JP2006079932A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2006079932A
JP2006079932A JP2004262478A JP2004262478A JP2006079932A JP 2006079932 A JP2006079932 A JP 2006079932A JP 2004262478 A JP2004262478 A JP 2004262478A JP 2004262478 A JP2004262478 A JP 2004262478A JP 2006079932 A JP2006079932 A JP 2006079932A
Authority
JP
Japan
Prior art keywords
secondary battery
short
separator
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004262478A
Other languages
Japanese (ja)
Inventor
Yasushi Tsuchida
靖 土田
Hiroyuki Yagi
洋行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004262478A priority Critical patent/JP2006079932A/en
Publication of JP2006079932A publication Critical patent/JP2006079932A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery not generating thermal runaway even by temperature increase caused by overcharge or the like. <P>SOLUTION: The lithium ion secondary battery comprises a cathode plate 11 and an anode plate 12 facing each other with an inter-electrode separator 13 insulating them from each other, and a short circuit foil 14 is arranged so as to face the anode plate 12. The short circuit foil 14 is composed of a conductive member 34 and a resistant film 35 fitted to both surfaces of the conductive member. Further, a low-melting-point separator 15 having a melting point lower than that of the inter-electrode separator 13, insulating the anode plate 12 from the short-circuit foil 14 is arranged between them. The cathode plate 11 is electrically connected to the conductive member 34 of the short circuit foil 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,充放電可能なリチウムイオン二次電池に関する。さらに詳細には,正極板と負極板とを極間セパレータを挟んで捲回あるいは積層したリチウムイオン二次電池に関するものである。   The present invention relates to a chargeable / dischargeable lithium ion secondary battery. More specifically, the present invention relates to a lithium ion secondary battery in which a positive electrode plate and a negative electrode plate are wound or stacked with an inter-electrode separator interposed therebetween.

従来より,正極活物質が塗布された正極板と,負極活物質が塗布された負極板とを,極間セパレータを挟んで捲回あるいは積層した二次電池がある。特に,正極活物質にコバルト酸リチウム等を使用したリチウムイオン二次電池は,小型民生用として広く普及している。このリチウムイオン二次電池では,充放電により両極の活物質間でリチウムイオンが吸蔵されあるいは放出される。自動車用のリチウムイオン二次電池としては,一般に高容量・高出力の電池が用いられている。   Conventionally, there is a secondary battery in which a positive electrode plate coated with a positive electrode active material and a negative electrode plate coated with a negative electrode active material are wound or laminated with an interelectrode separator interposed therebetween. In particular, lithium ion secondary batteries that use lithium cobalt oxide or the like as the positive electrode active material are widely used for small consumer applications. In this lithium ion secondary battery, lithium ions are occluded or released between the active materials of both electrodes by charging and discharging. High-capacity, high-power batteries are generally used as lithium ion secondary batteries for automobiles.

このようなリチウムイオン二次電池では,充放電に伴って熱を発生する。特に,システム故障による過充電や不慮の事故による短絡故障等が発生した場合には,発熱反応により電池温度が大きく上昇するおそれがある。その温度上昇により極間セパレータが溶融あるいは変形して,図9に示すように,熱暴走を引き起こすおそれがあるという問題点があった。図9に示したのは,従来の二次電池を10Aの充電電流によって充電し続けた過充電試験の結果である。この図では,実線で示したのが温度の変化であり,その縦軸は左端側である。また,破線で示したのが電圧の変化であり,その縦軸は右端側である。この図に示すように,時刻t1において極間セパレータの溶融が始まり,温度が急上昇して時刻t2には熱暴走状態となった。   In such a lithium ion secondary battery, heat is generated along with charge and discharge. In particular, when an overcharge due to a system failure or a short-circuit failure due to an unexpected accident occurs, the battery temperature may increase significantly due to an exothermic reaction. As the temperature rises, the interelectrode separator melts or deforms, and there is a problem that thermal runaway may occur as shown in FIG. FIG. 9 shows the result of an overcharge test in which a conventional secondary battery is continuously charged with a charging current of 10A. In this figure, the solid line shows the temperature change, and the vertical axis is the left end side. A broken line indicates a change in voltage, and the vertical axis indicates the right end side. As shown in this figure, the separator between the electrodes began to melt at time t1, the temperature rose rapidly, and a thermal runaway state occurred at time t2.

これに対し,極間セパレータよりも低温で溶融する樹脂層を正負極間に設けた二次電池が提案されている(例えば,特許文献1,特許文献2参照。)。これらの二次電池によれば,極間セパレータが溶融あるいは変形するより前に,樹脂層が溶融して,この部分だけで内部短絡を発生させる。これにより,この部分から電池のエネルギーを放散して,電池が熱暴走反応へ至ることを抑制している。
特開2003−243037号公報 特開2003−338315号公報
On the other hand, a secondary battery in which a resin layer that melts at a lower temperature than the interelectrode separator is provided between the positive and negative electrodes has been proposed (see, for example, Patent Document 1 and Patent Document 2). According to these secondary batteries, the resin layer is melted before the separator between the electrodes is melted or deformed, and an internal short circuit is generated only at this portion. As a result, the energy of the battery is dissipated from this part, and the battery is prevented from reaching a thermal runaway reaction.
JP 2003-243037 A JP 2003-338315 A

しかしながら,前記した従来の二次電池では,樹脂層が溶融して内部短絡を発生させたとき,短絡箇所で局所的に急激に温度上昇するおそれがあった。特に,自動車用等の大型電池の場合や,熱の放散しにくい箇所で内部短絡させた場合には,その部分で発生した熱が周囲の温度をも急上昇させることとなる。その結果,局所的に熱暴走反応の活性化エネルギーを越えるおそれがあり,その場合には結局,熱暴走を引き起こすおそれがあるという問題点があった。   However, in the conventional secondary battery described above, when the resin layer melts and an internal short circuit is generated, there is a risk that the temperature rapidly increases locally at the short circuit point. In particular, in the case of a large battery for automobiles, or when an internal short circuit occurs at a location where heat is difficult to dissipate, the heat generated at that portion will rapidly increase the ambient temperature. As a result, there is a possibility that the activation energy of the thermal runaway reaction may be exceeded locally, and in that case, there is a possibility that the thermal runaway may eventually be caused.

