JP2006075456A - Wearing type support system based on human body model - Google Patents

Wearing type support system based on human body model Download PDF

Info

Publication number
JP2006075456A
JP2006075456A JP2004264978A JP2004264978A JP2006075456A JP 2006075456 A JP2006075456 A JP 2006075456A JP 2004264978 A JP2004264978 A JP 2004264978A JP 2004264978 A JP2004264978 A JP 2004264978A JP 2006075456 A JP2006075456 A JP 2006075456A
Authority
JP
Japan
Prior art keywords
human
joint
support system
knee
knees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004264978A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kosuge
一弘 小菅
Naohiko Nakamura
尚彦 中村
Yasuhisa Hirata
泰久 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004264978A priority Critical patent/JP2006075456A/en
Publication of JP2006075456A publication Critical patent/JP2006075456A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wearing type support system used for sports, rehabilitation, or the like. <P>SOLUTION: Information obtained from a sensor for measuring the contact force (floor reaction) of a human being and a floor, and a sensor system for measuring the joint angles of the knees, feet, knees, hips, arms, and the like of the human being, is adapted to a human model constructed within a computer of the wearing type support system, to estimate biological information in the moving state of the human being. The wearing type support system controlling the driving moment of a driving device mounted to each joint can be constructed based on the estimate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スポーツやリハビリテーション等に用いる装着型支援システムに関する。   The present invention relates to a wearable support system used for sports, rehabilitation, and the like.

現在,先進国の間では,少子高齢化が急速に進んでおり,特に,我が国では,2015年に総人口の約4分の1が65歳以上の高齢者になるとみられている。これにより,労働人口の減少は避けることができず,なにより,介護などの仕事に従事する人の不足も避けることはできないであろう。このような時代背景に対して,近年,高齢者の介護や高齢者の自立を促すためのシステムとして,介護者のパワーをアシストするシステムや入浴の補助を行うシステム,食事支援機器や歩行支援機等さまざまな福祉・介護機器が開発されている。本発明は,その中でも特に,複数のセンサを用いて,センサ情報に基づき,人間の運動や生体情報を取得・推定し,その運動を支援するシステムを提案するものである。   Currently, the declining birthrate and aging population are advancing rapidly among developed countries. In particular, in Japan, about one-quarter of the total population is expected to be 65 years old or older in 2015. As a result, the decline in the working population cannot be avoided, and above all, the shortage of people engaged in work such as nursing care cannot be avoided. Against this background of the times, in recent years, systems for assisting caregivers' power, assisting bathing, meal support devices, walking support machines, etc. as systems for encouraging care for the elderly and independence of the elderly Various welfare and nursing care devices have been developed. In particular, the present invention proposes a system that uses a plurality of sensors to acquire and estimate human motion and biological information based on sensor information and supports the motion.

従来,人間の運動を推定し何らかの装具によってその運動を支援するシステムとしては,装着型の歩行支援機や外骨格型のパワーアシストスーツ等が開発されてきた。
H.Kawamoto et al., Power AsiistMethod for HAL-3 Estimating Operator's IntentionBased on Motion Information, Proceedings of the 12th International IEEE Workshopon Robot and Human Interactive Communication, RO-MAN 2003,p.2A2,(2003) K. Kiguchi et al., A 3DOF Exoskeltonfor Upper-Limb Motion Assist-Consideration of the Effect of Bi-Articular Muscles, Proceedings of IEEE InternationalConference on Robotics and Automation,pp.2424-2429,(2004) 小山猛ほか, 介護用ヒューマン・アシスト・システム (第12報,アシスト効果向上のための制御系設計),日本機会学会ロボティクス・メカトロニクス講演会’03講演論文集,2A1-3F-D6,(2003)
Conventionally, wearable walking support machines, exoskeleton-type power assist suits, and the like have been developed as systems for estimating human movement and supporting the movement with some kind of brace.
H. Kawamoto et al., Power AsiistMethod for HAL-3 Estimating Operator's IntentionBased on Motion Information, Proceedings of the 12th International IEEE Workshopon Robot and Human Interactive Communication, RO-MAN 2003, p.2A2, (2003) K. Kiguchi et al., A 3DOF Exoskeltonfor Upper-Limb Motion Assist-Consideration of the Effect of Bi-Articular Muscles, Proceedings of IEEE International Conference on Robotics and Automation, pp.2424-2429, (2004) Takeshi Koyama et al., Human Assist System for Care (12th Report, Control System Design for Improving Assist Effect), Proceedings of the Japan Society of Opportunities Robotics and Mechatronics '03, 2A1-3F-D6, (2003)

