in the same manner as in Example 1 except that 3 parts of MBS resin (Kane Ace B56: manufactured by Kaneka Corporation) was added as an impact resistance improver to 100 parts of the vinyl chloride homopolymer resin obtained in Comparative Example 1. Rolled / pressed and evaluated for impact resistance, melt flow properties and transparency. The results are shown in Table 1.
Izod衝撃強さは比較例1の場合に比較して若干向上するものの、高化式B法フロー値は低く流れにくいことから、好ましくない。 Although the Izod impact strength is slightly improved as compared with the case of Comparative Example 1, the Koka type B method flow value is low, which is not preferable.
(比較例3)
実施例1の重合に用いたP(BA/MMA)−1を製造例7のP(BA/MMA)−7とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−7}グラフト共重合樹脂Lを白色の粉末として得た。
(Comparative Example 3)
Except that P (BA / MMA) -1 used in the polymerization in Example 1 was changed to P (BA / MMA) -7 in Production Example 7, vinyl chloride / {P (BA / MMA) -7} graft copolymer resin L was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
Izod衝撃強さは向上するものの、高化式B法フロー値及び透明性は低く、好ましくない。 Although the Izod impact strength is improved, the Koka type B method flow value and transparency are low, which is not preferable.
(比較例4)
実施例1の重合に用いたP(BA/MMA)−1を製造例8のPBAとした以外は、実施例1と同様の製造方法にて、塩化ビニル/PBAグラフト共重合樹脂を白色の粉末として得た。
(Comparative Example 4)
Except that P (BA / MMA) -1 used in the polymerization of Example 1 was changed to PBA of Production Example 8, a vinyl chloride / PBA graft copolymer resin was converted into a white powder by the same production method as in Example 1. Got as.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
Izod衝撃強さ及び高化式B法フロー値は向上するものの透明性が低く、好ましくない。 Although the Izod impact strength and the Koka type B method flow value are improved, the transparency is low, which is not preferable.
(比較例5)
実施例1の重合に用いたP(BA/MMA)−1を製造例9のPMMAとした以外は、実施例1と同様の製造方法にて、塩化ビニル/PMMAグラフト共重合樹脂を白色の粉末として得た。
(Comparative Example 5)
Except that P (BA / MMA) -1 used in the polymerization in Example 1 was changed to PMMA in Production Example 9, vinyl chloride / PMMA graft copolymer resin was converted into a white powder by the same production method as in Example 1. Got as.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
Izod衝撃強さ及び高化式B法フロー値がいずれも低く、好ましくない。 Both the Izod impact strength and the Koka type B method flow value are low, which is not preferable.
(比較例6)
実施例1の重合に用いた塩化ビニルモノマーの量を99.9部とし、P(BA/MMA)−1の量を0.1部とした以外は、実施例1と同様の製造方法にて、塩化ビニル/{P(BA/MMA)−1}グラフト共重合樹脂Mを白色の粉末として得た。
(Comparative Example 6)
In the same production method as in Example 1, except that the amount of vinyl chloride monomer used in the polymerization of Example 1 was 99.9 parts and the amount of P (BA / MMA) -1 was 0.1 parts. , Vinyl chloride / {P (BA / MMA) -1} graft copolymer resin M was obtained as a white powder.
これを実施例1と同様に配合してロール/プレス加工し、耐衝撃性、溶融流動特性及び透明性を評価した。結果を表1に示す。 This was blended in the same manner as in Example 1 and rolled / pressed to evaluate impact resistance, melt flow characteristics and transparency. The results are shown in Table 1.
Izod衝撃強さ及び高化式B法フロー値がいずれも低く、好ましくない。 Both the Izod impact strength and the Koka type B method flow value are low, which is not preferable.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004271444A JP2006083332A (en) | 2004-09-17 | 2004-09-17 | Vinyl chloride copolymer resin, method for producing the same and its resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004271444A JP2006083332A (en) | 2004-09-17 | 2004-09-17 | Vinyl chloride copolymer resin, method for producing the same and its resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006083332A true JP2006083332A (en) | 2006-03-30 |
Family
ID=36162104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004271444A Pending JP2006083332A (en) | 2004-09-17 | 2004-09-17 | Vinyl chloride copolymer resin, method for producing the same and its resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006083332A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120761A (en) * | 2007-11-16 | 2009-06-04 | Formosa Plastics Corp | Manufacturing method of functional vinyl halide polymer |
JP2020070327A (en) * | 2018-10-30 | 2020-05-07 | 積水化学工業株式会社 | Method for producing chlorine-containing resin, chlorine-containing resin and chlorine-containing resin molding |
-
2004
- 2004-09-17 JP JP2004271444A patent/JP2006083332A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120761A (en) * | 2007-11-16 | 2009-06-04 | Formosa Plastics Corp | Manufacturing method of functional vinyl halide polymer |
JP2020070327A (en) * | 2018-10-30 | 2020-05-07 | 積水化学工業株式会社 | Method for producing chlorine-containing resin, chlorine-containing resin and chlorine-containing resin molding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10703866B2 (en) | Multistage polymer powder composition, its method of preparation and use | |
Yang et al. | One-pot polyvinyl chloride preparation utilizing polyacrylate latex with tertiary amine groups for improved thermal stability, toughness, and reduced reactor scaling | |
JP4843228B2 (en) | Vinyl chloride resin composition and molded article thereof | |
JP2006083334A (en) | Vinyl chloride copolymer resin, method for producing the same and its resin composition | |
JP2005206815A (en) | Flexible vinyl chloride-based copolymerized resin, resin composition and manufacturing method thereof | |
JP2006083332A (en) | Vinyl chloride copolymer resin, method for producing the same and its resin composition | |
AU2017252618B2 (en) | Method for improving the melt strength of an oriented Polyvinyl Chloride composition | |
AU2017254614B2 (en) | Oriented Thermoplastic Polymer composition comprising Polyvinyl Chloride formulation and an Acrylic Copolymer as process aid | |
JP2005097419A (en) | Vinyl chloride-based copolymer resin, method for producing the same and resin composition thereof | |
JP6705671B2 (en) | Vinyl chloride resin composition and vinyl chloride resin molding | |
JP2008239893A (en) | Vinyl chloride copolymer resin | |
JP4376442B2 (en) | Vinyl chloride resin, method for producing the same, and molded article | |
JP2003119341A (en) | Polyvinyl chloride-based resin composition | |
WO2006112076A1 (en) | Vinyl chloride resin dope composition | |
JP2002088216A (en) | Vinyl chloride resin composition | |
JP2022065185A (en) | Copolymer, resin composition, molding, film-like molding, and method for producing copolymer | |
JP2007091800A (en) | Vinyl chloride-based copolymer resin and method for producing the same | |
JPH06226877A (en) | Pipe made of ethylene-vinyl chloride resin | |
JP2004161870A (en) | Vinyl chloride-based resin composition and power cable protection pipe | |
JP2007262353A (en) | Flexible vinyl chloride-based copolymer resin | |
JP2000302805A (en) | Manufacture of vinyl chloride resin | |
JPH07304824A (en) | Production of vinyl chloride-based resin | |
JPH0673136A (en) | Production of modified vinyl chloride polymer | |
JP2002284824A (en) | Vinyl chloride graft copolymer | |
JP2003313382A (en) | Rigid vinyl chloride resin composition |