JP2006083042A - Hydrogen producing method - Google Patents

Hydrogen producing method Download PDF

Info

Publication number
JP2006083042A
JP2006083042A JP2004272192A JP2004272192A JP2006083042A JP 2006083042 A JP2006083042 A JP 2006083042A JP 2004272192 A JP2004272192 A JP 2004272192A JP 2004272192 A JP2004272192 A JP 2004272192A JP 2006083042 A JP2006083042 A JP 2006083042A
Authority
JP
Japan
Prior art keywords
hydrogen
carbon fiber
gas
containing compound
fiber pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004272192A
Other languages
Japanese (ja)
Inventor
Hidenori Kurihara
英紀 栗原
Keiichi Suzuki
敬一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MET X SANWA KK
MET-X SANWA KK
QM SOFT KK
Original Assignee
MET X SANWA KK
MET-X SANWA KK
QM SOFT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MET X SANWA KK, MET-X SANWA KK, QM SOFT KK filed Critical MET X SANWA KK
Priority to JP2004272192A priority Critical patent/JP2006083042A/en
Publication of JP2006083042A publication Critical patent/JP2006083042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing hydrogen simply with high reaction efficiency. <P>SOLUTION: In the method of producing hydrogen, hydrogen is obtained by bringing a gas containing a hydrogen-containing compound into contact with a plurality of carbon fiber chips packed in a reaction vessel while irradiating the carbon fiber chips with microwave under 0.001-1 MPa pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、含水素化合物を改質することにより水素を製造する方法に関する。   The present invention relates to a method for producing hydrogen by reforming a hydrogen-containing compound.

近年、水素と酸素とを電気化学的に反応させて化学エネルギーを直接電気エネルギーに変換する燃料電池が、自動車のエネルギー源や発電装置として注目を集めている。燃料電池の燃料として用いられる水素を供給するための方法としては、水素吸蔵合金や高圧ボンベ等に直接水素を蓄えておく方法、炭化水素系燃料を熱分解により改質して水素を得る方法(特許文献1)等が提案されている。   2. Description of the Related Art In recent years, fuel cells that convert hydrogen and oxygen electrochemically to directly convert chemical energy into electrical energy have attracted attention as energy sources and power generators for automobiles. As a method for supplying hydrogen used as a fuel for a fuel cell, a method for directly storing hydrogen in a hydrogen storage alloy, a high pressure cylinder, or the like, a method for obtaining hydrogen by reforming a hydrocarbon fuel by thermal decomposition ( Patent Document 1) and the like have been proposed.

水素吸蔵合金や高圧ボンベ等に水素を蓄えておく方法は、貯蔵部の重量が重くなったり、体積が大きくなるという欠点がある。更に、水素発生装置で製造した水素を水素吸蔵合金や高圧ボンベ等に充填するための熱交換や昇圧などの工程が必要になる。
一方、炭化水素系燃料の熱分解によって水素を得る方法は、高温高圧下で反応を行う必要があり、反応の立ち上げに時間を要し、また、副生成物を抑えるため、工程が複雑であるという問題がある。
The method of storing hydrogen in a hydrogen storage alloy, a high-pressure cylinder, or the like has a disadvantage that the weight of the storage unit is increased or the volume is increased. Furthermore, steps such as heat exchange and pressure increase for filling hydrogen produced by the hydrogen generator into a hydrogen storage alloy, a high pressure cylinder, or the like are required.
On the other hand, the method of obtaining hydrogen by pyrolysis of hydrocarbon fuel requires a reaction at high temperature and high pressure, takes time to start up the reaction, and suppresses by-products. There is a problem that there is.

また、特許文献2には、マイクロ波プラズマによって炭化水素またはアルコールを含む混合ガスを改質して水素を得ることが開示されている。特許文献2に記載の技術では、高電圧サプライを反応器内の電極につなぎ、電極間で放電を起こしてプラズマを発生させている。しかし、電極間の放電は、電極間の最も高電圧の部分、即ち、最も近接した部分に集中し、広範囲では起こらない。そのため、電極間の放電を利用して混合ガスを改質すると、反応効率が低く、水素の収率に劣るという問題がある。また、特許文献2に記載の技術では、高電圧短期パルスを使用しなければならず、しかも、反応室内を高温に保つ必要があり、操作が煩雑であるという問題もある。また、当該方法により発生した水素に起因する電力では、高電圧短期パルスの消費電力を賄うことができないという問題もある。
特開2002−160904号公報 特表2001−506961号公報
Patent Document 2 discloses that hydrogen is obtained by reforming a mixed gas containing hydrocarbon or alcohol by microwave plasma. In the technique described in Patent Document 2, a high voltage supply is connected to electrodes in a reactor, and discharge is generated between the electrodes to generate plasma. However, the discharge between the electrodes concentrates on the highest voltage portion between the electrodes, that is, the closest portion, and does not occur in a wide range. For this reason, when the mixed gas is reformed using the discharge between the electrodes, there is a problem that the reaction efficiency is low and the yield of hydrogen is inferior. In addition, the technique described in Patent Document 2 has a problem that a high-voltage short-term pulse must be used, and the reaction chamber needs to be kept at a high temperature, and the operation is complicated. In addition, there is a problem that the electric power caused by hydrogen generated by the method cannot cover the power consumption of the high-voltage short-term pulse.
JP 2002-160904 A Special table 2001-50661 gazette