これらのシステムでは,人間の筋力を推定する必要があり,その推定には表面筋電位や筋肉表面硬さの変化といった生体信号を用いる。しかし,関節の運動は,それをとりまくすべての筋力の合力と,重力,慣性力,外力等が複雑に関係して生成されるので,数種類の筋肉からの情報を基に支援デバイスを制御することは容易ではない。なぜなら,少ない情報から支援モーメント等を決定するため,その適切さや正確さに問題がでてくるからである。
また,人間が運動を生成してから発生する筋電位等を用いた場合,どうしても支援モーメントを導出し,それを何らかの装具によって発生するまでには時間遅れが生じてしまい,高速な運動の支援は難しくなる。その他,筋電を計測するためのシステムも大掛かりなものとなり,実際にこのようなシステムを実用化するためには多くの問題がある。
In these systems, it is necessary to estimate human muscle strength, and biological signals such as changes in surface myoelectric potential and muscle surface hardness are used for the estimation. However, joint motion is generated in a complex relationship between the resultant force of all the muscle forces surrounding it, gravity, inertial force, external force, etc., so the assist device must be controlled based on information from several types of muscles. Is not easy. This is because a problem arises in the appropriateness and accuracy of determining the support moment etc. from a small amount of information.
In addition, when using a myoelectric potential generated after a human generates motion, a support moment must be derived, and there will be a time delay before it is generated by some kind of brace. It becomes difficult. In addition, a system for measuring myoelectricity becomes large-scale, and there are many problems to actually put such a system into practical use.

本発明では,人間と床の接触力(床反力)を計測するセンサや人間の膝や足,膝,腰,腕等の関節角度を計測するセンサシステム等から得られる情報を,計算機内に構築された人間のモデルに適応することにより,表面筋電位や筋表面の硬さといった生体信号を直接用いることなく,人間のある運動状態における足,膝,腰,腕等の各関節に加わる関節モーメントをはじめとした生体情報を推定するシステムを構築する。   In the present invention, information obtained from a sensor that measures contact force between the human and the floor (floor reaction force), a sensor system that measures joint angles of human knees, feet, knees, hips, arms, etc. is stored in the computer. By adapting to the constructed human model, joints such as feet, knees, hips, and arms in a human motion state without directly using biological signals such as surface myoelectric potential and muscle surface hardness Build a system to estimate biological information including moments.

上記推定システムを用いるといくつかの形態で人間の運動の支援を行うことができる。例えば,人間の歩行の支援を実現するために装着型の歩行支援機を考えよう。装着型の歩行支援機は,図1に示すように,リンクとギアおよび人間の脚部を支援するためのモータやサーボブレーキから構築されたシステムである。このようなシステムでは,通常リンクの動きなどをエンコーダやポテンショメータと呼ばれる回転角度センサ等を用いて人間の関節角度等を計算することができる。また,足裏には力覚センサや圧力センサを取り付け,人間が脚部を通して床に加える力(床反力)を計測することができる。     If the above estimation system is used, human movements can be supported in several forms. For example, consider a wearable walking support machine to support human walking. As shown in FIG. 1, the wearable walking support machine is a system constructed from a link, a gear, and a motor and servo brake for supporting a human leg. In such a system, it is possible to calculate a human joint angle or the like by using a rotation angle sensor or the like called an encoder or a potentiometer for a normal link movement or the like. In addition, force sensors and pressure sensors can be attached to the soles of the feet to measure the force (floor reaction force) that a person applies to the floor through the legs.

このようなシステムを実際に人間の脚部に装着することにより,それらに搭載されたセンサから,人間の各関節の関節角度,角速度等や床反力を求め,それらの情報を計算機内に構築された人体モデルに適用することにより,各関節等に働く関節モーメントを求めることができる。そして,それらの情報を基に,利用者の支援すべき関節モーメント(例えば重力の影響を小さくするための支援モーメント)を計算し,その支援モーメントを装着型歩行支援システムに搭載されたモータやサーボブレーキを用いて目的のモーメントを出力し,実際に人間の運動を支援することが可能となる。   By actually mounting such a system on a human leg, the joint angles, angular velocities, and floor reaction forces of each human joint are obtained from the sensors mounted on them, and the information is built in the computer. By applying to the human model, the joint moment acting on each joint can be obtained. Based on such information, the joint moment to be supported by the user (for example, the support moment for reducing the influence of gravity) is calculated, and the support moment is calculated by a motor or servo mounted on the wearable walking support system. It is possible to output the desired moment using the brake and actually support human movement.

