JP2006076917A - Method for dissolving by-product remaining after recovery of saccharide from cellulose containing substance - Google Patents

Method for dissolving by-product remaining after recovery of saccharide from cellulose containing substance Download PDF

Info

Publication number
JP2006076917A
JP2006076917A JP2004262399A JP2004262399A JP2006076917A JP 2006076917 A JP2006076917 A JP 2006076917A JP 2004262399 A JP2004262399 A JP 2004262399A JP 2004262399 A JP2004262399 A JP 2004262399A JP 2006076917 A JP2006076917 A JP 2006076917A
Authority
JP
Japan
Prior art keywords
residue
solution
cellulose
acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004262399A
Other languages
Japanese (ja)
Other versions
JP4619731B2 (en
Inventor
Kaku Ri
革 李
Hirokuni Tajima
宏邦 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rengo Co Ltd
Original Assignee
Rengo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rengo Co Ltd filed Critical Rengo Co Ltd
Priority to JP2004262399A priority Critical patent/JP4619731B2/en
Publication of JP2006076917A publication Critical patent/JP2006076917A/en
Application granted granted Critical
Publication of JP4619731B2 publication Critical patent/JP4619731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively utilizing the residue that is obtained as a by-product, when saccharides are recovered from cellulose-including substance. <P>SOLUTION: The residue that is obtained as a by-product, when saccharides are recovered from cellulose-containing substances, is heat-treated in an aqueous alkali solution having a concentration of 0.01 to 5 mol/L at a temperature of 100 to 300°C to obtain the residual solution. The residual solution produced by the method according to this invention is coated to obtain reinforced paper. Thereby the residue that is obtained as a by-product, when saccharides are recovered from cellulose-containing substances, becomes handleable as an aqueous solution and the use of the residue can be expanded, for example, as a paper durability enhancer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、セルロース含有物質より糖を回収する際に副生する残渣の溶解法とその溶液の利用に関する。   The present invention relates to a method for dissolving a residue by-produced when sugar is recovered from a cellulose-containing substance and use of the solution.

従来、製紙工程において副生する微細繊維や紙粉等は、焼却処分にされるか又は産業廃棄物となることが多く、これらを有効利用することが求められている。またこれ以外にも、産業廃棄物、農・林業廃棄物、家庭廃棄物に含まれる、天然物や添加剤等を有効利用することも求められている。その中でも、紙、木材、藁などのセルロースを含有する天然高分子や、古紙、木粉等のセルロース含有廃棄物を有効利用する際には、含有するセルロースを有効利用するという点で、上記製紙工程での廃棄物の有効利用と同種の方法が適用できる。   Conventionally, fine fibers, paper powder, and the like that are by-produced in the papermaking process are often incinerated or become industrial waste, and it is required to effectively use them. In addition to this, it is also required to effectively use natural products and additives contained in industrial waste, agricultural / forestry waste, and household waste. Among these, when effectively using cellulose-containing wastes such as paper, wood, straw, and other natural polymers containing cellulose, waste paper, wood flour, etc. A method similar to the effective use of waste in the process can be applied.

この有効利用方法として、例えば特許文献1に記載の方法のように、上記のセルロース含有廃棄物を酸により糖類に分解することで、発酵原料として用いて、エタノールのような有用物質の製造を行うといった方法が試みられている。ただし、これらのセルロース含有廃棄物の分解後には、リグニン、無機物等を含む大量の残渣が副生し、その有効利用は、廃棄物削減に加え、上記のセルロース含有廃棄物より有用物質を得るプロセスを経済的に成り立たせる上で重要な課題である。   As an effective utilization method, for example, as in the method described in Patent Document 1, the above-described cellulose-containing waste is decomposed into sugars with an acid to produce a useful substance such as ethanol by using it as a fermentation raw material. Such a method has been tried. However, after decomposition of these cellulose-containing wastes, a large amount of residues containing lignin, inorganic substances, etc. are by-produced, and its effective use is a process of obtaining useful substances from the above-mentioned cellulose-containing wastes in addition to waste reduction. This is an important issue for making the economy economically viable.

特開平11−506934号公報Japanese Patent Laid-Open No. 11-506934

しかしながら、セルロース含有廃棄物の分解後に生じる残渣、特に酸加水分解により副生する残渣は、含まれるリグニンが架橋する等の反応が分解時に起こることにより、溶解性が極めて低いものとなる。中でも、硫酸を用いて酸加水分解を行った場合に得られる残渣は、さらに溶解性が低いものとなる。   However, the residue generated after the decomposition of the cellulose-containing waste, particularly the residue by-produced by acid hydrolysis, has extremely low solubility due to the occurrence of a reaction such as crosslinking of lignin contained during decomposition. Among them, the residue obtained when acid hydrolysis is performed using sulfuric acid has a lower solubility.

また、上記残渣は大量に回収されるが、これをそのまま焼却用燃料として処理してしまうと上記セルロース含有廃棄物の有効利用が十分にされたとは言い難い。さらに、セルロース含有物質より糖類を回収する工程を工業化するには、これも有効利用しなければ経済的ではない。しかし、これらの残渣、特に酸加水分解によりセルロース含有廃棄物の分解を行った場合の残渣は、ほとんど溶解しないため、有効な利用方法はきわめて限られてしまい、焼却用燃料にしなければならない場合が多かった。   Moreover, although the said residue is collect | recovered in large quantities, if this is processed as it is as a fuel for incineration as it is, it cannot be said that the effective utilization of the said cellulose containing waste was fully made. Furthermore, in order to industrialize the process of recovering saccharides from cellulose-containing substances, it is not economical unless this is also effectively utilized. However, these residues, particularly when cellulose-containing waste is decomposed by acid hydrolysis, hardly dissolves, so the effective use is extremely limited and it may be necessary to use fuel for incineration. There were many.

そこでこの発明は、セルロース含有物質より糖類を回収する際に副生する残渣を有効利用する手段を提供することを目的とする。   Accordingly, an object of the present invention is to provide a means for effectively using a residue produced as a by-product when recovering a saccharide from a cellulose-containing substance.

この発明は、セルロース含有物質より糖類を回収する際に副生する残渣を、有効濃度が0.01〜5mol/Lであるアルカリ水溶液中で、100〜300℃の温度環境で加熱処理して溶液とすることにより上記の課題を解決したのである。   The present invention provides a solution obtained by heat-treating a residue by-produced when recovering saccharides from a cellulose-containing substance in an alkaline aqueous solution having an effective concentration of 0.01 to 5 mol / L in a temperature environment of 100 to 300 ° C. This solves the above-mentioned problem.

セルロース含有物質より糖類を回収する際に副生する溶解性の低い残渣を、水溶液として扱うことができるようになり、応用範囲が大きく拡大する。例えば、水溶液として紙に塗工することで、紙力増強効果が得られる。また、残渣に含まれる酸リグニンなどの変性したリグニンの反応性も向上するため、応用範囲が広がり、その他の利用方法も期待できるようになる。   Residues with low solubility, which are produced as a by-product when recovering saccharides from cellulose-containing substances, can be handled as aqueous solutions, greatly expanding the application range. For example, a paper strength enhancing effect can be obtained by coating paper as an aqueous solution. In addition, the reactivity of the modified lignin such as acid lignin contained in the residue is improved, so that the application range is expanded and other utilization methods can be expected.

以下この発明を詳細に説明する。
この発明は、セルロース含有物質より糖類を回収する際に副生する残渣を、有効濃度が0.01〜5mol/Lであるアルカリ水溶液中で、100〜300℃の温度環境で加熱処理することにより残渣溶解液を得る方法である。
The present invention will be described in detail below.
In this invention, the residue by-produced when recovering saccharides from a cellulose-containing substance is heat-treated in an alkaline aqueous solution having an effective concentration of 0.01 to 5 mol / L in a temperature environment of 100 to 300 ° C. This is a method for obtaining a residue solution.

上記セルロース含有物質としては、針葉樹、広葉樹、草木類などの植物、パルプ、古紙、紙粉、微細繊維、木材粉、とうもろこし芯、バガス、おがくず、麦わら等のリグニンを含有する物質が挙げられる。   Examples of the cellulose-containing substance include plants such as conifers, hardwoods, and vegetation, and substances containing lignin such as pulp, waste paper, paper powder, fine fibers, wood powder, corn core, bagasse, sawdust, and straw.