そこで、本発明は、簡便かつ高い反応効率で水素を製造する方法を提供することを目的とする。   Then, this invention aims at providing the method of manufacturing hydrogen by simple and high reaction efficiency.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、大気圧下でマイクロ波を照射した複数の炭素繊維片に含水素化合物を含むガスを接触させることにより、該含水素化合物を改質して水素を得ることが見出し、本発明を完成するに至った。
即ち、上記目的を達成する手段は、以下の通りである。
[請求項1]0.001〜1MPaの圧力下で、反応容器内に充填された複数の炭素繊維片にマイクロ波を照射しながら、前記炭素繊維片に含水素化合物を含むガスを接触させて、前記含水素化合物を改質して水素を得ることを特徴とする、水素の製造方法。
[請求項2]前記炭素繊維は、フェルト状炭素繊維である、請求項1に記載の方法。
[請求項3]前記反応容器は、5mg/mL以上の炭素繊維片を含む、請求項1または2に記載の方法。
[請求項4]前記含水素化合物は、メタン、エタン、プロパン、ベンゼン、トルエン、キシレン、アンモニア、硫化水素および水からなる群から選ばれる少なくとも一種である、請求項1〜3のいずれか1項に記載の方法。
As a result of intensive investigations to achieve the above object, the present inventors have made the hydrogen-containing compound by contacting a plurality of carbon fiber pieces irradiated with microwaves under atmospheric pressure with a gas containing a hydrogen-containing compound. It has been found that hydrogen is obtained by modifying a compound, and the present invention has been completed.
That is, the means for achieving the above object is as follows.
[Claim 1] A gas containing a hydrogen-containing compound is brought into contact with the carbon fiber pieces while irradiating a plurality of carbon fiber pieces filled in a reaction vessel with microwaves under a pressure of 0.001 to 1 MPa. A method for producing hydrogen, comprising reforming the hydrogen-containing compound to obtain hydrogen.
[2] The method according to [1], wherein the carbon fiber is a felt-like carbon fiber.
[Claim 3] The method according to claim 1 or 2, wherein the reaction vessel contains carbon fiber pieces of 5 mg / mL or more.
[Claim 4] The hydrogen-containing compound is at least one selected from the group consisting of methane, ethane, propane, benzene, toluene, xylene, ammonia, hydrogen sulfide and water. The method described in 1.

本発明の方法は、マイクロ波を照射するだけで瞬時に反応が進行するため、操作が簡便である。本発明の方法は、常温常圧下で反応が進行するため、装置の立ち上げに時間を要さず、不連続の運転や短時間の運転にも対応できる。また、装置の大きさや処理量の変更も容易であり、優れた実用性を有する。   The method of the present invention is easy to operate because the reaction proceeds instantaneously by simply irradiating microwaves. In the method of the present invention, since the reaction proceeds under normal temperature and normal pressure, it does not take time to start up the apparatus, and it can cope with discontinuous operation and short-time operation. In addition, it is easy to change the size and throughput of the apparatus, and it has excellent practicality.

以下、本発明について更に詳細に説明する。

本発明の水素の製造方法は、0.001〜1MPaの圧力下で、反応容器内に充填された複数の炭素繊維片にマイクロ波を照射しながら、前記炭素繊維片に含水素化合物を含むガスを接触させて、前記含水素化合物を改質して水素を得ることを特徴とする。上記圧力下で複数の炭素繊維片にマイクロ波を照射すると、繊維片が帯電し、近傍の繊維片との間で放電が起こる。本発明では、この放電を利用して、含水素化合物を改質して水素を得ることができる。本発明において、炭素繊維片間に放電が起こるメカニズムは、以下のように推定される。
Hereinafter, the present invention will be described in more detail.