このようなシステムが実現できると,筋電位等を用いた方法と違い,人間のモデルに基づいて支援モーメントを決定するため,支援の時間遅れ等がなく高速な運動支援が可能となり,また,人間のモデルの精度を上げることによって,支援システムの性能を飛躍的に向上させることができる。本システムの応用範囲としては,高齢者や障害者の歩行の支援や,持久力を必要とするスポーツ(例えばスキー等)に用いることにより,長時間の運動を可能にすることができる。   If such a system can be realized, unlike the method using myoelectric potential, the support moment is determined based on the human model, so that it is possible to provide high-speed motor support without any delay in support, etc. By improving the accuracy of the model, the performance of the support system can be dramatically improved. As an application range of this system, it is possible to enable long-term exercise by using it for walking support for elderly people and persons with disabilities and sports that require endurance (for example, skiing).

また,上記のような装着型支援システム等を用いなくとも,靴に力覚センサや圧力センサを埋め込むことにより床反力を計測し,人間の運動・動作を計測するモーションキャプチャシステム等を利用することができれば,それらから得られる情報より,計算機内に構築された人体モデルを用いて人間の関節モーメント等の生体情報を推定することが可能となる。   Also, without using a wearable support system such as the one described above, use a motion capture system that measures the human motion and movement by measuring the floor reaction force by embedding force sensors and pressure sensors in shoes. If possible, it is possible to estimate biological information such as a human joint moment from the information obtained from the human body model built in the computer.

ここで,スポーツやリハビリテーション等によって実現される様々な運動において,上記推定システムによって推定された関節モーメント等の生体情報から,現在の人間の運動が適切であるのか異常な状態であるのかなどを判断することが可能となる。このとき,その判断情報を音や光を使って人間に伝えると,例えばスポーツ等ではプロ選手の運動やそれに伴う重心移動といった細かな生体情報と自分自身の運動等の比較等を行うことができるようになる。障害によっては、この伝達手段は音や光に限ることなく、振動であったり、皮膚に何らかの刺激を与える方法であってもよい。また,リハビリテーション等においても,理想の運動と現在の運動との比較や,過剰な関節モーメント等を必要とする無理な動作を抑制するシステム等を構築することが可能となる。   Here, in various movements realized by sports, rehabilitation, etc., it is judged whether the current human movement is appropriate or abnormal from the biological information such as the joint moment estimated by the estimation system. It becomes possible to do. At this time, if the judgment information is conveyed to humans using sound or light, for example, in sports, etc., it is possible to compare detailed biological information such as exercise of a professional player and the accompanying movement of the center of gravity with own exercise etc. It becomes like this. Depending on the obstacle, this transmission means is not limited to sound and light, but may be vibration or a method of applying some kind of stimulation to the skin. In rehabilitation and the like, it is possible to compare the ideal motion with the current motion, and to construct a system that suppresses excessive motion that requires excessive joint moments.

本発明の実施例による歩行中の人体モデルを図2に示すが、ここではリンクモデルで近似している。本モデルは,直方体の足部リンク,円錐台の下腿部リンク及び大腿部リンク,円錐台を組み合わせた胴体部と楕円体の頭部を結合した上体部リンクからなる。また,それら各リンクをつなぐ関節は,前額水平軸回りの回転のみ可能なヒンジジョイントとする。尚,各リンクの重量や長さ,形状は被験者の実測値,人体各部の重量分布および体格調査書に基づいて決定する。   A human body model during walking according to an embodiment of the present invention is shown in FIG. 2 and is approximated by a link model here. This model consists of a cuboid foot link, a lower leg link and thigh link of a truncated cone, and an upper body link that combines a torso part combined with a truncated cone and an ellipsoidal head. The joints connecting these links are hinge joints that can only rotate around the forehead horizontal axis. The weight, length, and shape of each link are determined based on the measured values of the subject, the weight distribution of each part of the human body, and the physique survey document.

