JP2006078092A - Air cycle air conditioning system - Google Patents

Air cycle air conditioning system Download PDF

Info

Publication number
JP2006078092A
JP2006078092A JP2004263141A JP2004263141A JP2006078092A JP 2006078092 A JP2006078092 A JP 2006078092A JP 2004263141 A JP2004263141 A JP 2004263141A JP 2004263141 A JP2004263141 A JP 2004263141A JP 2006078092 A JP2006078092 A JP 2006078092A
Authority
JP
Japan
Prior art keywords
air
expansion turbine
temperature
passage
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263141A
Other languages
Japanese (ja)
Inventor
Seiji Yamashita
誠二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2004263141A priority Critical patent/JP2006078092A/en
Publication of JP2006078092A publication Critical patent/JP2006078092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air cycle air conditioning system capable of improving freezing capability by raising the expansion ratio of an expansion turbine while preventing icing of drain. <P>SOLUTION: This system comprises the expansion turbine 20 expanding air A in the atmosphere, a compressor 21 compressing and discharging low-temperature air A1 from the expansion turbine 20, a heat exchanger 22 performing heat exchange between the low-temperature air A1 and air-conditioning air A2, and an exhaust and supply passage 16 supplying a part EA1 of exhaust air EA from the compressor 21 to the expansion turbine 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空調システムに関し、詳しくは車両の客室のような室内を冷房するのに適した空気サイクル空調システムに関する。   The present invention relates to an air conditioning system, and more particularly to an air cycle air conditioning system suitable for cooling a room such as a vehicle cabin.

昨今、車両の客室のような室内を冷房する空調システムを構成する冷凍機には、温暖化防止のため、従来のフロンの代わりに炭化水素や空気が作動流体(冷媒)として使われている。特に、空気は大気中から容易に取り込めることから、この種空調システムでは、この空気を作動流体とした冷凍機が多用されている。例えば、タービンと、タービンからの低温空気を圧縮して排出する圧縮機と、熱交換器とからなる冷凍機を備えた空気サイクル空調システムにおいて、室内からの換気を熱交換器で低温空気と熱交換して室内の空調を行い、冷凍能力を向上させるために熱交換器に水を噴霧するものがある(例えば特許文献1参照)。
米国特許4015438号公報
In recent years, hydrocarbons and air are used as working fluids (refrigerants) in place of conventional chlorofluorocarbons in refrigerators that constitute air conditioning systems that cool indoors, such as vehicle cabins. In particular, since air can be easily taken from the atmosphere, a refrigerator using this air as a working fluid is often used in this type of air conditioning system. For example, in an air cycle air conditioning system having a refrigerator including a turbine, a compressor that compresses and discharges low-temperature air from the turbine, and a heat exchanger, ventilation from the room is performed with low-temperature air and heat using a heat exchanger. Some air conditioners are exchanged for indoor air conditioning, and water is sprayed on the heat exchanger to improve the refrigerating capacity (see, for example, Patent Document 1).
U.S. Pat. No. 4,015,438

ところが、前記特許文献1に係る空気サイクル空調システムによれば、作動流体となる低温空気を大気中の空気から得ているので、この空気に含まれる湿分に起因してタービン出口でドレンが発生する。冷凍能力向上のためにタービンでの膨張比を上げると、タービン出口での温度が低下するので、外気の温度が低めになると、前記ドレンは、氷結してタービンの羽根の間やタービン出口の配管内に目詰まりを発生させる。空調システムの動作中に前記したような現象が起こると、冷凍機の冷凍能力の低下や氷結の除去などのメンテナンスを強いられて効率が悪くなり、また冷凍機の成績係数(COP)が劣り、冷凍機の円滑運転、ひいては空調システムの順調な動作が期待できない。   However, according to the air cycle air conditioning system according to Patent Document 1, since low-temperature air as a working fluid is obtained from air in the atmosphere, drainage is generated at the turbine outlet due to moisture contained in the air. To do. If the expansion ratio in the turbine is increased to improve the refrigeration capacity, the temperature at the turbine outlet decreases, so when the temperature of the outside air decreases, the drain freezes and forms between the turbine blades and the piping at the turbine outlet. Clogging occurs inside. If the above-mentioned phenomenon occurs during the operation of the air conditioning system, maintenance such as reduction of the freezing capacity of the freezer and removal of freezing is forced to reduce efficiency, and the coefficient of performance (COP) of the freezer is inferior. Smooth operation of the refrigerator, and hence smooth operation of the air conditioning system cannot be expected.

