JP2006083215A - Preparation of solid catalyst with improved flowability - Google Patents

Preparation of solid catalyst with improved flowability Download PDF

Info

Publication number
JP2006083215A
JP2006083215A JP2004266848A JP2004266848A JP2006083215A JP 2006083215 A JP2006083215 A JP 2006083215A JP 2004266848 A JP2004266848 A JP 2004266848A JP 2004266848 A JP2004266848 A JP 2004266848A JP 2006083215 A JP2006083215 A JP 2006083215A
Authority
JP
Japan
Prior art keywords
solid catalyst
catalyst
polymerization
fluidity
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004266848A
Other languages
Japanese (ja)
Inventor
Mitsuo Tomura
光雄 戸村
Kota Matsumoto
幸太 松本
Takeshi Yoshiji
健 吉次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004266848A priority Critical patent/JP2006083215A/en
Publication of JP2006083215A publication Critical patent/JP2006083215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid catalyst for the polymerization of olefins with improved flowability, and also to provide a process of polymerizing olefin using the above catalyst. <P>SOLUTION: The solid catalyst for the polymerization of olefins comprising a metallocene compound, an organoaluminium oxycompound and a carrier particulate carrier is supported by 0.01-10.0 wt.% of an aliphatic metal salt, (C<SB>m</SB>H<SB>2m+1</SB>COO)<SB>n</SB>M, where M is a metal element selected from any of group 1 to group 3 of the periodic table, m is an integer of 10-30 and n is an integer corresponding to the valence of M to improve the flowability of the above solid catalyst. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、オレフィン重合用触媒に対して脂肪酸金属塩を担持することを特徴とする流動性の改善された固体触媒の製造方法に関する。   The present invention relates to a method for producing a solid catalyst having improved fluidity, wherein a fatty acid metal salt is supported on an olefin polymerization catalyst.

オレフィン重合用固体触媒は微粒子状担体に有機アルミニウムオキシ化合物およびジルコニウムなどの第4族金属のメタロセン化合物を担持し、スラリーを濾過・乾燥させることによって製造されている。   A solid catalyst for olefin polymerization is produced by supporting an organoaluminum oxy compound and a metallocene compound of a Group 4 metal such as zirconium on a particulate carrier, and filtering and drying the slurry.

ポリエチレン、ポリプロピレン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体等のポリオレフィンは、液相重合法や気相重合法等、公知の様々な方法で製造されている。これらの重合方法のうち、気相重合法では(共)重合体が粒子状で得られ液相重合法と比較して、重合溶液からの粒子析出あるいは粒子分離などの工程が不要となり、製造プロセスを簡略化することができるため、近年気相重合法によるポリオレフィンの製造が盛んに行われるようになった。   Polyolefins such as polyethylene, polypropylene, ethylene / α-olefin copolymers, and propylene / α-olefin copolymers are produced by various known methods such as liquid phase polymerization and gas phase polymerization. Among these polymerization methods, the gas phase polymerization method produces (co) polymers in the form of particles, and does not require steps such as particle precipitation or particle separation from the polymerization solution compared to the liquid phase polymerization method. In recent years, production of polyolefins by a gas phase polymerization method has been actively performed.

気相重合によるポリオレフィンの製造においては、オレフィン重合用固体触媒は粉体状で直接反応器に供給される場合が多く、低温のモノマーガス、窒素などの不活性ガスをキャリアーガスとして重合器に供給されるが、該固体触媒は流動性が低いことが多く凝集しやすいため、触媒の不安定供給や触媒搬送ラインの詰まりが発生し、安定的な重合器への供給が困難となることがあった。   In the production of polyolefin by gas phase polymerization, the solid catalyst for olefin polymerization is often supplied directly to the reactor in the form of powder, and an inert gas such as low-temperature monomer gas or nitrogen is supplied to the polymerization reactor as a carrier gas. However, since the solid catalyst often has low fluidity and tends to agglomerate, unstable supply of the catalyst and clogging of the catalyst transport line may occur, and it may be difficult to stably supply the polymerizer. It was.