次に,歩行時の脚の状態に応じた支援力/モーメントを導出する本発明に係る制御アルゴリズムについて説明する。歩行は矢状平面上の運動として近似できることが知られている。また,図2に示すように,つま先を通る矢状平面をOi−Zi−Xiとし,原点Oiをつま先に,Zi軸を地面に対して垂直方向に,Xi軸を地面に対して平行とする座標系を設定し、リンクごとに並進成分および回転成分についての運動方程式を導出する。 Next, the control algorithm according to the present invention for deriving the support force / moment according to the leg state during walking will be described. It is known that walking can be approximated as movement on a sagittal plane. Also, as shown in FIG. 2, the sagittal plane passing through the toes is O i −Z i −X i , the origin O i is the toes, the Z i axis is perpendicular to the ground, and the X i axis is the ground A coordinate system that is parallel to is set, and equations of motion for translational components and rotational components are derived for each link.

右足部リンクおよび右下腿部リンクの運動方程式を連立させることで右膝関節モーメントτkrを,左足部リンクおよび左下腿部リンクの運動方程式を連立させることで左膝関節モーメントτklをそれぞれ算出する。算出された膝関節モーメントは式1となる。ここで添え字iはi=rのとき右脚を、i=lのとき左脚を表している。 Calculate the right knee joint moment τ kr by combining the motion equations of the right foot link and right lower leg link, and calculate the left knee joint moment τ kl by combining the motion equations of the left foot link and left lower leg link. To do. The calculated knee joint moment is expressed by Equation 1. Here, the subscript i represents the right leg when i = r, and the left leg when i = l.

また,IfiおよびIsiは足部リンクおよび下腿部リンクの慣性モーメントを,XsiおよびXfiはそれぞれ下腿部リンクおよび足部リンク重心の並進移動量を,Isiは下腿部リンクのリンク長を,Iaiはつま先から足関節までの長さを,GfiおよびGsiは足部リンクおよび下腿部リンクの重心位置をそれぞれ表している。また,gは重力加速度をτGRFiは床反力によるモーメントを表している。 I fi and I si are the moments of inertia of the foot link and crus link, X si and X fi are the translational movements of the crus link and foot link centroids, respectively, and I si is the crus link. , I ai represents the length from the toe to the ankle joint, and G fi and G si represent the center of gravity positions of the foot link and the crus link, respectively. G represents the acceleration due to gravity and τ GRFi represents the moment due to the floor reaction force.

ここで,式(1)により算出された膝関節モーメントの重力項および床反力項に基づいて支援膝関節モーメントτsiを以下のように設計する。 Here, the support knee joint moment τ si is designed as follows based on the gravity and floor reaction force terms of the knee joint moment calculated by Equation (1).

ここでα(0=<α<=1)は支援率とする。支援率αとは算出した膝関節モーメントの重力項および床反力項のどの程度を支援するかを決定するパラメータで,これが大きければ大きいほど支援関節モーメントτsiも大きくなる。このパラメータを調整することにより,装着者毎の歩行能力に見合った支援を行う。このアルゴリズムを装着型歩行支援機に適用すれば実際に歩行時の脚の運動に見合った支援膝関節モーメントが算出できる。 Here, α (0 = <α <= 1) is a support rate. The support rate α is a parameter that determines how much the gravity term and floor reaction force term of the calculated knee joint moment are supported, and the larger this is, the larger the support joint moment τ si is. By adjusting this parameter, support is provided according to the walking ability of each wearer. If this algorithm is applied to a wearable walking support machine, a support knee joint moment can be calculated that is commensurate with the leg movement during walking.

本発明の実施例における制御系を図1に示す装着型歩行支援機に適用すれば、本発明の実施例における人体モデルにおいて,床反力情報に基づいて算出された支援膝関節モーメントを用いることにより,歩行時の脚の運動を妨げない自然な歩行支援が可能となる。   If the control system in the embodiment of the present invention is applied to the wearable walking assist device shown in FIG. 1, the support knee joint moment calculated based on the floor reaction force information is used in the human body model in the embodiment of the present invention. This enables natural walking support that does not interfere with leg movement during walking.