糖類を回収するとは、上記セルロース含有物質を加水分解、酵素分解、または、加圧熱水処理等による熱分解などにより、上記セルロース含有物質に含まれるセルロース分を糖類に分解、回収することをいう。なお、これらのセルロース含有物質より糖類を製造する前に、上記セルロース含有物質に対して、必要に応じて粉砕、脱墨等の機械的又は化学的な前処理を施した後、直接に、またはスラリー状にして、ニーダーなどの連続装置、カラム等に充填して通液する半連続装置、または反応(発酵)釜などのバッチ式装置に供給して以下の糖類への分解処理が行なわれる。   Recovering the saccharide refers to decomposing and recovering the cellulose contained in the cellulose-containing substance into saccharides by hydrolysis, enzymatic decomposition, thermal decomposition by pressurized hot water treatment, or the like. . In addition, before producing saccharides from these cellulose-containing substances, the cellulose-containing substance is subjected to mechanical or chemical pretreatment such as pulverization and deinking, if necessary, directly, or The slurry is supplied to a continuous device such as a kneader, a semi-continuous device that is filled in a column or the like and passed through, or a batch-type device such as a reaction (fermentation) kettle, and then decomposed into the following saccharides.

上記セルロース含有物質を加水分解する方法としては、例えば、酸で処理する酸加水分解法がある。この酸加水分解法としては、例えば、ショラー法、マジソン法、改良マジソン法、ソ連法等の希酸法、及び、ピオリア法、ジョルダーニ・レオネ法、北海道法、ソ連法、ベルギウス・ライナウ法、新ライナウ法、ブロードル法、ダブルオーフェン法、エラン法、野口研究所法等の濃酸法が挙げられる。上記の処理に用いる酸としては酢酸、蟻酸、トリフルオロ酢酸等の有機酸、亜硫酸、リン酸、フッ化水素、硫酸、硝酸、塩酸などの無機酸が用いられ、特に硫酸、塩酸が好ましい。   As a method for hydrolyzing the cellulose-containing substance, for example, there is an acid hydrolysis method in which treatment is performed with an acid. As this acid hydrolysis method, for example, the Scholar method, the Madison method, the improved Madison method, the Soviet method, etc., the dilute acid method, the Peoria method, the Giordani-Leone method, the Hokkaido method, the Soviet method, the Bergius Reinau method, the new method Examples thereof include concentrated acid methods such as the Reinau method, the Brodle method, the double orphen method, the Elan method, and the Noguchi laboratory method. As the acid used in the above treatment, organic acids such as acetic acid, formic acid and trifluoroacetic acid, and inorganic acids such as sulfurous acid, phosphoric acid, hydrogen fluoride, sulfuric acid, nitric acid and hydrochloric acid are used, and sulfuric acid and hydrochloric acid are particularly preferable.

上記酸加水分解以外のセルロース含有物質の分解処理法としては、酵素分解、加圧熱水処理等が挙げられる。   Examples of the decomposition treatment method of the cellulose-containing substance other than the acid hydrolysis include enzymatic decomposition and pressurized hot water treatment.

上記の酵素分解とは、C1酵素(アビセラーゼ、セロビオヒドラーゼ、FPアーゼ、エキソ−βーグルカナーゼ等とも呼称されている。)、Cx酵素(CMCアーゼ、エンド−β−グルカナーゼともいう。)およびβ−グルコシダーゼ(セロビアーゼともいう。)など種々の名称で呼ばれるセルラーゼを水懸濁液中、公知の条件で、上記セルロース含有物質に作用させることにより行なわれる。酵素の起源は、特に限定されるものではないが、例えばトリコデルマ・レーゼイ、トリコデルマ・ビリデやアスペルギルス属、ペニシリウム属等が挙げられる。   The above enzymatic degradation includes C1 enzyme (also referred to as avicellase, cellobiohydrase, FPase, exo-β-glucanase, etc.), Cx enzyme (also referred to as CMCase, endo-β-glucanase) and β. -Cellulase called by various names such as glucosidase (also called cellobiase) is allowed to act on the cellulose-containing substance in a water suspension under known conditions. The origin of the enzyme is not particularly limited, and examples thereof include Trichoderma reesei, Trichoderma viride, Aspergillus genus and Penicillium genus.

上記の加圧熱水処理は、上記セルロース含有物質を高温・高圧の水、亜臨界水または超臨界水中で分解させる手法で、温度180〜600℃、圧力5〜50MPaの範囲で通常行なわれる。   The pressurized hot water treatment is usually performed at a temperature of 180 to 600 ° C. and a pressure of 5 to 50 MPa by the method of decomposing the cellulose-containing substance in high-temperature / high-pressure water, subcritical water or supercritical water.

上記のセルロース含有物質に上記のような処理をすることにより、単糖またはオリゴ糖などの糖からなる有効成分が得られると同時に、副生成物が生じる。この糖を回収する際に残渣として残るその副生成物は、原料起源、処理法等により異なるが、リグニン類、タンパク質、炭水化物等の有機物、塩類、鉱物、酸、シリカ化合物等の無機物が含まれる。特に、酸加水分解で得られる残渣には、通常のリグニンとは異なる酸リグニンが大量に含まれ、例えば硫酸リグニンや塩酸リグニンが挙げられる。その中でも、酸処理の際に硫酸を用いた硫酸リグニンは反応性も乏しく他の処理方法が適用しにくいため、特にこの発明が効果的である。なお、上記リグニン類とは通常のリグニンだけでなく上記酸リグニンも含む。   By treating the cellulose-containing substance as described above, an active ingredient composed of a sugar such as a monosaccharide or an oligosaccharide is obtained, and at the same time, a by-product is generated. By-products that remain as residues when recovering this sugar vary depending on the raw material origin, processing method, etc., but include organic substances such as lignins, proteins, and carbohydrates, and inorganic substances such as salts, minerals, acids, and silica compounds. . In particular, the residue obtained by acid hydrolysis contains a large amount of acid lignin different from ordinary lignin, such as sulfate lignin and lignin hydrochloride. Among them, the lignin sulfate using sulfuric acid in the acid treatment has a low reactivity and is difficult to apply to other treatment methods, so this invention is particularly effective. The lignins include not only ordinary lignin but also the acid lignin.

この発明で溶解させる上記残渣は、上記の糖を回収する際に残る残渣をそのまま用いてもよいし、上記のアルカリ水溶液で加熱処理する前に、洗浄、pH調整、粉砕、乾燥、分別したりしたものでもよい。   As the residue to be dissolved in the present invention, the residue remaining when the above sugar is recovered may be used as it is, or before the heat treatment with the above alkaline aqueous solution, washing, pH adjustment, pulverization, drying, fractionation, etc. You may have done.

この発明にかかる具体的な方法としては、例えば、上記の残渣を上記アルカリ水溶液に混合浸漬してスラリー状にした後、上記の温度条件で加熱することにより行なわれる。また、上記のアルカリ水溶液に添加剤として、亜硫酸ナトリウム、硫化ナトリウム、ポリスルフィド、メタノール、アントラキノンなどのキノン類等を添加してもよい。   As a specific method according to the present invention, for example, the above residue is mixed and immersed in the alkaline aqueous solution to form a slurry, and then heated under the above temperature conditions. Moreover, you may add quinones, such as sodium sulfite, sodium sulfide, polysulfide, methanol, anthraquinone, etc. to said alkaline aqueous solution as an additive.