The method for producing hydrogen according to the present invention includes a gas containing a hydrogen-containing compound in a carbon fiber piece while irradiating a plurality of carbon fiber pieces filled in a reaction vessel with microwaves under a pressure of 0.001 to 1 MPa. To obtain hydrogen by reforming the hydrogen-containing compound. When a plurality of carbon fiber pieces are irradiated with microwaves under the above pressure, the fiber pieces are charged, and discharge occurs between adjacent fiber pieces. In the present invention, this discharge can be used to reform the hydrogen-containing compound to obtain hydrogen. In the present invention, the mechanism by which discharge occurs between the carbon fiber pieces is estimated as follows.

0.001〜1MPaの圧力下で複数の炭素繊維片にマイクロ波を照射すると、繊維片先端間で放電が起こる。この放電には、繊維片の先端の炭素が炭素蒸気となり、これが導体となって関与すると考えられる。よって、繊維片先端の炭素は、この放電により消費されると考えられるが、炭素繊維には、片間距離のきわめて近い先端が多数存在するので、そのうちのいくつかが放電により消費されても、消費されなかった炭素片先端間で引き続き放電が起こる。これにより、炭素繊維片間では、長期にわたって放電を維持することができると考えられる。本発明では、これにより、高い反応効率を維持して含水素化合物の改質反応を行うことができる。   When a plurality of carbon fiber pieces are irradiated with microwaves under a pressure of 0.001 to 1 MPa, discharge occurs between the fiber piece tips. In this discharge, carbon at the tip of the fiber piece becomes carbon vapor, which is considered to be involved as a conductor. Therefore, it is considered that the carbon at the tip of the fiber piece is consumed by this discharge, but since there are many tips with a very short distance between the pieces of carbon fiber, even if some of them are consumed by the discharge, Discharge continues between the tips of the carbon pieces that were not consumed. Thereby, it is thought that discharge can be maintained over a long period between carbon fiber pieces. Thus, in the present invention, the reforming reaction of the hydrogen-containing compound can be performed while maintaining high reaction efficiency.

本発明の方法は、0.001〜1MPaの圧力下で行われる。上記圧力は、生成する水素量および装置の簡易さを考慮すると、0.08〜0.2MPaの範囲であることが好ましい。また、本発明の方法は、−150℃〜1200℃、好ましくは−40℃〜300℃の範囲の温度で行うことができる。本発明の方法は、温度および圧力を制御することなく、常温常圧下でも実施できるという利点がある。   The method of the present invention is performed under a pressure of 0.001 to 1 MPa. The pressure is preferably in the range of 0.08 to 0.2 MPa in consideration of the amount of hydrogen to be generated and the simplicity of the apparatus. The method of the present invention can be carried out at a temperature in the range of −150 ° C. to 1200 ° C., preferably −40 ° C. to 300 ° C. The method of the present invention has the advantage that it can be carried out at room temperature and normal pressure without controlling the temperature and pressure.

本発明において使用される炭素繊維の加工形状は特に限定されず、例えば、織物、編物、不織布、フェルトに加工した炭素繊維を用いることができる。中でも、長期にわたり安定に放電を維持するためには、静電容量の高い繊維を用いることが好ましく、この観点から、本発明では、特に、フェルト状の炭素繊維を用いることが好ましい。フェルト状繊維とは、繊維布を多層に重ねてニードルや圧縮等により繊維同士を絡ませたものであり、通気性、多孔性、弾力性を有する。   The processed shape of the carbon fiber used in the present invention is not particularly limited, and for example, a carbon fiber processed into a woven fabric, a knitted fabric, a nonwoven fabric, or a felt can be used. Among these, in order to maintain a stable discharge over a long period of time, it is preferable to use a fiber having a high capacitance. From this viewpoint, it is particularly preferable to use a felt-like carbon fiber in the present invention. A felt-like fiber is a fiber fabric in which fiber cloths are stacked in layers and entangled with each other by needles or compression, and has air permeability, porosity, and elasticity.

前記炭素繊維片は、高温、例えば500℃以上、好ましくは800〜3000℃の温度で焼成されたものであることが好ましい。上記範囲の温度で焼成した炭素繊維片を用いることにより、高い反応効率で改質反応を行い、高収率で水素を得ることができる。   The carbon fiber piece is preferably fired at a high temperature, for example, 500 ° C. or higher, preferably 800 to 3000 ° C. By using carbon fiber pieces fired at a temperature in the above range, a reforming reaction can be performed with high reaction efficiency, and hydrogen can be obtained in a high yield.

