JP2006077160A - Polyoxymethylene resin composition for laser welding - Google Patents

Polyoxymethylene resin composition for laser welding Download PDF

Info

Publication number
JP2006077160A
JP2006077160A JP2004263933A JP2004263933A JP2006077160A JP 2006077160 A JP2006077160 A JP 2006077160A JP 2004263933 A JP2004263933 A JP 2004263933A JP 2004263933 A JP2004263933 A JP 2004263933A JP 2006077160 A JP2006077160 A JP 2006077160A
Authority
JP
Japan
Prior art keywords
polyoxymethylene resin
laser beam
resin composition
laser welding
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263933A
Other languages
Japanese (ja)
Inventor
Shinsuke Hidaka
慎介 日高
Kunio Tokimine
邦夫 常峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004263933A priority Critical patent/JP2006077160A/en
Publication of JP2006077160A publication Critical patent/JP2006077160A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7332General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyoxymethylene resin composition having excellent laser welding characteristics without reducing laser beam transmittance when a polyoxymethylene resin is compounded with a colorant. <P>SOLUTION: The polyoxymethylene resin composition for laser welding is composed of a resin composition prepared by compounding 100 pts.wt. of the polyoxymethylene resin with (A) 0.001-5 pts.wt. of the colorant. The laser beam transmittance measured in a molded product prepared from the composition and having 3 mm thickness is ≥15% at 700-1,200 nm wavelength of the laser beams used for the laser welding. For further detail, the polyoxymethylene resin composition for laser welding is characterized in that (A) the colorant contains at least one pigment selected from monoazoic, disazoic, heterocyclic, phthalocyaninic, quinacridonic, perylenic pigments, diketopyrrolopyrrole, isoindolinone, titanium yellow and ultramarine pigments. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザー溶着用ポリオキシメチレン樹脂組成物に関するものである。   The present invention relates to a polyoxymethylene resin composition for laser welding.

ポリオキシメチレン樹脂は、優れた強度特性、疲労特性、電気特性を有することから、電機部品、事務機器部品、建材など多くの分野で幅広く使用されており、需要量も増大している。これらの部品の組立にあたり、従来から接着剤やネジ止め、熱溶着等の手法が用いられてきた。ここで、接着剤は硬化するまでの時間のロスや固定治具が必要な場合が多く、それに伴うコストアップ、また環境保護の点から溶剤の使用が問題となっている。また、ネジ止めを実施した場合、インサートナット、ネジ、ワッシャー等にかかる費用、締結の手間、重量が増大するといった問題が生じる。   Since polyoxymethylene resin has excellent strength characteristics, fatigue characteristics, and electrical characteristics, it is widely used in many fields such as electric parts, office equipment parts, and building materials, and the demand is increasing. In assembling these parts, techniques such as adhesives, screwing, and heat welding have been used. Here, in many cases, the adhesive requires a time loss until it is cured and a fixing jig is required, and the use of a solvent is problematic from the viewpoint of cost increase and environmental protection. In addition, when screwing is performed, there are problems such as costs for insert nuts, screws, washers and the like, labor and time for fastening, and weight.

一方、レーザー溶着、振動溶着、超音波溶着、熱板溶着等に代表される溶着に関しては、短時間での接合が可能であり、接着剤やネジ等の金属部品を使用しないので、それにかかるコストや重量の増大、環境汚染等の問題が発生しないことから、この方法による組立が増えてきている。   On the other hand, welding represented by laser welding, vibration welding, ultrasonic welding, hot plate welding, etc. can be joined in a short time, and metal parts such as adhesives and screws are not used. As a result, problems such as increase in weight and environmental pollution do not occur, and assembly by this method is increasing.

特許文献1、2では熱可塑性ポリエステル樹脂を使用したレーザー溶着加工により成形体を製造する方法が開示されている。   Patent Documents 1 and 2 disclose a method for producing a molded body by laser welding using a thermoplastic polyester resin.

また、ポリオキシメチレン樹脂の接着については、特許文献3に変性オレフィン系共重合体を樹脂間の接着剤として用いる方法が開示されている。しかし、この方法では成形品の重量増大、また接着強度が不十分であるといった問題がある。   As for the adhesion of polyoxymethylene resin, Patent Document 3 discloses a method using a modified olefin copolymer as an adhesive between resins. However, this method has problems such as an increase in the weight of the molded product and insufficient adhesive strength.

そこで、ポリオキシメチレン樹脂に対し、オレフィンを配合したポリオキシメチレン樹脂組成物の接着については、特許文献4に熱板溶着、レーザー溶着、振動溶着といった手法を用いることにより、成形品が得られることが開示されている。レーザー溶着を実施するにあたり、使用する材料のレーザー光線に対する透過性は、非常に重要なパラメーターであり、レーザー溶着を実施するためには、レーザー光線を透過する材料とレーザー光線を吸収する材料の二種類を組み合わせる必要がある。ここで、特許文献4にはレーザー光線を吸収するための手段として、材料へのカーボンブラックの使用が開示されている。カーボンブラックは、材料のレーザー光線透過性を激減させ、材料のレーザー光線の吸収が可能となる。このように非強化であり無着色のポリオキシメチレン樹脂に対してカーボンブラック以外の他の着色顔料を添加することにより、レーザー光線の透過率は激減することが予想されるため、レーザー溶着を実施するにあたり、レーザー光線吸収側材料として使用する可能性は考えられるものの、レーザー光線透過側材料として使用することは非常に困難である。仮にこれらの材料をレーザー光線透過側材料として使用するためには、透過性を向上する手段として成形品の薄肉化が挙げられるが、材料設計を行う上での自由度が小さくなるものと考えられる。   Therefore, for adhesion of a polyoxymethylene resin composition containing an olefin to a polyoxymethylene resin, a molded product can be obtained by using techniques such as hot plate welding, laser welding, and vibration welding in Patent Document 4. Is disclosed. When laser welding is performed, the transparency of the material used to the laser beam is a very important parameter, and in order to perform laser welding, two types of materials that transmit the laser beam and materials that absorb the laser beam are combined. There is a need. Here, Patent Document 4 discloses the use of carbon black as a material as a means for absorbing a laser beam. Carbon black drastically reduces the laser beam transparency of the material and allows the material to absorb the laser beam. The laser beam transmittance is expected to be drastically reduced by adding a coloring pigment other than carbon black to the non-reinforced and non-colored polyoxymethylene resin. Therefore, laser welding is performed. In this case, the possibility of using it as a laser beam absorption side material is considered, but it is very difficult to use it as a laser beam transmission side material. In order to use these materials as the laser beam transmission side material, the thickness of the molded product can be reduced as a means for improving the transparency, but it is considered that the degree of freedom in designing the material is reduced.