触媒の流動性改善には、特許文献1、特許文献2で示されている例がある。しかし、この方法では、触媒の流動性は改善されるが、使われる界面活性剤が常温で液状である為、流動性の改善は不十分である。また特許文献3で示される流動性改善方法の例があるが、この技術は触媒に対する添加ポリマー粒子の粒径比を利用するものであるが、本発明では担持する脂肪酸金属塩の滑剤効果を利用するものであり、基本的技術が異なる。特許文献4で開示されている技術では、対象としている触媒はチーグラー型固体触媒であり、担持するものも無機酸化物、炭酸塩、硫酸塩などの無機物であり、本発明の対象はメタロセン型固体触媒と有機金属化合物の添加物を用いる技術である。脂肪酸を使って固体化合物の流動性を確保する例として特許文献5が挙げられるが、当該例では固体化合物は無機化合物の炭酸水素ナトリウムを対象としており、本発明では固体化合物が触媒であり、オレフィンを重合する作用を有しているので異なる技術である。   Examples of improving the fluidity of the catalyst include those shown in Patent Document 1 and Patent Document 2. However, in this method, although the fluidity of the catalyst is improved, since the surfactant used is in a liquid state at room temperature, the improvement of the fluidity is insufficient. Although there is an example of the fluidity improving method shown in Patent Document 3, this technique uses the particle size ratio of the added polymer particles to the catalyst, but in the present invention, the lubricant effect of the supported fatty acid metal salt is used. The basic technology is different. In the technique disclosed in Patent Document 4, the target catalyst is a Ziegler type solid catalyst, and the supported catalyst is also an inorganic substance such as an inorganic oxide, carbonate, sulfate, etc. The object of the present invention is a metallocene type solid catalyst. This is a technique using an additive of a catalyst and an organometallic compound. Patent Document 5 can be cited as an example of securing the fluidity of a solid compound using a fatty acid. In this example, the solid compound is an inorganic compound, sodium hydrogen carbonate. In the present invention, the solid compound is a catalyst, and an olefin. This is a different technique because it has the effect of polymerizing the.

本願発明者らは、オレフィン重合用固体触媒の流動性を改善する為に鋭意検討した結果、脂肪酸金属塩を該固体触媒に担持することにより流動性を大幅に改善し、重合活性および重合器におけるファウリング等の影響がなく、該固体触媒を安定供給ができることを見出し、本発明を完成するに至った。
特開2000−297114号公報 特開2000−327707号公報 特開平10−060037号公報 特開平06−199927号公報 特開平05−058622号公報
As a result of intensive studies to improve the fluidity of the solid catalyst for olefin polymerization, the inventors of the present application have greatly improved the fluidity by supporting the fatty acid metal salt on the solid catalyst, and the polymerization activity and The present inventors have found that the solid catalyst can be stably supplied without being affected by fouling and the present invention has been completed.
JP 2000-297114 A JP 2000-327707 A Japanese Patent Laid-Open No. 10-060037 Japanese Patent Laid-Open No. 06-199927 JP 05-058622 A

本発明は上記のような従来技術に鑑みてなされたものであって、流動性に優れたオレフィン重合用固体触媒およびこのような固体触媒を用いたオレフィンの重合方法を提供することを目的としている。 The present invention has been made in view of the above-described conventional technology, and an object thereof is to provide a solid catalyst for olefin polymerization excellent in fluidity and an olefin polymerization method using such a solid catalyst. .

(1)オレフィン重合用固体触媒に対して0.01〜10.0重量%の脂肪酸金属塩を担持することを特徴とする流動性の改善された固体触媒の製造方法。
(2)オレフィン重合用固体触媒が、メタロセン化合物、有機アルミニウムオキシ化合物および、微粒子状担体からなることを特徴とする(1)に記載の固体触媒の製造方法。
(3)脂肪酸金属塩が下記一般式(I)で表されることを特徴とする(1)または(2)に記載の固体触媒の製造方法。

(C2m+1COO)M …(I)
(式中、Mは周期律表第1〜3族の金属原子。mは10〜30の整数。nはMの価数に応じて決められる1〜3の整数)
(1) A method for producing a solid catalyst having improved fluidity, wherein 0.01 to 10.0% by weight of a fatty acid metal salt is supported on a solid catalyst for olefin polymerization.
(2) The method for producing a solid catalyst according to (1), wherein the solid catalyst for olefin polymerization comprises a metallocene compound, an organoaluminum oxy compound, and a particulate carrier.
(3) The method for producing a solid catalyst according to (1) or (2), wherein the fatty acid metal salt is represented by the following general formula (I).