そこで、本発明の目的は、冷凍機の冷凍能力および成績係数を向上させ、しかもドレンの氷結をなくして冷凍機の円滑運転が可能な空気サイクル空調システムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an air cycle air conditioning system that improves the refrigeration capacity and coefficient of performance of a refrigerator, and that can smoothly operate the refrigerator without icing drain.

上記目的を達成するために、本発明に係る空気サイクル空調システムは、大気中の空気を膨張させる膨張タービンと、前記膨張タービンからの低温空気を圧縮して排出する圧縮機と、前記低温空気と空調用空気との間で熱交換する熱交換器と、前記圧縮機からの排気の一部を前記膨張タービンに供給する排気供給通路とを備えている。   In order to achieve the above object, an air cycle air conditioning system according to the present invention includes an expansion turbine that expands air in the atmosphere, a compressor that compresses and discharges low-temperature air from the expansion turbine, and the low-temperature air. A heat exchanger that exchanges heat with air for air conditioning; and an exhaust supply passage that supplies part of the exhaust from the compressor to the expansion turbine.

この構成によれば、大気中の空気の温度に比べて高温となっている圧縮機からの排気の一部を膨張タービンに戻して供給するため、この排気の混入によって、タービンに流入する空気の温度が高くなる。このため、膨張タービンの膨張比を上げて冷凍能力の向上を図っても、膨張タービンの出口での空気を0℃以下(氷結温度以下)にならないよう調整でき、したがって、膨張タービン内やタービン出口でドレンが氷結して目詰まりを起こすのを防止できる。他方、排気が混入される分だけタービンの流量が増大して冷凍能力(熱交換器の冷却能力)が向上する。また、ドレンの氷結がないため、氷結除去のようなメンテナンスが不要で運転効率が向上する。   According to this configuration, since a part of the exhaust from the compressor that is higher than the temperature of the air in the atmosphere is supplied back to the expansion turbine, the air flowing into the turbine is mixed with the exhaust. The temperature rises. For this reason, even if the expansion ratio of the expansion turbine is increased to improve the refrigeration capacity, the air at the outlet of the expansion turbine can be adjusted so as not to be 0 ° C. or lower (below the freezing temperature). Can prevent the drain from freezing and clogging. On the other hand, the flow rate of the turbine is increased by the amount of exhaust gas mixed therein, and the refrigeration capacity (heat exchanger cooling capacity) is improved. In addition, since there is no freezing of the drain, maintenance such as removal of freezing is unnecessary, and operation efficiency is improved.

本発明の好ましい実施形態では、さらに、前記熱交換器で空調用空気から生じるドレンの少なくとも一部を前記膨張タービンに供給するドレン供給通路を備えている。   In a preferred embodiment of the present invention, the heat exchanger further includes a drain supply passage that supplies at least a part of the drain generated from air-conditioning air to the expansion turbine.

この構成によれば、熱交換器で空調用空気から生じるドレンの少なくとも一部が膨張タービンに供給される作動流体である大気中の空気に加えられることで、比熱が大きく、露点が上げられる結果、冷凍能力を増大させることができる。   According to this configuration, at least a part of the drain generated from the air-conditioning air in the heat exchanger is added to the air in the atmosphere, which is the working fluid supplied to the expansion turbine, thereby increasing the specific heat and increasing the dew point. The refrigeration capacity can be increased.

本発明の好ましい実施形態では、さらに、前記空調用空気が導入される空調室から排出される換気用空気の少なくとも一部を前記膨張タービンに供給する換気供給通路を備えている。   In a preferred embodiment of the present invention, there is further provided a ventilation supply passage for supplying at least a part of the ventilation air discharged from the air conditioning chamber into which the air conditioning air is introduced to the expansion turbine.