この発明において上記残渣を処理する上記アルカリ水溶液としては、一般的なアルカリ試薬を用いてよく、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の水酸化アルカリ金属化合物、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ金属化合物といった塩基性を示すアルカリ金属化合物や、水酸化カルシウム、水酸化マグネシウム等の水酸化アルカリ土類金属化合物、炭酸カルシウム、炭酸マグネシウム等の炭酸アルカリ土類金属化合物といった塩基性を示すアルカリ土類金属化合物や、アンモニア、トリメチルアミン、トリエチルアミン等の塩基性を示すアミノ類が挙げられる。これらの中でも、強塩基性を示す水酸化アルカリ金属化合物が望ましく、水酸化ナトリウム、水酸化カリウムが特に望ましい。   As the alkaline aqueous solution for treating the residue in the present invention, a common alkaline reagent may be used, for example, an alkali metal hydroxide compound such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate. Basicity such as alkali metal compounds showing basicity such as alkali metal carbonates such as alkaline carbonates, alkaline earth metal compounds such as calcium hydroxide and magnesium hydroxide, alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate Examples thereof include alkaline earth metal compounds shown, and aminos showing basicity such as ammonia, trimethylamine, and triethylamine. Among these, alkali metal hydroxide compounds showing strong basicity are desirable, and sodium hydroxide and potassium hydroxide are particularly desirable.

上記アルカリ水溶液の濃度は、有効成分として0.01〜5mol/Lが望ましく、0.1〜2mol/Lであるとより望ましい。0.01mol/L未満であると、上記の残渣中のリグニン成分、特に酸リグニンの解裂が十分に進まないために、得られる上記残渣の溶解率が低くなってしまう。一方、5mol/Lを超える濃度であると、分解には支障がないものの、用いた上記アルカリ水溶液の反応後の処理に要する手間、および処理コストがかかり過ぎてしまう。ただし、上記残渣中に、硫酸、塩酸、硫酸アルミニウム等の酸性成分や、糖類等の本反応条件で分解又は変性することで酸性物質を生成する物質が含まれる場合には、上記アルカリ水溶液に、それら酸性成分や、酸性物質を生成する物質と、当量のアルカリを追加して中和しなければならない。なお、上記の有効濃度とは、この中和に要する分を除いた濃度である。   The concentration of the alkaline aqueous solution is desirably 0.01 to 5 mol / L as an active ingredient, and more desirably 0.1 to 2 mol / L. If it is less than 0.01 mol / L, the lignin component in the residue, particularly acid lignin, is not sufficiently cleaved, so that the resulting residue has a low dissolution rate. On the other hand, if the concentration exceeds 5 mol / L, decomposition is not hindered, but labor and processing costs required for the treatment after the reaction of the alkaline aqueous solution used are excessive. However, if the residue contains an acidic component such as sulfuric acid, hydrochloric acid, aluminum sulfate, or a substance that generates an acidic substance by decomposing or modifying under the present reaction conditions, such as a saccharide, These acidic components, substances that produce acidic substances, and an equivalent amount of alkali must be added for neutralization. In addition, said effective density | concentration is a density | concentration except the part required for this neutralization.

上記アルカリ水溶液の上記残渣に対する添加量は、加える上記残渣が浸漬されスラリー状になる量であることが必要であり、上記残渣に対して3〜250重量部であることが望ましく、10〜100重量部であるとより望ましい。上記アルカリ水溶液が3重量部未満であると十分に上記残渣が浸漬されずに反応・溶解が不均一になるおそれがある。一方、250重量部を超えて上記アルカリ水溶液を添加すると、上記溶液中の基質濃度が低くなりすぎて濃縮工程が必要になる場合があり、また、使用後の上記アルカリ水溶液の処理に要する手間、及び処理コストがかかりすぎてしまう。   The addition amount of the alkaline aqueous solution with respect to the residue needs to be an amount in which the residue to be added is immersed and becomes a slurry, and is preferably 3 to 250 parts by weight with respect to the residue. Part is more desirable. If the alkaline aqueous solution is less than 3 parts by weight, the residue may not be sufficiently immersed and the reaction and dissolution may become non-uniform. On the other hand, when the alkaline aqueous solution is added in excess of 250 parts by weight, the concentration of the substrate in the solution may become too low, and a concentration step may be required. Also, the labor required for the treatment of the alkaline aqueous solution after use, In addition, the processing cost is excessive.

上記アルカリ水溶液により上記残渣を加熱処理する際の反応・溶解温度は、100〜300℃であることが必要であり、140〜250℃であるとより望ましい。100℃未満では溶解率が低く、一方で300℃を超えると上記リグニン類等の有用高分子の分子量を低下させる過分解や、酸化などの副反応が起こりやすくなってしまうおそれがあるからである。   The reaction / dissolution temperature when the residue is heat-treated with the alkaline aqueous solution needs to be 100 to 300 ° C, and more preferably 140 to 250 ° C. If the temperature is lower than 100 ° C., the dissolution rate is low. On the other hand, if the temperature exceeds 300 ° C., there is a risk that side reactions such as over-decomposition and oxidation that reduce the molecular weight of useful polymers such as lignins are likely to occur. .

上記アルカリ水溶液により上記残渣を加熱処理する際の反応圧力は、上記の反応・溶解温度が常圧における水の沸点以上であるため、常圧以上であることが必要である。   The reaction pressure when the residue is heat-treated with the alkaline aqueous solution needs to be equal to or higher than normal pressure because the reaction / dissolution temperature is equal to or higher than the boiling point of water at normal pressure.

上記アルカリ水溶液により上記残渣を加熱処理する際の処理時間は、上記のアルカリ水溶液濃度と反応温度によって変化するために、一律的に定義することは困難であるが、例えば上記のようにアルカリ水溶液濃度が0.01〜5mol/Lで、反応温度が100〜300℃の範囲である場合には、通常、30秒〜24時間で反応が終了し、より望ましい条件では1分〜4時間で反応が終了する。極端に処理時間が短いと、特にバッチ式の場合は反応時間の制御が難しくなってしまい、連続式の場合は制御可能ではあるが高溶解率を得ることが困難である。   The treatment time when the residue is heat-treated with the alkaline aqueous solution varies depending on the alkaline aqueous solution concentration and the reaction temperature, and it is difficult to uniformly define, for example, the alkaline aqueous solution concentration as described above. Is 0.01 to 5 mol / L and the reaction temperature is in the range of 100 to 300 ° C., the reaction is usually completed in 30 seconds to 24 hours, and the reaction is completed in 1 minute to 4 hours under more desirable conditions. finish. When the treatment time is extremely short, it is difficult to control the reaction time particularly in the case of a batch type, and in the case of a continuous type, it is difficult to obtain a high dissolution rate although it can be controlled.

上記の加熱処理を行う反応装置の雰囲気は、特に制限されるものではなく、空気以外に、窒素、ヘリウム、アルゴン、アンモニア等のガスに置換して上記加熱処理を行ってもよい。これらのガスに置換することによって、ある程度酸化を防止することができる。   The atmosphere of the reactor for performing the heat treatment is not particularly limited, and the heat treatment may be performed by substituting with a gas such as nitrogen, helium, argon, or ammonia in addition to air. Oxidation can be prevented to some extent by substituting these gases.

上記装置としては、上記の反応条件で加熱処理を行うことができる装置であればよく、例えば、オートクレーブ、ニーダー等のバッチ式、スクリューニーダー、流通型反応装置等の連続式、上記残渣をカラム等に詰め、上記アルカリ水溶液を通液する半連続式等が挙げられる。   The above apparatus may be any apparatus that can perform heat treatment under the above reaction conditions, for example, a batch type such as an autoclave and a kneader, a continuous type such as a screw kneader and a flow type reaction apparatus, and the above residue as a column. And semi-continuous type in which the alkaline aqueous solution is passed.

上記のような処理により、特に上記残渣中に含まれる酸リグニン等のリグニン類のβ−アリールエーテル結合の解裂や分解、分子量の低下、フェノール性水酸基の増加などの反応が起こると考えられ、難溶性又は不溶性であるリグニン類が、可溶性に変化する。特に難溶性の硫酸リグニンやKlasonリグニンであっても適切な条件で行うことによりほぼ定量的に溶解する。また、原料の種類や溶解条件によっては上記のリグニン類を溶解させると同時に、有機物、塩類、鉱物、シリカ化合物等の無機物もある程度溶解する。   By the treatment as described above, it is considered that reactions such as cleavage and decomposition of β-aryl ether bonds of lignins such as acid lignin contained in the residue, molecular weight reduction, phenolic hydroxyl group increase, Lignins that are sparingly soluble or insoluble change to soluble. In particular, even hardly soluble lignin sulfate and Klason lignin are dissolved almost quantitatively by carrying out under appropriate conditions. In addition, depending on the type of raw material and dissolution conditions, the above lignins are dissolved, and at the same time, inorganic substances such as organic substances, salts, minerals, and silica compounds are dissolved to some extent.