次に、本発明の他の実施例である装着型歩行支援機について説明する。人体脚部に装着して歩行支援を行うもので,ギア方式デュアルヒンジと呼ばれる膝関節部を持つ膝装具,ボールねじとDCモータからなるバックドライバブルな直動アクチュエータおよびセンサ類から構成されている。直動アクチュエータで発生した推力を,膝装具のフレームに作用し,膝関節支援モーメントを人間の膝関節に伝達する構造となっている。
センサとしては,床反力計測用に靴底の拇指球および踵に当たる部分に感圧センサ,関節角計測用に足関節,膝関節および股関節にポテンショメータを配している。
Next, a wearable walking support device according to another embodiment of the present invention will be described. It is attached to the human leg and supports walking, and is composed of a knee brace with a knee joint called a gear-type dual hinge, a back-drivable linear actuator consisting of a ball screw and a DC motor, and sensors. . The structure is such that the thrust generated by the linear actuator acts on the knee brace frame and transmits the knee joint support moment to the human knee joint.
As sensors, pressure-sensitive sensors are used for measuring the reaction force, and pressure sensors are provided at the parts of the shoe sole that touch the thumb ball and the heel, and potentiometers are provided at the ankle, knee and hip joints for joint angle measurement.

この本発明の実施例のモデル図を図3に示す。装着者の身体計測値から装着者の体をリンクモデルに近似し、その後,トレッドミル上で歩行動作を行う。ここでは、装着型歩行支援機の都合上両足部リンクの傾きはθtiを90[deg]とする。また,床反力は両足靴底の
拇指球および踵にある感圧センサにより計測する。
A model diagram of this embodiment of the present invention is shown in FIG. The wearer's body is approximated to a link model from the wearer's body measurement values, and then the walking motion is performed on the treadmill. Here, for the convenience of the wearable walking support machine, θ ti is set to 90 [deg] for the inclination of both foot links. In addition, the floor reaction force is measured by the pressure sensor on the thumb ball and the heel of both foot soles.

本実施例においては支援率を0.1,トレッドミル上の歩行速度を健常者の平均的な歩行速度のおよそ半分に当たる2.0km/hとした。このときの,右脚の関節角度,床反力および支援関節モーメントを図4示すが、関節角度および,床反力に応じた支援関節モーメントが発生していることがわかる。また,図4から発生した支援関節モーメントが装着者の歩行を滑らかに支援していることがわかる。   In this example, the support rate was set to 0.1, and the walking speed on the treadmill was set to 2.0 km / h corresponding to about half of the average walking speed of healthy persons. FIG. 4 shows the joint angle, floor reaction force, and support joint moment of the right leg at this time. It can be seen that the support joint moment corresponding to the joint angle and floor reaction force is generated. In addition, it can be seen from FIG. 4 that the support joint moment generated smoothly supports the wearer's walking.

以上のように、本発明によれば,人間と床の接触力(床反力)を計測するセンサや人間の膝や足,膝,腰,腕等の関節角度を計測するセンサシステム等から得られる情報を,計算機内に構築された人間のモデルに適応することにより,人間のある運動状態における生体情報を推定する装着型支援システムを構築できる。   As described above, according to the present invention, it is obtained from a sensor that measures the contact force (floor reaction force) between a human and the floor, a sensor system that measures joint angles of human knees, feet, knees, waist, arms, and the like. By adapting the obtained information to a human model built in the computer, it is possible to construct a wearable support system that estimates biological information in a certain human movement state.

本発明の装着型支援システムの1実施継体による装着型歩行支援機。A wearable walking support machine according to one implementation of the wearable support system of the present invention. 人体リンクモデルHuman body link model 身体計測器Anthropometry 歩行中の関節角度(角度)、床反力(GRF)および支援関節モーメント(サポートトルク)の時間変化。Temporal changes in joint angle (angle), floor reaction force (GRF) and support joint moment (support torque) during walking.

Claims (5)