本発明の方法は、含水素化合物を含むガスを封入した、炭素繊維片を充填した密閉反応容器にマイクロ波を照射することによって行うことができ(以下、「バッチ法」ともいう)、また、マイクロ波照射下で、炭素繊維片を含む反応容器内に含水素化合物を含むガスを通気させながら行うこともできる(以下、「フロー法」ともいう)。いずれの場合も、反応容器内に充填する炭素繊維片の量は、例えば、5mg/mL以上とすることができ、好ましくは、25〜125mg/mLとすることができる。   The method of the present invention can be performed by irradiating a sealed reaction vessel filled with carbon fiber pieces filled with a gas containing a hydrogen-containing compound with microwaves (hereinafter also referred to as “batch method”), Under microwave irradiation, the reaction can be performed while a gas containing a hydrogen-containing compound is passed through a reaction vessel containing carbon fiber pieces (hereinafter also referred to as “flow method”). In any case, the amount of the carbon fiber pieces filled in the reaction vessel can be, for example, 5 mg / mL or more, and preferably 25 to 125 mg / mL.

本発明の方法において、反応容器内に充填する炭素繊維片は複数、即ち、2片以上である。反応効率を高めるためには、反応容器内の炭素繊維片同士は接触させないことが好ましい。また、炭素繊維片間の距離は、例えば、10μm〜1mmとすることができ、より短くすることが好ましい。炭素繊維片は、一定の距離を保って規則的に配置してもよく、ランダムに配置してもよい。また、炭素繊維片の表面積が大きいほど、放電面積が増えるので反応効率を高めることができるため、反応容器内に充填する炭素片の個数は多い方が好ましい。   In the method of the present invention, the carbon fiber pieces to be filled in the reaction vessel are plural, that is, two or more pieces. In order to increase the reaction efficiency, it is preferable that the carbon fiber pieces in the reaction vessel are not brought into contact with each other. Moreover, the distance between carbon fiber pieces can be 10 micrometers-1 mm, for example, and it is preferable to make it shorter. The carbon fiber pieces may be regularly arranged at a constant distance or may be randomly arranged. Moreover, since the discharge area increases as the surface area of the carbon fiber pieces increases, the reaction efficiency can be increased. Therefore, it is preferable that the number of carbon pieces filled in the reaction vessel is large.

炭素繊維片の一片の大きさは、使用する反応容器の容量および炭素繊維の充填量を考慮して適宜設定することができる。炭素繊維片の一片の体積は、例えば、0.01cm3以上とすることができ、0.1〜5cm3の範囲であることが好ましい。一片の体積が0.01cm3以上の炭素繊維片を使用すれば、炭素繊維片に十分な電気量を帯電させ、放電を起こすことができる。但し、一片の体積が過度に小さいと、帯電する電気量が不十分となり放電が減少する。よって、本発明では、この点も考慮して、炭素繊維片の大きさを決定することが好ましい。 The size of one piece of the carbon fiber piece can be appropriately set in consideration of the capacity of the reaction vessel to be used and the filling amount of the carbon fiber. Piece of the volume of carbon fiber pieces, for example, be a 0.01 cm 3 or more, and preferably in the range of 0.1 to 5 cm 3. If a piece of carbon fiber having a volume of 0.01 cm 3 or more is used, the carbon fiber piece can be charged with a sufficient amount of electricity to cause discharge. However, if the volume of one piece is excessively small, the amount of electricity to be charged becomes insufficient and discharge is reduced. Therefore, in the present invention, it is preferable to determine the size of the carbon fiber piece in consideration of this point.

前記炭素繊維片は、ニッケル粒子を担持したものであることが好ましい。本発明において、ニッケル粒子を担持した炭素繊維片を使用することにより、含水素化合物の改質反応の効率を向上させることができる。改質反応の効率向上のためには、より小さな粒径のニッケル粒子を用いることが好ましい。但し、過度に粒径の小さなニッケル粒子を用いると、炭素繊維中に分散させて担持させることが困難になる場合がある。以上の観点から、本発明において、炭素繊維片に担持させるニッケル粒子の粒径は、0.5〜20μmの範囲であることが好ましい。   It is preferable that the carbon fiber pieces carry nickel particles. In the present invention, the efficiency of the reforming reaction of the hydrogen-containing compound can be improved by using carbon fiber pieces carrying nickel particles. In order to improve the efficiency of the reforming reaction, it is preferable to use nickel particles having a smaller particle size. However, if nickel particles having an excessively small particle size are used, it may be difficult to disperse and carry them in the carbon fiber. From the above viewpoint, in the present invention, the particle diameter of the nickel particles supported on the carbon fiber pieces is preferably in the range of 0.5 to 20 μm.