上記のように、この発明で用いるアルカリ水溶液には添加剤を加えてもよく、例えば亜硫酸ナトリウム、硫化ナトリウム、ポリスルフィド、メタノール、アントラキノンなどのキノン類等が挙げられる。その添加量は、0.01〜2mol/Lが好ましい。添加剤は目的に応じて添加されるが、例えば亜硫酸ナトリウムを添加する場合、可溶化した上記のリグニン類にスルホン酸基が導入され、その結果として中性でも沈殿を生じにくい溶液を調製することが可能である。また、硫化ナトリウムを添加すると溶解速度が向上する。   As described above, an additive may be added to the alkaline aqueous solution used in the present invention, and examples thereof include quinones such as sodium sulfite, sodium sulfide, polysulfide, methanol, and anthraquinone. The addition amount is preferably 0.01 to 2 mol / L. Additives are added depending on the purpose. For example, when sodium sulfite is added, a sulfonic acid group is introduced into the solubilized lignin, and as a result, a solution that is neutral and does not easily precipitate is prepared. Is possible. Moreover, the addition of sodium sulfide improves the dissolution rate.

用いた上記残渣のうち、可溶性成分に変化した率である可溶化率は、30重量%以上であることが望ましく、80重量%以上であればより望ましく、100重量%であればもっとも望ましい。なお、ここでいう可溶化率は、上記加熱処理後も不溶のまま残る成分の乾燥重量iと、用いた上記残渣の乾燥重量Wから、下記式(1)により求められるものである。
可溶化率=(W−i)/W×100 (1)
Of the above residues used, the solubilization rate, which is the rate of change to soluble components, is desirably 30% by weight or more, more desirably 80% by weight or more, and most desirably 100% by weight. In addition, the solubilization rate here is calculated | required by following formula (1) from the dry weight i of the component which remains insoluble after the said heat processing, and the dry weight W of the said residue used.
Solubilization rate = (W−i) / W × 100 (1)

上記加熱処理を行った後、得られた反応液を、この発明にかかる残渣溶解液としてそのまま用いてもよいし、使用目的に応じて濾過、遠心分離、中和、pH調整、イオン交換、再結晶、沈殿法、分画、透析、溶媒抽出、脱色、脱臭等の処理を行ってもよい。ただし、中性から酸性になると上記可溶性酸リグニンは沈殿してしまうことがあるので、アルカリ性を維持していることが望ましい。ただし、上記のように亜硫酸ナトリウムなどを上記アルカリ水溶液に添加した場合には、弱アルカリ性から酸性領域における沈殿は抑制される。   After performing the above heat treatment, the obtained reaction solution may be used as it is as a residue solution according to the present invention, or may be filtered, centrifuged, neutralized, pH adjusted, ion exchange, re-exchanged according to the purpose of use. Treatments such as crystallization, precipitation, fractionation, dialysis, solvent extraction, decolorization, and deodorization may be performed. However, since the above-mentioned soluble acid lignin may precipitate when it changes from neutral to acidic, it is desirable to maintain alkalinity. However, when sodium sulfite or the like is added to the alkaline aqueous solution as described above, precipitation in the acidic region is suppressed due to weak alkalinity.

この発明により得られる残渣溶解液中の可溶性成分中の(変性)リグニンの分子量範囲を、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という。)で、溶離液(1,4−ジオキサン:水=1:1である溶液にNaClを0.5mol/Lになるよう溶解させたもの)2mlに試料1mgを溶解させた後にフィルター濾過して測定した数平均分子量は、300〜30000であると好ましい。   The molecular weight range of (denatured) lignin in the soluble component in the residue solution obtained by the present invention is determined by gel permeation chromatography (hereinafter referred to as “GPC”) as the eluent (1,4-dioxane: water = (A solution in which NaCl is dissolved in a solution of 1: 1 so as to have a concentration of 0.5 mol / L) The number average molecular weight measured by dissolving a sample of 1 mg in 2 ml and filtering through a filter is preferably 300 to 30,000.

この発明により得られる残渣溶解液の用途としては、例えば紙力増強剤が挙げられる。紙力増強剤として用いると、特に圧縮強度及び引張強度を向上させる効果が得られる。   Examples of the use of the residue solution obtained by the present invention include a paper strength enhancer. When used as a paper strength enhancer, the effect of improving the compressive strength and tensile strength can be obtained.

上記の紙力増強剤として使用する際の使用形態としては、上記残渣を上記アルカリ水溶液で処理して得られた上記の残渣溶解液をそのまま直接紙に塗工してもよいし、pH調整、濃縮、不溶物除去、溶媒抽出、分子量分画、減圧による揮発材料の除去などの処理を行ったものを塗工してもよい。なお、塗工とは塗布、噴射、浸漬を含み、上記の塗布とは刷毛、コーティング機、サイズプレス等で塗るなどの行為を示し、上記の噴射とはスプレーなどで吹き付けるなどの行為を示し、上記の浸漬とは溶液で濡らしたり溶液中に沈めたりといった行為を示す。   As a usage form when used as the paper strength enhancer, the residue solution obtained by treating the residue with the alkaline aqueous solution may be directly applied to paper as it is, pH adjustment, You may apply what performed processes, such as concentration, insoluble matter removal, solvent extraction, molecular weight fractionation, and removal of the volatile material by pressure reduction. In addition, coating includes application, spraying, and dipping, and the above coating indicates an action such as painting with a brush, a coating machine, a size press, etc., and the above spraying indicates an action such as spraying with a spray, etc. The above immersion refers to an act of wetting with a solution or submerging in a solution.

また、この発明より得られる上記残渣溶解液を紙力増強剤として用いる場合には、上記紙力増強剤を単独で用いる他に、その他の紙添加用薬剤及び/又は填料を添加して用いてもよい。   In addition, when the residue solution obtained from the present invention is used as a paper strength enhancer, in addition to using the paper strength enhancer alone, other paper additives and / or fillers are added and used. Also good.

上記の紙添加用薬剤としては、ポリアクリルアミド、ポリビニルアルコール、ポリビニルアミン、スチレンアクリル系樹脂、ポリアミドポリアミンエピクロロヒドリン樹脂、メラミン樹脂、尿素樹脂、ケトン樹脂等の合成樹脂、デンプン、グアーガム等の天然高分子、カチオン変性デンプン、アセチル化デンプン、尿素リン酸エステル化デンプン等の変性デンプン、CMC等のセルロース系高分子、デンプン糖、セロビオース、マルトース等のオリゴ糖、ジルコニウム化合物、珪酸化合物、多価アルコール/カルボニル化合物、環状アミド化合物、グリオキサール等の架橋剤、硫酸アルミニウム等が挙げられる。   Examples of the above paper additive include polyacrylamide, polyvinyl alcohol, polyvinylamine, styrene acrylic resin, polyamide polyamine epichlorohydrin resin, melamine resin, urea resin, ketone resin, and other natural resins such as starch and guar gum. Polymer, cationic modified starch, acetylated starch, modified starch such as urea phosphated starch, cellulosic polymer such as CMC, oligosaccharide such as starch sugar, cellobiose, maltose, zirconium compound, silicic acid compound, polyhydric alcohol / Crosslinking agents such as carbonyl compounds, cyclic amide compounds, glyoxal, and aluminum sulfate.

また、これらのうち、セルロース系高分子やオリゴ糖として、この発明に用いる上記残渣を副生するセルロース含有物質の分解で得られる糖類を用いると、上記セルロース含有物質から得られる有用成分を一括してリサイクルに用いることができ、望ましい。   Of these, as saccharides obtained by decomposition of the cellulose-containing substance that is a by-product of the residue used in the present invention, as cellulose-based polymers and oligosaccharides, useful components obtained from the cellulose-containing substance are collectively collected. Can be used for recycling.

上記の填料としては、カオリン、タルク、炭酸カルシウム、酸化チタン、酸化亜鉛、シリカ、炭酸マグネシウム、水酸化マグネシウム等が挙げられる。   Examples of the filler include kaolin, talc, calcium carbonate, titanium oxide, zinc oxide, silica, magnesium carbonate, and magnesium hydroxide.

