JP2006083117A - Method for crystallizing vanillin - Google Patents

Method for crystallizing vanillin Download PDF

Info

Publication number
JP2006083117A
JP2006083117A JP2004270732A JP2004270732A JP2006083117A JP 2006083117 A JP2006083117 A JP 2006083117A JP 2004270732 A JP2004270732 A JP 2004270732A JP 2004270732 A JP2004270732 A JP 2004270732A JP 2006083117 A JP2006083117 A JP 2006083117A
Authority
JP
Japan
Prior art keywords
vanillin
blade
crystals
crystallization
crystallizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004270732A
Other languages
Japanese (ja)
Inventor
Takeshi Kita
毅 北
Shinsaku Fuse
新作 布施
Morihisa Yokota
守久 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004270732A priority Critical patent/JP2006083117A/en
Publication of JP2006083117A publication Critical patent/JP2006083117A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for crystallizing vanillin under the control of the size and its distribution of the crystal of vanillin as an important fragrance or flavor for cosmetics, food and the like. <P>SOLUTION: The method for crystallizing vanillin from a vanillin-containing solution comprises using Maxblend(R) blade or Fullzone(R) blade as an agitating blade and adding seed crystal while controlling a dimensionless supersaturation degree(Sc) so as to meet the relationship:1<Sc<2.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

化粧品、食品等の重要香料であるバニリンの晶析方法に関する。   The present invention relates to a method for crystallizing vanillin, which is an important fragrance for cosmetics, foods and the like.

医薬品、工業薬品の製造においては、溶液状態での精製では充分な精製効果が得られないことから、最終製品の品質を確保するために晶析が行われる。この晶析において、最終製品の結晶の粒径、粒度分布を所望の値に制御する技術は重要である。
バニリンは、種晶を添加せずに自己核発生で晶析させた場合、高い過飽和度の溶液から急激に結晶が析出し、その際、スラリーが時として粥状或いはホイップクリーム状となるため、一定の粒径、粒度分布の結晶を得ることは困難であり、その晶析方法において、結晶の粒径、粒度分布を制御する方法については何ら知られていなかった。
In the production of pharmaceuticals and industrial chemicals, crystallization is performed to ensure the quality of the final product because sufficient purification effects cannot be obtained by purification in a solution state. In this crystallization, a technique for controlling the grain size and particle size distribution of the final product to a desired value is important.
When vanillin is crystallized by self-nucleation without adding seed crystals, crystals suddenly precipitate from a solution with a high degree of supersaturation, and the slurry sometimes becomes a bowl or whipped cream, It is difficult to obtain crystals having a fixed particle size and particle size distribution, and no method has been known for controlling the particle size and particle size distribution of crystals in the crystallization method.

本発明が解決しようとする課題は、化粧品、食品等の重要香料であるバニリンの結晶の、粒径及び粒度分布を制御する晶析方法を提供することである。   The problem to be solved by the present invention is to provide a crystallization method for controlling the particle size and particle size distribution of vanillin crystals, which are important fragrances for cosmetics, foods and the like.

発明者は、バニリンの晶析方法を鋭意検討した結果、種晶を用いずに晶析させる場合、マックスブレンド(登録商標)翼を使用した場合、粥状或いはホイップクリーム状にならない事を見出すと共に、種晶を用いて晶析させる場合、種晶の添加時のバニリンを含む溶液の温度、即ち無次元過飽和度(Sc)と平均粒径及びアスベクト比(粒子の長軸と短軸の比)に相関関係があることを見出し本発明に至った。
即ち、本発明は、以下の通りである。
As a result of intensive investigation of the crystallization method of vanillin, the inventor has found that when crystallization is performed without using a seed crystal, when Max Blend (registered trademark) wing is used, it does not become a candy or whipped cream. When crystallizing using seed crystals, the temperature of the solution containing vanillin at the time of seed crystal addition, that is, dimensionless supersaturation degree (Sc), average particle diameter, and aspect ratio (ratio of major axis to minor axis of particles) The present invention has been found to have a correlation.
That is, the present invention is as follows.