炭素繊維片に担持させるニッケル粒子の量は、炭素繊維1g当たり500mg以下であることが好ましく、10〜100mgの範囲であることが更に好ましい。炭素繊維片にニッケル粒子を担持させる場合には、繊維層間にニッケル粒子を挟み込む方法を用いることが、反応効率、コストおよび作業効率の点で好ましい。   The amount of nickel particles supported on the carbon fiber pieces is preferably 500 mg or less per gram of carbon fiber, and more preferably in the range of 10 to 100 mg. When the nickel particles are supported on the carbon fiber pieces, it is preferable in terms of reaction efficiency, cost, and work efficiency to use a method of sandwiching the nickel particles between the fiber layers.

本発明で使用される含水素化合物とは、その化学構造内に水素原子を含むものをいい、例えば、メタン、エタン、プロパン、ベンゼン、トルエン、キシレン、アンモニア、硫化水素、水等を挙げることができる。中でも、改質反応の効率の点からは、メタン、アンモニア、硫化水素を用いることが好ましい。前記含水素化合物は、一種のみを用いてもよく、二種以上を組み合わせて用いてもよい。   The hydrogen-containing compound used in the present invention means a compound containing a hydrogen atom in its chemical structure, for example, methane, ethane, propane, benzene, toluene, xylene, ammonia, hydrogen sulfide, water, etc. it can. Of these, methane, ammonia, and hydrogen sulfide are preferably used from the viewpoint of the efficiency of the reforming reaction. The said hydrogen-containing compound may use only 1 type, and may be used in combination of 2 or more type.

本発明において使用される含水素化合物を含むガスにおける含水素化合物濃度は、消費電力との関係から、20容量%とすることができ、その濃度が高い方が好ましい。本発明において使用される含水素化合物を含むガスは、含水素化合物ガスのみからなるものであることができ、含水素化合物ガスを他のガスと混合したものであることもできる。含水素化合物ガスと混合するガスとしては、例えば、窒素、酸素、空気等が挙げられ、生ごみの発酵から生じるガスを挙げることもできる。但し、水素の生成効率の点からは、含水素化合物ガス以外のガスの濃度が低い方が好ましい。   The concentration of the hydrogen-containing compound in the gas containing the hydrogen-containing compound used in the present invention can be 20% by volume from the relationship with the power consumption, and the higher the concentration is preferable. The gas containing a hydrogen-containing compound used in the present invention can be composed of only a hydrogen-containing compound gas, or can be a mixture of a hydrogen-containing compound gas with another gas. Examples of the gas mixed with the hydrogen-containing compound gas include nitrogen, oxygen, air, and the like, and examples of the gas generated from the fermentation of garbage. However, from the viewpoint of hydrogen production efficiency, it is preferable that the concentration of the gas other than the hydrogen-containing compound gas is low.

本発明で使用されるマイクロ波の周波数は、2.4〜2.5GHzであることができる。その出力は、20〜1500Wの範囲であることが好ましく、50〜500Wの範囲であることが更に好ましい。上記範囲の周波数、出力のマイクロ波を照射することにより、炭素繊維片間で良好に放電を起こすことができる。   The frequency of the microwave used in the present invention can be 2.4 to 2.5 GHz. The output is preferably in the range of 20 to 1500 W, and more preferably in the range of 50 to 500 W. By irradiating microwaves having a frequency and output in the above range, it is possible to cause a good discharge between the carbon fiber pieces.

前述のように、本発明の方法は、バッチ法で行うこともでき、フロー法で行うこともできる。バッチ法、フロー法のいずれにおいても、反応容器としては、例えば、セラミック製容器を用いることができる。フロー法の場合には、例えば、マイクロ波発信器と、マイクロ波空洞共振容器(反応容器)と、該マイクロ波空洞共振容器に接続されたガス導入口とガス排出口を供えた反応管とを備えた装置を用い、前記反応容器内に複数の炭素繊維片を充填し、この反応容器にマイクロ波を照射しつつ含水素化合物を含むガスを通気させることにより、改質反応を行い、水素を得ることができる。そのような装置の一例を、図1に示す。フロー法を用いる場合、通気させるガスの流速は、適宜設定することができ、例えば、100mL/min〜100L/minとすることができる。フロー法を用いることにより、高反応効率で連続的に水素を製造することができるという利点がある。   As described above, the method of the present invention can be performed by a batch method or a flow method. In both the batch method and the flow method, as a reaction vessel, for example, a ceramic vessel can be used. In the case of the flow method, for example, a microwave transmitter, a microwave cavity resonant vessel (reaction vessel), and a reaction tube provided with a gas inlet and a gas outlet connected to the microwave cavity resonant vessel are provided. Using the equipment provided, the reaction vessel was filled with a plurality of carbon fiber pieces, and a gas containing a hydrogen-containing compound was vented while irradiating the reaction vessel with microwaves, thereby performing a reforming reaction, Obtainable. An example of such a device is shown in FIG. When the flow method is used, the flow rate of the gas to be aerated can be set as appropriate, and can be set to, for example, 100 mL / min to 100 L / min. By using the flow method, there is an advantage that hydrogen can be continuously produced with high reaction efficiency.