この構成によれば、空調室から排出される低温の換気用空気は大気中の空気(外気)よりも温度が低いので、この換気用空気の少なくとも一部が、大気中の空気に加えられることによって、換気用空気の有効利用によりタービン入口温度を下げて質量流量を増し、冷凍機の冷凍能力および成績係数を上げることができる。特に、夏場のように気温が高く、膨張タービンへの空気の質量流量が減少し、冷凍機の冷凍能力が低下する場合であっても、前記換気用空気の膨張タービンへの供給により、タービン流量の減少を抑制でき、冷凍能力を高く維持できる。   According to this configuration, since the low-temperature ventilation air discharged from the air-conditioning room has a lower temperature than the air in the atmosphere (outside air), at least a part of this ventilation air is added to the air in the atmosphere. Thus, by effectively using the ventilation air, the turbine inlet temperature can be lowered to increase the mass flow rate, and the refrigeration capacity and the coefficient of performance of the refrigerator can be increased. In particular, even when the temperature is high, the mass flow rate of air to the expansion turbine is reduced, and the refrigeration capacity of the refrigerator is reduced, such as in summer, the supply of the ventilation air to the expansion turbine causes the turbine flow rate to decrease. Can be suppressed, and the refrigerating capacity can be kept high.

本発明の空気サイクル空調システムによれば、膨張タービンの膨張比を上げて冷凍能力を向上させることができる。また、ドレンの氷結を抑制できるので、氷結除去のようなメンテナンスが不要で運転効率が向上する。   According to the air cycle air conditioning system of the present invention, the refrigeration capacity can be improved by increasing the expansion ratio of the expansion turbine. Further, since the freezing of the drain can be suppressed, maintenance such as removal of freezing is unnecessary and the operation efficiency is improved.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は、本発明の第1実施形態に係る空気サイクル空調システムの系統図である。同図に示す空気サイクル空調システムにおいて、冷凍機Rは、作動流体となる大気中の空気Aを膨張させる膨張タービン20と、この膨張タービン20からの低温空気A1を圧縮して排出する圧縮機21と、前記低温空気A1と空調用空気A2との間で熱交換する熱交換器22とを有している。前記膨張タービン20と圧縮機21は、電動機のような共通の駆動機24の同一回転軸25に連結されて駆動される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of an air cycle air conditioning system according to a first embodiment of the present invention. In the air cycle air conditioning system shown in the figure, the refrigerator R includes an expansion turbine 20 that expands air A in the atmosphere as a working fluid, and a compressor 21 that compresses and discharges the low-temperature air A1 from the expansion turbine 20. And a heat exchanger 22 for exchanging heat between the low-temperature air A1 and the air-conditioning air A2. The expansion turbine 20 and the compressor 21 are connected to and driven by the same rotating shaft 25 of a common driving machine 24 such as an electric motor.

前記冷凍機Rを構成する膨張タービン20には入口通路11および吸気通路15を介して大気中の空気Aが供給される。前記膨張タービン20で膨張されて低温となった低温空気A1は作動流体として冷媒導入通路12を通って熱交換器22に導入されたのち、冷媒導出通路13を通って圧縮機21に導入され、圧縮されたのち、排気EAとして圧縮機21から排出通路14を通って外部(大気中)に放出されるようになっている。   Air A in the atmosphere is supplied to the expansion turbine 20 constituting the refrigerator R through the inlet passage 11 and the intake passage 15. The low-temperature air A1 expanded to the low temperature by the expansion turbine 20 is introduced into the heat exchanger 22 through the refrigerant introduction passage 12 as a working fluid, and then introduced into the compressor 21 through the refrigerant discharge passage 13. After being compressed, the exhaust gas EA is discharged from the compressor 21 through the discharge passage 14 to the outside (in the atmosphere).

