JP2006076883A - Amino acid iron complex - Google Patents

Amino acid iron complex Download PDF

Info

Publication number
JP2006076883A
JP2006076883A JP2002292231A JP2002292231A JP2006076883A JP 2006076883 A JP2006076883 A JP 2006076883A JP 2002292231 A JP2002292231 A JP 2002292231A JP 2002292231 A JP2002292231 A JP 2002292231A JP 2006076883 A JP2006076883 A JP 2006076883A
Authority
JP
Japan
Prior art keywords
amino acid
iron complex
lysine
arginine
acid iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292231A
Other languages
Japanese (ja)
Inventor
Masahiko Kurauchi
雅彦 倉内
Yuki Miyazawa
由紀 宮沢
Hiroyuki Sato
弘之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2002292231A priority Critical patent/JP2006076883A/en
Priority to PCT/JP2003/012704 priority patent/WO2004031127A1/en
Priority to AU2003271085A priority patent/AU2003271085A1/en
Publication of JP2006076883A publication Critical patent/JP2006076883A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/76Metal complexes of amino carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new amino acid iron complex useful as a nutritional supplement to flora and fauna and to provide a method for extremely simply producing the new amino acid iron complex. <P>SOLUTION: The new amino acid iron complex is represented by general formula (I): Fe-A<SB>3</SB>-X wherein A represents a basic amino acid and X represents three univalent anions, 1.5 divalent anions or one trivalent anion. The amino acid iron complex is useful as a nutritional supplement to flora and fauna. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、式(I)で示される新規なアミノ酸鉄錯体に関する。
【化2】
Fe・A・X (I)
(式中、Aは塩基性アミノ酸を、Xは3個の1価陰イオンまたは1.5個の2価陰イオンまたは1個の3価陰イオンを示す)
さらに詳しくは、1モルの塩化第二鉄と3モルのL−リジンまたはL−アルギニンを反応させることにより得られるL−リジン鉄錯体またはL−アルギニン鉄錯体に関する。
【0002】
【従来の技術】
鉄とリジンまたはアルギニンとの錯体は種々知られているが、そのうちの多くが2価の鉄を中心原子とする錯体であり、3価の鉄との錯体は僅かである。Indian J. Chem., Sect. A (1976), 14A(3), 211-12には、フェリシアン化カリウムとリジンまたはアルギニンとの反応による、配位子としてこれらのアミノ酸の他にシアノ基を有するアミノ酸鉄錯体の製法が記載されている。3価の鉄とリジンとの錯体に付いては本文献が唯一である。また、Indian J. Chem., Sect. A (1985), 24A(9), 797-9には配位子としてアルギニンとフタルイミドを有する3価の鉄の錯体が開示されている。この他、J. Coord. Chem. (1981), 11(2), 125-31、Inorg. Chim. Acta (1981), 54(4), L187-L190およびInorg. Chim. Acta (1982), 66(2), 49-56にはアルギニンを配位子とする3価の鉄の多核錯体が記載されている。3価の鉄を中心原子とする錯体に付いては以上が知られている全てであり、本明細書記載の式(I)
【化3】
Fe・A・X (I)