(C m H 2m + 1 COO) n M (I)
(In the formula, M is a metal atom of Groups 1 to 3 in the periodic table. M is an integer of 10 to 30. n is an integer of 1 to 3 determined according to the valence of M)

本発明によれば、オレフィン重合用固体触媒に脂肪酸金属塩を担持することで触媒の流動性を大幅に改善し、触媒搬送ラインにおける詰まりを防止することできて長期的に安定した運転が可能となる。また、脂肪族金属塩の担持方法に自由度が高く、簡便で経済的な方法で担持することができる。
According to the present invention, by supporting a fatty acid metal salt on a solid catalyst for olefin polymerization, the fluidity of the catalyst can be greatly improved, and clogging in the catalyst transport line can be prevented, enabling stable operation over a long period of time. Become. In addition, the method for supporting the aliphatic metal salt has a high degree of freedom and can be supported by a simple and economical method.

本発明に係るオレフィン重合用固体触媒は、メタロセン化合物と有機アルミニウムオキシ化合物と微粒子状担体とからなる触媒成分である。固体触媒の合成方法は特許文献1(特開2000−297114号公報)、特許文献2(特開2000−327707号公報)で示されているものに本発明を適用するのが好ましい。
本発明に係るオレフィン重合用固体触媒は、流動性に優れ、触媒の安定供給や触媒搬送ラインの詰まりを防止することができ、固体触媒を長期的に安定して重合器に供給することができる。本発明に係るオレフィンの重合方法は、前記のような固体触媒の存在下に、オレフィンを重合させることを特徴としている。
The solid catalyst for olefin polymerization according to the present invention is a catalyst component comprising a metallocene compound, an organoaluminum oxy compound, and a particulate carrier. As the method for synthesizing the solid catalyst, the present invention is preferably applied to those disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2000-297114) and Patent Document 2 (Japanese Patent Laid-Open No. 2000-327707).
The solid catalyst for olefin polymerization according to the present invention is excellent in fluidity, can prevent stable supply of the catalyst and clogging of the catalyst transport line, and can stably supply the solid catalyst to the polymerization apparatus for a long period of time. . The olefin polymerization method according to the present invention is characterized in that an olefin is polymerized in the presence of the solid catalyst as described above.

本発明に係わる脂肪酸金属塩は下記一般式(I)で表されることを特徴としている。

(C2m+1COO)M …(I)
(式中、Mは周期律表第1〜3族の金属原子。mは10〜30の整数。nはMの価数に応じて決められる1〜3の整数)

mは好ましくは12〜22であり、Mは好ましくはナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、アルミニウムであり、より好ましくはカルシウム、マグネシウム、亜鉛である。脂肪酸金属塩の具体例としてはステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸カリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、パルミチン酸ナトリウム、パルミチン酸アルミニウム、パルミチン酸カリウム、パルミチン酸カルシウム、パルミチン酸亜鉛、ラウリン酸ナトリウム、ラウリン酸マグネシウム、ラウリン酸アルミニウム、ラウリン酸カリウム、ラウリン酸亜鉛、ミリスチン酸ナトリウム、ミリスチン酸マグネシウム、ミリスチン酸アルミニウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、ミリスチン酸亜鉛などが挙げられる。
The fatty acid metal salt according to the present invention is represented by the following general formula (I).

(C m H 2m + 1 COO) n M (I)
(In the formula, M is a metal atom of Groups 1 to 3 in the periodic table. M is an integer of 10 to 30. n is an integer of 1 to 3 determined according to the valence of M)

m is preferably 12 to 22, and M is preferably sodium, potassium, magnesium, calcium, zinc or aluminum, and more preferably calcium, magnesium or zinc. Specific examples of fatty acid metal salts include sodium stearate, magnesium stearate, aluminum stearate, potassium stearate, calcium stearate, zinc stearate, sodium palmitate, aluminum palmitate, potassium palmitate, calcium palmitate, zinc palmitate Sodium laurate, magnesium laurate, aluminum laurate, potassium laurate, zinc laurate, sodium myristate, magnesium myristate, aluminum myristate, potassium myristate, calcium myristate, zinc myristate and the like.