一方、前記作動流体となる大気中の空気Aとは別ルートで大気中から空調用空気A2が入口1を経て第1送風ファンF1によって導入通路2に導入される。この空調用空気A2は入口3から前記熱交換器22に導入され、前記低温空気A1との熱交換によって低温となったのち、出口4から低温の空調用空気A3として空調導入通路5に取り出され、通路5を経て入口7から車両の客室のような室内23に導入される。熱交換器22で空調用空気A3から生じたドレンDRの一部または全部が、ドレン通路6から吸入通路11に導入されている。   On the other hand, air for air conditioning A2 is introduced from the atmosphere through the inlet 1 into the introduction passage 2 by the first blower fan F1 through a different route from the air A in the atmosphere as the working fluid. The air-conditioning air A2 is introduced into the heat exchanger 22 from the inlet 3 and is cooled to a low temperature by heat exchange with the low-temperature air A1, and then is taken out from the outlet 4 to the air-conditioning introduction passage 5 as the low-temperature air-conditioning air A3. Then, the vehicle is introduced from the entrance 7 through the passage 5 into the room 23 such as a vehicle cabin. Part or all of the drain DR generated from the air-conditioning air A <b> 3 by the heat exchanger 22 is introduced from the drain passage 6 into the suction passage 11.

室内23の空調を行った低温空調用空気A3は、一部が出口8から第2送風ファンF2によって吸引され、換気通路9を通って換気用空気VAとして外部に放出され、他の一部VA1は、出口8から第3送風ファンF3によって吸引され、還流通路10を経て導入通路2内の空調用空気A2に混入されるようになっている。   A part of the low-temperature air-conditioning air A3 that has air-conditioned the room 23 is sucked by the second blower fan F2 from the outlet 8, is discharged to the outside as the ventilation air VA through the ventilation passage 9, and the other part VA1. Is sucked from the outlet 8 by the third blower fan F3 and mixed into the air-conditioning air A2 in the introduction passage 2 through the reflux passage 10.

さらに、前記排出通路14からの排気EAの一部EA1は排気供給通路16を通って入口通路11に供給され、空気Aに混入されて吸気通路15から膨張タービン20に導入されるようになっている。   Further, a part EA1 of the exhaust EA from the exhaust passage 14 is supplied to the inlet passage 11 through the exhaust supply passage 16, mixed into the air A, and introduced into the expansion turbine 20 from the intake passage 15. Yes.

次に、上記構成の動作について、数値例を挙げて説明する。数値の単位はP(圧力)がkPa 、T(温度)が℃、G(質量流量)がkg/sである。外気温は若干低めの33℃、相対湿度は50%であり、その大気中の空気(外気)A(101.3P, 33.0T, 0.662G )が吸入通路11に吸入され、排出通路16からの排気の一部EA1(101.3P, 113.3T, 0.074G)と、ドレン通路6からのドレンDR(101.3P, 13.2T, 0.003G) とが混入されて、吸気(101.3P, 31.3T, 0.739G) となり、膨張タービン20に吸い込まれる。ここで膨張して低温空気A1となり、冷媒導入通路12(43.9P, 1.0T, 0.739G) から熱交換器22に導入される。
一方、導入通路2に導入された空調用空気A2(107.3P, 40.0T, 0.241G) には、室内23から排出される換気用空気の一部VA1(103.8P,29.0T,O.973G) が還流通路10を通って合流されたのち、入口3(103.8P, 31.2T, 1.214G) から熱交換器22に導入される。この熱交換器22で前記低温空気A1と空調用空気A2との間で熱交換が行われ、空調用空気A2が出口4(101.3P,13.2T,1.214G) から低温空調用空気A3として空調導入通路5に入る。
Next, the operation of the above configuration will be described with a numerical example. The unit of numerical values is P (pressure) kPa, T (temperature) ° C, and G (mass flow rate) kg / s. The outside air temperature is slightly lower at 33 ° C and the relative humidity is 50%. Air (outside air) A (101.3P, 33.0T, 0.662G) in the atmosphere is sucked into the suction passage 11 and exhausted from the discharge passage 16. Part EA1 (101.3P, 113.3T, 0.074G) and drain DR (101.3P, 13.2T, 0.003G) from the drain passage 6 are mixed, and intake air (101.3P, 31.3T, 0.739G) And is sucked into the expansion turbine 20. Here, it expands to become low-temperature air A1, and is introduced into the heat exchanger 22 from the refrigerant introduction passage 12 (43.9P, 1.0T, 0.739G).
On the other hand, the air-conditioning air A2 (107.3P, 40.0T, 0.241G) introduced into the introduction passage 2 includes a part of the ventilation air VA1 (103.8P, 29.0T, O.973G) discharged from the room 23 Are joined through the reflux passage 10 and then introduced into the heat exchanger 22 from the inlet 3 (103.8P, 31.2T, 1.214G). The heat exchanger 22 exchanges heat between the low-temperature air A1 and the air-conditioning air A2, and the air-conditioning air A2 is air-conditioned as the low-temperature air-conditioning air A3 from the outlet 4 (101.3P, 13.2T, 1.214G). Enter the introduction passage 5.