(式中、Aは塩基性アミノ酸を、Xは3個の1価陰イオンまたは1.5個の2価陰イオンまたは1個の3価陰イオンを示す)
で示される錯体、或いは、1モルの塩化第二鉄と3モルのL−リジンまたはL−アルギニンを反応させることにより得られるL−リジン鉄錯体またはL−アルギニン鉄錯体は知られていない。従ってこの物質は新規物質であると認められる。
【0003】
L−リジン鉄錯体またはL−アルギニン鉄錯体は、生体にとって重要な物質であるL−リジンまたはL−アルギニンと鉄を同時に付与できるという点において、例えば動植物への栄養補給剤として有用であると考えられる。鉄を補給することにより、動物では貧血の改善、植物では葉色の改善などの効果が期待できる。しかしながら、従来知られているL−リジン鉄錯体またはL−アルギニン鉄錯体は、青酸根、過塩素酸根あるいはホスホン酸根等、生体にとって不用あるいは好ましからざる成分を含むもので、動植物への栄養補給剤として用いるには不適当なものであった。
【0004】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決し、動植物への栄養補給剤として有用な、新規アミノ酸鉄錯体とその極めて簡便な製造方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明者らは、L−リジンあるいはL−アルギニンに代表される塩基性アミノ酸と塩化第二鉄に代表される3価の鉄塩とを水中で反応させることにより、本発明のアミノ酸鉄錯体が容易に形成されることを見いだし、本発明を完成させるに至ったものである。即ち、本発明は、式(I)で示される新規なアミノ酸鉄錯体に関する。
【化4】
Fe・A・X (I)
(式中、Aは塩基性アミノ酸を、Xは3個の1価陰イオンまたは1.5個の2価陰イオンまたは1個の3価陰イオンを示す)
さらに詳しくは、1モルの塩化第二鉄と3モルのL−リジンまたはL−アルギニンを反応させることにより得られるL−リジン鉄錯体またはL−アルギニン鉄錯体に関する。
【0006】
【発明の実施の形態】
本発明で用いるアミノ酸はL−リジンあるいはL−アルギニンに代表される塩基性アミノ酸である。3価の鉄塩は対イオンが生体にとって無害なものであればその種類は限定されないが、例えば塩化第二鉄、硫酸第二鉄あるいは燐酸第二鉄が好適に用いられる。反応溶媒としては、原料の溶解度の点から、水が好適に用いられる。
【0007】
錯体の形成は、例えば1モルの塩化第二鉄水溶液と3モルのリジン水溶液を撹拌混合する事によって行われる。反応温度は、原料および生成物が分解しない範囲で有れば任意であるが、室温付近が最も簡便である。また、それぞれの水溶液の濃度も任意である。
【0008】
反応後、目的とするアミノ酸鉄錯体を単離する方法としては、溶剤晶析が好適に用いられる。具体的には反応溶液を、例えばエタノール中に撹拌しつつ注入することにより沈殿を得、これを濾取、乾燥することにより、目的とするアミノ酸鉄錯体を粉末として得ることができる。溶剤晶析以外の方法としては、通常の方法で噴霧乾燥を行っても該アミノ酸鉄錯体を粉末として得ることができる。
【0009】
【実施例】
以下に本発明を実施例により更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0010】
<実施例1:L−リジン鉄錯体の製造>
塩化第二鉄・6水和物5.41g(20mmol)を水30mlに溶解した。この溶液に、撹拌下、L−リジン50%水溶液17.74g(L−リジンとして60mmol)を室温にて加え、さらに10分間撹拌した。反応溶液を無水エタノール300mlに、撹拌下、注ぎ入れることにより、懸濁液を得、これを室温でさらに15分間撹拌した後、沈殿を濾取した。減圧下に40℃で一夜乾燥することにより、目的とするL−リジン鉄錯体を褐色の粉末として得た。収量11.04g。各成分の含量は、鉄:8.23%(ICP発光分析装置:日本ジャーレル・アッシュICAP−750V)、リジン:66.31%(アミノ酸分析機:日立L−8500)、塩素:16.14%(燃焼後電位差滴定により測定。電位差滴定装置:京都電子AT−118)であった。(理論値(Fe・(Lys)・Cl・3.4HOとして)は、鉄:8.44%、リジン:66.24%、塩素:16.07%)
得られた鉄錯体のIRチャートを図1に示す。
【0011】
<実施例2:L−アルギニン鉄錯体の製造>
塩化第二鉄・6水和物5.41g(20mmol)を水20mlに溶解した。この溶液に、撹拌下、L−アルギニン10.45g(60mmol)の水60ml溶液を室温にて加え、さらに10分間撹拌した。反応溶液を無水エタノール400mlに、撹拌下、注ぎ入れることにより、懸濁液を得、これを室温でさらに15分間撹拌した後、沈殿を濾取した。減圧下に40℃で一夜乾燥することにより、目的とするL−アルギニン鉄錯体を褐色の粉末として得た。収量3.03g。
【0012】
<試験例:芝草の葉色改善効果の確認>
川砂を入れた10cm径のポットに芝草(ベントグラス)を播種し、基礎肥料としてハイポネックス(2,000倍希釈)を加えた水耕液を添加した。710〜720ルックスの人工照明下、25℃で2週間育苗した後、窒素量が同じ(51ppm)になるように調整した表1に示した各検体の水溶液を同じ環境下で1日おきに噴霧した。6週間後、それぞれの葉を刈り取り、水稲用葉色カラースケール(富士平工業)で葉色の検定を行った。
【表1】

