JP2006082008A - Method for treating contaminated soil - Google Patents

Method for treating contaminated soil Download PDF

Info

Publication number
JP2006082008A
JP2006082008A JP2004269199A JP2004269199A JP2006082008A JP 2006082008 A JP2006082008 A JP 2006082008A JP 2004269199 A JP2004269199 A JP 2004269199A JP 2004269199 A JP2004269199 A JP 2004269199A JP 2006082008 A JP2006082008 A JP 2006082008A
Authority
JP
Japan
Prior art keywords
treatment
well
water
hardly
permeable layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004269199A
Other languages
Japanese (ja)
Inventor
Minoru Kanazawa
稔 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2004269199A priority Critical patent/JP2006082008A/en
Publication of JP2006082008A publication Critical patent/JP2006082008A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently recover and remove contaminants in a hardly gas permeable-water permeable layer essentially consisting of clay or silt having low water permeability and gas permeability. <P>SOLUTION: In this method for treating the contaminated soil, at first, a well 3 for treatment is piercingly installed in a hardly gas permeable-water permeable layer 2 in contaminated soil 1 which is a hardly water permeable layer and also a hardly gas permeable layer (step 101). After the well 3 for treatment is piercingly installed in the hardly gas permeable-water permeable layer 2, a refrigerant is injected into the well 3 for treatment (step 102). Next, gap water within a treatment region is frozen with the refrigerant, so as to form a dome-shaped rigidity-increased region 21, and then, the treatment region 18 is fused (step 103). Next, water passing or gas passing is performed to the inside of the treatment region 18, so as to recover the contaminants via the well 3 for treatment, or the injection of a chemical is performed via the well 3 for treatment, so as to make the contaminants harmless (step 104). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機塩素化合物等の汚染物質を含む汚染土壌を無害化する汚染土壌の処理方法に関する。   The present invention relates to a method for treating contaminated soil for detoxifying contaminated soil containing contaminants such as organochlorine compounds.

工場跡地の土壌内には、揮発性有機塩素化合物、燃料油や機械油、ダイオキシン類、あるいはカドミウム、鉛、銅、亜鉛、ニッケル、クロムなどの重金属といったさまざまな汚染物質が土壌に混入していることがある。   Various pollutants such as volatile organochlorine compounds, fuel oils and machine oils, dioxins, or heavy metals such as cadmium, lead, copper, zinc, nickel, and chromium are mixed in the soil of the factory site. Sometimes.

かかる汚染物質で汚染された汚染土をそのまま放置すると、該土に混入している汚染物質が周囲に拡散し、周辺住民の生活に支障を来すとともに、雨水によって土粒子から遊離した場合には、地下水等に混入して水質を汚濁させる原因ともなる。そのため、上述した汚染物質で汚染された土については、さまざまな方法を使って浄化しなければならない。   If the contaminated soil contaminated with such contaminants is left as it is, the contaminants mixed in the soil will diffuse to the surroundings, hindering the lives of the surrounding residents, and if they are released from the soil particles by rainwater In addition, it may cause contamination of groundwater by contaminating water quality. Therefore, the soil contaminated with the above-mentioned pollutants must be cleaned using various methods.

土壌内の汚染物質を原位置で浄化処理する方法としては、従来からさまざまな方法が開発されており、掘削曝気法、揚水曝気法等をはじめ、土壌ガス吸引法、汚染土壌に注水しこれを揚水して地上で処理するいわゆる通水洗浄法、空気を送り込んでその気泡に汚染物質を連行させる、いわゆる気泡連行浄化法、空気圧入を行って有害物質を揮発させるエアスパージング法、土中菌の微生物活性を利用したバイオレメディエーションによる方法、酸化還元反応を利用した薬液注入法など多種多様な方法が知られている。   Various methods have been developed to purify the pollutants in the soil in-situ, including the excavation aeration method and the pumped aeration method, as well as the soil gas suction method and water injection into the contaminated soil. The so-called water washing method that pumps water and treats it on the ground, the so-called bubble entrainment purification method that feeds air and entrains pollutants in the bubbles, the air sparging method that volatilizes harmful substances by introducing air pressure, A wide variety of methods are known, such as a bioremediation method utilizing microbial activity and a chemical solution injection method utilizing a redox reaction.

特開平11−169837号公報Japanese Patent Laid-Open No. 11-169837

ここで、曝気、ガス吸引、気泡連行浄化、エアスパージング、薬液注入等は、すべて汚染土壌内の透水性あるいは透気性に期待した工法と言えるが、汚染土壌内に粘土やシルトを主体とする難透気透水層が分布している場合、該難透気透水層等の透水性や透気性が低いため、上述した工法はほとんど適用することができないという問題を生じていた。   Here, aeration, gas suction, bubble entrainment purification, air sparging, chemical solution injection, etc. can all be said to be methods that are expected to be water permeable or air permeable in the contaminated soil, but it is difficult to make clay and silt mainly in the contaminated soil. When the air permeable permeable layer is distributed, since the water permeability and air permeability of the hardly permeable air permeable layer and the like are low, the above-described construction method is hardly applicable.