このように低温となった空調用空気A3は入口7(101.3P, 16.3T, 1.211G)から室内23に供給される。室内23における負荷(20.0kW)によって前記空調用空気A3は加温され、室内23の出口8(101.3P, 26.1T, 1.213G) を経て、一部は換気VAとして換気通路9(101.3P, 26.1T, 0.240G) を通って外部に排出される。他の一部VA1は前述のとおり還流通路10を経て導入通路2に供給される。室内23の熱要素としては、前記負荷(20.0kW)に加えて、乗客から出る汗(=水分、1.74g/s)も考慮されており、蒸発した汗が還流通路10および導入通路2を経て熱交換器22でドレン水となり、その際に放出する潜熱が熱交換器22の負荷となる。
他方、冷媒導入通路12(43.9P, 1.0T, 0.739G) から熱交換器22に導入された低温空気A1は、熱交換後、冷媒導出通路13(41.4P, 13.0T, 0.739G)を経て圧縮機21で圧縮され、常圧に戻した後、排気EAとして排出通路14(101.3P, 113.3T, 0.739G)を経て大部分が大気に排出され、一部EA1が、前述のとおり、排気供給通路16(101.3P, 113.3T, 0.074G)を通って入口通路11内の空気Aに混入される。前記駆動機24として使用されている電動機の負荷は36.8kW、熱交換機22の冷凍能力は29.5kW、成績係数(COP)は0.801である。
The air-conditioning air A3 having a low temperature is supplied from the inlet 7 (101.3P, 16.3T, 1.211G) to the room 23. The air-conditioning air A3 is heated by the load (20.0 kW) in the room 23, and after passing through the outlet 8 (101.3P, 26.1T, 1.213G) of the room 23, a part of the ventilation passage 9 (101.3P) serves as a ventilation VA. , 26.1T, 0.240G). The other part VA1 is supplied to the introduction passage 2 through the reflux passage 10 as described above. In addition to the load (20.0 kW), sweat from the passenger (= water, 1.74 g / s) is also taken into consideration as the thermal element of the room 23, and the evaporated sweat generates the reflux passage 10 and the introduction passage 2. After that, the heat exchanger 22 becomes drain water, and the latent heat released at that time becomes a load on the heat exchanger 22.
On the other hand, the low-temperature air A1 introduced into the heat exchanger 22 from the refrigerant introduction passage 12 (43.9P, 1.0T, 0.739G) passes through the refrigerant outlet passage 13 (41.4P, 13.0T, 0.739G) after heat exchange. After being compressed by the compressor 21 and returned to normal pressure, most of the exhaust EA is discharged to the atmosphere via the discharge passage 14 (101.3P, 113.3T, 0.739G), and part EA1 is exhausted as described above. The air is mixed into the air A in the inlet passage 11 through the supply passage 16 (101.3P, 113.3T, 0.074G). The load of the electric motor used as the driving machine 24 is 36.8 kW, the refrigerating capacity of the heat exchanger 22 is 29.5 kW, and the coefficient of performance (COP) is 0.801.