Figure 2006076883
表1に示した結果から、本発明のアミノ酸鉄錯体の有用性が確認された。
【0013】
【発明の効果】
本発明によれば、生体にとって不用あるいは好ましからざる成分を含まない、動植物への栄養補給剤として有用な、新規アミノ酸鉄錯体とその極めて簡便な製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明のL−リジン鉄錯体のIRチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel amino acid iron complex represented by the formula (I).
[Chemical 2]
Fe · A 3 · X (I)
(In the formula, A represents a basic amino acid, and X represents three monovalent anions or 1.5 divalent anions or one trivalent anion).
More specifically, the present invention relates to an L-lysine iron complex or an L-arginine iron complex obtained by reacting 1 mol of ferric chloride with 3 mol of L-lysine or L-arginine.
[0002]
[Prior art]
Various complexes of iron and lysine or arginine are known, but most of them are complexes having divalent iron as a central atom, and few complexes with trivalent iron. Indian J. Chem., Sect. A (1976), 14A (3), 211-12 includes amino acids having a cyano group in addition to these amino acids by reaction of potassium ferricyanide with lysine or arginine. A method for producing iron complexes is described. This is the only document on the complex of trivalent iron and lysine. In addition, Indian J. Chem., Sect. A (1985), 24A (9), 797-9 discloses a trivalent iron complex having arginine and phthalimide as ligands. In addition, J. Coord. Chem. (1981), 11 (2), 125-31, Inorg. Chim. Acta (1981), 54 (4), L187-L190 and Inorg. Chim. Acta (1982), 66 (2), 49-56 describes trivalent iron polynuclear complexes with arginine as a ligand. The above is all known for the complex having trivalent iron as the central atom, and is represented by the formula (I) described in the present specification.
[Chemical 3]
Fe · A 3 · X (I)
(In the formula, A represents a basic amino acid, and X represents three monovalent anions or 1.5 divalent anions or one trivalent anion).
Or an L-lysine iron complex or an L-arginine iron complex obtained by reacting 1 mol of ferric chloride with 3 mol of L-lysine or L-arginine is not known. Therefore, this substance is recognized as a novel substance.
[0003]
The L-lysine iron complex or L-arginine iron complex is considered to be useful, for example, as a nutritional supplement to animals and plants in that L-lysine or L-arginine, which is an important substance for the living body, and iron can be added simultaneously. It is done. By supplementing with iron, effects such as improvement of anemia in animals and improvement of leaf color in plants can be expected. However, conventionally known L-lysine iron complexes or L-arginine iron complexes contain components that are unnecessary or undesirable for the living body, such as cyanate roots, perchlorate roots or phosphonate roots, and are used as nutritional supplements for animals and plants. It was unsuitable for use.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems and provides a novel amino acid iron complex useful as a nutritional supplement for animals and plants and a very simple production method thereof.
[0005]
[Means for Solving the Problems]
The inventors of the present invention reacted the basic amino acid represented by L-lysine or L-arginine with a trivalent iron salt represented by ferric chloride in water, whereby the amino acid iron complex of the present invention was obtained. It has been found that it can be easily formed, and the present invention has been completed. That is, the present invention relates to a novel amino acid iron complex represented by the formula (I).
[Formula 4]
Fe · A 3 · X (I)
(In the formula, A represents a basic amino acid, and X represents three monovalent anions or 1.5 divalent anions or one trivalent anion).
More specifically, the present invention relates to an L-lysine iron complex or an L-arginine iron complex obtained by reacting 1 mol of ferric chloride with 3 mol of L-lysine or L-arginine.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The amino acid used in the present invention is a basic amino acid represented by L-lysine or L-arginine. The type of trivalent iron salt is not limited as long as the counter ion is harmless to the living body. For example, ferric chloride, ferric sulfate, or ferric phosphate is preferably used. As the reaction solvent, water is preferably used from the viewpoint of the solubility of the raw materials.
[0007]
The complex is formed, for example, by stirring and mixing 1 mol of ferric chloride aqueous solution and 3 mol of lysine aqueous solution. The reaction temperature is arbitrary as long as the raw materials and products are not decomposed, but is most convenient around room temperature. The concentration of each aqueous solution is also arbitrary.
[0008]
As a method for isolating the target amino acid iron complex after the reaction, solvent crystallization is preferably used. Specifically, the reaction solution is poured into ethanol, for example, with stirring, to obtain a precipitate, which is collected by filtration and dried to obtain the target amino acid iron complex as a powder. As a method other than solvent crystallization, the amino acid iron complex can be obtained as a powder even if spray drying is performed by a usual method.
[0009]
【Example】
Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0010]
<Example 1: Production of L-lysine iron complex>
Ferric chloride hexahydrate (5.41 g, 20 mmol) was dissolved in water (30 ml). To this solution, 17.74 g of L-lysine 50% aqueous solution (60 mmol as L-lysine) was added at room temperature with stirring, and the mixture was further stirred for 10 minutes. The reaction solution was poured into 300 ml of absolute ethanol with stirring to obtain a suspension, which was further stirred at room temperature for 15 minutes, and then the precipitate was collected by filtration. The desired L-lysine iron complex was obtained as a brown powder by drying overnight at 40 ° C. under reduced pressure. Yield 11.04 g. The content of each component is iron: 8.2% (ICP emission analyzer: Nippon Jarrel Ash ICAP-750V), lysine: 66.31% (amino acid analyzer: Hitachi L-8500), chlorine: 16.14% (Measured by potentiometric titration after combustion. Potentiometric titrator: Kyoto Electronics AT-118). (Theoretical values (as Fe · (Lys) 3 · Cl 3 · 3.4H 2 O) are iron: 8.44%, lysine: 66.24%, chlorine: 16.07%)
An IR chart of the obtained iron complex is shown in FIG.
[0011]
<Example 2: Production of L-arginine iron complex>
Ferric chloride hexahydrate (5.41 g, 20 mmol) was dissolved in water (20 ml). To this solution, a solution of 10.45 g (60 mmol) of L-arginine in 60 ml of water was added at room temperature with stirring, and the mixture was further stirred for 10 minutes. The reaction solution was poured into 400 ml of absolute ethanol with stirring to obtain a suspension, which was further stirred at room temperature for 15 minutes, and then the precipitate was collected by filtration. By drying overnight at 40 ° C. under reduced pressure, the objective L-arginine iron complex was obtained as a brown powder. Yield 3.03g.
[0012]
<Test example: Confirmation of turfgrass leaf color improvement effect>
Turfgrass (bentgrass) was sown in a 10 cm diameter pot containing river sand, and a hydroponic solution supplemented with hyponex (diluted 2,000 times) as a basic fertilizer was added. After raising seedlings at 25 ° C. for 2 weeks under artificial lighting of 710 to 720 lux, the aqueous solution of each specimen shown in Table 1 adjusted to have the same nitrogen content (51 ppm) is sprayed every other day under the same environment. did. Six weeks later, each leaf was cut and the leaf color was tested on a leaf color scale for paddy rice (Fujihira Industry).
[Table 1]
Figure 2006076883
From the results shown in Table 1, the usefulness of the amino acid iron complex of the present invention was confirmed.
[0013]
【The invention's effect】
According to the present invention, it is possible to provide a novel amino acid iron complex useful as a nutritional supplement for animals and plants and a very simple production method thereof, which does not contain components that are unnecessary or undesirable for a living body.
[Brief description of the drawings]
FIG. 1 is an IR chart of an L-lysine iron complex of the present invention.