本発明は,前記した従来の二次電池が有する問題点を解決するためになされたものである。すなわちその課題とするところは,過充電等による温度上昇時にも熱暴走反応を起こすことがないリチウムイオン二次電池を提供することにある。   The present invention has been made to solve the problems of the conventional secondary battery described above. That is, the problem is to provide a lithium ion secondary battery that does not cause a thermal runaway reaction even when the temperature rises due to overcharging or the like.

この課題の解決を目的としてなされた本発明のリチウムイオン二次電池は,第1極性電極と第2極性電極とを極間セパレータにより絶縁しつつ対面させてなるリチウムイオン二次電池であって,第1極性電極と対面する導電部材と,第1極性電極と導電部材との少なくとも一方の表面に設けられた抵抗皮膜と,第1極性電極と導電部材との間に設けられてこれらを絶縁するとともに,極間セパレータより低融点である低融点セパレータとを有し,第2極性電極と導電部材とが導通しているものである。   The lithium ion secondary battery of the present invention made for the purpose of solving this problem is a lithium ion secondary battery in which the first polarity electrode and the second polarity electrode are faced to each other while being insulated by an interelectrode separator, A conductive member facing the first polarity electrode, a resistance film provided on at least one surface of the first polarity electrode and the conductive member, and provided between the first polarity electrode and the conductive member to insulate them. In addition, a low melting point separator having a lower melting point than the interpolar separator is provided, and the second polar electrode and the conductive member are electrically connected.

本発明のリチウムイオン二次電池によれば,第2極性電極と導通されている導電部材と,第1極性電極との間に,低融点セパレータと抵抗皮膜とが設けられている。この低融点セパレータは極間セパレータより低融点であるので,過充電等によってリチウムイオン二次電池の内部温度が上昇した場合には,まず低融点セパレータが溶融する。低融点セパレータが溶融すると,第1極性電極と導電部材とが抵抗皮膜を介して導通する。従って,第1極性電極と第2極性電極とが抵抗皮膜を介して導通するので,短絡状態となるものの大電流が流れることは無い。すなわち,ゆっくりと電池のエネルギーを放出するので,さらなる内部温度の上昇が抑制される。これにより,過充電等による温度上昇時にも熱暴走反応を起こすことがないリチウムイオン二次電池となっている。   According to the lithium ion secondary battery of the present invention, the low melting point separator and the resistance film are provided between the conductive member connected to the second polarity electrode and the first polarity electrode. Since this low melting point separator has a lower melting point than the interelectrode separator, when the internal temperature of the lithium ion secondary battery rises due to overcharging or the like, the low melting point separator first melts. When the low melting point separator is melted, the first polarity electrode and the conductive member are conducted through the resistance film. Therefore, since the first polarity electrode and the second polarity electrode are conducted through the resistance film, a large current does not flow though a short-circuited state. That is, since the battery energy is slowly released, further increase in the internal temperature is suppressed. As a result, the lithium ion secondary battery does not cause a thermal runaway reaction even when the temperature rises due to overcharging or the like.

さらに本発明では,第1極性電極と第2極性電極と極間セパレータとを捲回してなる捲回構造であり,捲回の最内周部で第1極性電極が導電部材の両面に低融点セパレータを介して対面しており,導電部材の両表面に抵抗皮膜が設けられていることが望ましい。
このようにすれば,最も熱の溜まりやすい最内周部に低融点セパレータが設けられているので,低融点セパレータより先に極間セパレータが溶融するおそれはない。従って,より安全性の高いリチウムイオン二次電池となっている。さらに,この抵抗皮膜は第1極性電極と第2極性電極との間に設けられているものではないので,発電反応の障害とはならない。従って,抵抗皮膜によって電池性能が低下するおそれはない。
Furthermore, the present invention has a wound structure in which the first polarity electrode, the second polarity electrode, and the interelectrode separator are wound, and the first polarity electrode has a low melting point on both surfaces of the conductive member at the innermost periphery of the winding. It is desirable that they face each other via a separator, and resistance films are provided on both surfaces of the conductive member.
In this way, since the low melting point separator is provided in the innermost peripheral part where heat is most likely to accumulate, there is no possibility that the interelectrode separator will melt prior to the low melting point separator. Therefore, the lithium ion secondary battery has higher safety. Furthermore, since this resistance film is not provided between the first polarity electrode and the second polarity electrode, it does not hinder the power generation reaction. Therefore, there is no possibility that the battery performance is deteriorated by the resistance film.

さらに本発明では,複数枚の第1極性電極と複数枚の第2極性電極とを極間セパレータを介して積層してなる積層構造であり,第1極性電極が導電部材の両面に低融点セパレータを介して対面しており,導電部材の両表面に抵抗皮膜が設けられていることが望ましい。
このようにすれば,積層構造のリチウムイオン二次電池についても同様に,過充電等による温度上昇時にも熱暴走反応を起こすことがないリチウムイオン二次電池となっている。さらに,この抵抗皮膜は第1極性電極と第2極性電極との間に設けられているものではないので,発電反応の障害とはならない。従って,抵抗皮膜によって電池性能が低下するおそれはない。
Furthermore, in the present invention, a plurality of first polar electrodes and a plurality of second polar electrodes are laminated through interelectrode separators, and the first polar electrode is a low melting point separator on both surfaces of the conductive member. It is desirable that resistance films are provided on both surfaces of the conductive member.
In this way, the laminated lithium ion secondary battery is also a lithium ion secondary battery that does not cause a thermal runaway reaction even when the temperature rises due to overcharging or the like. Furthermore, since this resistance film is not provided between the first polarity electrode and the second polarity electrode, it does not hinder the power generation reaction. Therefore, there is no possibility that the battery performance is deteriorated by the resistance film.