ここで、着色顔料を添加した場合にも、得られたポリオキシメチレン樹脂組成物のレーザー光線透過性が減少せず、レーザー溶着を実施するにあたりレーザー光線透過側材料として優れており、かつ耐熱性や耐候性といった材料特性に優れたポリオキシメチレン樹脂組成物について鋭意検討を重ねた結果、本発明に至った。
特開2001−26656号公報(第2頁) 特開2003−136601号公報(第2頁) 特開平9−248851号公報(第2頁) 特開2002−138185号公報(第14頁)
Here, even when a coloring pigment is added, the laser beam transmittance of the obtained polyoxymethylene resin composition does not decrease, and it is excellent as a laser beam transmitting side material in performing laser welding, and also has heat resistance and weather resistance. As a result of intensive studies on a polyoxymethylene resin composition having excellent material properties such as properties, the present invention has been achieved.
JP 2001-26656 A (second page) JP 2003-136601 A (second page) JP-A-9-248851 (2nd page) JP 2002-138185 A (page 14)

ポリオキシメチレン樹脂に着色顔料を配合した際に、レーザー光線透過率が大幅に減少せず、レーザー光線透過側材料として、レーザー溶着特性の優れたポリオキシメチレン樹脂組成物を得ることを課題とする。   An object of the present invention is to obtain a polyoxymethylene resin composition having excellent laser welding characteristics as a laser beam transmission side material without significantly reducing the laser beam transmittance when a color pigment is blended with a polyoxymethylene resin.

本発明者らは、上記従来技術の問題点を解決し、着色顔料を配合した際にレーザー光線の透過性が減少せず、レーザー溶着特性の優れたポリオキシメチレン樹脂組成物について鋭意検討した結果、本発明に到達したものである。   As a result of diligently studying the polyoxymethylene resin composition having excellent laser welding characteristics, the present inventors have solved the above-mentioned problems of the prior art and do not reduce the laser beam transmittance when blended with a color pigment. The present invention has been achieved.

即ち、本発明は、
・ ポリオキシメチレン樹脂100重量部に対して、(A)着色剤0.001〜5重量部を配合してなるレーザー溶着用ポリオキシメチレン樹脂組成物であり、かつレーザー光線の波長が、700〜1200nmにおいて、前記組成物から作製した3mm厚さの成形品で測定したレーザー光線透過率が15%以上であるレーザー溶着用ポリオキシメチレン樹脂組成物であり、
・ 好ましくは、(A)着色剤がモノアゾ系、ジスアゾ系、複素環系、フタロシアニン系、キナクリドン系、ペリレン系、ジケトピロロピロール、イソインドリノン、チタンイエロー、群青から選択される少なくとも1つの顔料を含有するレーザー溶着用ポリオキシメチレン樹脂組成物である。
That is, the present invention
-It is a polyoxymethylene resin composition for laser welding formed by blending 0.001 to 5 parts by weight of the colorant (A) with respect to 100 parts by weight of the polyoxymethylene resin, and the wavelength of the laser beam is 700 to 1200 nm. A laser-welded polyoxymethylene resin composition having a laser beam transmittance of 15% or more measured with a molded product having a thickness of 3 mm prepared from the composition,
-Preferably, (A) at least one pigment in which the colorant is selected from monoazo, disazo, heterocyclic, phthalocyanine, quinacridone, perylene, diketopyrrolopyrrole, isoindolinone, titanium yellow, and ultramarine blue Is a polyoxymethylene resin composition for laser welding.

本発明により、ポリオキシメチレン樹脂に(A)着色剤を配合した場合に、レーザー光線透過率が激減せず、レーザー溶着特性の優れたポリオキシメチレン樹脂組成物を得ることが可能となる。   According to the present invention, when the (A) colorant is blended with the polyoxymethylene resin, it becomes possible to obtain a polyoxymethylene resin composition having excellent laser welding characteristics without drastically reducing the laser beam transmittance.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

(1)ポリオキシメチレン樹脂について
本発明におけるポリオキシメチレン樹脂とは、オキシメチレン単位を有するホモポリマ、またはコポリマであるが、本発明では主としてオキシメチレン単位からなり、主鎖中に2〜8個の隣接する炭素原子を有するオキシアルキレン単位を15重量%以下含有する、オキシメチレンコポリマを使用することが好ましい。
(1) Polyoxymethylene resin The polyoxymethylene resin in the present invention is a homopolymer or a copolymer having an oxymethylene unit. In the present invention, the polyoxymethylene resin is mainly composed of oxymethylene units and has 2 to 8 polymethylene units in the main chain. It is preferable to use an oxymethylene copolymer containing not more than 15% by weight of oxyalkylene units having adjacent carbon atoms.

代表的なオキシメチレンコポリマの製造方法の例としては、高純度のトリオキサンおよびエチレンオキシドや1,3−ジオキソランなどの共重合成分をシクロヘキサンのような有機溶媒中に導入し、三弗化ホウ素ジエチルエーテル錯体のようなルイス酸触媒を用いてカチオン重合した後、触媒の失活と末端基の安定化を行うことにより製造する方法、あるいは溶媒を全く使用せずに、セルフクリーニング型撹拌機の中へトリオキサン、共重合成分および触媒を導入して塊状重合した後、さらに不安定末端を分解除去することにより製造する方法などが挙げられる。   As an example of a typical method for producing an oxymethylene copolymer, a high purity trioxane and a copolymer component such as ethylene oxide and 1,3-dioxolane are introduced into an organic solvent such as cyclohexane, and boron trifluoride diethyl ether complex is prepared. A method of producing by cationic polymerization using a Lewis acid catalyst such as deactivation of the catalyst and stabilizing the end groups, or trioxane into a self-cleaning stirrer without using any solvent. Examples thereof include a method in which a copolymer component and a catalyst are introduced and bulk polymerization is performed, and then an unstable terminal is further decomposed and removed.