このように、排気EAの一部FA1が、排気供給通路16介して膨張タービン20に供給されるので、外気温が低めであっても、吸気通路15内の作動流体の温度が高くなって、膨張タービン20の出口側、つまり冷媒導入通路12における作動流体の温度が氷点下になるのを防止でき、これによって、この作動流体から発生するドレンが氷結するのを防止できる。その結果、膨張タービン20の膨張比を上げて冷凍能力を向上させることができる。しかも、排気の一部VE1を膨張タービン20側に戻す排気供給通路16を追加するだけで済むから、空調システムの設備コストの上昇を抑制できる。また、熱交換器22で空調用空気から生じたドレンDRの一部がドレン通路6を経て膨張タービン20の作動流体に導入されているから、作動流体の比熱が大きくなり、かつ露点が上昇するので、冷凍能力(熱交換器22の冷却能力)をさらに向上させることができる。   In this way, a part FA1 of the exhaust EA is supplied to the expansion turbine 20 via the exhaust supply passage 16, so that the temperature of the working fluid in the intake passage 15 becomes high even when the outside air temperature is low, It is possible to prevent the temperature of the working fluid at the outlet side of the expansion turbine 20, that is, the refrigerant introduction passage 12 from becoming below freezing point, thereby preventing the drainage generated from the working fluid from freezing. As a result, the expansion ratio of the expansion turbine 20 can be increased to improve the refrigeration capacity. Moreover, since it is only necessary to add the exhaust supply passage 16 that returns a part of the exhaust VE1 to the expansion turbine 20 side, an increase in the equipment cost of the air conditioning system can be suppressed. Further, since part of the drain DR generated from the air-conditioning air in the heat exchanger 22 is introduced into the working fluid of the expansion turbine 20 through the drain passage 6, the specific heat of the working fluid increases and the dew point increases. Therefore, the refrigerating capacity (cooling capacity of the heat exchanger 22) can be further improved.

図2は本発明の第2実施形態に係る空気サイクル空調システムの系統図である。この第2実施形態は、気温が高い夏場を想定したもので、外気温は若干高めの40℃で、相対湿度34%である。この第2実施形態では、特に、第1 実施形態における換気用通路9からの換気用空気VAの少なくとも一部(この例では全部)VA2を吸入通路11に戻して空気Aに合流させる換気供給通路17を追加し、この通路17と排気供給通路16に、それぞれ第1、第2開閉弁31,32を設け、これら開閉弁31,32をコントローラ33により選択的に開閉するようにしている。すなわち、運転中は、外部からの指令35を受けて、第2開閉弁32を閉止し、外気よりも温度の低い空調室21から排出される換気用空気VAの一部VA2が大気中の空気Aに加えられることで、膨張タービン20の入口温度を下げて質量流量を増し、冷凍能力および成績係数(COP)を上げることができる。外気温を除く他の条件が第1実施形態と同一である場合、前記駆動機24として使用されている電動機の負荷は39.2kW、熱交換機22の冷凍能力は30.9kW、成績係数(COP)は0.788である。   FIG. 2 is a system diagram of an air cycle air conditioning system according to the second embodiment of the present invention. This second embodiment is intended for summer when the temperature is high, and the outside temperature is slightly higher at 40 ° C. and the relative humidity is 34%. In the second embodiment, in particular, a ventilation supply passage for returning at least a part (all in this example) VA2 of the ventilation air VA from the ventilation passage 9 in the first embodiment to the suction passage 11 and joining the air A. 17 is provided, and first and second on-off valves 31 and 32 are provided in the passage 17 and the exhaust supply passage 16, respectively, and the on-off valves 31 and 32 are selectively opened and closed by a controller 33. That is, during operation, the second on-off valve 32 is closed in response to an external command 35, and a part of the ventilation air VA discharged from the air conditioning chamber 21 having a temperature lower than that of the outside air is VA2. By being added to A, the inlet temperature of the expansion turbine 20 can be lowered to increase the mass flow rate, and the refrigeration capacity and the coefficient of performance (COP) can be increased. When the other conditions except the outside air temperature are the same as in the first embodiment, the load of the electric motor used as the driving device 24 is 39.2 kW, the refrigeration capacity of the heat exchanger 22 is 30.9 kW, and the coefficient of performance (COP ) Is 0.788.