人間が床と接触している床反力情報と,人間の膝や足,膝,腰,腕等の各関節角度とにより,人間のある運動状態における足,膝,腰,腕等の各関節に加わる関節モーメントを推定・制御することを特徴とする装着型支援システム。     Joints such as feet, knees, hips, and arms in a certain human motion state based on floor reaction force information that the human is in contact with the floor and the joint angles of the human knees, feet, knees, hips, and arms Wearable support system characterized by estimating and controlling the joint moment applied to the body. 人間のモデルを構築する人体モデル計算システムと,人間が床と接触している情報を取得する床反力計測センサと,人間の膝や足,膝,腰,腕等の各関節の角度を計測するセンサとから構成され,前記床反力と前記各関節角度を前記人体モデル計算システムにより,人間のある運動状態における足,膝,腰,腕等の各関節に加わる関節モーメントを推定・制御することを特徴とする請求項1記載の装着型支援システム。     Human body model calculation system that builds a human model, floor reaction force measurement sensor that obtains information that the human is in contact with the floor, and the angle of each joint such as the human knee, foot, knee, waist, and arm The human body model calculation system is used to estimate and control the joint moment applied to each joint such as feet, knees, hips, and arms in a certain human motion state using the human body model calculation system. The wearable support system according to claim 1. 前記膝や足,膝,腰,腕等の各関節に回転駆動力を与える駆動装置と、前記駆動装置の駆動力を制御する為の制動装置とを備えたことを特徴とする請求項1記載の装着型支援システム。     2. The apparatus according to claim 1, further comprising: a driving device that applies a rotational driving force to each joint such as the knee, foot, knee, waist, and arm; and a braking device that controls the driving force of the driving device. Wearable support system. 上記人間のある運動状態における足,膝,腰,腕等の各関節に加わる関節モーメントの情報に基づき、関節の状態を装着型支援システムの装着者に伝えることを特徴とする請求項1記載の装着型支援システム。     The joint state is transmitted to a wearer of the wearable support system based on information on joint moments applied to each joint such as a foot, a knee, a waist and an arm in a certain motion state of the human. Wearable support system. 請求項4において前記伝える手段は、音、光、振動あるいは皮膚等への刺激であることを特徴とする請求項4記載の装着型支援システム。     5. The wearable support system according to claim 4, wherein the means for transmitting is sound, light, vibration, or stimulation to the skin.
JP2004264978A 2004-09-13 2004-09-13 Wearing type support system based on human body model Pending JP2006075456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264978A JP2006075456A (en) 2004-09-13 2004-09-13 Wearing type support system based on human body model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264978A JP2006075456A (en) 2004-09-13 2004-09-13 Wearing type support system based on human body model

Publications (1)

Publication Number Publication Date
JP2006075456A true JP2006075456A (en) 2006-03-23

Family

ID=36155389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264978A Pending JP2006075456A (en) 2004-09-13 2004-09-13 Wearing type support system based on human body model

Country Status (1)

Country Link
JP (1) JP2006075456A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108551A1 (en) * 2006-03-20 2007-09-27 Japan Labour Health And Welfare Organization Long leg brace with load brake
WO2010027015A1 (en) * 2008-09-05 2010-03-11 国立大学法人東京大学 Motion capture device
JP2012047336A (en) * 2010-07-27 2012-03-08 Nsk Ltd Drive device
JP2012165821A (en) * 2011-02-10 2012-09-06 Suncall Engineering Kk Walking assisting apparatus
US8317732B2 (en) 2007-10-15 2012-11-27 Honda Motor Co., Ltd. Motion assist device
WO2013035814A1 (en) 2011-09-06 2013-03-14 国立大学法人 和歌山大学 Power-assisting robotic device and control method thereof
WO2013188868A1 (en) * 2012-06-15 2013-12-19 Vanderbilt University Movement assistance device
CN104000708A (en) * 2014-06-19 2014-08-27 陕西科技大学 Walking device assisting in walking upstairs and walking downstairs
CN105213156A (en) * 2015-11-05 2016-01-06 京东方科技集团股份有限公司 A kind of power exoskeleton and control method thereof
WO2017141579A1 (en) * 2016-02-15 2017-08-24 オムロン株式会社 Determination device, control device, control system, determination method, and program
CN107300435A (en) * 2011-09-24 2017-10-27 哈佛大学校长及研究员协会 Artificial skin and elastic strain sensor
WO2018034128A1 (en) 2016-08-17 2018-02-22 パワーアシストインターナショナル株式会社 Wearable assistance robot device
CN108379038A (en) * 2018-01-15 2018-08-10 浙江大学 A kind of lower limb rehabilitation exoskeleton system and its walking control method
CN110327187A (en) * 2019-07-10 2019-10-15 河北工业大学 A kind of band priori torque non-model control method of ectoskeleton