Claims (3)

式(I)で示されるアミノ酸鉄錯体。
Figure 2006076883
(式中、Aは塩基性アミノ酸を、Xは3個の1価陰イオンまたは1.5個の2価陰イオンまたは1個の3価陰イオンを示す)
An amino acid iron complex represented by the formula (I).
Figure 2006076883
(In the formula, A represents a basic amino acid, and X represents three monovalent anions or 1.5 divalent anions or one trivalent anion).
式(I)において、AがL−リジンまたはL−アルギニンであり、Xが3個の塩素原子である請求項1記載のアミノ酸鉄錯体。The amino acid iron complex according to claim 1, wherein in the formula (I), A is L-lysine or L-arginine, and X is 3 chlorine atoms. 1モルの塩化第二鉄と3モルのL−リジンまたはL−アルギニンを水溶液中で反応させることを特徴とするL−リジン鉄錯体またはL−アルギニン鉄錯体の製造法。A method for producing an L-lysine iron complex or an L-arginine iron complex, which comprises reacting 1 mol of ferric chloride with 3 mol of L-lysine or L-arginine in an aqueous solution.
JP2002292231A 2002-10-04 2002-10-04 Amino acid iron complex Pending JP2006076883A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002292231A JP2006076883A (en) 2002-10-04 2002-10-04 Amino acid iron complex
PCT/JP2003/012704 WO2004031127A1 (en) 2002-10-04 2003-10-02 Amino acid iron complex
AU2003271085A AU2003271085A1 (en) 2002-10-04 2003-10-02 Amino acid iron complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292231A JP2006076883A (en) 2002-10-04 2002-10-04 Amino acid iron complex