霜取り運転時には、第1開閉弁31を閉止し、第2開閉弁32を開放して、外気よりも高温の排気EAの一部EA1を空気Aに加えることで、膨張タービン20の入口温度を上げ、膨張タービン20からの低温空気A1の温度を上昇させて、霜取りを行う。
図2の第2実施形態において、2つの開閉弁31,32を省き、排気供給通路16からの高温の排気EA1と、換気供給通路17からの低温の換気VA2の両方を吸入通路11に供給してもよく、その場合、高温の排気EA1の流量と、低温の換気VA2の流量を適切に設定しておくことにより、膨張タービン20に入る作動流体の流量を増大させ、かつ温度上昇を抑制して、冷凍能力を向上させることができる。
During the defrosting operation, the first on-off valve 31 is closed, the second on-off valve 32 is opened, and a part of the exhaust EA having a temperature higher than the outside air EA1 is added to the air A, thereby raising the inlet temperature of the expansion turbine 20. Then, the temperature of the low temperature air A1 from the expansion turbine 20 is increased to perform defrosting.
In the second embodiment of FIG. 2, the two on-off valves 31 and 32 are omitted, and both the high-temperature exhaust EA1 from the exhaust supply passage 16 and the low-temperature ventilation VA2 from the ventilation supply passage 17 are supplied to the suction passage 11. In that case, the flow rate of the working fluid entering the expansion turbine 20 is increased and the temperature rise is suppressed by appropriately setting the flow rate of the hot exhaust gas EA1 and the flow rate of the low temperature ventilation VA2. Thus, the refrigerating capacity can be improved.

さらに、第1および第2実施形態において、ドレン供給通路6を省くこともできる。   Further, in the first and second embodiments, the drain supply passage 6 can be omitted.

本発明の第1実施形態の空気サイクル空調システムを示す系統図である。It is a distribution diagram showing an air cycle air-conditioning system of a 1st embodiment of the present invention. 本発明の第2実施形態の空気サイクル空調システムを示す系統図である。It is a systematic diagram which shows the air cycle air conditioning system of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

6 ドレン供給通路
20 膨張タービン
21 圧縮機
22 熱交換器
23 室内(客室)
16 排気供給通路
17 換気供給通路
A 空気
A1 低温空気
A2 空調用空気
R 冷凍機
EA 排気
VA 換気用空気
6 Drain supply passage 20 Expansion turbine 21 Compressor 22 Heat exchanger 23 Indoor (guest room)
16 Exhaust supply passage 17 Ventilation supply passage A Air A1 Low temperature air A2 Air conditioning air R Refrigerator EA Exhaust VA Ventilation air

Claims (3)

大気中の空気を膨張させる膨張タービンと、
前記膨張タービンからの低温空気を圧縮して排出する圧縮機と、
前記低温空気と空調用空気との間で熱交換する熱交換器と、
前記圧縮機からの排気の一部を前記膨張タービンに供給する排気供給通路と、
を備えた空気サイクル空調システム。
An expansion turbine for expanding air in the atmosphere;
A compressor for compressing and discharging low-temperature air from the expansion turbine;
A heat exchanger for exchanging heat between the low-temperature air and air-conditioning air;
An exhaust supply passage for supplying a part of the exhaust from the compressor to the expansion turbine;
Air cycle air conditioning system equipped with.
請求項1において、さらに、前記熱交換器で空調用空気から生じるドレンの少なくとも一部を前記膨張タービンに供給するドレン供給通路を備えた空気サイクル空調システム。 2. The air cycle air conditioning system according to claim 1, further comprising a drain supply passage that supplies at least a part of a drain generated from air-conditioning air to the expansion turbine in the heat exchanger. 請求項1または2において、さらに、前記空調用空気が導入される空調室から排出される換気用空気の少なくとも一部を前記膨張タービンに供給する換気供給通路を備えた空気サイクル空調システム。
3. The air cycle air conditioning system according to claim 1, further comprising a ventilation supply passage that supplies at least a part of the ventilation air discharged from the air conditioning chamber into which the air conditioning air is introduced to the expansion turbine.
JP2004263141A 2004-09-10 2004-09-10 Air cycle air conditioning system Pending JP2006078092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263141A JP2006078092A (en) 2004-09-10 2004-09-10 Air cycle air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263141A JP2006078092A (en) 2004-09-10 2004-09-10 Air cycle air conditioning system