第1の発明は、バニリンを含有する溶液からバニリンの結晶を晶析させる方法において、攪拌翼として、マックスブレンド翼又はフルゾーン翼を使用し、無次元過飽和度(Sc)を、1<Sc<2.5に制御して種晶を添加することを特徴とするバニリンの晶析方法に関するものである。   A first invention uses a Max Blend blade or a full zone blade as a stirring blade in a method for crystallizing vanillin crystals from a solution containing vanillin, and has a dimensionless supersaturation degree (Sc) of 1 <Sc <2. It is related with the crystallization method of vanillin characterized by adding seed crystals controlled to .5.

第2の発明は、攪拌翼により、晶析槽内に上下の循環流を生起させることを特徴とする第1の発明に記載のバニリンの晶析方法に関するものである。   The second invention relates to the vanillin crystallization method according to the first invention, characterized in that upper and lower circulation flows are generated in the crystallization tank by a stirring blade.

第3の発明は、攪拌翼が、マックスブレンド翼又はフルゾーン翼である第2の発明に記載のバニリンの晶析方法に関するものである。   3rd invention is related with the crystallization method of vanillin as described in 2nd invention whose stirring blade is a Max blend blade or a full zone blade.

第4の発明は、バニリンを含有する溶液が、バニリンを含有する極性溶媒の溶液である第1ないし第3の発明に記載のバニリンの晶析方法に関するものである。   4th invention is related with the crystallization method of vanillin as described in the 1st thru | or 3rd invention whose solution containing vanillin is a solution of the polar solvent containing vanillin.

第5の発明は、極性溶媒が、炭素原子数1〜5の脂肪族アルコール、炭素原子数1〜5の脂肪族ケトン、又は水、或いはこれらの溶媒の混合物である第4の発明に記載のバニリンの晶析方法に関するものである。   According to a fifth invention, the polar solvent is an aliphatic alcohol having 1 to 5 carbon atoms, an aliphatic ketone having 1 to 5 carbon atoms, or water, or a mixture of these solvents. The present invention relates to a crystallization method of vanillin.

本発明の晶析方法を用いることにより、化粧品、食品等の重要香料であるバニリンの結晶の、粒径及び粒度分布を制御することができる。
また、本発明の晶析方法により、ろ過性が向上し、製造に要する時間を短縮することができるのみならず、フィルターケーキ(ろ過取得物)への母液の含液率を低減できるため乾燥工程の負荷が小さくなる。
By using the crystallization method of the present invention, the particle size and particle size distribution of vanillin crystals, which are important fragrances for cosmetics, foods and the like, can be controlled.
In addition, the crystallization method of the present invention not only improves filterability and shortens the time required for production, but also reduces the liquid content of the mother liquor to the filter cake (filtered material), so that the drying step The load of becomes smaller.

以下、本発明のバニリンの晶析方法の好ましい実施態様について説明する。
晶析に供されるバニリンを含有する溶液としては、例えば、カテコールをメチル化してグアヤコールを得、ついでこれとグリオキシル酸とをアルカリ性で反応させて生ずる4−ヒドロキシ−3−メトキシマンデル酸を酸化脱炭酸する一般的なバニリンの製造方法で得られた未精製のバニリンを極性溶媒に溶解して得られる溶液が用いられる。
また、前述の粥状又はホイップクリーム状のバニリン、或いは粒子径が不揃いであるバニリンの結晶を、粒子径が大きく分布の揃った結晶に調整する目的で、前記極性溶媒に溶解して用いることもできる。
The preferred embodiments of the vanillin crystallization method of the present invention will be described below.
As a solution containing vanillin used for crystallization, for example, catechol is methylated to obtain guaiacol, and then this is reacted with glyoxylic acid in an alkaline manner to produce 4-hydroxy-3-methoxymandelic acid by oxidative deoxidation. A solution obtained by dissolving unpurified vanillin obtained by a general method for producing vanillin to be carbonated in a polar solvent is used.
In addition, the above-mentioned candy-like or whipped cream-like vanillin or vanillin crystals with irregular particle sizes may be dissolved in the polar solvent for the purpose of adjusting to crystals with large particle sizes and uniform distribution. it can.