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007108551A1 (en) * 2006-03-20 2009-08-06 独立行政法人労働者健康福祉機構 Long leg orthosis with load brake
WO2007108551A1 (en) * 2006-03-20 2007-09-27 Japan Labour Health And Welfare Organization Long leg brace with load brake
US8317732B2 (en) 2007-10-15 2012-11-27 Honda Motor Co., Ltd. Motion assist device
JPWO2010027015A1 (en) * 2008-09-05 2012-02-02 国立大学法人 東京大学 Motion capture device
WO2010027015A1 (en) * 2008-09-05 2010-03-11 国立大学法人東京大学 Motion capture device
JP2012047336A (en) * 2010-07-27 2012-03-08 Nsk Ltd Drive device
JP2012165821A (en) * 2011-02-10 2012-09-06 Suncall Engineering Kk Walking assisting apparatus
WO2013035814A1 (en) 2011-09-06 2013-03-14 国立大学法人 和歌山大学 Power-assisting robotic device and control method thereof
US9855654B2 (en) 2011-09-06 2018-01-02 Wakayama University Power assist robot apparatus and control method therefor
CN107300435A (en) * 2011-09-24 2017-10-27 哈佛大学校长及研究员协会 Artificial skin and elastic strain sensor
WO2013188868A1 (en) * 2012-06-15 2013-12-19 Vanderbilt University Movement assistance device
US9566705B2 (en) 2012-06-15 2017-02-14 Vanderbilt University Movement assistance device
CN104000708A (en) * 2014-06-19 2014-08-27 陕西科技大学 Walking device assisting in walking upstairs and walking downstairs
CN105213156A (en) * 2015-11-05 2016-01-06 京东方科技集团股份有限公司 A kind of power exoskeleton and control method thereof
US10463561B2 (en) 2015-11-05 2019-11-05 Boe Technology Group Co., Ltd. Wearable device and control method thereof
WO2017141579A1 (en) * 2016-02-15 2017-08-24 オムロン株式会社 Determination device, control device, control system, determination method, and program
WO2018034128A1 (en) 2016-08-17 2018-02-22 パワーアシストインターナショナル株式会社 Wearable assistance robot device
EP3778140A1 (en) 2016-08-17 2021-02-17 Power Assist International Corporation Wearable assist robot apparatus
EP3778139A1 (en) 2016-08-17 2021-02-17 Power Assist International Corporation Wearable assist robot apparatus
US11110024B2 (en) 2016-08-17 2021-09-07 Power Assist International Corporation Wearable assist robot apparatus
US11806302B2 (en) 2016-08-17 2023-11-07 Power Assist International Corporation Wearable assist robot apparatus
CN108379038A (en) * 2018-01-15 2018-08-10 浙江大学 A kind of lower limb rehabilitation exoskeleton system and its walking control method
CN110327187A (en) * 2019-07-10 2019-10-15 河北工业大学 A kind of band priori torque non-model control method of ectoskeleton

Similar Documents

Publication Publication Date Title
Veneman et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation
US10123932B2 (en) Motion assist device and motion assist method
CN105796286B (en) Use the lower limb exoskeleton robot control method of air bag sensor
US6796926B2 (en) Mechanism for manipulating and measuring legs during stepping
JP7177318B2 (en) Methods and apparatus for providing economical, portable, deficit-adjusted adaptive assistance during motion of impaired ankles
EP2663267B1 (en) Powered joint orthosis
US6666831B1 (en) Method, apparatus and system for automation of body weight support training (bwst) of biped locomotion over a treadmill using a programmable stepper device (psd) operating like an exoskeleton drive system from a fixed base
Lenzi et al. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking
CA2828420C (en) Gait training device and gait training system
Bortole et al. A robotic exoskeleton for overground gait rehabilitation
US20170042467A1 (en) Feedback Method And Wearable Device To Monitor And Modulate Knee Adduction Moment
US20130226048A1 (en) Lower Extremity Exoskeleton for Gait Retraining
TW201639533A (en) Interactive exoskeleton robotic knee system
JP2006075456A (en) Wearing type support system based on human body model
KR20150049856A (en) Wearable robot and control method for the same
Nakamura et al. Control of wearable walking support system based on human-model and GRF
Moltedo et al. Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users
Ortlieb et al. An assistive lower limb exoskeleton for people with neurological gait disorders
Woo et al. Lower-limb-assisting robotic exoskeleton reduces energy consumption in healthy young persons during stair climbing
JP6264400B2 (en) Multiple link mechanism and exercise assistance method
WO2023173752A1 (en) Exoskeleton for rehabilitation
KR20190142709A (en) Controlling method of lower body assisting robot
Garcia et al. Development of the atlas lower-limb active orthosis
Veneman et al. Evaluation of the effect on walking of balance-related degrees of freedom in a robotic gait training device
Cao et al. A sit-to-stand training robot and its performance evaluation: dynamic analysis in lower limb rehabilitation activities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080925

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090212