オレフィン重合用固体触媒に脂肪酸金属塩を担持する方法として2通り挙げられる。方法1は、例えば炭化水素溶媒の懸濁液として得られる固体触媒に脂肪酸金属塩を懸濁させ攪拌しながら脂肪酸金属塩を固体触媒に担持させる。本発明では、溶媒を除去し、得られた固体触媒を攪拌しながら窒素等の不活性ガス雰囲気中、0〜100℃、好ましくは20〜60℃の温度で、1〜50時間、好ましくは1〜20時間で乾燥を行うことが望ましい。乾燥した固体触媒には0.01〜10重量%、好ましくは0.1〜5.0重量%の脂肪酸金属塩が担持されている。   There are two methods for supporting a fatty acid metal salt on a solid catalyst for olefin polymerization. In Method 1, for example, a fatty acid metal salt is suspended in a solid catalyst obtained as a suspension of a hydrocarbon solvent, and the fatty acid metal salt is supported on the solid catalyst while stirring. In the present invention, the solvent is removed, and the resulting solid catalyst is stirred, in an inert gas atmosphere such as nitrogen, at a temperature of 0 to 100 ° C., preferably 20 to 60 ° C., for 1 to 50 hours, preferably 1 It is desirable to perform the drying in -20 hours. The dried solid catalyst carries 0.01 to 10% by weight, preferably 0.1 to 5.0% by weight, of a fatty acid metal salt.

方法2は、例えば懸濁液の固体触媒を前期の条件で乾燥し、乾燥した固体触媒を攪拌しながら脂肪酸金属塩を塗す方法が挙げられる。方法1と同様に得られた固体触媒には0.01〜10重量%、好ましくは0.1〜5.0重量%の脂肪酸金属塩が担持されている。   Method 2 includes, for example, a method in which a solid catalyst in a suspension is dried under the previous conditions, and a fatty acid metal salt is applied while stirring the dried solid catalyst. The solid catalyst obtained in the same manner as in Method 1 carries 0.01 to 10% by weight, preferably 0.1 to 5.0% by weight of a fatty acid metal salt.

この様に、懸濁液状(方法1)または乾燥粉体状(方法2)の触媒に脂肪酸金属塩を触媒の重合性能を損なわず容易に混合させることができる。   As described above, the fatty acid metal salt can be easily mixed with the catalyst in the suspension form (Method 1) or the dry powder form (Method 2) without impairing the polymerization performance of the catalyst.

本発明のオレフィン重合用固体触媒は、流動性に優れているので取扱いが容易であり、重合器への触媒の安定供給や触媒搬送ラインの詰まりを防止することができ、固体触媒を長期的に安定して重合器に供給することができる。
本発明に係るオレフィン重合用固体触媒を用いたオレフィンの重合は、スラリー重合または気相重合により行われる。スラリー重合において用いられる不活性炭化水素媒体としては、前記固体触媒成分を調製する際に用いられる不活性炭化水素溶媒と同様のものが挙げられる。これらの不活性炭化水素溶媒のうちで脂肪族炭化水素、脂環族炭化水素が好ましい。重合の際には、さらに微粒子状担体に担持されていない有機アルミニウムオキシ化合物および/または有機アルミニウム化合物を用いることができる。
The solid catalyst for olefin polymerization of the present invention is easy to handle because it is excellent in fluidity, can prevent the stable supply of the catalyst to the polymerization vessel and clogging of the catalyst transport line, and can be used for a long time. It can be stably supplied to the polymerization vessel.
Olefin polymerization using the solid catalyst for olefin polymerization according to the present invention is performed by slurry polymerization or gas phase polymerization. Examples of the inert hydrocarbon medium used in the slurry polymerization are the same as the inert hydrocarbon solvent used in preparing the solid catalyst component. Of these inert hydrocarbon solvents, aliphatic hydrocarbons and alicyclic hydrocarbons are preferred. In the polymerization, an organoaluminum oxy compound and / or an organoaluminum compound not supported on a particulate carrier can be used.

オレフィンの重合温度は、スラリー重合を実施する際には、通常−50〜100℃、好ましくは0〜90℃の範囲であることが望ましい。気相重合を実施する際には、重合温度は通常0〜120℃、好ましくは20〜100℃の範囲であることが望ましい。また、重合圧力は、通常、常圧〜100kg/cm2、好ましくは常圧〜50kg/cm2の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。 The polymerization temperature of the olefin is usually in the range of −50 to 100 ° C., preferably 0 to 90 ° C. when slurry polymerization is performed. When carrying out the gas phase polymerization, the polymerization temperature is usually in the range of 0 to 120 ° C, preferably 20 to 100 ° C. The polymerization pressure is usually from normal pressure to 100 kg / cm 2 , preferably from normal pressure to 50 kg / cm 2 , and the polymerization reaction can be performed in any of batch, semi-continuous and continuous methods. It can be carried out.