Publications (1)

Publication Number Publication Date
JP2006078092A true JP2006078092A (en) 2006-03-23

Family

ID=36157690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263141A Pending JP2006078092A (en) 2004-09-10 2004-09-10 Air cycle air conditioning system

Country Status (1)

Country Link
JP (1) JP2006078092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220033087A1 (en) * 2020-07-30 2022-02-03 Hamilton Sundstrand Corporation Aircraft environmental control system
US11840344B2 (en) 2020-07-30 2023-12-12 Hamilton Sundstrand Corporation Aircraft environmental control system
US11851192B2 (en) 2020-07-30 2023-12-26 Hamilton Sundstrand Corporation Aircraft environmental control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220033087A1 (en) * 2020-07-30 2022-02-03 Hamilton Sundstrand Corporation Aircraft environmental control system
US11840344B2 (en) 2020-07-30 2023-12-12 Hamilton Sundstrand Corporation Aircraft environmental control system
US11851192B2 (en) 2020-07-30 2023-12-26 Hamilton Sundstrand Corporation Aircraft environmental control system
US11851191B2 (en) 2020-07-30 2023-12-26 Hamilton Sundstrand Corporation Aircraft environmental control system
US11851190B2 (en) 2020-07-30 2023-12-26 Hamilton Sundstrand Corporation Aircraft environmental control system
US11878800B2 (en) 2020-07-30 2024-01-23 Hamilton Sundstrand Corporation Aircraft environmental control system
US11939065B2 (en) 2020-07-30 2024-03-26 Hamilton Sundstrand Corporation Aircraft environmental control system
US11999491B2 (en) * 2020-07-30 2024-06-04 Hamilton Sundstrand Corporation Aircraft environmental control system

Similar Documents

Publication Publication Date Title
CN104879843B (en) Air conditioner controlling device, multi-split air conditioner and air-conditioner control method
JP2006258343A (en) Air conditioning system
KR101387478B1 (en) Compression system and Air-conditioning system using the same
CN104515335A (en) Heat pump system for vehicle
US20120131935A1 (en) Air conditioner and method for operating same
KR100640858B1 (en) Airconditioner and control method thereof
CN102472534A (en) Air conditioner
JP2008309383A (en) Electricity/gas-type mixed air conditioning control system
KR100667517B1 (en) Air conditioner equipped with variable capacity type compressor
US20060207273A1 (en) Method of controlling over-load cooling operation of air conditioner
CN100467983C (en) Control scheme and method for dehumidification systems at low ambient conditions
JP2004189213A (en) Operating device of refrigerant cycle and operating method of refrigerant cycle
JP2007051824A (en) Air-conditioner
KR100575682B1 (en) Air conditioner with equalization pipe between out door units
JP2006207989A (en) Refrigeration and freezing heat source unit, freezing device, and freezing air conditioner
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP2006284057A (en) Air conditioner and its operating method
JP2006078092A (en) Air cycle air conditioning system
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system
JP4074422B2 (en) Air conditioner and its control method
CN100580338C (en) Refrigerating system and air conditioner possessing the refrigerating system
KR20070030072A (en) Defrost control method of heat pump air-conditioner
JP3933076B2 (en) Air conditioner
KR100441091B1 (en) high effective cooling system of air conditioner
JP6292469B2 (en) Air conditioner outdoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117