ここで用いられる極性溶媒としては、メタノール、エタノール、プロパノール、ブタノール又はペンタノールなどの炭素原子数1〜5の脂肪族アルコール(これら化合物は、その異性体も含む。)、アセトン、メチルエチルケトン、ジエチルケトンなどの炭素原子数1〜5の脂肪族ケトン(これら化合物は、その異性体も含む。)、又は水、或いはこれらの溶媒の混合物が挙げられるが、好ましくは水と脂肪族アルコールの混合物であり、更に好ましくは、水とメタノールの混合物である。
水とメタノールの混合物を使用する場合、その混合比、水:メタノール(重量比)が70:30〜95:5が好ましい。
Examples of the polar solvent used here include aliphatic alcohols having 1 to 5 carbon atoms such as methanol, ethanol, propanol, butanol or pentanol (these compounds also include isomers thereof), acetone, methyl ethyl ketone, and diethyl ketone. Examples thereof include aliphatic ketones having 1 to 5 carbon atoms (these compounds also include isomers thereof), water, or a mixture of these solvents, preferably a mixture of water and an aliphatic alcohol. More preferably, it is a mixture of water and methanol.
When a mixture of water and methanol is used, the mixing ratio, water: methanol (weight ratio) is preferably 70:30 to 95: 5.

攪拌は、攪拌翼を回転させる事によって行われる。攪拌翼の形状は、翼先端での箭断力が小さく、晶析槽内に上下の循環流を形成させるものが好ましく、種晶を用いずに晶析させる場合は、マックスブレンド翼(住友重機械工業社登録商標)が好ましい。
また、種晶を用いて晶析させる場合は、晶析槽の底部から側壁に沿って母液の上昇流を形成させるタイプの攪拌翼であれば良く、例えば、ファウドラー翼、マックスブレンド翼、フルゾーン翼(神鋼環境ソリューション社登録商標)などが好ましい。この内、マックスブレンド翼又はフルゾーン翼が特に好ましい。
タービン翼、フラットパドル翼、傾斜パドル翼などの翼先端での箭断力の大きいタイプの攪拌翼は、同翼の攪拌により結晶が破壊されて粒子径が小さくなり、粒度分布が広くなるため好ましくない。
Stirring is performed by rotating a stirring blade. The shape of the agitating blade is preferably such that the cutting force at the tip of the blade is small, and the upper and lower circulation flows are formed in the crystallization tank. When crystallization is performed without using a seed crystal, the Max Blend blade (Sumitomo Shigeki) Machine Industry registered trademark) is preferred.
In addition, when crystallization is performed using seed crystals, any type of stirring blade that forms an upward flow of the mother liquor along the side wall from the bottom of the crystallization tank may be used. For example, a Faudler blade, a Max blend blade, a full zone blade (Registered trademark of Shinko Environmental Solution Co., Ltd.) is preferable. Among these, a Max blend blade or a full zone blade is particularly preferable.
Stirring blades with large cutting force at the blade tips such as turbine blades, flat paddle blades, inclined paddle blades, etc. are preferred because the crystals are broken by the stirring of the blades and the particle size becomes smaller and the particle size distribution becomes wider. Absent.

攪拌所要動力比(Pv)は、70〜350W/mが好ましい。攪拌所要動力比(Pv)がこの範囲より小さいと生成した結晶が溶液中で完全に浮遊できず、晶析槽の底部に沈降して動かない結晶となり、やがて硬く固着してスケーリングを引き起こして、結晶の取り出し操作の障害となるのみならず、生成する結晶の粒度分布を乱す。逆に、この範囲より大きいと、攪拌翼との衝突により、生成した結晶の破壊が激しくなる。 The stirring power requirement ratio (Pv) is preferably 70 to 350 W / m 3 . If the required power ratio (Pv) for stirring is smaller than this range, the generated crystals cannot be completely suspended in the solution, become crystals that settle to the bottom of the crystallization tank and do not move. Not only does this hinder the operation of taking out the crystals, but also disturbs the particle size distribution of the crystals produced. On the contrary, if it is larger than this range, the generated crystals are severely broken due to collision with the stirring blade.

ここで攪拌所要動力比(Pv)とは、バニリンを含有する溶液単位体積当りの攪拌に必要な動力であり、下記の通り定義される。   Here, the power requirement for stirring (Pv) is the power required for stirring per unit volume of the solution containing vanillin and is defined as follows.