本発明に係るオレフィン重合用固体触媒により重合することができるオレフィンとしては、炭素数が2〜20のα-オレフィン、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン;炭素数が3〜20の環状オレフィン、例えばシクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、2-メチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレンなどを挙げることができる。さらにスチレン、ビニルシクロヘキサン、ジエンなどを用いることもできる。これらの中では、エチレンを主モノマーとするエチレン系重合体が好ましい。エチレン系重合体としてはエチレン成分が50モル%以上であり、必要に応じて、炭素数3ないし10のα−オレフィンとの共重合体がある。   Examples of the olefin that can be polymerized by the solid catalyst for olefin polymerization according to the present invention include α-olefins having 2 to 20 carbon atoms, such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl. 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene; cyclic olefins having 3 to 20 carbon atoms such as cyclopentene, cycloheptene, norbornene, Examples include 5-methyl-2-norbornene, tetracyclododecene, 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene Can do. Furthermore, styrene, vinylcyclohexane, diene, etc. can also be used. In these, the ethylene-type polymer which uses ethylene as the main monomer is preferable. As the ethylene-based polymer, an ethylene component is 50 mol% or more, and there is a copolymer with an α-olefin having 3 to 10 carbon atoms as necessary.

気相及び液相重合を実施する際には、オレフィンの重合温度は、通常0〜120℃、好ましくは20〜100℃の範囲であることが望ましい。また、重合圧力は、通常、常圧〜10MPaG、好ましくは常圧〜5MPaGの条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。   When carrying out the gas phase and liquid phase polymerization, the polymerization temperature of the olefin is usually 0 to 120 ° C., preferably 20 to 100 ° C. In addition, the polymerization pressure is usually from normal pressure to 10 MPaG, preferably from normal pressure to 5 MPaG, and the polymerization reaction can be performed in any of batch, semi-continuous and continuous methods.

〔実施例〕
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
〔Example〕
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

触媒の流動性は、注入法安息角(単位:°)、圧縮度(単位:%)、嵩密度(単位:g/mL)の測定値により評価した。一般に、安息角および圧縮度は値が小さい程、嵩密度は値が大きい程流動性が良い。   The fluidity of the catalyst was evaluated by the measured values of injection angle of repose (unit: °), compressibility (unit:%), and bulk density (unit: g / mL). In general, the smaller the value of the angle of repose and the degree of compression, the better the fluidity the greater the value of the bulk density.

脂肪族金属塩としてステアリン酸カルシウムを用い、触媒の流動性改善テストを行った。触媒としてシリカ担体担持型メタロセン触媒〔メタロセン触媒は、ビス(1,3-n-ブチルメチルシクロペンタジエニル)ジルコニウムジクロリド〕にエチレンおよびヘキセンー1を3g前重合し、ラウリルジエタノールアミド(商品名:ケミスタット2500、三洋化成製)を4.0重量%担持した触媒を使用した。500mLのガラス容器にて触媒100gおよびステアリン酸カルシウム0.3gをよく混合し、ステアリン酸カルシウム0.3重量%担持触媒とした。   Using calcium stearate as the aliphatic metal salt, a catalyst fluidity improvement test was conducted. Silica support-supported metallocene catalyst (metallocene catalyst is bis (1,3-n-butylmethylcyclopentadienyl) zirconium dichloride) prepolymerized with 3 g of ethylene and hexene-1 as a catalyst, and lauryl diethanolamide (trade name: Chemistat) 2500, manufactured by Sanyo Chemical Co., Ltd.) was used. In a 500 mL glass container, 100 g of catalyst and 0.3 g of calcium stearate were mixed well to obtain a supported catalyst with 0.3 wt% calcium stearate.