本発明は、上述した事情を考慮してなされたもので、透水性や透気性が低い粘土やシルトを主体とした難透気透水層内の汚染物質を効率よく回収除去することが可能な汚染土壌の処理方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and is capable of efficiently recovering and removing the contaminants in the hardly permeable air permeable layer mainly composed of clay and silt having low water permeability and air permeability. It aims at providing the processing method of soil.

上記目的を達成するため、本発明に係る汚染土壌の処理方法は請求項1に記載したように、揮発性有機塩素化合物、炭化水素、重金属等の汚染物質が難透水層又は難透気層内に含まれている汚染土壌を浄化する汚染土壌の処理方法において、前記難透水層又は難透気層に処理用井戸を貫入設置し、該処理用井戸内に冷媒を注入し、該冷媒によって前記処理用井戸を取り囲む処理領域内の間隙水を凍結させるとともに該凍結による前記処理領域の膨張圧を周辺地盤に作用させることでドーム状剛性増加領域を前記処理領域を取り囲むように形成し、前記処理領域内で凍結した間隙水が融解した後、前記処理領域内に通水又は通気を行うことにより前記汚染物質を回収し、又は前記処理用井戸を介して薬液注入を行うことにより前記汚染物質を無害化するものである。   In order to achieve the above object, according to the method for treating contaminated soil according to the present invention, as described in claim 1, contaminants such as volatile organic chlorine compounds, hydrocarbons and heavy metals are present in the hardly permeable layer or the hardly permeable layer. In the method for treating contaminated soil for purifying the contaminated soil contained in the treatment well, a treatment well is inserted into the hardly permeable layer or the hardly permeable layer, a refrigerant is injected into the treatment well, and the refrigerant is used to Forming a dome-like rigidity increasing region so as to surround the processing region by freezing pore water in the processing region surrounding the processing well and applying the expansion pressure of the processing region to the surrounding ground due to the freezing, and the processing After the frozen interstitial water has melted in the region, the pollutant is collected by passing or venting water into the treatment region, or the contaminant is removed by injecting a chemical solution through the treatment well. Nothing It is intended to reduction.

本発明に係る汚染土壌の処理方法は、粘土やシルトを主体とした難透水層又は難透気層内に含まれている揮発性有機塩素化合物、炭化水素、重金属等の汚染物質を浄化するものであって、公知の汚染浄化方法を実施する前に前処理として行うものであり、かかる本発明においては、まず、上述した難透水層又は難透気層に処理用井戸を貫入設置する。   The method for treating contaminated soil according to the present invention purifies contaminants such as volatile organic chlorine compounds, hydrocarbons and heavy metals contained in a hardly permeable layer or a hardly permeable layer mainly composed of clay and silt. In this invention, first, a processing well is inserted into the hardly water-permeable layer or the hardly air-permeable layer described above.

ここで、処理用井戸は、本発明の前処理が終了した後、揚水井あるいはガス吸引用井戸として用いることが可能であり、その場合には、例えばその下端近傍に透水孔や透気孔が形成されたストレーナ部を設けておく。   Here, the treatment well can be used as a pumping well or a gas suction well after the pretreatment of the present invention is completed. In that case, for example, a water-permeable hole or a gas-permeable hole is formed near the lower end of the well. Provided strainer section.

以下、かかるストレーナ部を設けることを前提として説明を続ける。なお、処理用井戸にストレーナ部を設けないのであれば、揚水井やガス吸引井あるいは注入井を別途設置すればよいことは言うまでもない。   Hereinafter, the description will be continued on the assumption that such a strainer portion is provided. Needless to say, if the strainer is not provided in the processing well, a pumping well, a gas suction well, or an injection well may be separately installed.

難透水層又は難透気層に処理用井戸を貫入設置したならば、次に、処理用井戸内に冷媒を注入する。   If the processing well is installed so as to penetrate into the hardly water-permeable layer or the hardly air-permeable layer, the refrigerant is then injected into the processing well.

冷媒を注入するにあたっては、貫入位置が飽和層であればストレーナ部から地下水が流入しているため、まず、気密性キャップを処理用井戸の頭部に取り付け、該気密性キャップに気密に貫入された空気圧送管を介して処理用井戸内に空気を圧入し、流入している地下水をストレーナ部を介して周辺地盤に押し戻す。   When injecting the refrigerant, if the intrusion position is a saturated layer, groundwater flows from the strainer part. First, an airtight cap is attached to the head of the treatment well, and the airtight cap is inserted airtightly. The air is pressed into the treatment well through the pneumatic pipe, and the flowing groundwater is pushed back to the surrounding ground through the strainer.

次いで、かかる状態で気密性キャップに同様に気密に貫入設置された冷媒管を介して冷媒を送り込む。このとき、送り込んだ冷媒がストレーナ部から周辺地盤に流出しないよう、空気圧送管に連通接続されたコンプレッサーを適宜制御する。   Next, in this state, the refrigerant is fed through the refrigerant pipe that is similarly installed in the airtight cap. At this time, the compressor connected to the pneumatic feed pipe is appropriately controlled so that the fed refrigerant does not flow out from the strainer portion to the surrounding ground.