Figure 2006083117
Figure 2006083117

バニリンを含有する溶液の過飽和状態は、溶液を攪拌しつつ冷却することによって得られる。ここで、結晶析出時の無次元過飽和度(Sc)は、1<Sc<2.5が好ましい。2.5以上の場合、晶析が急激に起こり、粒子径の微細化や粒度分布の幅広化を引き起こし、1以下の場合、母液にバニリンが溶存し、バニリンが充分に晶析しない。
なお、無次元過飽和度(Sc)は、下記の通り定義される。
The supersaturated state of the solution containing vanillin is obtained by cooling the solution while stirring. Here, the dimensionless supersaturation degree (Sc) at the time of crystal precipitation is preferably 1 <Sc <2.5. When the ratio is 2.5 or more, crystallization occurs rapidly, causing a refinement of the particle diameter and a broadening of the particle size distribution. When the ratio is 1 or less, vanillin is dissolved in the mother liquor and the vanillin is not sufficiently crystallized.
The dimensionless supersaturation degree (Sc) is defined as follows.

Figure 2006083117
Figure 2006083117

ここで、バニリンを含有する溶液として、前記のバニリンの反応溶液を用いる場合、バニリンの溶存量は、例えば、高速液体クロマトグラフィー又はガスクロマトグラフィーなどにより定量される。   Here, when the above-mentioned vanillin reaction solution is used as a solution containing vanillin, the amount of vanillin dissolved is quantified by, for example, high performance liquid chromatography or gas chromatography.

種晶を使用する場合、その添加は、無次元過飽和度(Sc)を2.5未満に制御して行われる。
種晶は、バニリンの結晶或いは同結晶を乳鉢等で粉砕したものが使用される。種晶の粒子が微粒すぎると種晶粒子どうしが凝集しやすいため、バニリン溶液中に投入しても分散しにくい。大きすぎると種晶粒子が粒成長して更に大きくなるため、製品結晶の中に粗大な粒子が混在することになり好ましくない。そのため、種晶は乾式篩い分け等によって分画して用いることが好ましい。好ましい種晶の粒子径の範囲は45〜90μmである。
種晶の添加量は、バニリンを含有する溶液中のバニリンの溶存量に対して、0.5〜5重量%が好ましい。少なすぎると種晶を投入しても結晶の生成が誘発されないことがあり、多すぎると経済的でない。
溶液の冷却速度は任意であるが、通常毎時1〜20℃、好ましくは毎時2〜10℃の範囲で行なわれる。冷却速度が速すぎると急激に無次元過飽和度が増大するため制御が難しく、冷却速度が遅すぎると生産効率が低下する。なお、冷却は、直線的な温度勾配で行なう以外に、晶析操作の進行に従って温度勾配を変化させて行なうこともできる。
When seed crystals are used, the addition is performed with a dimensionless supersaturation (Sc) controlled to less than 2.5.
As the seed crystals, vanillin crystals or those obtained by pulverizing the crystals with a mortar or the like are used. If the seed crystal particles are too fine, the seed crystal particles tend to agglomerate so that they are difficult to disperse even if they are introduced into the vanillin solution. If it is too large, the seed crystal grains grow and become larger, which is not preferable because coarse particles are mixed in the product crystal. Therefore, the seed crystal is preferably used after being fractionated by dry sieving or the like. A preferable range of the seed crystal particle diameter is 45 to 90 μm.
The addition amount of the seed crystal is preferably 0.5 to 5% by weight with respect to the dissolved amount of vanillin in the solution containing vanillin. If the amount is too small, the formation of crystals may not be induced even if seed crystals are added, and if the amount is too large, it is not economical.
The cooling rate of the solution is arbitrary, but is usually 1 to 20 ° C./hour, preferably 2 to 10 ° C./hour. If the cooling rate is too fast, control is difficult because the dimensionless supersaturation increases rapidly, and if the cooling rate is too slow, the production efficiency decreases. In addition to cooling with a linear temperature gradient, cooling can also be performed by changing the temperature gradient as the crystallization operation proceeds.

上記晶析方法によって得られるバニリンの結晶は、ろ過によって単離される。
得られたバニリンの結晶のろ過速度は、以下の方法で測定した。
[ろ過速度の測定法]
晶析して得られる、バニリン結晶を含んだスラリー3150gを、直径12cmの濾紙(東洋濾紙会社製5A濾紙)を用いて差圧0.2気圧で減圧濾過し、濾過に要する時間を測定した。
The vanillin crystals obtained by the crystallization method are isolated by filtration.
The filtration rate of the obtained vanillin crystals was measured by the following method.
[Measurement method of filtration rate]
3150 g of the slurry containing vanillin crystals obtained by crystallization was filtered under reduced pressure at a differential pressure of 0.2 atm using a 12 cm diameter filter paper (5A filter paper manufactured by Toyo Roshi Kaisha Co., Ltd.), and the time required for filtration was measured.

[ケーキ含液量]
得られたフィルターケーキ(ろ過取得物)の重量を測定して、フィルターケーキに含まれるバニリン溶液の含有率をケーキ含液率として算出した。
[Cake liquid content]
The weight of the obtained filter cake (filtered material) was measured, and the content of the vanillin solution contained in the filter cake was calculated as the cake liquid content.

[粒度分布]
得られたバニリンの結晶の粒度分布は、光学顕微鏡を用いて、1つの試料あたり約50個の結晶粒子について長軸径/短軸径を測定することによって求めた。
平均粒子径は、長軸径の平均値として求めた。
アスペクト比は、長軸径と短軸径の比の平均値として求めた。
粒度分布幅は、結晶粒子の長軸径(D)について、粒子径がD以下である粒子個数の百分率(%)がR(D)とし、log(D)をX軸に、log(log(100/R(D)))をy軸にプロット(ロジン−ラムラープロット)し、最小自乗法で直線回帰し、その勾配として求めた。この値は粒度分布指数と呼ばれ、その絶対値が大きいほど粒度分布が揃っていることを示す。
本発明の晶析方法によって得られた結晶の平均粒子径(d50)を測定したところ、0.4mm以上であり、また、粒度分布幅が-2.0以下と結晶粒子の大きさが揃っていることがわかった。
[Particle size distribution]
The particle size distribution of the obtained vanillin crystals was determined by measuring the major axis diameter / minor axis diameter of about 50 crystal particles per sample using an optical microscope.
The average particle diameter was determined as an average value of the major axis diameter.
The aspect ratio was determined as an average value of the ratio of the major axis diameter to the minor axis diameter.
The particle size distribution width is expressed as follows. For the major axis diameter (D) of the crystal particles, the percentage (%) of the number of particles having a particle diameter of D or less is R (D), log (D) is X 100 / R (D))) was plotted on the y-axis (Rosin-Rammler plot), linear regression was performed by the least square method, and the gradient was obtained. This value is called the particle size distribution index, and the larger the absolute value, the more uniform the particle size distribution.
When the average particle diameter (d 50 ) of the crystal obtained by the crystallization method of the present invention was measured, it was 0.4 mm or more, and the particle size distribution width was −2.0 or less, and the size of the crystal particles was uniform. I understood it.

内径160mmの晶析槽に、水90wt%メタノール10wt%の組成の溶媒3000gと市販のバニリン150gを入れ、直径90mmのマックスブレンド翼で攪拌しながら液温を60℃に上げてバニリンを完全に溶解させた。この溶液を攪拌回転速度:162rpm(Pv=170W/m)で攪拌しながら毎時5℃の速度で冷却した。
液温が40℃(Sc=1.14)に達した時に種晶1.5gを投入すると結晶が析出した。更に20℃まで冷却した。晶析した結晶をろ別して、常温にて減圧乾燥した。
以下、その結果を示す。
In a crystallization tank with an inner diameter of 160 mm, 3000 g of a solvent having a composition of 90 wt% water and 10 wt% methanol and 150 g of commercially available vanillin are added, and the liquid temperature is raised to 60 ° C. while stirring with a Max Blend blade with a diameter of 90 mm to completely dissolve vanillin. I let you. The solution was cooled at a rate of 5 ° C. per hour while stirring at a stirring rotational speed of 162 rpm (Pv = 170 W / m 3 ).
When 1.5 g of seed crystals were added when the liquid temperature reached 40 ° C. (Sc = 1.14), crystals were precipitated. Furthermore, it cooled to 20 degreeC. The crystallized crystals were filtered off and dried under reduced pressure at room temperature.
The results are shown below.