Publications (1)

Publication Number Publication Date
JP2006076883A true JP2006076883A (en) 2006-03-23

Family

ID=32063915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292231A Pending JP2006076883A (en) 2002-10-04 2002-10-04 Amino acid iron complex

Country Status (3)

Country Link
JP (1) JP2006076883A (en)
AU (1) AU2003271085A1 (en)
WO (1) WO2004031127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168539A (en) * 2010-02-18 2011-09-01 Kurita Engineering Co Ltd Method for removing amino acid-iron complex salt from amine fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168539A (en) * 2010-02-18 2011-09-01 Kurita Engineering Co Ltd Method for removing amino acid-iron complex salt from amine fluid

Also Published As

Publication number Publication date
WO2004031127A1 (en) 2004-04-15
AU2003271085A1 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
Chohan et al. Metal‐based antibacterial and antifungal amino acid derived Schiff bases: their synthesis, characterization and in vitro biological activity
US6458981B1 (en) Composition and method for preparing amino acid chelate hydroxides free of interfering ions
KR101601240B1 (en) Mixed amino acid metal salt complexes
US6426424B1 (en) Composition and method for preparing granular amino acid chelates and complexes
JPH11501658A (en) Alpha hydroxy aliphatic carboxylic acids and their use as methionine source for dietary supplementation
Li et al. Construction of polyoxometalates from dynamic lacunary polyoxotungstate building blocks and lanthanide linkers
Khandar et al. Coordination complexes and polymers from the initial application of phenyl-2-pyridyl ketone azine in mercury chemistry
Powell et al. X-ray structural analysis of biologically relevant aluminium (III) complexes
WO2002030947A2 (en) Compositions and methods of preparing amino acid chelates and complexes
Andrews et al. Anti-leishmanial activity of novel homo-and heteroleptic bismuth (III) thiocarboxylates
JP2003511435A (en) Mixed metal chelates and methods for their production
Chang et al. Synthesis and molecular structure determination of carboxyl bound nicotinic acid (niacin) complexes of chromium (III)
Niu et al. Synthesis, structures and photophysical properties of four binuclear Cu (I) complexes of 1H-imidazo [4, 5-f][1, 10] phenanthroline
Vinogradova et al. Synthesis and structures of copper (II), copper (I, II) and copper (I) complexes with 4-(3, 5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl) pyrimidine. Luminescence of copper (I) complexes
Kukushkin et al. Metal-mediated hydrolysis of the oxime C [double bond, length half m-dash] N bond to produce Rh III-bound O-iminoacylated MeC ([double bond, length half m-dash] NH) ONH 2 species
Amel’chenkova et al. Synthetic modeling of the active site of native metalloenzymes by trimethylacetatozinc complexes
Hameau et al. 4, 5-Bis (methylthio)-1, 3-dithiole-2-thione, a versatile sulphur-rich building block for the self-assembly of Cu (I) and Ag (I) coordination polymers: Dithioether versus thiocarbonyl bonding
JP2006076883A (en) Amino acid iron complex
Mateescu et al. pH–Specific synthesis, spectroscopic, and structural characterization of an assembly of species between Co (II) and N, N-bis (phosphonomethyl) glycine. Gaining insight into metal-ion phosphonate interactions in aqueous Co (II)–organophosphonate systems
Jena Effect of cooperative non-covalent interactions on the solid state heterochiral self-assembly: The concepts of isotactic and syndiotactic arrangements in coordination complex
Puentes et al. Lanthanide coordination polymers based on flexible ligands derived from iminodiacetic acid
CA3062628C (en) Formulations of metal and ascorbic acid complexes, their obtaining and use
US20050235718A1 (en) Organic amino acid chelates, methods for making such chelates, and methods for using such chelates
JPH04208285A (en) Preparation of mixed copper amino acid complex containing novel phenylated phenanthroline used as carcinostatic
Baghan et al. Hydrogen bond synthons affect the coordination geometry of d 10-metal halide complexes: synthetic methods, theoretical studies, and supramolecular architectures