本発明のリチウムイオン二次電池によれば,過充電等による温度上昇時にも熱暴走反応を起こすことがないリチウムイオン二次電池となっている。   The lithium ion secondary battery of the present invention is a lithium ion secondary battery that does not cause a thermal runaway reaction even when the temperature rises due to overcharging or the like.

「第1の形態」
以下,本発明を具体化した第1の形態について,添付図面を参照しつつ詳細に説明する。本形態は,リチウムイオンを吸蔵・放出する捲回型リチウムイオン二次電池に本発明を適用したものである。
"First form"
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a wound lithium ion secondary battery that occludes and releases lithium ions.

本形態の二次電池1は,図1と図2にその概略を示すように,捲回型のリチウムイオン二次電池である。図1は,捲回軸に垂直な方向の断面図である。図2は,二次電池1の主要部である捲回体を示したものである。この二次電池1は,図1に示すように,正極板11と負極板12とが極間セパレータ13を挟んで捲回されたものであり,その巻き中心に短絡箔14とそれを囲む低融点セパレータ15とが設けられている。さらに,正極板11に接続された正極端子21,負極板12に接続された負極端子22,短絡箔14に接続された短絡端子24を有している。図2に示すように,正極端子21と短絡端子24とは,その先端部において溶接等によって接続されている。   The secondary battery 1 of this embodiment is a wound lithium ion secondary battery, as schematically shown in FIGS. FIG. 1 is a cross-sectional view in a direction perpendicular to the winding axis. FIG. 2 shows a wound body that is a main part of the secondary battery 1. As shown in FIG. 1, the secondary battery 1 is formed by winding a positive electrode plate 11 and a negative electrode plate 12 with an inter-electrode separator 13 interposed therebetween, and a short-circuit foil 14 and a low-power surrounding the short-circuit foil 14 at the winding center. A melting point separator 15 is provided. Furthermore, it has a positive electrode terminal 21 connected to the positive electrode plate 11, a negative electrode terminal 22 connected to the negative electrode plate 12, and a short-circuit terminal 24 connected to the short-circuit foil 14. As shown in FIG. 2, the positive electrode terminal 21 and the short-circuit terminal 24 are connected by welding or the like at the tip portion.

正極板11は,アルミニウム箔等にコバルト酸リチウム等の正極活物質を塗布して帯状に形成されたものである。負極板12は,銅箔等に炭素材料等の負極活物質を塗布して帯状に形成されたものである。極間セパレータ13は,絶縁性で帯状の樹脂フィルム等であり,正極板11と負極板12とを電気的に分離している。これらはいずれも,一般的なリチウムイオン二次電池に使用されるものと同様である。なお,正極端子21および負極端子22には,活物質は塗布されていない。   The positive electrode plate 11 is formed in a strip shape by applying a positive electrode active material such as lithium cobalt oxide to an aluminum foil or the like. The negative electrode plate 12 is formed in a strip shape by applying a negative electrode active material such as a carbon material to a copper foil or the like. The inter-electrode separator 13 is an insulating band-shaped resin film or the like, and electrically separates the positive electrode plate 11 and the negative electrode plate 12. These are all the same as those used for general lithium ion secondary batteries. Note that no active material is applied to the positive terminal 21 and the negative terminal 22.

短絡箔14は,図1に示すように,アルミニウム箔等の導電部材34の両表面に抵抗皮膜35が設けられたものである。抵抗皮膜35としては,例えば,CuFeO2,NiO,Cr23等の金属酸化物による皮膜とすればよい。また,短絡箔14に設けられている短絡端子24は,導電部材34と共通の材質で形成され,導電部材34に直接に接続されている。この短絡端子24には抵抗皮膜35は設けられていない。低融点セパレータ15は,絶縁性を有する樹脂フィルム等であり,極間セパレータ13よりも低融点のものを用いる。例えば,80〜100℃程度で溶融する低分子量のポリエチレンフィルム等が好ましい。 As shown in FIG. 1, the short-circuit foil 14 has a resistance film 35 provided on both surfaces of a conductive member 34 such as an aluminum foil. As the resistance film 35, for example, a film made of a metal oxide such as CuFeO 2 , NiO, Cr 2 O 3 may be used. The short-circuit terminal 24 provided on the short-circuit foil 14 is formed of the same material as the conductive member 34 and is directly connected to the conductive member 34. The short-circuit terminal 24 is not provided with a resistance film 35. The low melting point separator 15 is an insulating resin film or the like, and has a lower melting point than the interelectrode separator 13. For example, a low molecular weight polyethylene film that melts at about 80 to 100 ° C. is preferable.

次に,この二次電池1の製造方法について説明する。まず,正極板11,負極板12,短絡箔14をそれぞれ製造する。正極板11と負極板12とについては,それぞれ一般的な方法で製造し,その端部付近にそれぞれ正極端子21と負極端子22とを接続する。これらの端子は,捲回したときに互いに重ならない位置に配置される。   Next, a method for manufacturing the secondary battery 1 will be described. First, the positive electrode plate 11, the negative electrode plate 12, and the short-circuit foil 14 are each manufactured. The positive electrode plate 11 and the negative electrode plate 12 are each manufactured by a general method, and a positive electrode terminal 21 and a negative electrode terminal 22 are connected in the vicinity of the end portions, respectively. These terminals are placed so that they do not overlap each other when wound.