平均粒径:0.753mm
粒度分布幅:−2.239
アスペクト比:7.8
ろ過時間:11min
ケーキ含液率:43.8%
Average particle size: 0.753 mm
Particle size distribution width: -2.239
Aspect ratio: 7.8
Filtration time: 11 min
Cake liquid content: 43.8%

種晶を投入する液温を34℃(Sc=2.08)に変えた以外は実施例1と同様に晶析操作を行った。   The crystallization operation was performed in the same manner as in Example 1 except that the liquid temperature at which the seed crystals were added was changed to 34 ° C. (Sc = 2.08).

平均粒径:0.490mm
粒度分布幅:−3.1106
アスペクト比:11.0
ろ過時間:11min
ケーキ含液率:44.4%
Average particle size: 0.490 mm
Particle size distribution width: -3.1106
Aspect ratio: 11.0
Filtration time: 11 min
Cake liquid content: 44.4%

種晶の添加量を7.5gに変えた以外は実施例1と同様に晶析操作を行なった。
平均粒径:1.398mm
粒度分布幅:―2.603
ろ過時間:11min
ケーキ含液率:41.5%
The crystallization operation was performed in the same manner as in Example 1 except that the amount of seed crystals added was changed to 7.5 g.
Average particle size: 1.398mm
Particle size distribution width: -2.603
Filtration time: 11 min
Cake liquid content: 41.5%

攪拌翼を径90mmのファウドラー翼に変え、回転数400rpm(Pv=170W/m3)とし、種晶の添加量を3.0gに変えた以外は実施例1と同様に晶析操作を行なった。   The crystallization operation was performed in the same manner as in Example 1 except that the stirring blade was changed to a Faudler blade having a diameter of 90 mm, the rotation speed was 400 rpm (Pv = 170 W / m 3), and the seed crystal addition amount was changed to 3.0 g.

平均粒径:0.988mm
粒度分布幅:―2.569
ろ過時間:8min
ケーキ含液率:35.6%
Average particle size: 0.988mm
Particle size distribution width: -2.569
Filtration time: 8 min
Cake liquid content: 35.6%

[比較例1]
攪拌翼を径90mmのファウドラー翼、回転数400rpm(Pv=170W/m3)とし、種晶を添加せずに晶析した。溶液温度30℃(Sc=2.78)で結晶が析出し、ホイップクリーム状のスラリーとなった。
[Comparative Example 1]
Crystallization was performed without adding a seed crystal, using a stirring blade of a Faudler blade having a diameter of 90 mm and a rotation speed of 400 rpm (Pv = 170 W / m3). Crystals precipitated at a solution temperature of 30 ° C. (Sc = 2.78) to give a whipped cream slurry.

平均粒径:測定不能(0.1mm未満)
粒度分布幅:測定不能
ろ過時間:36min
ケーキ含液率:90%
Average particle size: not measurable (less than 0.1 mm)
Particle size distribution width: not measurable Filtration time: 36 min
Cake liquid content: 90%

[比較例2]
種晶を添加しない以外は実施例1と同様に晶析を行なった。溶液温度30℃(Sc=2.78)で結晶が析出した。
[Comparative Example 2]
Crystallization was performed in the same manner as in Example 1 except that no seed crystal was added. Crystals precipitated at a solution temperature of 30 ° C. (Sc = 2.78).

平均粒径:0.505mm
粒度分布幅:−2.107
ろ過時間:27min
ケーキ含液率:62.9%
Average particle size: 0.505mm
Particle size distribution width: -2.107
Filtration time: 27 min
Cake liquid content: 62.9%

ファウドラー翼Faudler wing マックスブレンド翼Max blend wing フルゾール翼Fruzole wing 無次元過飽和度(Sc)とバニリンの結晶の平均粒子径(d50(mm))の関係Relationship between dimensionless supersaturation degree (Sc) and average particle diameter (d 50 (mm)) of vanillin crystals 無次元過飽和度(Sc)とバニリンの結晶のアスペクト比(無次元)の関係Relationship between dimensionless supersaturation degree (Sc) and aspect ratio (dimensionless) of vanillin crystals 無次元過飽和度と濾過時間の関係Relationship between dimensionless supersaturation and filtration time 無次元過飽和度とケーキ含水率の関係Relationship between dimensionless supersaturation and moisture content of cake 実施例1のバニリン結晶の粒度分布Particle size distribution of vanillin crystals of Example 1 実施例1のバニリンのロジン−ラムラープロットRosin-Rammler plot of vanillin from Example 1 実施例1のバニリン結晶の顕微鏡写真Micrograph of vanillin crystal of Example 1 比較例1のバニリン結晶の顕微鏡写真Micrograph of vanillin crystal of Comparative Example 1