また、上記の紙としては、洋紙、ライナーや中芯等の段ボール板紙、白板紙、チップボール等の紙器用板紙、紙管原紙等が挙げられる。   Examples of the paper include paper, corrugated cardboard such as liner and core, white paperboard, paperboard board such as chipball, and paper tube base paper.

この発明により得られる上記残渣溶解液を用いた紙力増強剤は、その中に含まれるリグニン由来物質、多価金属イオン、シリカ化合物等が紙力増強に関与していると推察され、特にリグニン由来物質は、元来木材中でセルロースの接着剤として機能しているリグニンを基本骨格としていることから、紙との親和性、相互作用に優れる。そのため、紙力増強効果の中でも、圧縮強度と引張強度の増強効果がより強く発揮された強化紙を製造することができる。また、これまで有効利用が困難であった上記酸リグニンをも有効利用しているため、環境に対する効果が高く、経済的でもある。   The paper strength enhancer using the residue solution obtained by the present invention is presumed that lignin-derived substances, polyvalent metal ions, silica compounds and the like contained therein are involved in paper strength enhancement, and particularly lignin. Since the derived material has lignin as a basic skeleton that originally functions as an adhesive for cellulose in wood, it has excellent affinity and interaction with paper. Therefore, among the paper strength enhancing effects, it is possible to produce a reinforced paper that exhibits a stronger compressive strength and tensile strength enhancing effect. In addition, since the acid lignin, which has been difficult to use effectively so far, is also effectively used, it has a high environmental effect and is economical.

この発明により得られる上記残渣溶解液は、上記した紙力増強剤の他に、たとえば、分散剤、コンクリート減水剤、造粒剤、農薬、土壌改良剤、粘結剤、バインダー、乳化安定剤、錯塩形成剤、沈殿剤、酸化防止剤、染料、顔料、泥水調整剤、水処理剤、接着剤、合成樹脂、防腐剤、成長促進剤、石膏ボード用添加剤、鋳物砂用添加剤、脱墨剤、耐火剤、耐水剤、寸法安定剤、耐候性付与剤、公害防止用処理剤、皮革用鞣剤、ゴム用添加剤などが挙げられる。また、リグニン由来の可溶性成分は反応性が高く水溶性であるので、さらなるリグニンスルホン酸、カチオン性リグニンなどのリグニン誘導体への原料として使用できる。   In addition to the paper strength enhancer described above, the residue solution obtained by the present invention is, for example, a dispersant, a concrete water reducing agent, a granulating agent, an agrochemical, a soil improver, a binder, a binder, an emulsion stabilizer, Complex salt forming agent, precipitant, antioxidant, dye, pigment, muddy water conditioner, water treatment agent, adhesive, synthetic resin, preservative, growth promoter, additive for gypsum board, additive for foundry sand, deinking Agents, fireproofing agents, waterproofing agents, dimensional stabilizers, weathering agents, pollution control agents, leather glazes, rubber additives, and the like. Moreover, since the soluble component derived from lignin is highly reactive and water-soluble, it can be used as a raw material for further lignin derivatives such as lignin sulfonic acid and cationic lignin.

以下、この発明について、実施例により具体的に説明する。まず、製造方法を変えた種々の残渣の可溶化率について測定し、次に、残渣溶解液を塗工した際の紙力強度について測定する。   Hereinafter, the present invention will be specifically described with reference to examples. First, it measures about the solubilization rate of the various residue which changed the manufacturing method, and then measures the paper strength intensity | strength at the time of applying a residue solution.

[可溶化率と数平均分子量]
(酸加水分解による残渣の調製方法(1))
まず、この実施例で用いる残渣の調製方法について説明する。解繊新聞原紙300gに72重量%硫酸(ナカライテスク(株)社製:GR)2250mlを添加し、25℃で3時間放置した後に、1500mLの水を追加し、ガラスフィルター(G1)で濾過し、十分に水洗して、未乾燥残渣387gを回収した。この未乾燥残渣をボールミル(フリッチュ・ジャパン社製:遠心式ボールミル)で粉砕した後、60℃の環境で真空乾燥して、硫酸リグニンを含む濃褐色の残渣57g(灰分16重量%)を得た。なお、上記の灰分とは試料中に含まれるシリカ、アルミニウム、カルシウム、マグネシウム等の無機成分であり、ここでは、試料を775℃で4時間処理した後の残存重量を灰分の重量とする。
[Solubilization rate and number average molecular weight]
(Method for preparing residue by acid hydrolysis (1))
First, a method for preparing a residue used in this example will be described. Add 2250 ml of 72 wt% sulfuric acid (manufactured by Nacalai Tesque Co., Ltd .: GR) to 300 g of defibrated newspaper base paper, leave it at 25 ° C. for 3 hours, add 1500 mL of water, and filter through a glass filter (G1). After sufficiently washing with water, 387 g of an undried residue was recovered. The undried residue was pulverized with a ball mill (manufactured by Fritsch Japan Co., Ltd .: centrifugal ball mill) and then vacuum-dried in an environment of 60 ° C. to obtain 57 g of dark brown residue (ash content: 16% by weight) containing lignin sulfate. . In addition, said ash content is inorganic components, such as a silica, aluminum, calcium, magnesium contained in a sample, and let the residual weight after processing a sample for 4 hours at 775 degreeC here be the weight of ash content.

(実施例1)
上記の方法で調製した残渣1.0gと、1mol/LのNaOH(ナカライテスク(株)製:GR)水溶液50mlとを耐圧容器に仕込み、180℃で4時間反応させた。その後、遠心分離(8000rpm、20min)により上澄部分を回収して、可溶性硫酸リグニンを含む残渣溶解液を得た。この溶液を以下に示す条件でGPC測定したところ、溶解成分の数平均分子量(Mn)は4500であった。また、上記の上澄部分を回収した残りである不溶分残渣を十分に水洗した後、80℃、15mmHgで1時間減圧乾燥し、回収した不溶成分は0.19gであり、上記式(1)により残渣の可溶化率を算出したところ、81重量%であった。さらに、残渣溶解液に1N硫酸を加えてpH=7にすると沈殿を生じた。
Example 1
1.0 g of the residue prepared by the above method and 50 ml of 1 mol / L NaOH (manufactured by Nacalai Tesque, Inc .: GR) solution were charged into a pressure vessel and reacted at 180 ° C. for 4 hours. Thereafter, the supernatant was recovered by centrifugation (8000 rpm, 20 min) to obtain a residue solution containing soluble lignin sulfate. When this solution was subjected to GPC measurement under the following conditions, the number average molecular weight (Mn) of the dissolved component was 4,500. In addition, after thoroughly washing the insoluble residue, which is the remaining recovered supernatant, it was dried under reduced pressure at 80 ° C. and 15 mmHg for 1 hour. The recovered insoluble component was 0.19 g, and the above formula (1) The solubilization rate of the residue was calculated by 81, and it was 81% by weight. Furthermore, when 1N sulfuric acid was added to the residue solution to adjust the pH to 7, precipitation occurred.

<GPC測定条件>
・カラム:東ソー(株)製造:α−3000(6.0mmI.D.×4.0cm)
・溶離液:1,4−ジオキサン/水=1/1(0.5M NaCl)
・流速:0.5mL/min
・オーブン温度:40.0℃
・検出器:UV(280nm)
<GPC measurement conditions>
Column: Tosoh Corporation Manufacturing: α-3000 (6.0 mm ID × 4.0 cm)
Eluent: 1,4-dioxane / water = 1/1 (0.5M NaCl)
・ Flow rate: 0.5mL / min
・ Oven temperature: 40.0 ℃
・ Detector: UV (280 nm)

(実施例2)
実施例1の手順により得られた残渣溶解液50mlを、透析チューブ(Viskase Sales社製:UC36−32−100)に入れ、蒸留水中で一週間透析した。その後、チューブ内に残った水溶液を凍結乾燥して、濃褐色の粉末である可溶性残渣0.5gを得た。この可溶性残渣を上記実施例1と同様の手順によりGPC測定したところ、数平均分子量は5500であった。
(Example 2)
50 ml of the residue solution obtained by the procedure of Example 1 was placed in a dialysis tube (manufactured by Viscose Sales: UC36-32-100) and dialyzed for one week in distilled water. Thereafter, the aqueous solution remaining in the tube was freeze-dried to obtain 0.5 g of a soluble residue which is a dark brown powder. When this soluble residue was subjected to GPC measurement by the same procedure as in Example 1, the number average molecular weight was 5,500.