また,短絡箔14は,金属酸化物等の微粒子を水または有機溶媒に分散させ,ディップコーティングまたはスピンコーティング等により導電部材34上に抵抗皮膜35を作製することにより製造する。あるいはこの抵抗皮膜35の作製は,CVDによってもよい。さらに,短絡箔14に短絡端子24を接続する。あるいは,導電部材34にあらかじめ短絡端子24を接続しておき,その後抵抗皮膜35を形成しても良い。この短絡箔14は,捲回芯と同等かやや小さく形成される。また,短絡端子24は,捲回したときに正極端子21と重なる位置に配置されるとよい。   The short-circuit foil 14 is manufactured by dispersing fine particles such as metal oxide in water or an organic solvent, and forming a resistive film 35 on the conductive member 34 by dip coating or spin coating. Alternatively, the resistance film 35 may be produced by CVD. Further, a short-circuit terminal 24 is connected to the short-circuit foil 14. Alternatively, the short-circuit terminal 24 may be connected to the conductive member 34 in advance, and then the resistance film 35 may be formed. This short-circuit foil 14 is formed to be equal to or slightly smaller than the wound core. Moreover, the short circuit terminal 24 is good to arrange | position in the position which overlaps with the positive electrode terminal 21, when winding.

次に,短絡箔14の両面に低融点セパレータ15を配置する。この低融点セパレータ15は短絡箔14より一回り大きく形成される。または,1枚の大きい低融点セパレータ15を2つ折りして,その間に短絡箔14を挟み込んでも良い。さらに,図3に示すように,低融点セパレータ15に挟まれた短絡箔14に負極板12を重ね,さらに,極間セパレータ13,正極板11,極間セパレータ13の順に重ね合わせる。これらを,短絡箔14が中心となるように,破線で示したように回転させて捲回する。これにより,捲回体の最内周には負極板12が配置され,その内周面は低融点セパレータ15を介して短絡箔14に対面する。   Next, low melting point separators 15 are disposed on both sides of the short-circuit foil 14. The low melting point separator 15 is formed to be slightly larger than the short-circuit foil 14. Alternatively, one large low melting point separator 15 may be folded in half, and the short-circuit foil 14 may be sandwiched therebetween. Further, as shown in FIG. 3, the negative electrode plate 12 is overlaid on the short-circuit foil 14 sandwiched between the low melting point separators 15, and the interelectrode separator 13, the positive electrode plate 11, and the interelectrode separator 13 are overlaid in this order. These are wound by rotating as indicated by the broken line so that the short-circuit foil 14 is at the center. Thereby, the negative electrode plate 12 is disposed on the innermost periphery of the wound body, and the inner peripheral surface thereof faces the short-circuit foil 14 through the low melting point separator 15.

次に,短絡端子24の端部を正極端子21の端部に溶接接続する。これにより,図2に示したような捲回体が完成する。さらに,この捲回体をケースに封入し,内部に電解液を注液して密封する。これにより,捲回型の二次電池1が製造される。   Next, the end of the short-circuit terminal 24 is welded to the end of the positive terminal 21. Thereby, the wound body as shown in FIG. 2 is completed. Further, the wound body is sealed in a case, and an electrolytic solution is injected inside and sealed. Thereby, the wound type secondary battery 1 is manufactured.

この二次電池1が過充電状態となると,発熱反応により,少しずつ二次電池1の内部温度が上昇する。このとき,熱の逃げにくい内周部が特に,温度が高くなりがちである。そしてその内周部が低融点セパレータ15の溶融温度に達すると,内周部に配置されている低融点セパレータ15の溶融あるいは変形が始まる。これにより,短絡箔14と負極板12とが部分的に接触する。   When the secondary battery 1 is overcharged, the internal temperature of the secondary battery 1 gradually increases due to an exothermic reaction. At this time, the temperature tends to be particularly high at the inner periphery where heat is difficult to escape. When the inner peripheral portion reaches the melting temperature of the low melting point separator 15, melting or deformation of the low melting point separator 15 disposed on the inner peripheral portion starts. Thereby, the short-circuit foil 14 and the negative electrode plate 12 are in partial contact.

このときには,内周部以外の部分の温度はほとんどが低融点セパレータ15の溶融温度以下である。このため,低融点セパレータ15よりも高融点の極間セパレータ13が変形あるいは溶融するおそれはない。短絡箔14にはその両表面に抵抗皮膜35が設けられているので,負極板12との接触部分に流れる電流はその抵抗皮膜35を通して流れることになる。よって,この電流は大電流とはならず,制限されたものとなる。従って,この短絡電流によって二次電池1が大きく温度上昇することはなく,熱暴走温度に到達するおそれはない。   At this time, the temperature of the portion other than the inner peripheral portion is almost equal to or lower than the melting temperature of the low melting point separator 15. For this reason, there is no possibility that the interpolar separator 13 having a higher melting point than that of the low melting separator 15 is deformed or melted. Since the short-circuit foil 14 is provided with the resistance film 35 on both surfaces thereof, the current flowing through the contact portion with the negative electrode plate 12 flows through the resistance film 35. Therefore, this current does not become a large current but is limited. Therefore, the secondary battery 1 is not greatly increased in temperature by this short-circuit current, and there is no possibility of reaching the thermal runaway temperature.

次に,短絡箔14に形成する抵抗皮膜35の皮膜抵抗の大きさについて説明する。上記のように動作するために,抵抗皮膜35の皮膜抵抗Rは,下記の下限抵抗Raと上限抵抗Rbとの間の範囲内となるように設定する必要がある。皮膜抵抗Rの下限抵抗Raは,短絡部分の発熱限界によって決まる。皮膜抵抗Rが小さすぎると,その部分に流れる短絡電流が大きく,発熱量が大きくなるため不適切である。また,皮膜抵抗Rの上限抵抗Rbは,充電電流によって決まる。皮膜抵抗Rが大きすぎると,短絡部分から放電される電流より,充電電流の方が大きくなるため過充電が止まらないので不適切である。   Next, the magnitude of the film resistance of the resistance film 35 formed on the short-circuit foil 14 will be described. In order to operate as described above, the film resistance R of the resistance film 35 needs to be set so as to be within a range between the lower limit resistance Ra and the upper limit resistance Rb described below. The lower limit resistance Ra of the film resistance R is determined by the heat generation limit of the short circuit portion. If the film resistance R is too small, the short-circuit current flowing in that portion is large and the amount of heat generation is large, which is inappropriate. Further, the upper limit resistance Rb of the film resistance R is determined by the charging current. If the film resistance R is too large, the charging current is larger than the current discharged from the short-circuited portion, so that overcharging does not stop and is inappropriate.