Claims (5)

バニリンを含有する溶液からバニリンの結晶を晶析させる方法において、攪拌翼として、マックスブレンド翼又はフルゾーン翼を使用し、無次元過飽和度(Sc)を、1<Sc<2.5に制御して種晶を添加することを特徴とするバニリンの晶析方法。 In a method for crystallizing vanillin crystals from a solution containing vanillin, a Max blend blade or a full zone blade is used as a stirring blade, and the dimensionless supersaturation degree (Sc) is controlled to 1 <Sc <2.5. A method for crystallizing vanillin, comprising adding a seed crystal. 攪拌翼により、晶析槽内に上下の循環流を生起させることを特徴とする請求項1記載のバニリンの晶析方法。 2. The vanillin crystallization method according to claim 1, wherein upper and lower circulation flows are generated in the crystallization tank by a stirring blade. 攪拌翼が、マックスブレンド翼又はフルゾーン翼である請求項2記載のバニリンの晶析方法。 The vanillin crystallization method according to claim 2, wherein the stirring blade is a Max blend blade or a full zone blade. バニリンを含有する溶液が、バニリンを含有する極性溶媒の溶液である第1ないし第3の発明に記載のバニリンの晶析方法に関するものである。 The solution containing vanillin relates to the method for crystallizing vanillin according to any one of the first to third inventions, wherein the solution containing vanillin is a polar solvent solution. 極性溶媒が、炭素原子数1〜5の脂肪族アルコール、炭素原子数1〜5の脂肪族ケトン、水、或いはこれらの溶媒の混合物から選ばれる請求項4記載のバニリンの晶析方法。

The method for crystallizing vanillin according to claim 4, wherein the polar solvent is selected from aliphatic alcohols having 1 to 5 carbon atoms, aliphatic ketones having 1 to 5 carbon atoms, water, or a mixture of these solvents.

JP2004270732A 2004-09-17 2004-09-17 Method for crystallizing vanillin Pending JP2006083117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270732A JP2006083117A (en) 2004-09-17 2004-09-17 Method for crystallizing vanillin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270732A JP2006083117A (en) 2004-09-17 2004-09-17 Method for crystallizing vanillin

Publications (1)

Publication Number Publication Date
JP2006083117A true JP2006083117A (en) 2006-03-30

Family

ID=36161918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270732A Pending JP2006083117A (en) 2004-09-17 2004-09-17 Method for crystallizing vanillin

Country Status (1)