(実施例3〜12)
反応温度、水酸化ナトリウム水溶液濃度、反応時間、残渣添加量を、下記表1のように変えた以外は、実施例1と同様の手順により残渣溶解液を得て、可溶化率を算出した。その結果を表1内に示す。
(Examples 3 to 12)
A residue solution was obtained by the same procedure as in Example 1 except that the reaction temperature, sodium hydroxide aqueous solution concentration, reaction time, and residue addition amount were changed as shown in Table 1 below, and the solubilization rate was calculated. The results are shown in Table 1.

Figure 2006076917
Figure 2006076917

(比較例1:低温での反応)
反応温度を80℃にした以外は、実施例1と同様の手順により残渣溶解液を得て、可溶化率を算出した。その結果を表1内に示す。
(Comparative Example 1: Reaction at low temperature)
A residue solution was obtained by the same procedure as in Example 1 except that the reaction temperature was 80 ° C., and the solubilization rate was calculated. The results are shown in Table 1.

(比較例2:高温での反応)
反応温度を320℃にした以外は、実施例1と同様の手順により、黒色で悪臭を伴った溶解液を得た。その後、実施例2と同様に透析チューブで処理したところ、回収された可溶性残渣は0.1gであった。高温による過分解が原因で減少したと考えられる。
(Comparative Example 2: Reaction at high temperature)
Except that the reaction temperature was 320 ° C., a black solution with a bad odor was obtained in the same procedure as in Example 1. Then, when it processed with the dialysis tube similarly to Example 2, the collect | recovered soluble residues were 0.1g. It is thought that it decreased due to excessive decomposition due to high temperature.

(比較例3:低アルカリ濃度での反応)
NaOH濃度を0.005mol/Lにした以外は、実施例1と同様の手順により残渣溶解液を得て、可溶化率を算出した。その結果を表1内に示す。
(Comparative Example 3: Reaction at low alkali concentration)
A residue solution was obtained by the same procedure as in Example 1 except that the NaOH concentration was 0.005 mol / L, and the solubilization rate was calculated. The results are shown in Table 1.

(結果)
この発明にかかる方法により、硫酸リグニンを含む残渣の30重量%以上を可溶化させることができ、条件によっては90重量%以上の残渣を可溶化させることができた。
(result)
According to the method of the present invention, 30% by weight or more of the residue containing lignin sulfate could be solubilized, and 90% by weight or more of the residue could be solubilized depending on conditions.

[材料・試薬の違いによる変化]
(実施例13)
1mol/LのNaOH水溶液の代わりに1mol/LのKOH(ナカライテスク(株)製:GR)を用いた以外は、実施例1と同様の手順により残渣溶解液を得て、可溶化率を算出したところ、96重量%であった。
[Changes due to differences in materials and reagents]
(Example 13)
A residue solution was obtained by the same procedure as in Example 1 except that 1 mol / L KOH (manufactured by Nacalai Tesque Co., Ltd .: GR) was used instead of the 1 mol / L NaOH aqueous solution, and the solubilization rate was calculated. As a result, it was 96 weight%.

(実施例14)
上記の酸加水分解による残渣の調製方法(1)において、硫酸の代わりに42重量%塩酸を使用して、1〜5℃で上記の硫酸リグニンを含む残渣の調製方法と同様な手順により塩酸リグニンを含む濃褐色の残渣55g(灰分=14重量%)を得た。上記で得られた残渣1.0gを実施例1と同様な手順により残渣溶解液を得た。不溶分残渣を水洗・乾燥した後、淡褐色固体0.1gを得た。上記式(1)により可溶化率を算出したところ90重量%であった。
(Example 14)
In the above-mentioned residue preparation method (1) by acid hydrolysis, 42 wt% hydrochloric acid is used in place of sulfuric acid, and lignin hydrochloride is prepared by the same procedure as the above-mentioned residue preparation method containing lignin sulfate at 1 to 5 ° C. As a result, 55 g (ash content = 14% by weight) of a dark brown residue was obtained. A residue solution was obtained from 1.0 g of the residue obtained above by the same procedure as in Example 1. The insoluble residue was washed with water and dried, and 0.1 g of a light brown solid was obtained. The solubilization rate calculated by the above formula (1) was 90% by weight.

(実施例15)
反応の際に硫化ナトリウム(ナカライテスク(株)製:GR)1.0gを添加した以外は実施例6(反応時間6時間、可溶化率70重量%)と同様に行い残渣溶解液を得て、可溶化率を算出したところ83重量%となり、反応時間を8時間掛けた実施例7(可溶化率85重量%)に近い値となり、反応時間を短縮することができた。
(Example 15)
A residue solution was obtained in the same manner as in Example 6 (reaction time 6 hours, solubilization rate 70% by weight) except that 1.0 g of sodium sulfide (manufactured by Nacalai Tesque Co., Ltd .: GR) was added during the reaction. The solubilization rate was calculated to be 83% by weight, which was close to Example 7 (solubilization rate 85% by weight) multiplied by 8 hours, and the reaction time could be shortened.

(酸加水分解による残渣の調製方法(2))
酸加水分解による残渣の調製において、原材料として木材(杉鋸屑、国武製材所製)200gに72重量%硫酸(ナカライテスク(株)製:GR)1500mLを添加し、25℃で3時間放置した後に、ガラスフィルター(G1)でろ過し、未乾燥残渣を回収した。未乾燥残渣を3重量%硫酸6.8Lに分散し、121℃で90分間処理した後、ガラスフィルター(G1)でろ過し、十分に水洗し、残渣を80℃で真空乾燥して、Klasonリグニンを含む濃褐色の残渣63g(灰分0.1重量%)を得た。
(Method for preparing residue by acid hydrolysis (2))
In the preparation of the residue by acid hydrolysis, after adding 1500 mL of 72 wt% sulfuric acid (manufactured by Nacalai Tesque, Inc .: GR) to 200 g of wood (cedar sawdust, manufactured by Kunitake Sawmill) as a raw material, the mixture was allowed to stand at 25 ° C. for 3 hours. The solution was filtered through a glass filter (G1) to recover an undried residue. The undried residue was dispersed in 6.8 L of 3 wt% sulfuric acid, treated at 121 ° C. for 90 minutes, filtered through a glass filter (G1), washed thoroughly with water, and the residue was vacuum dried at 80 ° C. to obtain Klason lignin. As a result, 63 g (ash content: 0.1% by weight) of a dark brown residue was obtained.

(実施例16)
上記の残渣5.0gと、0.1mol/LのNaOH水溶液250mlを耐圧容器に仕込み、230℃、2.6MPaで2時間反応させた以外は、実施例1と同様に行い残渣溶解液を得て、可溶化率を算出したところ99重量%であった。
(Example 16)
A residue solution was obtained in the same manner as in Example 1 except that 5.0 g of the above residue and 250 ml of 0.1 mol / L NaOH aqueous solution were charged in a pressure vessel and reacted at 230 ° C. and 2.6 MPa for 2 hours. The solubilization rate was 99% by weight.

(実施例17)
反応の際に亜硫酸ナトリウム(ナカライテスク(株)製:GR)5.0gを添加した以外は実施例16と同様に行い残渣溶解液を得て、可溶化率を算出したところ99重量%であった。この溶液を1N硫酸でpH=7にしても沈殿物はまったく観られなかった。
(Example 17)
A residue solution was obtained in the same manner as in Example 16 except that 5.0 g of sodium sulfite (manufactured by Nacalai Tesque Co., Ltd .: GR) was added during the reaction, and the solubilization rate was calculated to be 99% by weight. It was. Even when this solution was adjusted to pH = 7 with 1N sulfuric acid, no precipitate was observed.