これらポリマの粘度は、成形材料として使用できる程度のものであれば特に制限はないが、ASTM D1238法によるメルトフローレート(MFR)が測定可能であり、温度190℃、測定荷重2,160gの条件下においてMFRが0.1〜100g/10分の範囲のものであることが好ましく、1.0〜50g/10分のものであることが特に好ましい。   The viscosity of these polymers is not particularly limited as long as it can be used as a molding material, but the melt flow rate (MFR) can be measured by the ASTM D1238 method, and the temperature is 190 ° C. and the measurement load is 2,160 g. Below, it is preferable that it is a thing of the range of MFR 0.1-100g / 10min, and it is especially preferable that it is a thing of 1.0-50g / 10min.

本発明で使用する重合触媒用溶剤としては、ベンゼン、トルエンのような芳香族炭化水素、n−ヘキサン、n−ヘプタン、シクロヘキサンのような脂肪族炭化水素、メタノール、エタノールなどのアルコール類、クロロホルム、ジクロルメタン、1,2−ジクロルエタンのようなハロゲン化炭化水素、アセトン、メチルエチルケトンのようなケトン類が使用される。   Examples of the solvent for the polymerization catalyst used in the present invention include aromatic hydrocarbons such as benzene and toluene, aliphatic hydrocarbons such as n-hexane, n-heptane and cyclohexane, alcohols such as methanol and ethanol, chloroform, Halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, and ketones such as acetone and methyl ethyl ketone are used.

重合触媒の添加量は、トリオキサン1モルに対して、5×10−6〜1×10−1モルの範囲であり、特に好ましくは1×10−6〜1×10−2モルの範囲である。 The addition amount of the polymerization catalyst is in the range of 5 × 10 −6 to 1 × 10 −1 mol, particularly preferably in the range of 1 × 10 −6 to 1 × 10 −2 mol, with respect to 1 mol of trioxane. .

トリオキサンと環状エーテルを塊状で重合させる種々の装置が知られているが、本発明で使用する塊状重合は、特に装置により限定されるものではなく、またトリオキサンに対して10重量%以下ならば、シクロヘキサンのような有機溶媒の存在下で行う重合反応にも適用できる。塊状重合においては、重合時の急激な固化や発熱が生じるため、強力な攪拌能力を有し、かつ反応温度が制御できる装置が特に好ましく使用される。このような性能を有する本発明の塊状重合装置としては、加熱または冷却用のジャケットを有する長いケースに一対の互いに噛み合うような平行スクリューを持つ通常のスクリュー押出機、二本の水平攪拌軸に多数のパドルを有し、該軸を同時に同方向に回転した際に、互いに相手のパドル面およびケース内面との間に僅かなクリアランスを保って回転するセルフクリーニング型混合機を挙げることができる。また、塊状重合においては、重合反応初期に急激に固化するため、強力な攪拌能力が必要であるが、一旦固化してしまえば、あとは大きな攪拌能力を必要としないため、塊状重合機を二台以上連結して使用しても良い。更に、塊状重合温度は、トリオキサンの融点近傍から沸点近傍の温度範囲、即ち60〜115℃の範囲が好ましい。   Various apparatuses for polymerizing trioxane and cyclic ether in bulk are known, but the bulk polymerization used in the present invention is not particularly limited by the apparatus, and if it is 10% by weight or less based on trioxane, The present invention can also be applied to a polymerization reaction performed in the presence of an organic solvent such as cyclohexane. In bulk polymerization, since rapid solidification and heat generation during polymerization occur, an apparatus having a strong stirring ability and capable of controlling the reaction temperature is particularly preferably used. The bulk polymerization apparatus of the present invention having such a performance includes a normal screw extruder having a pair of parallel screws meshing with a long case having a heating or cooling jacket, and two horizontal stirring shafts. And a self-cleaning type mixer that rotates with a slight clearance between the mating paddle surface and the case inner surface when the shaft is simultaneously rotated in the same direction. In bulk polymerization, strong agitation ability is required because it solidifies rapidly in the initial stage of the polymerization reaction, but once solidification, no large agitation ability is required, so a bulk polymerization machine can be used. You may connect and use more than one unit. Furthermore, the bulk polymerization temperature is preferably in the temperature range from the vicinity of the melting point to the boiling point of trioxane, that is, in the range of 60 to 115 ° C.

本発明で用いられる重合停止剤としては、ビス(1−オクチロキシ−2,2,6,6テトラメチル−4−ピペリジル)セバケート、ビス(1−オクチロキシ−2,2,6,6テトラエチル−4−ピペリジル)セバケート等のアミン化合物が挙げられる。   Examples of the polymerization terminator used in the present invention include bis (1-octyloxy-2,2,6,6 tetramethyl-4-piperidyl) sebacate and bis (1-octyloxy-2,2,6,6 tetraethyl-4- And amine compounds such as piperidyl) sebacate.

本発明のアミン化合物の添加量は、使用した重合触媒の三フッ化ホウ素系触媒のホウ素原子数に対して、同数以上のアミン化合物の窒素原子が存在することが好ましい。窒素原子数がホウ素原子数より少なくても触媒失活効果は見られるが、得られたポリマの耐熱安定性が若干低下するので、目的とする耐熱安定性の程度に応じて添加量を調整する必要がある。   The added amount of the amine compound of the present invention is preferably such that the number of nitrogen atoms of the amine compound is equal to or more than the number of boron atoms of the boron trifluoride catalyst of the polymerization catalyst used. Even if the number of nitrogen atoms is less than the number of boron atoms, the catalyst deactivation effect can be seen, but since the heat resistance stability of the obtained polymer is slightly reduced, the addition amount is adjusted according to the desired degree of heat stability. There is a need.

本発明で使用する重合停止用アミン化合物は、そのままの形で添加しても良いが、重合反応の停止効果を高める意味で有機溶媒の溶液として添加しても良い。その際の有機溶媒としては、ベンゼン、トルエン、キシレンのような芳香族炭化水素、n−ヘキサン、n−ヘプタン、シクロヘキサンのような脂肪族炭化水素、メタノール、エタノールなどのアルコール類、クロロホルム、ジクロルメタン、1,2−ジクロルエタンのようなハロゲン化炭化水素、アセトン、メチルエチルケトンのようなケトン類が使用される。   The amine compound for terminating polymerization used in the present invention may be added as it is, but may be added as a solution in an organic solvent in order to enhance the effect of terminating the polymerization reaction. Examples of the organic solvent include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as n-hexane, n-heptane and cyclohexane, alcohols such as methanol and ethanol, chloroform, dichloromethane, Halogenated hydrocarbons such as 1,2-dichloroethane, and ketones such as acetone and methyl ethyl ketone are used.

本発明では、トリオキサンと環状エーテルの混合物に三フッ化ホウ素系触媒を用いて塊状重合し、得られた重合体に特定の窒素化合物を失活剤として添加して触媒を失活させた後、100〜270℃の温度範囲、好ましくはコポリマの融点以上の温度に加熱してオキシメチレンコポリマが製造されるが、この製造工程の任意の段階で通常公知の酸化防止剤、ホルムアルデヒド捕捉剤、末端分解促進剤を添加することが可能である。例えば、酸化防止剤をトリオキサン、環状エーテルまたはその混合物に添加し、重合して触媒を失活させた後100〜270℃の温度範囲、トリオキサン、環状エーテルを重合して触媒を失活させた後、酸化防止剤、ホルムアルデヒド捕捉剤、末端分解促進剤を添加する方法、トリオキサン、環状エーテルを重合して触媒を失活させた後、酸化防止剤、末端分解促進剤を添加し、100〜270℃の温度範囲に加熱安定化された後にホルムアルデヒド捕捉剤を添加する方法等が採用される。本発明において、上記のように製造工程で失活剤、酸化防止剤、ホルムアルデヒド捕捉剤、末端分解促進剤を添加する場合については、その混合物をポリオキシメチレン樹脂という。   In the present invention, after bulk polymerization using a boron trifluoride-based catalyst to a mixture of trioxane and cyclic ether, a specific nitrogen compound is added as a deactivator to the obtained polymer to deactivate the catalyst, An oxymethylene copolymer is produced by heating to a temperature range of 100 to 270 ° C., preferably a temperature equal to or higher than the melting point of the copolymer. At any stage of this production process, a generally known antioxidant, formaldehyde scavenger, terminal decomposition It is possible to add accelerators. For example, after adding an antioxidant to trioxane, a cyclic ether or a mixture thereof and polymerizing to deactivate the catalyst, the temperature range of 100 to 270 ° C., after polymerizing the trioxane and cyclic ether to deactivate the catalyst , Antioxidant, formaldehyde scavenger, method of adding terminal decomposition accelerator, trioxane, cyclic ether is polymerized to deactivate the catalyst, then antioxidant, terminal decomposition accelerator is added, and 100 to 270 ° C For example, a method of adding a formaldehyde scavenger after heat stabilization in the temperature range is adopted. In the present invention, in the case where a quencher, an antioxidant, a formaldehyde scavenger, and a terminal decomposition accelerator are added in the production process as described above, the mixture is referred to as a polyoxymethylene resin.

(2)(A)着色剤について
この場合の着色剤としては、本発明におけるレーザー光線透過率が15%以上であるという規定を満足する限度においていかなる着色剤であってもよい。
(2) (A) Colorant In this case, the colorant may be any colorant as long as the laser beam transmittance of the present invention is 15% or more.

本発明で使用する(A)着色剤としては、具体的には、モノアゾ系、ジスアゾ系、複素環系、フタロシアニン系、キナクリドン系、ペリレン系、ジケトピロロピロール、イソインドリノンの有機顔料、チタンイエロー、群青の無機顔料が好適に挙げられる。さらにモノアゾ系としては、ナフトールASレッド、メタルソルトアゾイエロー、デベロプトハンザイエロー、ベンズイミダゾロンイエロー、ベンズイミダゾロンオレンジ、ベンズイミダゾロンブラウン等が、ジスアゾ系としては、クロモフタルイエロー、ピラゾロンレッド等が、フタロシアニン系としては、フタロシアニンブルー、ヘリオゲンブルー、シアニンブルー等が、キナクリドン系としては、シンカシヤレッド、シンカシヤバイオレット等が、ペリレン系としてはPVファストレッド、インダンスレンブリリアントオレンジ、ペリレンレッド、ペリレンスカーレット等が代表例として挙げられる。   Specific examples of the colorant (A) used in the present invention include monoazo, disazo, heterocyclic, phthalocyanine, quinacridone, perylene, diketopyrrolopyrrole, isoindolinone organic pigments, titanium Preferred examples include yellow and ultramarine inorganic pigments. Furthermore, as monoazo series, naphthol AS red, metal salt azo yellow, developer hansa yellow, benzimidazolone yellow, benzimidazolone orange, benzimidazolone brown, etc. are available. As the phthalocyanine series, phthalocyanine blue, heliogen blue, cyanine blue, etc. Perylene scarlet etc. are mentioned as a representative example.

これらの着色剤は、0.001〜5重量部添加することが可能である。好ましくは0.1〜3重量部、さらに好ましくは0.2〜2重量部である。0.001重量部未満では、ポリオキシメチレン樹脂の着色が不十分で、かつ色むらが生じるため、好ましくない。また5重量部を越えた場合、ポリオキシメチレン樹脂組成物のレーザー光線透過率が激減し、レーザー溶着を行うにあたり、レーザー光線透過側材料としてレーザー光線吸収側材料とのレーザー溶着の際に溶着が不可能となるため、好ましくない。これらの着色剤については、少なくとも1種以上で用いることが可能である。   These colorants can be added in an amount of 0.001 to 5 parts by weight. Preferably it is 0.1-3 weight part, More preferably, it is 0.2-2 weight part. If it is less than 0.001 part by weight, the polyoxymethylene resin is not sufficiently colored, and color unevenness occurs, which is not preferable. Further, when the amount exceeds 5 parts by weight, the laser beam transmittance of the polyoxymethylene resin composition is drastically reduced, and when performing laser welding, it is impossible to weld at the time of laser welding with the laser beam absorption side material as the laser beam transmission side material. Therefore, it is not preferable. These colorants can be used in at least one kind.

さらに、単独で十分な着色効果を発揮する量を添加した場合、レーザー光線透過性を著しく低下させる着色剤として硫酸カドミウム、セレン化カドミウム、二酸化チタン、酸化鉄、酸化クロム酸塩、カーボンブラック等の無機顔料、アントラキノン系、ジオキサン系、キノフタロン系、ベリノン系等の有機顔料、炭酸カルシウム、硫酸バリウム、タルク、クレー、シリカ等の体質顔料が挙げられるが、これらの顔料は透過性を本発明で規定するレーザー光線透過率を満足する範囲において、本発明のレーザー光線透過性に優れた着色剤と組み合わせて添加することが可能である。   Furthermore, when adding an amount that exhibits a sufficient coloring effect alone, inorganic colorants such as cadmium sulfate, cadmium selenide, titanium dioxide, iron oxide, chromate oxide, and carbon black are used as colorants that significantly reduce laser beam transmission. Examples include pigments, organic pigments such as anthraquinone, dioxane, quinophthalone, and berylone, and extender pigments such as calcium carbonate, barium sulfate, talc, clay, and silica. These pigments define the permeability in the present invention. In a range satisfying the laser beam transmittance, it can be added in combination with the colorant having excellent laser beam transmittance of the present invention.

本発明においては、(A)着色剤が、モノアゾ系、ジスアゾ系、複素環系、フタロシアニン系、キナクリドン系、ペリレン系、ジケトピロロピロール、イソインドリノン、チタンイエロー、群青から選択される少なくとも1つの顔料を含有するのが好ましい。
(3)その他の添加剤について
さらに本発明では本発明の効果を損なわない範囲で、本発明のポリオキシメチレン樹脂組成物にその他の無機フィラー、導電性カーボンブラック、金属粉末、ポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、ポリカーボネート樹脂、未硬化のエポキシ樹脂、またはこれらの変性物等に代表される熱可塑性樹脂、離型剤などを配合することができる。離型剤としては、アルコール、脂肪酸およびそれらのエステル、ポリオキシアルキレングリコール、平均重合度が10〜500であるオレフィン化合物、高級脂肪酸アミド、シリコーンなどが挙げられる。中でも特に高級脂肪酸アミドが好ましく、具体例としてはステアリルアミド、エチレンビスステアリルアミドが好ましい。
(4)レーザー溶着用ポリオキシメチレン樹脂組成物
本発明のレーザー溶着用ポリオキシメチレン樹脂組成物の製造方法は一般的に使用されている溶融混練機を用い、各成分を溶融混練することにより製造することができる。溶融混練機としてはニーダー、ロールミル、単軸押出機、二軸押出機、多軸押出機等上げることが出来る。このときの加工温度は170〜260℃であることが好ましく、品質や作業環境の保持のためには不活性ガスによる置換や一段及び多段ベントで脱気することが好ましい。
(5)レーザー光線について
本発明では、レーザー光線の波長が700〜1200nmにおいて、ポリオキシメチレン樹脂100重量部に対して(A)着色剤0.001〜5重量部を配合してなる樹脂組成物から作製した3mm厚さの成形品で測定したレーザー光線透過率が15%以上であるとする。すなわち、ポリオキシメチレン樹脂100重量部に対して(A)着色剤0.001〜5重量部を配合してなる樹脂組成物から作製した成形品に、波長700〜1200nmのレーザー光線を照射し、その3mm厚さの成形品のレーザー光線透過率が15%以上であるとしている。このレーザー光線透過率は15%以上であって、20%以上であることが好ましい。なお本発明において、上記レーザー光線の透過率は、700〜1200nmの全ての領域で15%以上である必要はなく、いずれかの領域で15%以上あれば良い。
In the present invention, (A) the colorant is at least one selected from monoazo, disazo, heterocyclic, phthalocyanine, quinacridone, perylene, diketopyrrolopyrrole, isoindolinone, titanium yellow, and ultramarine blue. Preferably it contains two pigments.
(3) Other Additives Further, in the present invention, other inorganic fillers, conductive carbon black, metal powder, polyolefin resin, acrylic resin are added to the polyoxymethylene resin composition of the present invention within a range not impairing the effects of the present invention. , A styrene resin, a polycarbonate resin, an uncured epoxy resin, a thermoplastic resin represented by a modified product thereof, a release agent, or the like can be blended. Examples of the release agent include alcohols, fatty acids and esters thereof, polyoxyalkylene glycols, olefin compounds having an average polymerization degree of 10 to 500, higher fatty acid amides, and silicones. Of these, higher fatty acid amides are particularly preferred. As specific examples, stearylamide and ethylenebisstearylamide are preferred.
(4) Laser welding polyoxymethylene resin composition The method for producing the laser welding polyoxymethylene resin composition of the present invention is produced by melt kneading each component using a commonly used melt kneader. can do. Examples of the melt kneader include a kneader, a roll mill, a single screw extruder, a twin screw extruder, and a multi screw extruder. The processing temperature at this time is preferably 170 to 260 ° C., and in order to maintain the quality and working environment, it is preferable to perform deaeration by substitution with an inert gas or single-stage and multistage vents.
(5) About laser beam In this invention, when the wavelength of a laser beam is 700-1200 nm, it produces from the resin composition formed by mix | blending 0.001-5 weight part of (A) colorants with respect to 100 weight part of polyoxymethylene resins. It is assumed that the laser beam transmittance measured with a molded product having a thickness of 3 mm is 15% or more. That is, a laser beam having a wavelength of 700 to 1200 nm is irradiated to a molded product prepared from a resin composition in which 0.001 to 5 parts by weight of the colorant (A) is blended with 100 parts by weight of the polyoxymethylene resin The laser beam transmittance of a molded product having a thickness of 3 mm is assumed to be 15% or more. The laser beam transmittance is 15% or more, and preferably 20% or more. In the present invention, the transmittance of the laser beam need not be 15% or more in all regions of 700 to 1200 nm, and may be 15% or more in any region.

レーザー光線の波長を700〜1200nmとしたのは、この領域内でポリオキシメチレン樹脂100重量部に対して(A)着色剤0.001〜5重量部を配合してなる樹脂組成物から作製した成形品におけるレーザー光線透過率が良好であるためである。   The reason why the wavelength of the laser beam was set to 700 to 1200 nm was that this region was formed from a resin composition comprising 0.001 to 5 parts by weight of the colorant (A) with respect to 100 parts by weight of the polyoxymethylene resin. This is because the laser beam transmittance of the product is good.

かくして得られる本発明のレーザー溶着用ポリオキシメチレン樹脂組成物は、射出成形、押出成形、プレス成形、加熱加圧成形、スタンピング成形等の方法で成形が可能である。
かかる成形品の厚みについてもレーザー溶着部においてレーザー溶着が可能である限り特に規定はない。かくして得られる成形品はレーザー光線透過率に優れるため、レーザー溶着におけるレーザー光線透過側成形品として極めて優れた性能を発揮するのみならず、着色剤の配合により優れた意匠性を付与することも可能であるためきわめて実用性が高い。
The thus obtained polyoxymethylene resin composition for laser welding of the present invention can be molded by methods such as injection molding, extrusion molding, press molding, heat-pressure molding, stamping molding, and the like.
The thickness of the molded product is not particularly limited as long as laser welding can be performed at the laser welding portion. Since the molded product thus obtained has excellent laser beam transmittance, it can not only exhibit extremely excellent performance as a laser beam transmission side molded product in laser welding, but also can impart excellent design properties by blending a colorant. Therefore, it is extremely practical.

次に実施例および比較例により本発明を説明する。なお、実施例および比較例中に示されるポリオキシメチレン樹脂組成物の成形品において、透過率およびレーザー溶着を施した成形品の引張強度を次のように測定した。   Next, the present invention will be described with reference to examples and comparative examples. In the molded product of the polyoxymethylene resin composition shown in the examples and comparative examples, the transmittance and the tensile strength of the molded product subjected to laser welding were measured as follows.

射出成形:
60トンの型締め圧を有する射出成形機を用いて、シリンダー温度200℃、金型温度80℃、射出/冷却時間=15/15秒に設定して、80×80×3mmt角板試験片を射出成形した。レーザー光線透過性評価試験片については、スプルー、ランナー、ゲートから切断し、レーザー光線透過性評価試験片を得た。
injection molding:
Using an injection molding machine having a clamping pressure of 60 tons, a cylinder temperature of 200 ° C., a mold temperature of 80 ° C., and an injection / cooling time = 15/15 seconds were set, and an 80 × 80 × 3 mmt square plate test piece was Injection molded. About the laser beam transmittance | permeability evaluation test piece, it cut | disconnected from the sprue, the runner, and the gate, and obtained the laser beam transmittance | permeability evaluation test piece.

レーザー光線透過性の評価:
レーザー光線透過性の評価については、紫外近赤外分光高度計(UV−310、(株)島津製作所)を使用した。また、検出器には積分球を使用した。成形プレートの0〜1200nmの透過度を測定した。その中で、表1には940nmのレーザー波長を有する光源における各材料の透過度を示した(成形品厚みが3mm当たりの透過率)。
Evaluation of laser beam transmission:
For the evaluation of laser beam transmission, an ultraviolet near infrared spectrophotometer (UV-310, Shimadzu Corporation) was used. An integrating sphere was used as the detector. The transmittance of the molded plate from 0 to 1200 nm was measured. Among them, Table 1 shows the transmittance of each material in a light source having a laser wavelength of 940 nm (transmittance when the thickness of the molded product is 3 mm).

レーザー溶着用試験片の作成:
レーザー溶着用試験片については、前述の射出成形により作成した80×80×3mmt角板試験片を幅が24mm、長さが70mmとなるように切削加工して、レーザー溶着用試験片を得た。尚、レーザー光線透過側材料としては、本発明のポリオキシメチレン樹脂組成物を使用し、レーザー光線吸収側材料としては、ポリオキシメチレン樹脂100重量部に対し、カーボンブラックを0.83部添加した材料を使用した。
Creating laser welding specimens:
About the laser welding test piece, the 80 × 80 × 3 mmt square plate test piece prepared by the above-described injection molding was cut to have a width of 24 mm and a length of 70 mm to obtain a laser welding test piece. . As the laser beam transmission side material, the polyoxymethylene resin composition of the present invention is used, and as the laser beam absorption side material, a material obtained by adding 0.83 part of carbon black to 100 parts by weight of the polyoxymethylene resin is used. used.

レーザー溶着評価:
レーザー溶着には、ライスター社のMODULAS C(レーザー光線の波長が940nmの近赤外線であり、最大出力が35W、焦点距離Lが38mm、焦点径Dが0.6mmである)を用いて、溶着可否を評価した。レーザー光線の出力については30W、レーザー光線の走査速度については、6mm/secに統一した。レーザー光線透過側材料の光線入射表面に溶融痕が見られる場合は●を、溶融痕が見られず溶着が可能な場合は○を、また溶着が不可能な場合は×を溶着特性として表1に記載した。
Laser welding evaluation:
For laser welding, use Leister's MODULAS C (near infrared with a laser beam wavelength of 940 nm, maximum output is 35 W, focal length L is 38 mm, focal diameter D is 0.6 mm). evaluated. The laser beam output was unified to 30 W, and the laser beam scanning speed was unified to 6 mm / sec. Table 1 shows the welding characteristics as ● when melting marks are seen on the light incident surface of the laser beam transmitting side material, ○ when welding marks are possible without any melting marks, and x when welding is impossible. Described.

レーザー溶着方法:
レーザー光線透過側材料を上部に、レーザー光線吸収側材料を下部に置き、重ね合わせて上部よりレーザー光線を照射した。レーザー照射はレーザー溶着軌道に沿って行った。
Laser welding method:
The laser beam transmitting side material was placed on the upper side and the laser beam absorbing side material was placed on the lower side. Laser irradiation was performed along the laser welding trajectory.

レーザー溶着強度測定用試験片は、レーザー溶着試験片であるレーザー光線透過側試料とレーザー光線吸収側試料とが、重ね合わせ長さLを30mmとし、溶着距離は20mmとして、重ね合わせて溶着部で溶着したものである。   The test piece for measuring the laser welding strength was a laser welding test piece, a laser beam transmission side sample and a laser beam absorption side sample, with a superposition length L of 30 mm, a welding distance of 20 mm, and superposed and welded at the welding part. Is.

溶着強度測定:
溶着強度測定には、一般的な引張試験機(AG−500B)を使用し、試験片の両端を固定し、溶着部位には引張剪断応力が発生するように引張試験を行った。強度測定時の引張速度は1mm/min、スパンは40mmである。溶着強度は、溶着部位が破断したときの応力とした。
Weld strength measurement:
For the measurement of the welding strength, a general tensile testing machine (AG-500B) was used, both ends of the test piece were fixed, and a tensile test was performed so that a tensile shear stress was generated at the welding site. The tensile speed during strength measurement is 1 mm / min, and the span is 40 mm. The welding strength was the stress when the welded site was broken.

ポリオキシメチレン樹脂の製造:
2軸押出機型重合機(100mmφ、シリンダー長(L)/シリンダー径(D)=10.2)にトリオキサン(25kg/h)、1,3−ジオキソラン(810g/h)、また、トリオキサンに対して触媒として110ppmの三フッ化ホウ素・ジエチルエーテラート(2.5%ベンゼン溶液)、分子量調節剤として700ppmのメチラールをそれぞれ供給し、連続重合を行った。重合は外部ジャケットを60℃にコントロールし、回転数は50rpmで行った。メチラールはトリオキサン中に溶解した。また、1,3−ジオキソランと触媒溶液は重合機へ供給する直前に予備混合されるように予備混合ゾーンを設けた。重合体は白色微粉末として23.0kg/hで得られた。このようにして得られた微粉末5kgに対し9.0gの“サノール”LS765[三共製薬、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート]を50mlのベンゼンに溶解した溶液を添加し、ヘンシェルミキサー中で3分間撹拌して触媒失活を行ったものを使用した。
Production of polyoxymethylene resin:
A triaxial (25 kg / h), 1,3-dioxolane (810 g / h), trioxane (100 mmφ, cylinder length (L) / cylinder diameter (D) = 10.2) Then, 110 ppm of boron trifluoride / diethyl etherate (2.5% benzene solution) was supplied as a catalyst, and 700 ppm of methylal was supplied as a molecular weight regulator, and continuous polymerization was performed. The polymerization was performed by controlling the outer jacket at 60 ° C. and rotating at 50 rpm. Methylal was dissolved in trioxane. Further, a premixing zone was provided so that 1,3-dioxolane and the catalyst solution were premixed immediately before being supplied to the polymerization machine. The polymer was obtained as a white fine powder at 23.0 kg / h. 9.0 g of “Sanol” LS765 [Sankyo Pharmaceutical, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate] was dissolved in 50 ml of benzene per 5 kg of the fine powder thus obtained. The solution was added and stirred for 3 minutes in a Henschel mixer to deactivate the catalyst.

さらに重合触媒を失活させて得られる粗ポリマ100重量部に対して酸化防止剤、粗ポリマ分解助剤、および分解により発生したホルムアルデヒドの捕捉剤を添加し、ベント付二軸押出機を用いて170〜260℃の温度範囲で加熱混練してポリオキシメチレン樹脂を得た。   Furthermore, an antioxidant, a crude polymer decomposition aid, and a scavenger for formaldehyde generated by decomposition were added to 100 parts by weight of the crude polymer obtained by deactivating the polymerization catalyst, and a vented twin screw extruder was used. A polyoxymethylene resin was obtained by heating and kneading in a temperature range of 170 to 260 ° C.

(A)着色剤:
(A−1)モノアゾ系橙色有機顔料(Pigment Orange 64)、(A−2)ジスアゾ系黄色有機顔料(Pigment Yellow 128)、(A−3)複素環系黄色有機顔料(Pigment Yellow 138)、(A−4)フタロシアニン系緑色有機顔料(Pigment Blue 15:3)、(A−5)キナクリドン系赤色有機顔料(Pigment Red 122)、(A−6)ペリレン系赤色有機顔料(Pigment Red 178)、(A−7)ジケトピロロピール赤色有機顔料(Pigment Red 254)、(A−8)イソインドリノン系黄色有機顔料(Pigment Yellow 110)、(A−9)チタンイエロー(Pigment Brown 24)、(A−10)群青(Pigment Blue 29)、(A−11)複合酸化物系無機顔料(Pigment Green 50)、(A−12)酸化チタン(Pigment White 6)、(A−13)酸化鉄(Pigment Red 101)。
(A) Colorant:
(A-1) monoazo orange organic pigment (Pigment Orange 64), (A-2) disazo yellow organic pigment (Pigment Yellow 128), (A-3) heterocyclic yellow organic pigment (Pigment Yellow 138), ( A-4) Phthalocyanine green organic pigment (Pigment Blue 15: 3), (A-5) Quinacridone red organic pigment (Pigment Red 122), (A-6) Perylene red organic pigment (Pigment Red 178), ( A-7) Diketopyrrolopyle red organic pigment (Pigment Red 254), (A-8) Isoindolinone yellow organic pigment (Pigment Yellow 110), (A-9) Titanium yellow (Pigment Brown 24), (A -10) Pigment Blue 29, (A-11) Complex oxide inorganic pigment (Pigment Green 50), (A-12) Titanium oxide (Pigment White 6), (A-13) Iron oxide (Pigment Red) 101).

実施例1〜10、比較例1〜5
レーザー溶着用ポリオキシメチレン樹脂組成物の製造:
上記の手法により得られたポリオキシメチレン樹脂組成物に対し、(A)着色剤を表1に示すような割合で配合し、ベント付二軸押出機を用いて170〜260℃の温度範囲で加熱混練した。得られたポリオキシメチレン樹脂組成物はストランド状に押出され、カッターでペレタイズした。このペレットを熱風循環オーブン中、80℃で5時間乾燥した。乾燥後、上記の手法で射出成形を行い、レーザー光線透過率、および引張強度(溶着強度)を測定した。測定結果を表1に示す。
Examples 1-10, Comparative Examples 1-5
Production of polyoxymethylene resin composition for laser welding:
In the polyoxymethylene resin composition obtained by the above method, (A) a colorant is blended at a ratio as shown in Table 1, and a temperature range of 170 to 260 ° C. using a vented twin screw extruder. Heat-kneaded. The obtained polyoxymethylene resin composition was extruded into a strand shape and pelletized with a cutter. The pellets were dried in a hot air circulating oven at 80 ° C. for 5 hours. After drying, injection molding was performed by the above-described method, and laser beam transmittance and tensile strength (welding strength) were measured. The measurement results are shown in Table 1.

Figure 2006077160
Figure 2006077160

表1の結果から、次の事項が明らかである。
(1)表1に示す各種着色顔料をポリオキシメチレン樹脂に混合しても、レーザー光線透過率の大幅な減少には至らず、レーザー光線透過性が良好な材料が得られた。また、溶着も問題なく実施可能であり、溶着強度についても優れていた(実施例1〜10)。
(2)表1に示すように着色顔料の配合量が0.001部より少ない場合、成形品に色むらが生じ、外観特性が損なわれた。また溶着に関しては、レーザー光線入射表面に一部樹脂が分解してできた溶融痕が確認できた(比較例1)。一方、表1に示すように着色顔料の配合量が5重量部を越える場合、レーザー光線透過性が悪化したため溶着特性が損なわれ、溶着強度を測定するには至らなかった(比較例2)。
(3)表1に示すような着色顔料を使用した場合、レーザー光線透過性が悪化したため溶着特性が損なわれ、溶着強度を測定するには至らなかった(比較例3〜5)。
From the results in Table 1, the following matters are clear.
(1) Even when various color pigments shown in Table 1 were mixed with polyoxymethylene resin, the laser beam transmittance was not significantly reduced, and a material having good laser beam transmittance was obtained. Moreover, welding could be carried out without any problem, and the welding strength was also excellent (Examples 1 to 10).
(2) As shown in Table 1, when the blending amount of the color pigment was less than 0.001 part, uneven color occurred in the molded product, and appearance characteristics were impaired. Further, regarding the welding, it was possible to confirm melting marks formed by partially decomposing the resin on the laser beam incident surface (Comparative Example 1). On the other hand, as shown in Table 1, when the blending amount of the color pigment exceeds 5 parts by weight, the laser beam permeability was deteriorated, so that the welding characteristics were impaired and the welding strength could not be measured (Comparative Example 2).
(3) When a color pigment as shown in Table 1 was used, the laser beam transmittance was deteriorated, so that the welding characteristics were impaired, and the welding strength could not be measured (Comparative Examples 3 to 5).

Claims (2)

ポリオキシメチレン樹脂100重量部に対して、(A)着色剤0.001〜5重量部を配合してなるレーザー溶着用ポリオキシメチレン樹脂組成物であり、かつレーザー光線の波長が、700〜1200nmにおいて、前記組成物から作製した3mm厚さの成形品で測定したレーザー光線透過率が15%以上であるレーザー溶着用ポリオキシメチレン樹脂組成物。 A polyoxymethylene resin composition for laser welding obtained by blending 0.001 to 5 parts by weight of the colorant (A) with respect to 100 parts by weight of the polyoxymethylene resin, and the wavelength of the laser beam is 700 to 1200 nm. A laser-welded polyoxymethylene resin composition having a laser beam transmittance of 15% or more measured with a molded product having a thickness of 3 mm produced from the composition. (A)着色剤が、モノアゾ系、ジスアゾ系、複素環系、フタロシアニン系、キナクリドン系、ペリレン系、ジケトピロロピロール、イソインドリノン、チタンイエロー、群青から選択される少なくとも1つの顔料を含有する請求項1記載のレーザー溶着用ポリオキシメチレン樹脂組成物。 (A) The colorant contains at least one pigment selected from monoazo, disazo, heterocyclic, phthalocyanine, quinacridone, perylene, diketopyrrolopyrrole, isoindolinone, titanium yellow, and ultramarine blue. The polyoxymethylene resin composition for laser welding according to claim 1.
JP2004263933A 2004-09-10 2004-09-10 Polyoxymethylene resin composition for laser welding Pending JP2006077160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263933A JP2006077160A (en) 2004-09-10 2004-09-10 Polyoxymethylene resin composition for laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263933A JP2006077160A (en) 2004-09-10 2004-09-10 Polyoxymethylene resin composition for laser welding

Publications (1)

Publication Number Publication Date
JP2006077160A true JP2006077160A (en) 2006-03-23

Family

ID=36156880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263933A Pending JP2006077160A (en) 2004-09-10 2004-09-10 Polyoxymethylene resin composition for laser welding

Country Status (1)

Country Link
JP (1) JP2006077160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014093055A1 (en) * 2012-12-13 2014-06-19 Ticona Llc Laser-weldable electrostatically dissipative polyoxymethylene based on stainless steel fibers
JP2016124964A (en) * 2014-12-26 2016-07-11 山田化学工業株式会社 Resin composition for laser welding
WO2022249980A1 (en) * 2021-05-28 2022-12-01 ポリプラスチックス株式会社 Laser transmissive resin composition and molded article thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014093055A1 (en) * 2012-12-13 2014-06-19 Ticona Llc Laser-weldable electrostatically dissipative polyoxymethylene based on stainless steel fibers
JP2016124964A (en) * 2014-12-26 2016-07-11 山田化学工業株式会社 Resin composition for laser welding
WO2022249980A1 (en) * 2021-05-28 2022-12-01 ポリプラスチックス株式会社 Laser transmissive resin composition and molded article thereof

Similar Documents

Publication Publication Date Title
US7129439B2 (en) Resin molded body joining method
EP2492305A1 (en) Composition containing microfibrillated plant fibers
SG182359A1 (en) Thick blown films
EP2427518B1 (en) Reduction of the influence of water absorption on the electrical conductivity of electrically conductive polyamide molding compounds
JP2019131792A (en) Cellulose-based fiber master batch, cellulose-based fiber-containing resin composition, manufacturing method therefor, and molded body of cellulose-based fiber-containing resin composition
WO1998015591A1 (en) A method of compounding a multimodal polymer composition
CN106589514A (en) Light stabilizer composition master batch and preparation method and application thereof
JP5580303B2 (en) Long fiber reinforced resin composition and molded body thereof
EP3214120A1 (en) Thermoplastic elastomer composition of an elastomer and a non-elastomer polyolefin, functionalised with an anhydride of an organic carboxylic acid
CN111205545A (en) Method for preventing auxiliary agent in polyethylene aging-resistant master batch from being separated out
EP2208759B1 (en) Process for production of molded polylactic acid resin article, compound comprising a crystallization-inducing master batch for use in the process, and molded polylactic acid resin article
WO2019150907A1 (en) Cellulose fiber master batch, cellulose fiber-containing resin composition, method for producing cellulose fiber master batch, method for producing cellulose fiber-containing resin composition, and molded body of cellulose fiber-containing resin composition
JP2006077160A (en) Polyoxymethylene resin composition for laser welding
Yan et al. Tough polyamide 6/core–shell blends prepared via in situ anionic polymerization of ε‐caprolactam by reactive extrusion
DE4217914A1 (en) Process for the preparation of a curable molding material
JP6944157B2 (en) Polyolefin-based resin composition and polyolefin-based resin film
CN107540935B (en) Polypropylene reclaimed material composition and preparation method thereof
KR102413843B1 (en) Polyethylene resin composition for rotational molding
JP6490570B2 (en) Polyoxymethylene resin molded body and method for producing the same
Muralisrinivasan Introduction to Polymer Compounding: Raw Materials, Volume 1
CN102408601A (en) Super-wide-breadth metallocene polyethylene greenhouse film resin composition and preparation method thereof
CN102167855A (en) Metallocene polyethylene greenhouse film resin composition
CN114644793B (en) High-toughness electromagnetic shielding polypropylene composite material and preparation method and application thereof
JP5403209B2 (en) Continuous process for producing polyacetal copolymer
US10731028B2 (en) Colored composite material with cellulose fibers