以下、本発明を実施例により説明する。

(1)各種炭素材料の比較
パイレックスガラス密閉容器10mL中に各種炭素材料およびメタンと空気を封入した。この容器に、所定時間マイクロ波長(マイクロ波電力400W、周波数2.45GHz)を照射した後、容器内の気体の変化をガスクロマトグラフィーによって測定した。使用した装置の概略図を図2に示す。マイクロ波の照射時間とガス濃度との関係を、図3〜7に示す。
Hereinafter, the present invention will be described with reference to examples.

(1) Comparison of various carbon materials Various carbon materials and methane and air were sealed in 10 mL of Pyrex glass sealed containers. After irradiating the container with a microwavelength (microwave power 400 W, frequency 2.45 GHz) for a predetermined time, a change in gas in the container was measured by gas chromatography. A schematic diagram of the apparatus used is shown in FIG. The relationship between the microwave irradiation time and the gas concentration is shown in FIGS.

図3に示すように、炭素材料を封入しなかった場合は、水素は検出されなかった。図4に示すように、炭素棒(4cm、50mg)2本を封入した場合には水素が検出されたが、その濃度はマイクロ波照射30分後にも2.5vol%と低濃度であった。それに対し、図5〜7に示すように、炭素繊維片を封入した場合には、メタン濃度の減少に伴い、水素濃度の上昇が観察され、メタンの改質により水素が生成されたことがわかる。また、800℃で焼成したフェルト状炭素繊維(一片:10×10×5mm、全量50mg)を使用した場合(図6)と比べて、2000℃で焼成したフェルト状炭素繊維(一片:10×10×5mm、全量50mg)を使用した場合(図5)には、より高濃度で水素を得ることができた。更に、図5と図7の比較から、2000℃で焼成したフェルト状炭素繊維にニッケル粒子を担持させることにより(炭素繊維1g当たりニッケル粒子20mgを担持、一片:10×10×5mm、全量50mg)、反応速度を上げることができ、迅速に高濃度で水素を得ることができることがわかる。   As shown in FIG. 3, hydrogen was not detected when the carbon material was not encapsulated. As shown in FIG. 4, hydrogen was detected when two carbon rods (4 cm, 50 mg) were sealed, but the concentration was as low as 2.5 vol% even after 30 minutes of microwave irradiation. On the other hand, as shown in FIGS. 5 to 7, when the carbon fiber pieces were enclosed, an increase in the hydrogen concentration was observed as the methane concentration decreased, and it was found that hydrogen was generated by the reforming of methane. . Moreover, compared with the case where the felt-like carbon fiber baked at 800 ° C. (one piece: 10 × 10 × 5 mm, total amount 50 mg) is used (FIG. 6), the felt-like carbon fiber baked at 2000 ° C. (one piece: 10 × 10 When × 5 mm and a total amount of 50 mg) were used (FIG. 5), hydrogen could be obtained at a higher concentration. Further, from comparison between FIG. 5 and FIG. 7, nickel particles are supported on felt-like carbon fibers fired at 2000 ° C. (20 mg of nickel particles per 1 g of carbon fibers, one piece: 10 × 10 × 5 mm, total amount 50 mg) It can be seen that the reaction rate can be increased, and hydrogen can be obtained at a high concentration quickly.

(2)炭素繊維片の大きさおよび個数と生成水素濃度との関係
表1に示すサイズおよび個数の炭素繊維片を、上記(1)で使用した容器に封入し、上記(1)と同様にマイクロ波照射を行った。各条件下でのマイクロ波照射20秒後の水素濃度を表1に示す。
(2) Relationship between Size and Number of Carbon Fiber Pieces and Concentration of Generated Hydrogen Carbon fiber pieces of the size and number shown in Table 1 are sealed in the container used in (1) above, and the same as in (1) above Microwave irradiation was performed. Table 1 shows the hydrogen concentration after 20 seconds of microwave irradiation under each condition.

Figure 2006083042
Figure 2006083042

表1に示すように、同体積の炭素繊維片を充填した場合、炭素繊維片の体積を0.125cm3から0.5cm3に上げると、水素濃度の上昇が見られた。これは、炭素繊維片の表面積が増大することにより、放電面積が増えたためと考えられる。一方、炭素繊維片の体積を0.5cm3から1.0cm3、更には2.0cm3と上げていくに従い、水素濃度の減少が見られた。これは、一片の体積が小さいため帯電する電気量が減少したことに起因すると考えられる。よって、本発明では、十分な放電が生じるように、使用する炭素繊維片の大きさおよび個数を適宜調整することが好ましい。 As shown in Table 1, when filled with carbon fiber pieces of the same volume, increasing the volume of the carbon fiber pieces from 0.125 cm 3 to 0.5 cm 3, increasing the hydrogen concentration was observed. This is presumably because the discharge area was increased by increasing the surface area of the carbon fiber pieces. On the other hand, as the volume of the carbon fiber piece was increased from 0.5 cm 3 to 1.0 cm 3 and further to 2.0 cm 3 , the hydrogen concentration decreased. This is considered to be due to a decrease in the amount of electricity to be charged because the volume of one piece is small. Therefore, in the present invention, it is preferable to appropriately adjust the size and the number of carbon fiber pieces to be used so that sufficient discharge occurs.

(3)トルエン、アンモニア含有ガスからの水素の生成
トルエンまたはアンモニアと空気とを混合したガスを、上記(1)で使用した容器に封入し、上記(1)と同様にマイクロ波照射を行った。いずれの場合にも、2000℃で焼成したフェルト状炭素繊維(一片:10×10×5mm、全量50mg)を使用した。マイクロ波の照射時間とガス濃度との関係を、図8および9に示す。
図8および9に示すように、本発明の方法により、トルエンまたはアンモニアを含有するガスから、水素を生成することができた。
(3) Generation of hydrogen from toluene and ammonia-containing gas A gas obtained by mixing toluene or ammonia and air was sealed in the container used in (1) above, and microwave irradiation was performed in the same manner as in (1) above. . In any case, felt-like carbon fibers (one piece: 10 × 10 × 5 mm, total amount 50 mg) fired at 2000 ° C. were used. The relationship between the microwave irradiation time and the gas concentration is shown in FIGS.
As shown in FIGS. 8 and 9, hydrogen could be generated from a gas containing toluene or ammonia by the method of the present invention.

本発明の方法は、常温常圧下で実施可能な簡便な方法である。本発明の方法により得られる水素は、燃料電池の燃料として用いることができる。   The method of the present invention is a simple method that can be carried out at normal temperature and pressure. Hydrogen obtained by the method of the present invention can be used as a fuel for a fuel cell.

本発明の方法(フロー法)に使用される装置の一例である。It is an example of the apparatus used for the method (flow method) of this invention. 実施例において使用した装置の概略図である。It is the schematic of the apparatus used in the Example. 反応容器内に炭素材料を封入しなかった場合のマイクロ波の照射時間とガス濃度との関係を示す。The relationship between the microwave irradiation time and the gas concentration when no carbon material is sealed in the reaction vessel is shown. 反応容器内に棒状の炭素を封入した場合のマイクロ波の照射時間とガス濃度との関係を示す。The relationship between the microwave irradiation time and gas concentration when rod-shaped carbon is enclosed in the reaction vessel is shown. 反応容器内に2000℃で焼成したフェルト状炭素繊維片を封入した場合のマイクロ波の照射時間とガス濃度との関係を示す。The relationship between the irradiation time of a microwave and gas concentration at the time of sealing the felt-like carbon fiber piece baked at 2000 degreeC in reaction container is shown. 反応容器内に800℃で焼成したフェルト状炭素繊維片を封入した場合のマイクロ波の照射時間とガス濃度との関係を示す。The relationship between the irradiation time of a microwave and gas concentration at the time of sealing the felt-like carbon fiber piece baked at 800 degreeC in reaction container is shown. 反応容器内に2000℃で焼成したフェルト状炭素繊維片(ニッケル粒子担持)を封入した場合のマイクロ波の照射時間とガス濃度との関係Relationship between microwave irradiation time and gas concentration when felt-like carbon fiber pieces (supported with nickel particles) fired at 2000 ° C are enclosed in a reaction vessel トルエン含有ガスを用いた場合のマイクロ波の照射時間とガス濃度との関係を示す。The relationship between the microwave irradiation time and gas concentration when a toluene-containing gas is used is shown. アンモニア含有ガスを用いた場合のマイクロ波の照射時間とガス濃度との関係を示す。The relationship between the microwave irradiation time and gas concentration when ammonia-containing gas is used is shown.

Claims (4)

0.001〜1MPaの圧力下で、反応容器内に充填された複数の炭素繊維片にマイクロ波を照射しながら、前記炭素繊維片に含水素化合物を含むガスを接触させて、前記含水素化合物を改質して水素を得ることを特徴とする、水素の製造方法。 While irradiating a plurality of carbon fiber pieces filled in a reaction vessel with microwaves under a pressure of 0.001 to 1 MPa, the carbon fiber pieces are contacted with a gas containing a hydrogen-containing compound, and the hydrogen-containing compounds are brought into contact with each other. A process for producing hydrogen, characterized in that hydrogen is obtained by reforming. 前記炭素繊維は、フェルト状炭素繊維である、請求項1に記載の方法。 The method of claim 1, wherein the carbon fiber is a felt-like carbon fiber. 前記反応容器は、5mg/mL以上の炭素繊維片を含む、請求項1または2に記載の方法。 The method according to claim 1, wherein the reaction vessel contains 5 mg / mL or more of carbon fiber pieces. 前記含水素化合物は、メタン、エタン、プロパン、ベンゼン、トルエン、キシレン、アンモニア、硫化水素および水からなる群から選ばれる少なくとも一種である、請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the hydrogen-containing compound is at least one selected from the group consisting of methane, ethane, propane, benzene, toluene, xylene, ammonia, hydrogen sulfide, and water.
JP2004272192A 2004-09-17 2004-09-17 Hydrogen producing method Pending JP2006083042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004272192A JP2006083042A (en) 2004-09-17 2004-09-17 Hydrogen producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004272192A JP2006083042A (en) 2004-09-17 2004-09-17 Hydrogen producing method

Publications (1)

Publication Number Publication Date
JP2006083042A true JP2006083042A (en) 2006-03-30

Family

ID=36161856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004272192A Pending JP2006083042A (en) 2004-09-17 2004-09-17 Hydrogen producing method

Country Status (1)

Country Link
JP (1) JP2006083042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084389A (en) * 2005-09-22 2007-04-05 Chubu Electric Power Co Inc Method for reforming fluid organic compound
JP2009534285A (en) * 2006-04-18 2009-09-24 ロッコ トゥリノ,ロサリオ Catalytic thermophysical dissociation device that dissociates liquid ammonia into its constituent gaseous hydrogen and nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084389A (en) * 2005-09-22 2007-04-05 Chubu Electric Power Co Inc Method for reforming fluid organic compound
JP2009534285A (en) * 2006-04-18 2009-09-24 ロッコ トゥリノ,ロサリオ Catalytic thermophysical dissociation device that dissociates liquid ammonia into its constituent gaseous hydrogen and nitrogen

Similar Documents

Publication Publication Date Title
Mao et al. Silicon-doped graphene edges: an efficient metal-free catalyst for the reduction of CO 2 into methanol and ethanol
CN101863455B (en) Plate type plasma reactor for hydrogen production through ammonia decomposition
KR100956669B1 (en) Hydrogen-generating material and hydrogen generation apparatus
EP1219567A1 (en) Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
KR20000069717A (en) Method and devices for producing hydrogen by plasma reformer
JP6234681B2 (en) Ammonia synthesis method
EP2857554A1 (en) Electrochemical reactor and method for production of fuel gas
CN111601654B (en) Method and apparatus for plasma-induced water splitting
JP6080056B2 (en) Carbon nanowall and manufacturing method thereof, oxygen reduction catalyst, oxygen reduction electrode, and fuel cell
WO2002091505A2 (en) Microwave activation of fuel cell gases
CN103601150A (en) Tube-tube type plasma reactor for preparing hydrogen through ammonia decomposition
CN103456975B (en) The method and apparatus of hydrogen generating is produced in water catalysis
KR101032273B1 (en) Reforming system and method for producing hydrogen using the same
JP2006083042A (en) Hydrogen producing method
KR101093674B1 (en) Methane-oxygen generation device and method for making methane and oxygen from carbon dioxide and water using the same
CN109876751B (en) Plasma reactor and application thereof
US20200346199A1 (en) Method for preparation gaseous-nitridation treated or liquid-nitridation treated core-shell catalyst
WO2001068525A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
WO2001068526A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP5848533B2 (en) Hydrogen production method
CN109904473B (en) Atomic layer deposition equipment and method for preparing battery catalyst by using same
Wang et al. Electrochemical characteristics of LaNi4. 5Al0. 5 alloy used as anodic catalyst in a direct borohydride fuel cell
JP2002056852A (en) Electric energy generating system
JP2006294493A (en) Fuel cell
CN115582123B (en) Porous metal oxide catalyst, preparation method thereof and application thereof in plasma catalytic system