下限抵抗Raは,以下のようにして求められる。まず,正極活物質の熱容量をA,短絡時のセル温度と熱暴走温度との差をΔK,短絡時の電圧をV,短絡部分の面積をS,短絡部分に流れる電流をIaとおく。発熱限界の条件は,熱容量Aに電力(V・Ia)を加えた場合の温度上昇がΔKより小さければよい。従って,次式のように表される。
ΔK>(V・Ia)/A
ここで,Ia=V/(Ra/S)なので,
ΔK>V2/(A・Ra/S)
従って,
Ra>V2・S/(ΔK・A) …(式1)
The lower limit resistance Ra is obtained as follows. First, A is the heat capacity of the positive electrode active material, ΔK is the difference between the cell temperature and the thermal runaway temperature during short circuit, V is the voltage during short circuit, S is the area of the short circuit part, and Ia is the current flowing through the short circuit part. The heat generation limit may be as long as the temperature rise when power (V · Ia) is added to the heat capacity A is smaller than ΔK. Therefore, it is expressed as
ΔK> (V · Ia) / A
Here, since Ia = V / (Ra / S),
ΔK> V 2 / (A · Ra / S)
Therefore,
Ra> V 2 · S / (ΔK · A) (Formula 1)

上限抵抗Rbは,以下のようにして求められる。まず,充電電流をI,短絡部分に流れる電流をIb,短絡部分の面積をS,短絡時の電圧をVとおく。過充電が止まるための条件は,短絡電流Ibが充電電流Iよりも大きいことである。従って,次式のように表される。
Ib>I
ここで,Ib=V/(Rb/S)なので,
I<V/(Rb/S)
従って,
Rb<(V・S)/I …(式2)
The upper limit resistance Rb is obtained as follows. First, the charging current is I, the current flowing through the short-circuited portion is Ib, the area of the short-circuited portion is S, and the voltage at the time of the short-circuit is V. The condition for stopping the overcharge is that the short-circuit current Ib is larger than the charge current I. Therefore, it is expressed as
Ib> I
Here, since Ib = V / (Rb / S),
I <V / (Rb / S)
Therefore,
Rb <(V · S) / I (Formula 2)

式1と式2とから皮膜抵抗Rの範囲は次式で表される。
2・S/(ΔK・A)<R<(V・S)/I …(式3)
この式3に,各数値を入力することにより,皮膜抵抗Rの範囲が求められる。この範囲内の皮膜抵抗が得られるように,短絡箔14に形成する皮膜の材質や厚さが選択されればよい。
From Equation 1 and Equation 2, the range of film resistance R is expressed by the following equation.
V 2 · S / (ΔK · A) <R <(V · S) / I (Formula 3)
The range of the film resistance R can be obtained by inputting each numerical value into Equation 3. The material and thickness of the film formed on the short-circuit foil 14 may be selected so that the film resistance within this range can be obtained.

例えば,充電電流I=10A,短絡部分の面積S=1cm2,短絡時の電圧V=5V,正極活物質の熱容量A=0.8J/Kとする。ここでは,短絡部分のジュール熱の100%が1gの正極活物質に吸収されるとしている。また,熱暴走温度を200℃,短絡時のセル温度を50℃とすると,温度差ΔK=150℃となる。これらを上記の式3に代入することにより,この場合に要求される皮膜抵抗Rの範囲は以下のようになる。
0.2<R<0.5 (Ω・cm2
For example, a charging current I = 10 A, a short-circuit area S = 1 cm 2 , a short-circuit voltage V = 5 V, and a positive electrode active material heat capacity A = 0.8 J / K. Here, 100% of the Joule heat in the short-circuit portion is absorbed by 1 g of the positive electrode active material. If the thermal runaway temperature is 200 ° C. and the cell temperature at the time of short circuit is 50 ° C., the temperature difference ΔK = 150 ° C. By substituting these into Equation 3 above, the range of film resistance R required in this case is as follows.
0.2 <R <0.5 (Ω · cm 2 )

短絡箔14として,Cr23をコーティングしたアルミニウム箔を使用した場合の,膜厚と抵抗および過充電試験の結果の関係を,図4と図5とに示す。皮膜の膜厚が大きくなるにつれて,図5に示すようにその抵抗値は上昇する。図4に示した5種類の膜厚での試験では,皮膜抵抗が0.22,0.33,0.54(Ω・cm2)の3種類のもので熱暴走せずに温度や電圧が低下して安全な状態とすることができた。これらの実験からも上記の皮膜抵抗Rの範囲は,ほぼ妥当なものであると考えられる。 FIG. 4 and FIG. 5 show the relationship between the film thickness, the resistance, and the result of the overcharge test when an aluminum foil coated with Cr 2 O 3 is used as the short-circuit foil 14. As the film thickness increases, the resistance value increases as shown in FIG. In the test with five film thicknesses shown in FIG. 4, the film resistance is 0.22, 0.33, 0.54 (Ω · cm 2 ), and the temperature and voltage can be controlled without thermal runaway. It was able to fall and be in a safe state. From these experiments, the range of the film resistance R is considered to be almost appropriate.

さらに,本形態の二次電池1について過充電試験を行った結果を図6に示す。ここでは,正極板11の正極活物質がLiNiO2,負極板12の負極活物質が黒鉛,極間セパレータ13がポリプロピレン(PP)であり,電解液が有機溶媒系の10Ah級セル(容積300ml)を利用した。さらに,短絡箔14としてCr23を2.5μm厚にコーティングしたアルミニウム箔,低融点セパレータ15としてポリエチレン(PE)を使用した。実験条件としては,温度25℃の環境で,電流10AによるCC充電を行った。この図においても図9と同様に,実線で示したのが温度の変化であり,その縦軸は左端側である。また,破線で示したのが電圧の変化であり,その縦軸は右端側である。 Furthermore, the result of having performed the overcharge test about the secondary battery 1 of this form is shown in FIG. Here, the positive electrode active material of the positive electrode plate 11 is LiNiO 2 , the negative electrode active material of the negative electrode plate 12 is graphite, the interelectrode separator 13 is polypropylene (PP), and the electrolyte is an organic solvent-based 10 Ah class cell (volume 300 ml). Was used. Further, an aluminum foil coated with Cr 2 O 3 to a thickness of 2.5 μm was used as the short-circuit foil 14, and polyethylene (PE) was used as the low melting point separator 15. As experimental conditions, CC charging was performed at a current of 10 A in an environment of a temperature of 25 ° C. Also in this figure, as in FIG. 9, the solid line shows the change in temperature, and the vertical axis is the left end side. A broken line indicates a change in voltage, and the vertical axis indicates the right end side.

この二次電池1では,図6に示すように,時刻tにおいて低融点セパレータ15の溶融が始まり,短絡箔14と負極板12との短絡が生じた。そのため,一時的にさらに温度上昇するものの,後には電圧・温度ともにほぼ一定の状態となった。図9と比較すれば分かるように,時刻tは,時刻t1より早く,極間セパレータ13よりも低い温度で低融点セパレータ15の溶融が始まっていることが分かる。さらに,短絡箔14を介してゆっくり放電されるので,充電電流を流し続けても熱暴走反応へは至らない。   In the secondary battery 1, as shown in FIG. 6, the melting of the low melting point separator 15 started at time t, and a short circuit between the short-circuit foil 14 and the negative electrode plate 12 occurred. As a result, although the temperature rose temporarily, both voltage and temperature became almost constant later. As can be seen from the comparison with FIG. 9, it can be seen that the melting of the low melting point separator 15 starts at the time t earlier than the time t <b> 1 and at a temperature lower than that of the interelectrode separator 13. Furthermore, since the battery is slowly discharged through the short-circuit foil 14, the thermal runaway reaction does not occur even if the charging current continues to flow.

以上詳細に説明したように本形態の二次電池1によれば,短絡箔14と低融点セパレータ15とを有しているので,熱暴走温度に達する前にまず低融点セパレータ15が溶融する。そして,短絡箔14と負極板12が部分的に短絡し,短絡箔14を介して正極板11と負極板12とが短絡する。短絡箔14には抵抗皮膜35が形成されているので,短絡電流はある程度以上大きくなることはない。従って,過充電等による温度上昇時にも熱暴走反応を起こすことがないリチウムイオン二次電池となっている。   As described in detail above, according to the secondary battery 1 of the present embodiment, since the short-circuit foil 14 and the low melting point separator 15 are provided, the low melting point separator 15 is first melted before reaching the thermal runaway temperature. Then, the short-circuit foil 14 and the negative electrode plate 12 are partially short-circuited, and the positive electrode plate 11 and the negative electrode plate 12 are short-circuited via the short-circuit foil 14. Since the resistance film 35 is formed on the short-circuit foil 14, the short-circuit current does not increase to some extent. Therefore, the lithium ion secondary battery does not cause a thermal runaway reaction even when the temperature rises due to overcharging or the like.

さらに,本形態の二次電池1では,短絡箔14と低融点セパレータ15とが二次電池1の最内周部に設けられている。この最内周部は最も熱の溜まりやすい位置であり,この位置に配置された低融点セパレータ15が溶融するより先に,他の部分の極間セパレータ13が溶融するおそれはない。また,短絡箔14の配置は,正極板11と負極板12との間ではないので,二次電池1の発電反応に対する障害とはならない。従って,短絡箔14によって電池性能が低下することはない。   Further, in the secondary battery 1 of this embodiment, the short-circuit foil 14 and the low melting point separator 15 are provided on the innermost peripheral portion of the secondary battery 1. The innermost peripheral portion is a position where heat is most likely to accumulate, and there is no possibility that the inter-electrode separator 13 in the other portion is melted before the low melting point separator 15 disposed at this position is melted. Further, since the arrangement of the short-circuit foil 14 is not between the positive electrode plate 11 and the negative electrode plate 12, it does not become an obstacle to the power generation reaction of the secondary battery 1. Therefore, the battery performance is not deteriorated by the short-circuit foil 14.

「第2の形態」
以下,本発明を具体化した第2の形態について,添付図面を参照しつつ詳細に説明する。本形態は,リチウムイオンを吸蔵・放出する積層型リチウムイオン二次電池に本発明を適用したものである。第1の形態のように捲回する代わりに,各層を積層して構成された二次電池である。第1の形態と共通する部材については,同じ符号を付して説明を省略する。
"Second form"
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a stacked lithium ion secondary battery that occludes and releases lithium ions. Instead of winding as in the first embodiment, the secondary battery is formed by stacking layers. About the member which is common in the 1st form, the same numerals are attached and explanation is omitted.

本形態の二次電池2は,図7と図8に示すように,積層型のリチウムイオン二次電池である。図7は,二次電池2の主要部である電極体を示し,図8は,図7の各層の間を大きく示したものである。この二次電池2は,所定の形状の複数の正極板11や負極板12が,それぞれ間に極間セパレータ13を挟んで交互に積層されている。さらに,積層方向の中心付近には,短絡箔14が積層されている。短絡箔14の両面には低融点セパレータ15が配置され,さらにその外側には負極板12が配置されている。   As shown in FIGS. 7 and 8, the secondary battery 2 of this embodiment is a stacked lithium ion secondary battery. FIG. 7 shows an electrode body which is a main part of the secondary battery 2, and FIG. 8 shows a large space between the layers in FIG. In the secondary battery 2, a plurality of positive plates 11 and negative plates 12 having a predetermined shape are alternately stacked with inter-electrode separators 13 interposed therebetween. Further, a short-circuit foil 14 is laminated near the center in the laminating direction. Low melting point separators 15 are disposed on both surfaces of the short-circuit foil 14, and the negative electrode plate 12 is disposed on the outer side thereof.

また,各正極板11には正極端子21が,各負極板12には負極端子22が接続されている。短絡箔14は,第1の形態と同様に導電部材34に抵抗皮膜35が形成され,短絡端子24が接続されている。各正極板11の正極端子11と短絡箔14の短絡端子24とは,互いに溶接接続されている。また,各負極板12の負極端子22は,互いに溶接接続されている。これにより,第1の形態の二次電池1と同様に,充放電可能な二次電池2となっている。   Each positive electrode plate 11 is connected to a positive electrode terminal 21, and each negative electrode plate 12 is connected to a negative electrode terminal 22. As in the first embodiment, the short-circuit foil 14 has a resistance film 35 formed on a conductive member 34 and a short-circuit terminal 24 connected thereto. The positive electrode terminal 11 of each positive electrode plate 11 and the short-circuit terminal 24 of the short-circuit foil 14 are connected to each other by welding. The negative terminals 22 of the negative plates 12 are connected to each other by welding. Thereby, it becomes the secondary battery 2 which can be charged / discharged similarly to the secondary battery 1 of a 1st form.

本形態の二次電池2においても,過充電状態が続くと中心付近から次第に温度上昇する。そして,低融点セパレータ15の溶融温度に達すると,低融点セパレータ15が変形あるいは溶融し,短絡箔14と負極板12とが部分的に短絡する。さらに,短絡箔14を介して,負極板12と正極板11とが部分的に接触する。ここで,短絡箔14には抵抗皮膜35が形成されているので,短絡電流はあまり大きくならない。従って,急激な温度上昇や,部分的な温度上昇のおそれはなく,熱暴走温度に至ることはない。   Also in the secondary battery 2 of this embodiment, when the overcharge state continues, the temperature gradually increases from the vicinity of the center. When the melting temperature of the low melting point separator 15 is reached, the low melting point separator 15 is deformed or melted, and the short-circuit foil 14 and the negative electrode plate 12 are partially short-circuited. Furthermore, the negative electrode plate 12 and the positive electrode plate 11 are in partial contact via the short-circuit foil 14. Here, since the resistance film 35 is formed on the short-circuit foil 14, the short-circuit current is not so large. Therefore, there is no risk of sudden temperature rise or partial temperature rise, and thermal runaway temperature is not reached.

以上詳細に説明したように本形態の二次電池2によっても,過充電等による温度上昇時にも熱暴走反応を起こすことがないリチウムイオン二次電池となっている。   As described in detail above, the secondary battery 2 of this embodiment is a lithium ion secondary battery that does not cause a thermal runaway reaction even when the temperature rises due to overcharging or the like.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,短絡箔14は必ずしも1箇所に限らず,複数箇所に挿入されても良い。
また例えば,各端子の配置や形状等は上記の各形態に限るものではない。捲回軸に対して両端側に両極端子がそれぞれ配置されているものでもよい。また,捲回型の二次電池1においても,正極端子21や負極端子22は正極板11や負極板12の複数箇所に接続されているものでも良い。
また例えば,短絡箔14の短絡端子24と正極端子21との接続方法は溶接に限らず,電気的に接続されていればよい。
また例えば,短絡箔14が負極板12と接続されていても良い。その場合には,短絡箔14と正極板11との間に低融点セパレータ15を配置する。
また例えば,上記の各形態に記載した各部材の材質はいずれも一例であり,他の材質に置き換えることも可能である。低融点セパレータ15と極間セパレータ13とを同じ物質で分子量のみの異なるもので形成することもできる。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, the short-circuit foil 14 is not necessarily limited to one place, and may be inserted into a plurality of places.
Further, for example, the arrangement and shape of each terminal are not limited to the above embodiments. A bipolar terminal may be disposed on both ends of the winding axis. Also in the wound secondary battery 1, the positive electrode terminal 21 and the negative electrode terminal 22 may be connected to a plurality of locations on the positive electrode plate 11 and the negative electrode plate 12.
Further, for example, the connection method between the short-circuit terminal 24 and the positive electrode terminal 21 of the short-circuit foil 14 is not limited to welding, and may be electrically connected.
For example, the short-circuit foil 14 may be connected to the negative electrode plate 12. In that case, a low melting point separator 15 is disposed between the short-circuit foil 14 and the positive electrode plate 11.
Further, for example, the material of each member described in each of the above embodiments is only an example and can be replaced with another material. The low melting point separator 15 and the interelectrode separator 13 may be formed of the same substance but different in molecular weight only.

第1の形態の二次電池を示す断面図である。It is sectional drawing which shows the secondary battery of a 1st form. 第1の形態の二次電池を示す斜視図である。It is a perspective view which shows the secondary battery of a 1st form. 第1の形態の二次電池を製造する方法を示す説明図である。It is explanatory drawing which shows the method of manufacturing the secondary battery of a 1st form. 短絡箔の膜厚を変えて行った過充電試験の結果を示す説明図である。It is explanatory drawing which shows the result of the overcharge test done by changing the film thickness of a short circuit foil. 短絡箔の膜厚と抵抗との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of a short circuit foil, and resistance. 第1の形態の二次電池による過充電試験の結果を示すグラフである。It is a graph which shows the result of the overcharge test by the rechargeable battery of the 1st form. 第2の形態の二次電池を示す斜視図である。It is a perspective view which shows the secondary battery of a 2nd form. 第2の形態の二次電池を製造する方法を示す説明図である。It is explanatory drawing which shows the method of manufacturing the secondary battery of a 2nd form. 従来の二次電池による過充電試験の結果を示すグラフである。It is a graph which shows the result of the overcharge test by the conventional secondary battery.

符号の説明Explanation of symbols

1,2 二次電池(リチウムイオン二次電池)
11 正極板(第1極性電極,第2極性電極)
12 負極板(第1極性電極,第2極性電極)
13 極間セパレータ
15 低融点セパレータ
34 導電部材
35 抵抗皮膜
1, 2 Secondary battery (Lithium ion secondary battery)
11 Positive plate (first polarity electrode, second polarity electrode)
12 Negative electrode (first polarity electrode, second polarity electrode)
13 Electrode separator 15 Low melting point separator 34 Conductive member 35 Resistance film

Claims (3)

第1極性電極と第2極性電極とを極間セパレータにより絶縁しつつ対面させてなるリチウムイオン二次電池において,
第1極性電極と対面する導電部材と,
第1極性電極と前記導電部材との少なくとも一方の表面に設けられた抵抗皮膜と,
第1極性電極と前記導電部材との間に設けられてこれらを絶縁するとともに,前記極間セパレータより低融点である低融点セパレータとを有し,
第2極性電極と前記導電部材とが導通していることを特徴とするリチウムイオン二次電池。
In a lithium ion secondary battery in which a first polarity electrode and a second polarity electrode are faced to each other while being insulated by an interelectrode separator,
A conductive member facing the first polarity electrode;
A resistance film provided on at least one surface of the first polarity electrode and the conductive member;
A low melting point separator that is provided between the first polar electrode and the conductive member to insulate them and has a lower melting point than the interelectrode separator;
A lithium ion secondary battery, wherein the second polarity electrode is electrically connected to the conductive member.
請求項1に記載するリチウムイオン二次電池において,
前記第1極性電極と前記第2極性電極と前記極間セパレータとを捲回してなる捲回構造であり,
捲回の最内周部で前記第1極性電極が前記導電部材の両面に前記低融点セパレータを介して対面しており,
前記導電部材の両表面に抵抗皮膜が設けられていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
A wound structure formed by winding the first polarity electrode, the second polarity electrode, and the inter-electrode separator;
The first polar electrode is opposed to both surfaces of the conductive member through the low melting point separator at the innermost periphery of the winding,
A lithium ion secondary battery, wherein resistance films are provided on both surfaces of the conductive member.
請求項1に記載するリチウムイオン二次電池において,
複数枚の第1極性電極と複数枚の第2極性電極とを極間セパレータを介して積層してなる積層構造であり,
第1極性電極が前記導電部材の両面に前記低融点セパレータを介して対面しており,
前記導電部材の両表面に抵抗皮膜が設けられていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
A laminated structure in which a plurality of first polar electrodes and a plurality of second polar electrodes are laminated via an inter-electrode separator;
The first polar electrode faces both surfaces of the conductive member via the low melting point separator;
A lithium ion secondary battery, wherein resistance films are provided on both surfaces of the conductive member.
JP2004262478A 2004-09-09 2004-09-09 Lithium ion secondary battery Pending JP2006079932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262478A JP2006079932A (en) 2004-09-09 2004-09-09 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262478A JP2006079932A (en) 2004-09-09 2004-09-09 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006079932A true JP2006079932A (en) 2006-03-23

Family

ID=36159210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262478A Pending JP2006079932A (en) 2004-09-09 2004-09-09 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006079932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198591A (en) * 2007-01-16 2008-08-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2012138287A (en) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd Battery
US9768433B2 (en) 2014-10-21 2017-09-19 Ford Global Technologies, Llc Multi-layered terminal having thermal fuse for a traction battery cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198591A (en) * 2007-01-16 2008-08-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8673498B2 (en) 2007-01-16 2014-03-18 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2012138287A (en) * 2010-12-27 2012-07-19 Mitsubishi Heavy Ind Ltd Battery
US9768433B2 (en) 2014-10-21 2017-09-19 Ford Global Technologies, Llc Multi-layered terminal having thermal fuse for a traction battery cell

Similar Documents

Publication Publication Date Title
JP7041810B2 (en) Battery module with a structure that breaks the connector using venting gas
US7931980B2 (en) Electrode assembly and rechargeable battery using the same
JP5355532B2 (en) Secondary battery and battery pack using the same
JP5186529B2 (en) Lithium secondary battery
EP2293367B1 (en) Rechargeable secondary battery having improved safety against puncture and collapse
EP1998401B1 (en) Electrode assembley and secondary battery using the same
JP6812144B2 (en) Battery cell
JP6780109B2 (en) Battery module and battery pack with improved safety
JP2004119383A (en) Electrode assembly of lithium ion battery, and lithium ion battery using it
JP5400013B2 (en) Electrode group and secondary battery using the same
JP2015511060A (en) Secondary battery, secondary battery component applied to the secondary battery, and secondary battery manufacturing method
KR101766047B1 (en) Battery Cell
JP5314665B2 (en) battery
CN110050362B (en) Pouch type secondary battery
KR102292159B1 (en) Pouch Type Lithium Secondary Battery comprising Electrode Lead using Electric-Conductive Polymer
KR20180058370A (en) Electrode Assembly Comprising Separator Having Insulation-enhancing Part Formed on Edge Portion of Electrode
KR101935229B1 (en) Lithium secondary battery
JP2019139844A (en) Laminate type battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
KR101243550B1 (en) Secondary battery improved safety characteristic using fixing element
JP2006079932A (en) Lithium ion secondary battery
KR20140137603A (en) Pouch type battery case
US11431046B2 (en) Lithium-ion cell using aluminum can
KR20120130557A (en) Electrode Assembly of Improved Safety And Secondary Battery with the Same
KR101641621B1 (en) Secondary electric cell and battery pack with enhanced safety