このように処理用井戸内に冷媒を注入することで該処理用井戸を取り囲む処理領域内の間隙水を凍結させるとともに該凍結による処理領域の膨張圧を周辺地盤に作用させることでドーム状剛性増加領域を処理領域を取り囲むように形成する。   By injecting the coolant into the treatment well in this manner, the pore water in the treatment area surrounding the treatment well is frozen and the expansion pressure of the treatment area due to the freezing is applied to the surrounding ground to increase the dome-like rigidity. The region is formed so as to surround the processing region.

すなわち、処理用井戸内に冷媒を注入することにより、該冷媒によって処理用井戸を取り囲む難透水層又は難透気層からなる処理領域、言い換えれば浄化対象となる難透水層内の間隙水を凍結させ、該凍結による体積膨張によって、処理領域全体を膨張させて、その膨張圧を処理領域を取り囲む周辺地盤に作用させる。   That is, by injecting a refrigerant into the treatment well, the treatment area composed of a hardly permeable layer or a hardly permeable layer surrounding the treatment well by the refrigerant, in other words, the pore water in the hardly permeable layer to be purified is frozen. Then, the entire treatment region is expanded by the volume expansion due to the freezing, and the expansion pressure is applied to the surrounding ground surrounding the treatment region.

このようにすると、かかる膨張圧を受けた周辺地盤はやはり粘土やシルトを主体とした難透水層又は難透気層からなるため、かかる周辺地盤は、間隙水が押し出されて土粒子の骨格構造が変化し、剛性が向上したドーム状剛性増加領域となる。   In this way, since the surrounding ground subjected to such expansion pressure is also composed of a hardly permeable layer or a hardly permeable layer mainly composed of clay or silt, the surrounding ground is pushed out by pore water and the skeletal structure of the soil particles. Changes to become a dome-shaped rigidity increasing region with improved rigidity.

そして、かかる状態においては、周辺土圧は、剛性増加領域が主として負担し、その内側の処理領域にはほとんど及ばない。   In such a state, the surrounding earth pressure is mainly borne by the rigidity increasing region and hardly reaches the inner processing region.

したがって、処理領域が融解した後、体積膨張によって拡げられた処理領域内の間隙は、少なくとも融解直後に元の大きさに縮まることはなく、ドーム状剛性増加領域によって周辺土圧から守られる形で一定期間、その大きさを保持することとなり、難透水層又は難透気層からなる処理領域の透水性や透気性は、格段に向上する。   Therefore, after the treatment area is melted, the gap in the treatment area expanded by volume expansion does not shrink to the original size at least immediately after melting, and is protected from the surrounding earth pressure by the dome-like rigidity increasing area. The magnitude | size will be hold | maintained for a fixed period, and the water permeability and air permeability of the process area | region which consist of a hardly water-permeable layer or a hardly air-permeable layer improve markedly.

次に、かかる状態で処理領域内に通水又は通気を行うことにより、処理用井戸を介して汚染物質を回収し、又は処理用井戸を介して薬液注入を行うことにより、汚染物質を無害化する。   Next, in such a state, the pollutant is made harmless by collecting or polluting the pollutant through the treatment well by performing water flow or ventilation in the treatment area, or by injecting the chemical solution through the treatment well. To do.

なお、上述したように、処理用井戸にストレーナ部を設けず、揚水井やガス吸引井あるいは注入井を別途設置する場合には、かかる揚水井やガス吸引井を介して揚水やガス吸引を行い、あるいは注入井を介して薬液注入を行えばよい。   In addition, as described above, when a treatment well is not provided with a strainer part and a pumping well, a gas suction well, or an injection well is separately installed, pumping or gas suction is performed through the pumping well or the gas suction well. Alternatively, the chemical solution may be injected through an injection well.

処理用井戸内に冷媒を注入するにあたっては、該冷媒によって処理用井戸を取り囲むようにドーム状剛性増加領域が形成される限り、どのような注入の仕方でもかまわないが、処理領域内の間隙水を凍結させる際、凍結した処理領域の水平断面積が上方から下方に向けて大きくなるように冷媒を複数段階に分けて注入するようにすれば、ドーム状剛性増加領域を確実に形成することが可能となる。   In injecting the coolant into the treatment well, any injection method may be used as long as the dome-shaped rigidity increasing region is formed so as to surround the treatment well by the coolant. When the refrigerant is injected in a plurality of stages so that the horizontal cross-sectional area of the frozen processing region increases from the top to the bottom, the dome-like rigidity increasing region can be reliably formed. It becomes possible.

水平断面積が上方から下方に向けて大きくなるような具体的な形状としては、コーン型、釣り鐘型、ドーム型等が考えられる。   As a specific shape in which the horizontal cross-sectional area increases from the top to the bottom, a cone shape, a bell shape, a dome shape, or the like can be considered.

以下、本発明に係る汚染土壌の処理方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a method for treating contaminated soil according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

本実施形態に係る汚染土壌の処理方法は、粘土やシルトを主体とした難透水層又は難透気層内に含まれている揮発性有機塩素化合物、炭化水素、重金属等の汚染物質を浄化するものであって、公知の汚染浄化方法を実施する前に前処理として行うものであり、図1は、本実施形態に係る汚染土壌の処理方法を実施する手順を示したフローチャートである。   The method for treating contaminated soil according to this embodiment purifies contaminants such as volatile organic chlorine compounds, hydrocarbons, and heavy metals contained in a hardly permeable layer or a hardly permeable layer mainly composed of clay and silt. FIG. 1 is a flowchart showing a procedure for carrying out a contaminated soil treatment method according to the present embodiment.

同図でわかるように、本実施形態に係る汚染土壌の処理方法を用いて汚染物質を処理するには、まず、図2に示すように難透水層でもあり難透気層でもある汚染土壌1内の難透気透水層2に処理用井戸3を貫入設置する(ステップ101)。   As can be seen from FIG. 2, in order to treat a pollutant using the contaminated soil treatment method according to the present embodiment, first, as shown in FIG. 2, the contaminated soil 1 is both a hardly permeable layer and a hardly permeable layer. The processing well 3 is installed so as to penetrate into the hardly permeable air permeable layer 2 (step 101).

ここで、処理用井戸3は、透気孔を兼ねる透水孔4が形成されたストレーナ部5を下端近傍に設けてある。   Here, the processing well 3 is provided with a strainer portion 5 in which a water permeable hole 4 also serving as a gas permeable hole is formed in the vicinity of the lower end.

難透気透水層2に処理用井戸3を貫入設置したならば、次に、処理用井戸3内に液体窒素等の冷媒を注入する(ステップ102)。   If the processing well 3 is installed so as to penetrate the hardly air-permeable permeable layer 2, next, a coolant such as liquid nitrogen is injected into the processing well 3 (step 102).

ここで、処理用井戸3内にはストレーナ部5から地下水が流入しているため、冷媒を注入するにあたっては、まず、気密性キャップ6を処理用井戸3の頭部に取り付け、該気密性キャップに気密に貫入された空気圧送管7を介して処理用井戸3内に空気を圧入し、流入している地下水をストレーナ部5を介して周辺地盤に押し戻す。   Here, since groundwater flows into the processing well 3 from the strainer section 5, when injecting the refrigerant, first, the airtight cap 6 is attached to the head of the processing well 3, and the airtight cap is attached. The air is pressed into the treatment well 3 through the pneumatic feed pipe 7 which is airtightly inserted into the ground, and the groundwater flowing in is pushed back to the surrounding ground through the strainer section 5.

次いで、かかる状態で気密性キャップ6に同様に気密に貫入設置された冷媒管8を介して冷媒を送り込む。このとき、送り込んだ冷媒がストレーナ部5から周辺地盤に流出しないよう、空気圧送管7に連通接続されたコンプレッサー(図示せず)を適宜制御するのが望ましい。   Next, in this state, the refrigerant is fed into the airtight cap 6 through the refrigerant pipe 8 that is also installed in an airtight manner. At this time, it is desirable to appropriately control a compressor (not shown) connected to the pneumatic feed pipe 7 so that the fed refrigerant does not flow out from the strainer portion 5 to the surrounding ground.

すなわち、押し戻した地下水がストレーナ部5から再流入しないよう、かつ注入した冷媒がストレーナ部5から流出しないよう、処理用井戸3内の上方空間における空気圧を調整する。   That is, the air pressure in the upper space in the processing well 3 is adjusted so that the groundwater pushed back does not flow again from the strainer unit 5 and the injected refrigerant does not flow out of the strainer unit 5.

このようにすると、冷媒を周辺地盤に流出させることなく、後工程で回収することができる。なお、冷媒が周辺地盤に流出すること自体、何ら問題とはならないのであれば、上述した制御を行うかどうかは、回収の必要性に応じて決定すればよい。   In this way, the refrigerant can be recovered in a subsequent process without causing the refrigerant to flow out to the surrounding ground. Note that if the refrigerant itself does not cause any problem in the surrounding ground itself, whether or not to perform the above-described control may be determined according to the necessity of recovery.

図3は、冷媒を注入していく様子を示した図である。   FIG. 3 is a diagram showing a state of injecting the refrigerant.

同図でわかるように、本実施形態では、冷媒を複数段階に分けて注入する。すなわち、まず、同図(a)に示すように、冷媒注入量が地下水位より若干下がった位置になるように図示しない冷媒タンクから処理用井戸3内に冷媒11を注入することにより、処理用井戸3を取り囲む難透気透水層2内の間隙水を凍結させて1次凍結領域12を形成する。   As can be seen from the figure, in this embodiment, the refrigerant is injected in a plurality of stages. That is, first, as shown in FIG. 6A, the coolant 11 is injected into the processing well 3 from a coolant tank (not shown) so that the coolant injection amount is slightly lower than the groundwater level. The primary frozen region 12 is formed by freezing the pore water in the hardly permeable air permeable layer 2 surrounding the well 3.

次に、同図(b)に示すように冷媒11の液位をいったん下げることにより、1次凍結領域12のうち、底部近傍に拡がる難透気透水層2内の間隙水を凍結させて2次凍結領域13を形成し、これらをあらたな凍結領域14とする。   Next, as shown in FIG. 2B, once the liquid level of the refrigerant 11 is lowered, the interstitial water in the hardly permeable air permeable layer 2 spreading near the bottom in the primary freezing region 12 is frozen to 2 Next freezing regions 13 are formed, and these are designated as new freezing regions 14.

次に、同図(c)に示すように冷媒11の液位を再び地下水近傍まで上昇させることにより、凍結領域14の周囲に拡がる難透気透水層2内の間隙水を凍結させて3次凍結領域15を形成し、これらをあらたな凍結領域16とする。   Next, as shown in FIG. 3C, the liquid level of the refrigerant 11 is raised again to the vicinity of the groundwater, so that the interstitial water in the hardly permeable air permeable layer 2 spreading around the freezing region 14 is frozen to form the tertiary. Freezing regions 15 are formed, and these are used as new freezing regions 16.

次に、同図(d)に示すように冷媒11の液位をいったん下げることにより、凍結領域16のうち、底部近傍に拡がる難透気透水層2内の間隙水を凍結させて4次凍結領域17を形成し、これらをあらたな凍結領域18とする。   Next, as shown in FIG. 4 (d), by temporarily lowering the liquid level of the refrigerant 11, the interstitial water in the hardly permeable air permeable layer 2 spreading near the bottom in the freezing region 16 is frozen and quaternary frozen. Regions 17 are formed and these are designated as new frozen regions 18.

このように汚染物質の浄化対象である処理領域がドーム形状又は釣り鐘形状に凍結されるよう、上述した手順を必要なだけ繰り返す。本実施形態では、凍結領域18を処理領域18とする。   In this way, the above-described procedure is repeated as necessary so that the treatment area to be purified of contaminants is frozen into a dome shape or a bell shape. In the present embodiment, the frozen area 18 is a processing area 18.

このように処理用井戸3内に冷媒11を注入することで処理用井戸3を取り囲む難透気透水層からなる処理領域18内の間隙水を凍結させると、図4に示すように該凍結による体積膨張によって、処理領域18全体を膨張させ、その膨張圧を処理領域18を取り囲む周辺地盤に作用させることができる。   In this way, when the coolant 11 is injected into the processing well 3 to freeze the interstitial water in the processing region 18 composed of the hardly permeable air-permeable layer surrounding the processing well 3, as shown in FIG. By the volume expansion, the entire processing region 18 can be expanded, and the expansion pressure can be applied to the surrounding ground surrounding the processing region 18.

そして、ドーム状又は釣り鐘状の処理領域18から膨張圧を受けた難透気透水層である周辺地盤は、間隙水が押し出されて土粒子の骨格構造が変化し、剛性が向上したドーム状の剛性増加領域21となる。   And the surrounding ground which is the hardly air permeable permeation layer which has received the expansion pressure from the dome-shaped or bell-shaped processing region 18 has a dome-shaped structure in which pore water is pushed out and the skeletal structure of the soil particles is changed to improve rigidity. It becomes the rigidity increasing region 21.

このようにドーム状剛性増加領域21が形成されたならば、処理領域18を融解させる(ステップ103)。冷媒については、適当な時期に回収する。   If the dome-like rigidity increasing region 21 is formed in this way, the processing region 18 is melted (step 103). The refrigerant is collected at an appropriate time.

このようにすると、処理領域18内の土粒子間隙は、凍結による体積膨張によって元の大きさより大きくなっており、透水性及び透気性が大幅に向上している。加えて、周辺土圧は、剛性増加領域21が主として負担し、その内側の処理領域18にはほとんど及ばない。   In this way, the soil particle gap in the treatment region 18 is larger than the original size due to volume expansion due to freezing, and the water permeability and gas permeability are greatly improved. In addition, the peripheral earth pressure is mainly borne by the rigidity increasing region 21 and hardly reaches the inner processing region 18.

したがって、処理領域18が融解した後、体積膨張によって拡げられた処理領域18内の土粒子間隙は、少なくとも融解直後に元の大きさに縮まることはなく、ドーム状の剛性増加領域21によって周辺土圧から守られる形で一定期間、その大きさが保持される。   Therefore, after the processing region 18 melts, the soil particle gap in the processing region 18 expanded by volume expansion does not shrink to the original size at least immediately after melting, and the dome-shaped rigidity increasing region 21 surrounds the surrounding soil. The size is maintained for a certain period in a form that is protected from pressure.

次に、かかる状態で処理領域18内に通水又は通気を行うことにより、処理用井戸3を介して汚染物質が含まれた汚染地下水や汚染ガスを回収し、又は処理用井戸3を介して薬液注入を行うことにより、汚染物質を無害化する(ステップ104)。   Next, in such a state, by passing water or ventilating the processing region 18, the contaminated groundwater or contaminated gas containing the pollutant is recovered through the processing well 3, or through the processing well 3. By injecting the chemical solution, the pollutant is rendered harmless (step 104).

ここで、土粒子の骨格構造が変化することに伴い、剛性増加領域21の透水性及び透気性が大幅に低下している場合には、注水井あるいは空気注入井をそれらの下端に設けられたストレーナ部がドーム状の剛性増加領域21内に位置するように該剛性増加領域内に貫入配置すればよい。   Here, in the case where the water permeability and air permeability of the rigidity increasing region 21 are significantly reduced with the change in the skeleton structure of the soil particles, a water injection well or an air injection well is provided at the lower end thereof. What is necessary is just to penetrate and arrange | position in this rigidity increase area | region so that a strainer part may be located in the dome-shaped rigidity increase area | region 21. FIG.

以上説明したように、本実施形態に係る汚染土壌の処理方法によれば、汚染物質が含まれた難透気透水層2内の処理領域18をドーム状又は釣り鐘状に凍結させることでその周囲に剛性増加領域21を形成し、その後、処理領域18を融解させるようにしたので、処理領域18の透水性や透気性を大幅に向上させることが可能となり、通水洗浄、ガス吸引等、公知の汚染物質浄化方法を用いて、処理領域18内を浄化することが可能となる。   As described above, according to the method for treating contaminated soil according to the present embodiment, the treatment area 18 in the hardly permeable air permeable layer 2 containing the pollutant is frozen in a dome shape or a bell shape to surround it. Since the rigidity increasing region 21 is formed in the processing region 18 and then the processing region 18 is melted, the water permeability and gas permeability of the processing region 18 can be greatly improved. It becomes possible to purify the inside of the processing region 18 by using the pollutant purification method.

また、本実施形態に係る汚染土壌の処理方法によれば、処理領域18の凍結プロセスにおいて冷媒の液位を昇降させながら繰り返すことで、剛性増加領域21をドーム状又は釣り鐘状に形成することが可能となる。   Moreover, according to the processing method of the contaminated soil which concerns on this embodiment, in the freezing process of the process area | region 18, by repeating raising and lowering the liquid level of a refrigerant | coolant, the rigidity increase area | region 21 can be formed in a dome shape or a bell shape. It becomes possible.

そのため、剛性増加領域21はアーチ構造となって周辺から作用する土圧を支持し、その結果、内部の処理領域18には周辺土圧が作用せず、かくして融解後に間隙が元の大きさに縮まることはなく、透水性及び透気性が向上した状態を確実に保持することが可能となる。   Therefore, the rigidity increasing region 21 becomes an arch structure and supports the earth pressure acting from the periphery, and as a result, the surrounding earth pressure does not act on the internal treatment region 18, and thus the gap becomes the original size after melting. It does not shrink, and it is possible to reliably maintain a state where water permeability and air permeability are improved.

本実施形態では、剛性増加領域21の透水性及び透気性が大幅に低下していることに起因して通水や通気が困難となる場合、注水井あるいは空気注入井を事後的に剛性増加領域21内に貫入配置するようにしたが、これに代えて、かかる注水井や空気注水井を処理用井戸3とともに予め設置しておいてもかまわない。   In the present embodiment, when the water permeability and the air permeability become difficult due to the significant decrease in the water permeability and air permeability of the rigidity increasing region 21, the water injection well or the air injection well is subsequently replaced with the rigidity increasing region. However, instead of this, such a water injection well or an air injection well may be installed together with the processing well 3 in advance.

かかる場合には、注水井や空気注水井を処理用井戸と同様、冷媒を注入するための井戸として使用することができる。   In such a case, the water injection well or the air injection well can be used as a well for injecting a refrigerant, like the treatment well.

すなわち、例えば通水洗浄で汚染物質を浄化する場合、図5に示すように難透気透水層2内に2本の処理用井戸31a,31bを離間配置し、上述したと同様の手順で難透気透水層2を凍結させて処理領域32及び剛性増加領域33を形成し、しかる後、一方の処理用井戸31aを揚水井とし、他方の処理用井戸31bを注水井とすればよい。   That is, for example, in the case of purifying contaminants by washing with water, two treatment wells 31a and 31b are spaced apart from each other in the hardly permeable air permeable layer 2 as shown in FIG. The air-permeable permeable layer 2 is frozen to form the treatment region 32 and the rigidity increasing region 33, and then one treatment well 31a may be a pumping well and the other treatment well 31b may be a water injection well.

また、本実施形態では特に言及しなかったが、処理用井戸3を取り囲むようにして深さ方向に砂利、砕石等で構成された透水材(透気材)を充填するようにしてもよい。   Although not particularly mentioned in the present embodiment, a water-permeable material (air-permeable material) composed of gravel, crushed stone, or the like may be filled in the depth direction so as to surround the processing well 3.

かかる構成によれば、たとえ処理領域18内に難透気透水部が残ったとしても、処理領域18全体に滞留する汚染地下水や汚染ガスは、透水材を介して確実にストレーナ部5から回収することが可能となる。なお、透水材の間隙が地上に連通して空気や雨水が侵入することがないよう、ベントナイト、モルタル等を用いて透水材の上端を水密かつ気密に封じておくのが望ましい。   According to such a configuration, even if the hardly permeable and water-permeable portion remains in the processing region 18, the contaminated groundwater and the contaminated gas remaining in the entire processing region 18 are reliably recovered from the strainer portion 5 through the water-permeable material. It becomes possible. In addition, it is desirable that the upper end of the water-permeable material is sealed in a water-tight and air-tight manner using bentonite, mortar, or the like so that the gap between the water-permeable materials does not communicate with the ground.

また、本実施形態では、冷媒の高さを昇降させながら凍結領域をドーム状又は釣り鐘状に形成するようにしたが、これに代えて、冷媒の高さを不連続的に順次低下させながら凍結領域を形成するようにしてもよい。かかる場合、例えば冷媒を三段階に分けて順次低下させることが考えられる。   In this embodiment, the freezing region is formed in a dome shape or a bell shape while raising and lowering the height of the refrigerant. Instead of this, the freezing region is frozen while discontinuously decreasing the height of the refrigerant. A region may be formed. In such a case, for example, it is conceivable to gradually reduce the refrigerant in three stages.

かかる構成においても、凍結領域をドーム状又は釣り鐘状に形成することができる。   Even in such a configuration, the frozen region can be formed in a dome shape or a bell shape.

また、本実施形態及び変形例では、冷媒を複数段階に分けて注入するようにしたが、複数段階に分けて注入する、言い換えれば冷媒を不連続的に注入せずとも、例えば冷媒を連続的に低下させることによって、凍結領域をドーム状又は釣り鐘状に形成することができるのであれば、必ずしも複数段階に分けて冷媒を注入する必要はない。   In the present embodiment and the modification, the refrigerant is injected in a plurality of stages. However, the refrigerant is injected in a plurality of stages. In other words, the refrigerant is continuously injected without injecting the refrigerant discontinuously. If the freezing region can be formed in a dome shape or a bell shape by lowering to a low level, it is not always necessary to inject the refrigerant in a plurality of stages.

また、本実施形態では、処理用井戸3にストレーナ部5を形成することで、後工程で行う浄化作業で揚水井や吸引井として兼用できるようにしたが、地下水の流入量が多かったり、空気圧で押し戻すことが困難な場合には、かかる構成に代えて、外径が処理用井戸3の内径にほぼ等しいか、それよりも小さな径の孔無し冷媒注入管を別途用意し、該冷媒注入管を処理用井戸3内に挿入し、しかる後、冷媒注入管に冷媒を注入するようにしてもよい。かかる構成においては、冷媒は、間接的に処理用井戸3に注入されることになる。   In the present embodiment, the strainer portion 5 is formed in the processing well 3 so that it can be used as a pumping well or a suction well in a purification operation performed in a later process. In the case where it is difficult to push back in place, instead of such a configuration, a holeless refrigerant injection pipe having an outer diameter substantially equal to or smaller than the inner diameter of the processing well 3 is separately prepared, and the refrigerant injection pipe May be inserted into the processing well 3, and then the refrigerant may be injected into the refrigerant injection pipe. In such a configuration, the refrigerant is indirectly injected into the processing well 3.

本実施形態に係る汚染土壌の処理方法の実施手順を示したフローチャート。The flowchart which showed the implementation procedure of the processing method of the contaminated soil which concerns on this embodiment. 本実施形態に係る汚染土壌の処理方法を実施する処理システムを示した図。The figure which showed the processing system which implements the processing method of the contaminated soil which concerns on this embodiment. 本実施形態に係る汚染土壌の処理方法によって難透気透水層が凍結されていく手順を示した図。The figure which showed the procedure in which a hardly air permeable permeation layer is frozen by the processing method of the contaminated soil which concerns on this embodiment. 処理領域18と剛性増加領域21との関係を示した図。The figure which showed the relationship between the process area | region 18 and the rigidity increase area | region 21. FIG. 変形例に係る概略断面図。The schematic sectional drawing which concerns on a modification.

符号の説明Explanation of symbols

1 汚染土壌
2 難透気透水層(難透気層、難透水層)
3 処理用井戸
18 処理領域
21 剛性増加領域
1 Contaminated soil 2 Difficult-permeable permeable layer (Refractory permeable layer, Difficult-permeable layer)
3 treatment well 18 treatment area 21 rigidity increase area

Claims (2)

揮発性有機塩素化合物、炭化水素、重金属等の汚染物質が難透水層又は難透気層内に含まれている汚染土壌を浄化する汚染土壌の処理方法において、
前記難透水層又は難透気層に処理用井戸を貫入設置し、該処理用井戸内に冷媒を注入し、該冷媒によって前記処理用井戸を取り囲む処理領域内の間隙水を凍結させるとともに該凍結による前記処理領域の膨張圧を周辺地盤に作用させることでドーム状剛性増加領域を前記処理領域を取り囲むように形成し、前記処理領域内で凍結した間隙水が融解した後、前記処理領域内に通水又は通気を行うことにより前記汚染物質を回収し、又は前記処理用井戸を介して薬液注入を行うことにより前記汚染物質を無害化することを特徴とする汚染土壌の処理方法。
In the method for treating contaminated soil for purifying contaminated soil containing contaminants such as volatile organic chlorine compounds, hydrocarbons, heavy metals, etc. in the hardly permeable layer or hardly permeable layer,
A treatment well is inserted into the hardly water-permeable layer or the hardly air-permeable layer, a refrigerant is injected into the treatment well, and the pore water in the treatment region surrounding the treatment well is frozen by the refrigerant and the frozen By applying the expansion pressure of the treatment area to the surrounding ground, a dome-like rigidity increasing area is formed so as to surround the treatment area, and after the frozen pore water is melted in the treatment area, A method for treating contaminated soil, comprising collecting the pollutant by passing water or aeration, or detoxifying the pollutant by injecting a chemical solution through the treatment well.
前記処理領域内の間隙水を凍結させる際、凍結した処理領域の水平断面積が上方から下方に向けて大きくなるように前記冷媒を複数段階に分けて注入する請求項1記載の汚染土壌の処理方法。 2. The treatment of contaminated soil according to claim 1, wherein when the pore water in the treatment area is frozen, the refrigerant is injected in a plurality of stages so that a horizontal cross-sectional area of the frozen treatment area increases from above to below. Method.
JP2004269199A 2004-09-16 2004-09-16 Method for treating contaminated soil Withdrawn JP2006082008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269199A JP2006082008A (en) 2004-09-16 2004-09-16 Method for treating contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269199A JP2006082008A (en) 2004-09-16 2004-09-16 Method for treating contaminated soil

Publications (1)

Publication Number Publication Date
JP2006082008A true JP2006082008A (en) 2006-03-30

Family

ID=36160935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269199A Withdrawn JP2006082008A (en) 2004-09-16 2004-09-16 Method for treating contaminated soil

Country Status (1)

Country Link
JP (1) JP2006082008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079555B1 (en) 2009-01-29 2011-11-04 주식회사 장원 A Barrier System And Remediation Method Of Contaminated Soil Using Ground Freezing
WO2018126826A1 (en) * 2017-01-05 2018-07-12 中国矿业大学 Method using artificial freezing technique for sealed displacement of soil pollutant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079555B1 (en) 2009-01-29 2011-11-04 주식회사 장원 A Barrier System And Remediation Method Of Contaminated Soil Using Ground Freezing
WO2018126826A1 (en) * 2017-01-05 2018-07-12 中国矿业大学 Method using artificial freezing technique for sealed displacement of soil pollutant
US10654082B2 (en) 2017-01-05 2020-05-19 China University Of Mining And Technology Method using artificial freezing technique for sealing and displacement of soil pollutant

Similar Documents

Publication Publication Date Title
KR20030087915A (en) Method for purifying a layer of contaminated soil and apparatus
JP5205010B2 (en) In-situ purification method for contaminated groundwater
KR101691425B1 (en) Complex Purification System of Oil-polluted Underground Water by Physical and Chemical
JP4923472B2 (en) Water wash structure for contaminated soil and water wash method using the same
US7300227B2 (en) Recovery of non-aqueous phase liquids from ground sources
JP4010793B2 (en) How to repair contaminated soil
JP2006082008A (en) Method for treating contaminated soil
JP5063115B2 (en) How to remove pollutants from contaminated soil
JP2006043602A (en) Treatment system for contaminated soil
JP2004330084A (en) Method and equipment for contaminated-soil in situ treatment
JPH0994558A (en) Recovery device for contaminant in ground
JPH10258266A (en) Method for repairing original position of polluted ground and pollutant treatment apparatus
JP4480169B2 (en) Soil purification method
JP2007038183A (en) Soil cleaning method
JP2004313815A (en) Method and apparatus for cleaning polluted soil at site
JP2005074289A (en) Cleaning method for hardly-gas/water-permeable contaminated soil and system
JP2005185982A (en) Method and system for cleaning contaminated soil
JP5770976B2 (en) Soil purification method
JP4470449B2 (en) Purification method for contaminated clay soil
JP2005074297A (en) Cleaning method for hardly-gas/water-permeable contaminated soil and system
JP4292921B2 (en) Purification method and system for hardly air permeable and contaminated soil
JP2004154670A (en) Method for cleaning contaminated soil
JP4416535B2 (en) Purification method of soil with poor air permeability and permeability
JP4360157B2 (en) Purification method and system for hardly air permeable and contaminated soil
JP2005305311A (en) Early stabilization method of improper disposal site

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204