(酸加水分解による残渣の調製方法(3))
酸加水分解による残渣の調製において、原材料として段ボール用中芯(レンゴー(株)製、坪量:115g/m)300gに72重量%硫酸(ナカライテスク(株)製:GR)900mLを添加し、30℃で2時間放置した後に蒸留水450mLを添加、ガラスフィルター(G1)でろ過し、蒸留水1.5Lで洗浄し、硫酸リグニンを含む濃褐色の未乾燥残渣228g(水分73.4重量%、硫酸分2.2重量%、灰分8.8重量%)を得た。
(Method for preparing residue by acid hydrolysis (3))
In the preparation of the residue by acid hydrolysis, 900 mL of 72 wt% sulfuric acid (manufactured by Nacalai Tesque Co., Ltd .: GR) is added to 300 g of a core for corrugated board (basis weight: 115 g / m 2 ) as a raw material. , Left at 30 ° C. for 2 hours, added 450 mL of distilled water, filtered through a glass filter (G1), washed with 1.5 L of distilled water, and 228 g of dark brown undried residue containing lignin sulfate (water content: 73.4 wt. %, Sulfuric acid content 2.2 wt%, ash content 8.8 wt%).

(実施例18)
上記残渣41gに蒸留水70mLを分散させNaOH(ナカライテスク(株)製:GR)0.7gで中和後、NaOH3.0gを追加し、耐圧容器に仕込み、220℃、2.2MPaで4時間反応させた以外は、実施例1と同様に行い残渣溶解液を得て、可溶化率を算出したところ65重量%であった。
(Example 18)
Distilled water (70 mL) was dispersed in 41 g of the above residue, neutralized with 0.7 g of NaOH (Nacalai Tesque, Inc .: GR), added with 3.0 g of NaOH, charged into a pressure vessel, 220 ° C., 2.2 MPa for 4 hours. Except for making it react, it carried out like Example 1 and obtained the residue solution, and it was 65 weight%, when the solubilization rate was computed.

(酵素分解による残渣の調製法)
解繊段ボール古紙20gを、ビーカーに2gずつに分け、それぞれに20mM酢酸緩衝液(pH4.5)100mLに加え、ホモジナイザー(日本精機(株)製:bio−mixer BM−1)で10min粉砕後、まとめてガラスフィルター(G1)でろ過してろ渣を得た。フラスコに上記ろ渣、20mM酢酸緩衝液(pH4.5)400mL、セルラーゼ(セルロシンT2、エイチビィアイ(株)製)0.8gを仕込み、45℃、90spmで48時間振盪後、30分間90℃で加温して酵素を失活させた。酵素処理液をガラスフィルター(G1)でろ過し、十分に水洗し、残渣を80℃で真空乾燥して、残渣13g(セルロース分74重量%、灰分13重量%)を得た。
(Method for preparing residues by enzymatic decomposition)
20 g of defibrated cardboard waste paper is divided into 2 g portions in a beaker, each is added to 100 mL of 20 mM acetate buffer (pH 4.5), pulverized for 10 min with a homogenizer (manufactured by Nippon Seiki Co., Ltd .: bio-mixer BM-1), Collectively, the mixture was filtered through a glass filter (G1) to obtain a filter residue. The flask is charged with the above residue, 400 mL of 20 mM acetate buffer (pH 4.5), and 0.8 g of cellulase (Cellulosin T2, manufactured by HI Corporation), shaken at 45 ° C. and 90 spm for 48 hours, and then added at 90 ° C. for 30 minutes. The enzyme was deactivated by warming. The enzyme treatment solution was filtered through a glass filter (G1), washed thoroughly with water, and the residue was vacuum dried at 80 ° C. to obtain 13 g of a residue (cellulose content: 74% by weight, ash content: 13% by weight).

(実施例19)
上記のように調製した残渣7.0gと、2mol/LのNaOH水溶液50mlとを耐圧容器に仕込み、220℃、2.2MPaで4時間反応させた以外は、実施例1と同様に行い残渣溶解液を得て、可溶化率を算出したところ88重量%であった。
(Example 19)
Dissolve the residue in the same manner as in Example 1 except that 7.0 g of the residue prepared above and 50 ml of 2 mol / L NaOH aqueous solution were charged in a pressure vessel and reacted at 220 ° C. and 2.2 MPa for 4 hours. The solution was obtained, and the solubilization rate was calculated to be 88% by weight.

(加圧熱水による残渣の調製法)
木材(杉鋸屑、国武製材所製)10g、蒸留水90mLを耐圧容器に仕込み、270℃のシリコン浴中、15MPaで20分間処理した後、室温まで急冷した。処理物をガラスフィルター(G1)でろ過し、十分に水洗し、残渣を80℃で真空乾燥して、残渣4g(セルロース分35重量%、灰分0.1重量%)を得た。
(Method for preparing residue with pressurized hot water)
10 g of wood (cedar sawdust, manufactured by Kunitake Sawmill) and 90 mL of distilled water were charged into a pressure vessel, treated in a 270 ° C. silicon bath at 15 MPa for 20 minutes, and then rapidly cooled to room temperature. The treated product was filtered through a glass filter (G1), sufficiently washed with water, and the residue was vacuum dried at 80 ° C. to obtain 4 g of a residue (cellulose content 35% by weight, ash content 0.1% by weight).

(実施例20)
上記のように調製した残渣1.0gと、1mol/LのNaOH水溶液50mlを耐圧容器に仕込み、220℃、2.2MPaで3時間反応させた以外は、実施例1と同様に行い残渣溶液を得て、可溶化率を算出したところ85重量%であった。
(Example 20)
A residue solution was prepared in the same manner as in Example 1 except that 1.0 g of the residue prepared as described above and 50 ml of 1 mol / L NaOH aqueous solution were charged in a pressure vessel and reacted at 220 ° C. and 2.2 MPa for 3 hours. Obtained and calculated solubilization rate was 85 wt%.

[紙力増強効果]
(実施例21〜25)
実施例1,9,16,17,18で得られた残渣溶解液を下記のように調整した溶液に、段ボール用中芯(レンゴー(株)製、坪量:115g/m、15cm×15cm)を30秒間浸漬させた後、中芯を引き上げて吸引濾紙に付着した溶液を吸い取らせてから、回転乾燥機(JAPO社製:Auto Dryer Type L−3D 120℃、乾燥時間:90秒)にかけて、残渣溶解液塗工中芯を得た。これを23℃、湿度50%の条件で24時間調湿後、以下の方法で評価を行った。その結果を表2に示す。
[Paper strength enhancement effect]
(Examples 21 to 25)
To the solution prepared as described below, the residue solution obtained in Examples 1, 9, 16, 17, and 18 was used as a corrugated core (made by Rengo Co., Ltd., basis weight: 115 g / m 2 , 15 cm × 15 cm). ) Is soaked for 30 seconds, the core is pulled up and the solution adhering to the suction filter paper is sucked off, and then subjected to a rotary drier (manufactured by JAPO: Auto Dryer Type L-3D 120 ° C., drying time: 90 seconds). In this way, a residue-dissolving solution coating core was obtained. This was conditioned at 23 ° C. and 50% humidity for 24 hours, and then evaluated by the following method. The results are shown in Table 2.

・実施例21:実施例1で得られた残渣溶解液をそのまま塗工液として使用。
・実施例22:実施例9で得られた残渣溶解液を溶質濃度5重量%まで減圧濃縮後、硫酸でpH10に調整して使用。
・実施例23:実施例16で得られた残渣溶解液を溶質濃度5重量%まで減圧濃縮後、硫酸でpH10に調整して使用。
・実施例24:実施例17で得られた残渣溶解液を溶質濃度5重量%まで減圧濃縮後、硫酸でpH10に調整して使用。
・実施例25:実施例18で得られた残渣溶解液を蒸留水で溶質濃度5重量%に希釈後、硫酸でpH10に調整して使用。
Example 21: The residue solution obtained in Example 1 is used as it is as a coating solution.
Example 22: The residue solution obtained in Example 9 was concentrated under reduced pressure to a solute concentration of 5% by weight, adjusted to pH 10 with sulfuric acid, and used.
Example 23: The residue solution obtained in Example 16 was concentrated under reduced pressure to a solute concentration of 5% by weight, adjusted to pH 10 with sulfuric acid, and used.
Example 24: The residue solution obtained in Example 17 was concentrated under reduced pressure to a solute concentration of 5% by weight, adjusted to pH 10 with sulfuric acid, and used.
Example 25: The residue solution obtained in Example 18 was diluted with distilled water to a solute concentration of 5% by weight, adjusted to pH 10 with sulfuric acid, and used.