Country Link
JP (1) JP2006083117A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321794A (en) * 2005-04-19 2006-11-30 Mitsubishi Chemicals Corp Method for purifying aromatic aldehyde compound, purified aromatic aldehyde compound, electronic material, electrophotographic photosensitizer and electronic device which use the same
JP2008297251A (en) * 2007-05-31 2008-12-11 Mitsui Chemicals Inc Method for crystallizing bisphenol compound
WO2011042365A1 (en) * 2009-10-08 2011-04-14 Rhodia Operations Method for preparing a composition comprising a compound based on vanillin and ethyl vanillin, resulting composition and uses thereof
JP2012506399A (en) * 2008-10-24 2012-03-15 ロデイア・オペラシヨン Novel compounds containing vanillin and ethyl vanillin and their preparation and use
JP2013091653A (en) * 2012-12-26 2013-05-16 Mitsubishi Rayon Co Ltd Method for purifying methacrylic acid
CN103962042A (en) * 2014-04-09 2014-08-06 江苏省溧阳市云龙设备制造有限公司 Tubular stirring blades and glass lining stirrer
JP2017523999A (en) * 2014-08-08 2017-08-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for obtaining crystalline L-alanine
WO2019155899A1 (en) * 2018-02-09 2019-08-15 長谷川香料株式会社 Method for producing vanillin
CN115043717A (en) * 2022-05-11 2022-09-13 天津大学 Vanillin spherical crystal and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321794A (en) * 2005-04-19 2006-11-30 Mitsubishi Chemicals Corp Method for purifying aromatic aldehyde compound, purified aromatic aldehyde compound, electronic material, electrophotographic photosensitizer and electronic device which use the same
JP2008297251A (en) * 2007-05-31 2008-12-11 Mitsui Chemicals Inc Method for crystallizing bisphenol compound
JP2012506399A (en) * 2008-10-24 2012-03-15 ロデイア・オペラシヨン Novel compounds containing vanillin and ethyl vanillin and their preparation and use
WO2011042365A1 (en) * 2009-10-08 2011-04-14 Rhodia Operations Method for preparing a composition comprising a compound based on vanillin and ethyl vanillin, resulting composition and uses thereof
FR2951165A1 (en) * 2009-10-08 2011-04-15 Rhodia Operations PROCESS FOR THE PREPARATION OF A COMPOSITION COMPRISING A COMPOUND BASED ON VANILLINE AND ETHYLVANILLIN, COMPOSITION OBTAINED AND APPLICATIONS THEREOF
CN102596877A (en) * 2009-10-08 2012-07-18 罗地亚经营管理公司 Method for preparing a composition comprising a compound based on vanillin and ethyl vanillin, resulting composition and uses thereof
JP2013091653A (en) * 2012-12-26 2013-05-16 Mitsubishi Rayon Co Ltd Method for purifying methacrylic acid
CN103962042A (en) * 2014-04-09 2014-08-06 江苏省溧阳市云龙设备制造有限公司 Tubular stirring blades and glass lining stirrer
JP2017523999A (en) * 2014-08-08 2017-08-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for obtaining crystalline L-alanine
WO2019155899A1 (en) * 2018-02-09 2019-08-15 長谷川香料株式会社 Method for producing vanillin
JP2019137636A (en) * 2018-02-09 2019-08-22 長谷川香料株式会社 Method for producing vanillin
US10975013B2 (en) 2018-02-09 2021-04-13 T. Hasegawa Co., Ltd Method for producing vanillin
CN115043717A (en) * 2022-05-11 2022-09-13 天津大学 Vanillin spherical crystal and preparation method and application thereof

Similar Documents

Publication Publication Date Title
TW318838B (en)
JP2508949B2 (en) Crystal of N- (trans-4-isopropylcyclohexylcarbonyl) -D-phenylalanine and process for producing the same
JP2006083117A (en) Method for crystallizing vanillin
Shan et al. Production of large crystals with a narrow crystal size distribution by a novel WWDJ batch crystallizer
AU2004320909A1 (en) Method for producing alkali metal hydrogencarbonate
AU742221B2 (en) Continuous crystallization system with controlled nucleation for milk fat fractionation
KR102458994B1 (en) Method for producing dicarboxylic acid crystals
JP2023144071A (en) Anhydrous sodium acetate particles and method for producing the same
Shan et al. Control of solvent-mediated transformation of crystal polymorphs using a newly developed batch crystallizer (WWDJ-crystallizer)
TW201904926A (en) Method for producing dicarboxylic acid crystals
JPH0327398A (en) Crystallization of alpha-l-aspartyl-l-phenylalanine methyl ester
US20230002338A1 (en) Water and thermal treatment of purified 2,5-furandicarboxylic acid
JP2005082498A (en) Crystallizing method of succinic acid
JPWO2006013748A1 (en) Method for producing calcium trisulfoaluminate and apparatus used therefor
RU2434873C2 (en) Method of producing solid triphenyl boron-pyridine or adduct thereof
US10442747B2 (en) Method for purifying methacrylic acid and method for producing methacrylic acid
JP4845324B2 (en) Maltitol nectar crystals and method for producing the same
JP4494770B2 (en) Crystallization method and crystallizer
JP4724996B2 (en) Method for producing alkali metal hydrogen carbonate
KR20010080213A (en) Columnar crystals of 6-hydroxy-2-naphthoic acid and process for the production thereof
CN108191836A (en) A kind of preparation method of low electrostatic Irbesartan bulk pharmaceutical chemicals
JP5162960B2 (en) Dispersion medium replacement method for isophthalic acid raw slurry
KR101813794B1 (en) Preparation method for crystallization using rotation disc crystallizer
Igarashi et al. Control of crystal size distribution using a mL-scale continuous crystallizer equipped with a high speed agitator
JP5109372B2 (en) Crystallization method