流動性の測定にはパウダーテスター(装置名:マルチテスター MT-100セイシン企業製)を使用した。安息角の測定は、80φの円テーブルの上に一定高さから漏斗を通し触媒を注入し、角度が安定したらテーブルを回転させて3箇所の角度を読み取り、その相加平均を安息角とした。圧縮度の測定は、直径50mm、容積100ccの容器に710μmのふるいを通して触媒を疎充填し、擦り切り板で擦り切った後重量を測り、ゆるめ嵩密度(ρa)を求めた。次に同径のわくをはめて触媒をさらに疎充填して蓋をし、これを落下高さ18mmにてタッピングを180回行った。蓋とわくを外した後、擦り切り板で擦り切って重量を測り、固め嵩密度(ρp)を求めた。圧縮度はゆるめ嵩密度(ρa)と固め嵩密度(ρp)を用いて、式(II)より求められる。

圧縮度(%)=(ρp−ρa)/ρp×100 …(II)
測定結果は、安息角40°、圧縮度14%、嵩密度0.50g/mLであり、流動性は大幅に改善された。
A powder tester (device name: Multi Tester MT-100 manufactured by Seishin Co., Ltd.) was used for measurement of fluidity. The angle of repose was measured by pouring a catalyst through a funnel on a circular table of 80φ from a certain height, and when the angle was stable, the table was rotated to read three angles, and the arithmetic average was taken as the angle of repose. . The degree of compression was measured by loosely filling the catalyst into a container with a diameter of 50 mm and a volume of 100 cc through a 710 μm sieve, scrubbing with a scraping plate, and measuring the weight to obtain the loose bulk density (ρ a ). Next, the catalyst was loosely filled with the same-diameter frame and covered, and tapped 180 times at a drop height of 18 mm. After removing the lid and the frame, they were scraped off with a scraping plate and weighed to determine the firm bulk density (ρ p ). The degree of compression is obtained from the formula (II) using the loose bulk density (ρ a ) and the hard bulk density (ρ p ).

Compressibility (%) = (ρ p −ρ a ) / ρ p × 100 (II)
The measurement results were an angle of repose of 40 °, a compressibility of 14%, a bulk density of 0.50 g / mL, and the fluidity was greatly improved.

実施例1と同様の方法で、ステアリン酸亜鉛0.5重量%担持触媒を調製した。流動性の評価は、安息角38°、圧縮度16%、嵩密度0.48g/mLであり、流動性は大幅に改善された。   In the same manner as in Example 1, a 0.5 wt% supported zinc stearate catalyst was prepared. The evaluation of fluidity was an angle of repose of 38 °, a compression degree of 16%, a bulk density of 0.48 g / mL, and the fluidity was greatly improved.

〔比較例1〕
実施例1にて、ステアリン酸カルシウムを担持しなかった触媒の流動性の評価は、安息角46°、圧縮度25%、嵩密度0.43g/mLであり、流動性はかなり悪い。
[Comparative Example 1]
In Example 1, the evaluation of the fluidity of a catalyst that did not support calcium stearate was an angle of repose of 46 °, a compressibility of 25%, and a bulk density of 0.43 g / mL.

〔比較例2〕
実施例1と同様の方法で、ポリプロピレンパウダー5.0重量%担持触媒を調製した。流動性の評価は、安息角41°、圧縮度22%、嵩密度0.43g/mLであり、流動性の改善は見られなかった。
[Comparative Example 2]
In the same manner as in Example 1, a supported catalyst of 5.0% by weight of polypropylene powder was prepared. The evaluation of fluidity was an angle of repose of 41 °, a compressibility of 22%, and a bulk density of 0.43 g / mL, and no improvement in fluidity was observed.

実施例1と同様の方法で、ステアリン酸カルシウムを0.3重量%担持した触媒の気相重合器へのフィードテストを行った。触媒搬送ラインの詰まりの程度は、搬送ラインと気相重合器の差圧を見て判断した。差圧が上昇した場合は、搬送ラインが詰まり傾向であることを意味する。約40時間連続で触媒をフィードしたが、搬送ラインの差圧は上昇せず、即ち触媒搬送ラインの詰まりは全く見られず、安定的に運転できた。
In the same manner as in Example 1, a feed test of a catalyst carrying 0.3% by weight of calcium stearate to a gas phase polymerizer was performed. The degree of clogging of the catalyst transfer line was judged by looking at the differential pressure between the transfer line and the gas phase polymerization apparatus. When the differential pressure rises, it means that the conveyance line tends to be clogged. Although the catalyst was fed continuously for about 40 hours, the differential pressure in the transfer line did not increase, that is, the catalyst transfer line was not clogged at all, and the operation was stable.

Claims (3)

オレフィン重合用固体触媒に対して0.01〜10.0重量%の脂肪酸金属塩を担持することを特徴とする流動性の改善された固体触媒の製造方法。 A method for producing a solid catalyst having improved fluidity, characterized in that 0.01 to 10.0% by weight of a fatty acid metal salt is supported on a solid catalyst for olefin polymerization. オレフィン重合用固体触媒が、メタロセン化合物、有機アルミニウムオキシ化合物および、微粒子状担体からなることを特徴とする請求項1に記載の固体触媒の製造方法。 The method for producing a solid catalyst according to claim 1, wherein the solid catalyst for olefin polymerization comprises a metallocene compound, an organoaluminum oxy compound, and a particulate carrier. 脂肪酸金属塩が下記一般式(I)で表されることを特徴とする請求項1または2に記載の固体触媒の製造方法。
(C2m+1COO)M …(I)
(式中、Mは周期律表第1〜3族の金属原子。mは10〜30の整数。nはMの価数に応じて決められる1〜3の整数)

The method for producing a solid catalyst according to claim 1 or 2, wherein the fatty acid metal salt is represented by the following general formula (I).
(C m H 2m + 1 COO) n M (I)
(In the formula, M is a metal atom of Groups 1 to 3 in the periodic table. M is an integer of 10 to 30. n is an integer of 1 to 3 determined according to the valence of M)

JP2004266848A 2004-09-14 2004-09-14 Preparation of solid catalyst with improved flowability Pending JP2006083215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266848A JP2006083215A (en) 2004-09-14 2004-09-14 Preparation of solid catalyst with improved flowability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266848A JP2006083215A (en) 2004-09-14 2004-09-14 Preparation of solid catalyst with improved flowability

Publications (1)

Publication Number Publication Date
JP2006083215A true JP2006083215A (en) 2006-03-30

Family

ID=36161990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266848A Pending JP2006083215A (en) 2004-09-14 2004-09-14 Preparation of solid catalyst with improved flowability

Country Status (1)

Country Link
JP (1) JP2006083215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504641A (en) * 2008-10-03 2012-02-23 ユニベーション・テクノロジーズ・エルエルシー Catalyst composition and method for producing and using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504641A (en) * 2008-10-03 2012-02-23 ユニベーション・テクノロジーズ・エルエルシー Catalyst composition and method for producing and using the same

Similar Documents

Publication Publication Date Title
US5006499A (en) Ziegler-natta catalyst and a process for its preparation
FI75846C (en) Process for polymerization and copolymerization of alpha olefins in one fluidized bed
FR2532649A1 (en) COPOLYMERIZATION OF ETHYLENE AND HEXENE-1 IN FLUIDIZED BED
JP2012514126A (en) Enhanced procatalyst composition and process
EP1778746A1 (en) Robust spray-dried ziegler-natta procatalyst and polymerization process employing same
WO2006020623A1 (en) Robust spray-dried ziegler-natta procatalyst and polymerization process employing same
JPS59230006A (en) Ethylene polymerization using carried vanadium catalyst
EP0120501B1 (en) Ethylene polymerization using supported vanadium catalyst
CZ162893A3 (en) Process for preparing ethylene polymers with reduced content of extractable fraction in hexane
EP1110974A2 (en) Method for preparing a supported activator component
EP0243127B1 (en) Amorphous high molecular weight copolymers of ethylene and alpha-olefins
JP2004527633A (en) Method for producing olefin polymer and selected catalyst
CN102333798A (en) Multistage process for the polymerization of ethylene
JP3223301B2 (en) Supported Ziegler-Natta catalyst
BR112019011717B1 (en) CATALYST COMPONENT FOR THE POLYMERIZATION OF OLEFINS, CATALYST OBTAINED THEREOF AND PROCESS FOR THE (CO)POLYMERIZATION OF OLEFINS
AU619138B2 (en) Preparation of very low molecular weight polyethylene in a fluidized bed
EA011040B1 (en) Method for preparing a catalyst and process for polymerising ethylene and copolymerising ethylene with alpha-olefins
KR20160091952A (en) Procatalyst particles and polymerization process for impact copolymers
EA019145B1 (en) Activating supports based on perfluorinated boronic acids
JPH0232287B2 (en)
JPH0625223B2 (en) Polymerization method of ethylene
JP2006083215A (en) Preparation of solid catalyst with improved flowability
KR930010560B1 (en) Process for the preparation of ethylen-butene-1 copolymers having an ultralow density
JPH0721005B2 (en) Catalyst composition for (co) polymerization of ethylene
JP2563235B2 (en) Polyhedral magnesium chloride particles, method for producing the same, and catalyst component supported on the particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A02