Figure 2006076917
Figure 2006076917

(塗工量測定)
得られた中芯を調湿後、105℃で5時間乾燥することにより、絶乾坪量を算出して、使用した元の中芯の絶乾坪量との差から塗工量を算出した。
(Coating amount measurement)
After the humidity control of the obtained core, it was dried at 105 ° C. for 5 hours to calculate the absolute dry basis weight, and the coating amount was calculated from the difference from the absolute dry basis weight of the original core used. .

(圧縮強度、比圧縮強度測定)
JIS P 8126に従って測定した。
(Measurement of compressive strength and specific compressive strength)
Measured according to JIS P 8126.

(裂断長測定)
JIS P 8126に従って測定した。
(Fracture length measurement)
Measured according to JIS P 8126.

(実施例22)
実施例21において浸漬させる代わりに、実施例1で得られた残渣溶解液を中芯表面に500g/mでスプレー塗工した以外は実施例21と同様の手順により調湿し、実施例16と同様の評価を行った。その結果を表2に示す。
(Example 22)
Instead of immersing in Example 21, the residue solution obtained in Example 1 was conditioned by the same procedure as in Example 21 except that spray coating was applied to the surface of the core at 500 g / m 2. The same evaluation was performed. The results are shown in Table 2.

(比較例4)
段ボール用中芯(レンゴー(株)製:坪量:115g/m)について実施例21と同様の評価を行った。その結果を表2に示す。
(Comparative Example 4)
Evaluation similar to Example 21 was performed about the core for corrugated board (Rengo Co., Ltd. product: Basis weight: 115 g / m < 2 >). The results are shown in Table 2.

(結果)
この発明にかかる残渣溶解液を塗工した強化紙は、通常の中芯に比べて、特に圧縮強度と引張強度に優れる強化紙となった。
(result)
The reinforced paper coated with the residue solution according to the present invention is a reinforced paper that is particularly excellent in compressive strength and tensile strength as compared with a normal core.

Claims (5)

セルロース含有物質より糖類を回収した後の残渣を、有効濃度が0.01〜5mol/Lであるアルカリ水溶液中で、100〜300℃の環境で加熱処理することによる残渣溶解液の製造方法。   The manufacturing method of the residue solution by heat-processing the residue after collect | recovering saccharides from a cellulose containing substance in 100-300 degreeC environment in the alkaline aqueous solution whose effective density | concentration is 0.01-5 mol / L. 上記残渣が、上記セルロース含有物質から酸加水分解法、酵素分解法、または加圧熱水分解法で糖類を回収する際に副生する残渣である、請求項1に記載の製造方法。   2. The production method according to claim 1, wherein the residue is a residue produced as a by-product when the saccharide is recovered from the cellulose-containing substance by an acid hydrolysis method, an enzymatic decomposition method, or a pressurized hot water decomposition method. 上記酸加水分解法が、希酸法、濃酸法である請求項2記載の製造方法。   The production method according to claim 2, wherein the acid hydrolysis method is a dilute acid method or a concentrated acid method. 上記アルカリ水溶液に、亜硫酸ナトリウムまたは硫化ナトリウムを0.01〜2mol/L添加する請求項1乃至3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein 0.01 to 2 mol / L of sodium sulfite or sodium sulfide is added to the alkaline aqueous solution. 請求項1乃至4のいずれかに記載の製造方法により製造された残渣溶解液を塗工して得る強化紙。   Reinforced paper obtained by applying the residue solution produced by the production method according to claim 1.
JP2004262399A 2004-09-09 2004-09-09 Dissolving residue produced as a by-product when recovering sugars from cellulose-containing substances Expired - Fee Related JP4619731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262399A JP4619731B2 (en) 2004-09-09 2004-09-09 Dissolving residue produced as a by-product when recovering sugars from cellulose-containing substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262399A JP4619731B2 (en) 2004-09-09 2004-09-09 Dissolving residue produced as a by-product when recovering sugars from cellulose-containing substances

Publications (2)

Publication Number Publication Date
JP2006076917A true JP2006076917A (en) 2006-03-23
JP4619731B2 JP4619731B2 (en) 2011-01-26

Family

ID=36156679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262399A Expired - Fee Related JP4619731B2 (en) 2004-09-09 2004-09-09 Dissolving residue produced as a by-product when recovering sugars from cellulose-containing substances

Country Status (1)

Country Link
JP (1) JP4619731B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014223A1 (en) * 1997-09-12 1999-03-25 Kabushiki Kaisha Maruto Novel lignin derivative, moldings produced by using the derivative, and process for the preparation thereof
JPH11506934A (en) * 1995-06-07 1999-06-22 アーケノール,インコーポレイテッド Strong acid hydrolysis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506934A (en) * 1995-06-07 1999-06-22 アーケノール,インコーポレイテッド Strong acid hydrolysis method
WO1999014223A1 (en) * 1997-09-12 1999-03-25 Kabushiki Kaisha Maruto Novel lignin derivative, moldings produced by using the derivative, and process for the preparation thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6010023588, 森滋, "「濃硫酸法木材加水分解ざんさリグニンを利用したリグニン系樹脂製造試験結果について…(1)」", 林産試験場月報, 196511, 1965年11月号 *
JPN6010023590, 森滋, "「濃硫酸法木材加水分解ざんさリグニンを利用したリグニン系樹脂製造試験結果について(2)」", 林産試験場月報, 196512, 1965年12月号 *
JPN6010023592, 布村昭夫, "「リグニン利用の現状と二,三の動向」", 林産試験場月報, 196511, 1965年11月号 *
JPN6010023595, 保坂秀明, "「最近における加水分解リグニンの利用(2)」", 林業指導所月報, 195907, 1959年7月号, P.1−2 *
JPN6010023596, 潘学軍、佐野嘉拓, "「酢酸リグニンの応用について−酢酸リグニンのメチロール化−」", 紙パルプ研究発表会講演要旨集, 19980601, 第65回, P.40−43 *

Also Published As

Publication number Publication date
JP4619731B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
Mahmood et al. Pretreatment of oil palm biomass with ionic liquids: a new approach for fabrication of green composite board
Xiao et al. Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production
Martelli-Tosi et al. Using commercial enzymes to produce cellulose nanofibers from soybean straw
US8900410B2 (en) Fine fibrous cellulosic material and process for producing the same
Ramos et al. Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues
KR101858220B1 (en) Novel method for processing lignocellulose containing material
Gehmayr et al. A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application
JP6402442B2 (en) Method for producing cellulose nanofiber dispersion and membrane using the method
Yoon et al. Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes
NL2011164C2 (en) Improved process for the organosolv treatment of lignocellulosic biomass.
US20040244925A1 (en) Method for producing pulp and lignin
Wang et al. A comparison of chemical treatment methods for the preparation of rice husk cellulosic fibers
CN104098781A (en) Method utilizing tabasheer waste to produce degradable liquid mulching film
KR20160081926A (en) Lignin based waterproof coating
JP2011523349A (en) Biomass processing method
EP2496701A2 (en) Process for treating biomass to increase accessibility of polysaccharides contained therein to hydrolysis and subsequent fermentation, and polysaccharides with increased accessibility
JP5828913B2 (en) Biomass saccharification method
Li et al. Delignification of poplar wood with lactic acid-based deep eutectic solvents
Yeganeh et al. Hydrothermal pretreatment of biomass-waste-garlic skins in the cellulose nanofiber production process
Nlandu et al. Flax nanofibrils production via supercritical carbon dioxide pre‐treatment and enzymatic hydrolysis
JP2018040083A (en) Method for producing lignocellulose nanofiber
CN102718982A (en) Method for preparing straw cellulose membrane by using wheat straw as raw materials
JP4619731B2 (en) Dissolving residue produced as a by-product when recovering sugars from cellulose-containing substances
JP4221457B2 (en) Method for producing compressed wood
CN105639717A (en) Method for removing lignin in tobacco stems through weak base, laccase and surfactant synergistically

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4619731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees