JP2006074697A - Directional antenna, directivity control method therefor, and antenna system - Google Patents

Directional antenna, directivity control method therefor, and antenna system Download PDF

Info

Publication number
JP2006074697A
JP2006074697A JP2004258839A JP2004258839A JP2006074697A JP 2006074697 A JP2006074697 A JP 2006074697A JP 2004258839 A JP2004258839 A JP 2004258839A JP 2004258839 A JP2004258839 A JP 2004258839A JP 2006074697 A JP2006074697 A JP 2006074697A
Authority
JP
Japan
Prior art keywords
short
patch
parasitic patch
gnd
parasitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258839A
Other languages
Japanese (ja)
Other versions
JP4452588B2 (en
Inventor
Masaki Hiroi
正樹 廣居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004258839A priority Critical patent/JP4452588B2/en
Publication of JP2006074697A publication Critical patent/JP2006074697A/en
Application granted granted Critical
Publication of JP4452588B2 publication Critical patent/JP4452588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a directional antenna which can be mounted on a small-sized device and can freely change the direction of radiation, and to provide a directivity control method therefor and an antenna system. <P>SOLUTION: In the directional antenna which includes a power feeding patch 2 and at least one parasitic path 3 disposed around the power feeding path and in which the direction of electromagnetic wave radiation is changed by grounding a current induced in the parasitic patch 3, the parasitic patch 3 comprises GND short-circuiting lines 4a, 4b1, 4b2, 4b3 for grounding at positions different from the center of an exciting direction, and each of the GND short-circuiting lines comprises a switch for changing over whether or not the parasitic patch 3 and the ground are to be electrically connected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ビームの発射方向を自由に選択できる指向性アンテナ及びその指向性を制御する方法並びにこの指向性アンテナを用いたアンテナシステムに関する。   The present invention relates to a directional antenna capable of freely selecting a beam emission direction, a method for controlling the directivity, and an antenna system using the directional antenna.

近年、衛星通信や移動体通信などが盛んに行われ、指向性アンテナの重要性が注目されている。   In recent years, satellite communication and mobile communication have been actively performed, and the importance of directional antennas has attracted attention.

衛星通信移動体通信では、送信側と受信側との相対的な位置が変化するため、指向性アンテナを用いる場合には通信相手が位置する方向を検出してその方向にアンテナを向ける必要がある。   In satellite communication mobile communication, the relative position of the transmitting side and the receiving side changes, so when using a directional antenna, it is necessary to detect the direction in which the communication partner is located and point the antenna in that direction. .

無指向性アンテナを用いる場合にはアンテナの向きを変える必要は無くなるが、放射効率が悪い、ノイズに弱いなどといって欠点があるため、実際にはほとんど使用されていない。   When an omnidirectional antenna is used, it is not necessary to change the direction of the antenna. However, since it has drawbacks such as poor radiation efficiency and noise, it is rarely used in practice.

衛星通信に関する従来技術としては、特許文献1に開示される「衛星放送受信アンテナ自動追尾装置」がある。特許文献1に開示される発明は、アンテナを機械的に動かすことによって送信又は受信の方向を検知し、通信相手を追尾するものである。   As a prior art relating to satellite communication, there is a “satellite broadcast receiving antenna automatic tracking device” disclosed in Patent Document 1. The invention disclosed in Patent Document 1 detects the direction of transmission or reception by mechanically moving an antenna and tracks a communication partner.

移動体通信に関する従来技術としては、特許文献2に開示される「アンテナ指向システム」や特許文献3に開示される「指向性アンテナ追尾装置」がある。特許文献2に開示される発明は、ジャイロと地磁気とを利用して通信相手を追尾するシステムである。また、特許文献3に開示される発明は、ジャイロとGPSと地磁気とを利用して移動体の位置を常に確認しながらアンテナを機械的に動かして通信相手を追尾するシステムである。   As conventional techniques related to mobile communication, there are an “antenna pointing system” disclosed in Patent Document 2 and a “directional antenna tracking device” disclosed in Patent Document 3. The invention disclosed in Patent Document 2 is a system that tracks a communication partner using a gyro and geomagnetism. The invention disclosed in Patent Document 3 is a system for tracking a communication partner by mechanically moving an antenna while constantly checking the position of a moving body using a gyro, GPS, and geomagnetism.

しかしながら、移動体通信の分野においては装置の小型化が要求されるため、実際には上記各特許文献に開示される発明を適用することは困難である。   However, in the field of mobile communication, downsizing of the device is required, so that it is actually difficult to apply the inventions disclosed in the above patent documents.

このような問題を解決するために、非特許文献1にはパッチアンテナを用い、無給電パッチ部分をGNDに落とすことで指向性をもたせる方法が提案されている。図12に、非特許文献1に開示される方法を適用したアンテナを示す。このアンテナは、無給電パッチに誘起された電流をGNDに落とすことで、反対側の無給電パッチで励起された電流の位相と給電パッチの電流の位相との相互作用によって放射方向を傾ける。
特開平9−321517号公報 特公平7−58854号公報 特開平10−10220号公報 D.V.Thiel, Electronics Letters,vol.33 No.1,pp7-8
In order to solve such a problem, Non-Patent Document 1 proposes a method of providing directivity by using a patch antenna and dropping a parasitic patch portion to GND. FIG. 12 shows an antenna to which the method disclosed in Non-Patent Document 1 is applied. This antenna tilts the radiation direction by the interaction between the phase of the current excited by the parasitic patch on the opposite side and the phase of the current of the feeding patch by dropping the current induced in the parasitic patch to GND.
JP-A-9-321517 Japanese Examined Patent Publication No. 7-58854 Japanese Patent Laid-Open No. 10-10220 DVThiel, Electronics Letters, vol.33 No.1, pp7-8

しかしこの方法では、指向性は得られるものの、その方向は所定の1方向のみであり、任意方向への指向性を変化させることはできない。
また、無給電パッチに誘起された電流を一点でGNDへ落としているため、無給電パッチの残電流が大きく、ビームの放射方向を大きく傾ける妨げとなる。
However, in this method, although directivity is obtained, the direction is only one predetermined direction, and directivity in an arbitrary direction cannot be changed.
Further, since the current induced in the parasitic patch is dropped to GND at a single point, the residual current of the parasitic patch is large, which hinders the beam radiation direction from being greatly inclined.

このように、小型の装置に搭載可能で、放射方向を自由に変更できる指向性アンテナは提供されていなかった。   Thus, a directional antenna that can be mounted on a small device and whose radiation direction can be freely changed has not been provided.

本発明はかかる問題に鑑みてなされたものであり、小型の装置に搭載可能で、放射方向を自由に変更できる指向性アンテナ及びその指向性制御方法並びにアンテナシステムを提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a directional antenna that can be mounted on a small device and whose radiation direction can be freely changed, a directivity control method thereof, and an antenna system.

上記目的を達成するため、本発明は、第1の態様として、給電パッチと、その周囲に配置された少なくとも一つの無給電パッチとを有し、無給電パッチに誘起された電流を接地することによって電磁波の放射方向が変化する指向性アンテナであって、無給電パッチは、励振方向の中心とは異なる箇所に、該無給電パッチを接地するための短絡線を複数備え、それぞれの短絡線は、無給電パッチとグランドとを電気的に接続するか否かを切り替えるスイッチを備えることを特徴とする指向性アンテナを提供するものである。
無給電パッチをGNDに落とす位置が、無給電パッチの励振方向の中心以外で複数存在するため、電磁波の放射方向を、パッチが配列した面と垂直な方向から任意の方向へ傾けることができる。
In order to achieve the above object, as a first aspect, the present invention includes a power supply patch and at least one non-power supply patch arranged around the power supply patch, and grounds a current induced in the non-power supply patch. The parasitic patch has a plurality of short-circuit wires for grounding the parasitic patch at a location different from the center of the excitation direction. The present invention provides a directional antenna comprising a switch for switching whether or not to electrically connect a parasitic patch and a ground.
Since there are a plurality of positions where the parasitic patch is dropped to GND except for the center of the excitation direction of the parasitic patch, the radiation direction of the electromagnetic wave can be tilted in an arbitrary direction from the direction perpendicular to the surface on which the patches are arranged.

上記本発明の第1の態様においては、無給電パッチは、2以上の短絡線によってグランドと電気的に接続されることが好ましい。無給電パッチの2箇所以上を同時にGNDと接続することにより、電磁波の放射方向を従来よりも大きく傾けることが可能となる。
これに加えて、無給電パッチをグランドと電気的に接続する短絡線は、該無給電パッチの励振方向の一端側に複数個設けられていることが好ましくい。このようにすれば、電磁波の放射方向を従来よりも大きく傾けることが可能となる。
又は、無給電パッチをグランドと電気的に接続する短絡線は、該無給電パッチの励振方向の両端部に、少なくとも一つずつ設けられていることが好ましく、これに加えて、無給電パッチをグランドと電気的に接続する短絡性は、該無給電パッチの励振方向の両端部に、各々2以上設けられていることがより好ましい。さらに加えて、無給電パッチをグランドと電気的に接続する短絡線は、該無給電パッチの励振方向に重ならないように配置されていることが好ましい。励振方向の両端部に短絡線を配置すれば、短絡線同士の間隔が広くなるため、スイッチを配置しやすくなる。また、電磁波の放射方向を従来よりも大きく傾けることが可能となる。
In the first aspect of the present invention, the parasitic patch is preferably electrically connected to the ground by two or more short-circuit wires. By connecting two or more portions of the non-feeding patch to the GND at the same time, it is possible to tilt the radiation direction of the electromagnetic wave more than before.
In addition to this, it is preferable that a plurality of short-circuit lines for electrically connecting the parasitic patch to the ground are provided on one end side in the excitation direction of the parasitic patch. In this way, it is possible to tilt the radiation direction of the electromagnetic wave more than before.
Alternatively, it is preferable that at least one short-circuit line for electrically connecting the parasitic patch to the ground is provided at both ends in the excitation direction of the parasitic patch. More preferably, two or more short-circuits that are electrically connected to the ground are provided at both ends of the parasitic patch in the excitation direction. In addition, it is preferable that the short-circuit line that electrically connects the parasitic patch with the ground is disposed so as not to overlap the excitation direction of the parasitic patch. If short-circuit wires are disposed at both ends in the excitation direction, the distance between the short-circuit wires is widened, so that it is easy to dispose a switch. Moreover, it becomes possible to incline the radiation direction of electromagnetic waves larger than before.

また、上記目的を達成するため、本発明は、第2の態様として、給電パッチと、その周囲に配置された少なくとも一つの無給電パッチとを有する指向性アンテナであって、無給電パッチは、該無給電パッチをグランドと電気的に接続して該無給電パッチに誘起された電流を接地するか否かを切り替えるスイッチを備えた短絡線を有し、2以上の無給電パッチをグランドと電気的に接続することによって、電磁波の放射方向が変化することを特徴とする指向性アンテナを提供するものである。このようにすれば、電磁波の放射方向を従来よりも大きく傾けることが可能となる。   In order to achieve the above object, the present invention provides, as a second aspect, a directional antenna having a power supply patch and at least one power supply patch disposed around the power supply patch. A short-circuit wire having a switch for switching whether or not to electrically connect the parasitic patch to the ground and to ground a current induced in the parasitic patch; and to connect two or more parasitic patches to the ground Thus, the present invention provides a directional antenna characterized in that the radiation direction of electromagnetic waves changes by connecting the two. In this way, it is possible to tilt the radiation direction of the electromagnetic wave more than before.

また、上記目的を達成するため、本発明は第3の態様として、上記本発明の第1の態様のいずれかの構成にかかる指向性アンテナの指向方向を制御する方法であって、無給電パッチをグランドと接続するのに用いる短絡線の位置及び数を、スイッチの切り替えによって変化させることにより、電磁波の放射方向を制御することを特徴とするアンテナの指向性制御方法を提供するものである。本態様によれば、電磁波の放射方向を、パッチが配列した面と垂直な方向から任意の方向へ傾けることができる。   Moreover, in order to achieve the said objective, this invention is a method of controlling the directivity direction of the directional antenna concerning the structure in any one of the said 1st aspect of the said invention as 3rd aspect, Comprising: The antenna directivity control method is characterized in that the radiation direction of electromagnetic waves is controlled by changing the position and the number of short-circuit lines used for connecting to the ground by switching of the switches. According to this aspect, the radiation direction of electromagnetic waves can be tilted in an arbitrary direction from the direction perpendicular to the surface on which the patches are arranged.

また、上記目的を達成するため、本発明は、第4の態様として、上記本発明の第2の態様にかかる指向性アンテナの指向方向を制御する方法であって、グランドと接続する無給電パッチの位置及び数を変化させることにより、電磁波の放射方向を制御することを特徴とするアンテナの指向性制御方法を提供するものである。本態様によれば、電磁波の放射方向を、パッチが配列した面と垂直な方向から任意の方向へ傾けることができる。   In order to achieve the above object, the present invention provides, as a fourth aspect, a method for controlling the directivity direction of a directional antenna according to the second aspect of the present invention, in which a parasitic patch connected to the ground is provided. The antenna directivity control method is characterized by controlling the radiation direction of electromagnetic waves by changing the position and number of the antennas. According to this aspect, the radiation direction of electromagnetic waves can be tilted in an arbitrary direction from the direction perpendicular to the surface on which the patches are arranged.

また、上記目的を達成するため、本発明は、第5の態様として、上記本発明の第1の態様のいずれかの構成にかかる指向性アンテナを用いたアンテナシステムであって、無給電パッチをグランドと接続するのに用いる短絡線の位置及び数をスイッチの切り替えによって変化させて、電磁波の放射方向を制御する手段を有することを特徴とするアンテナシステムを提供するものである。本態様によれば、電磁波の放射方向を、パッチが配列した面と垂直な方向から任意の方向へ傾けることができる。   In order to achieve the above object, the present invention provides, as a fifth aspect, an antenna system using a directional antenna according to any one of the first aspect of the present invention, wherein a parasitic patch is provided. It is an object of the present invention to provide an antenna system having means for controlling the radiation direction of electromagnetic waves by changing the position and number of short-circuit lines used for connection to a ground by switching a switch. According to this aspect, the radiation direction of electromagnetic waves can be tilted in an arbitrary direction from the direction perpendicular to the surface on which the patches are arranged.

また、上記目的を達成するため、本発明は、第6の態様として、上記本発明の第2の態様にかかる指向性アンテナを用いたアンテナシステムであって、グランドと接続する無給電パッチの位置及び数を変化させて、電磁波の放射方向を制御する手段を有することを特徴とするアンテナシステムを提供するものである。本態様によれば、電磁波の放射方向を、パッチが配列した面と垂直な方向から任意の方向へ傾けることができる。   In order to achieve the above object, the present invention provides, as a sixth aspect, an antenna system using the directional antenna according to the second aspect of the present invention, wherein the position of the parasitic patch connected to the ground is And an antenna system having means for controlling the radiation direction of electromagnetic waves by changing the number of the antenna systems. According to this aspect, the radiation direction of electromagnetic waves can be tilted in an arbitrary direction from the direction perpendicular to the surface on which the patches are arranged.

本発明によれば、小型の装置に搭載可能で、放射方向を自由に変更できる指向性アンテナ及びその指向性制御方法並びにアンテナシステムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the directional antenna which can be mounted in a small apparatus and can change a radiation direction freely, its directional control method, and an antenna system can be provided.

〔発明の原理〕
本発明は、パッチアンテナの無給電パッチをGNDに落とすことで指向性を付与する。
放射方向のコントロールは、GNDに落とす位置や落とす位置の数を調整して残電流を制御することによって行う。より詳しくは、無給電パッチを2箇所以上で同時にGNDに落とすことによって残電流を低減し、GNDに落とす無給電パッチの数を変えることによって指向性をコントロールする。
[Principle of the Invention]
The present invention provides directivity by dropping the non-feed patch of the patch antenna to GND.
The control of the radiation direction is performed by adjusting the position of dropping to GND and the number of dropping positions to control the residual current. More specifically, the remaining current is reduced by dropping the non-powered patches to GND at two or more locations at the same time, and the directivity is controlled by changing the number of the non-powered patches dropped to GND.

パッチアンテナは、誘電体の上に導体のパッチを形成し、誘電体を挟んでパッチの反対側は全体が導体のGND(地板又はグランドプレーンという)という構造となっている。パッチは裏面から同軸ケーブルで給電されるようになっている。   The patch antenna has a structure in which a conductor patch is formed on a dielectric, and the other side of the patch across the dielectric is a conductor GND (referred to as a ground plane or a ground plane). The patch is fed from the back via a coaxial cable.

以下、上記原理に基づく本発明の好適な実施の形態について説明するが、その説明に用いる図面は、説明を容易とするために要素の一部を誇張したり省略して図示する。具体的には、パッチアンテナを構成要素のうち誘電体及び地板は省略してパッチのパターンのみを図示する。なお、無給電パッチをGNDに落とすための線である不図示のGND短絡線にスイッチが設けられており、スイッチの切替によって無給電パッチをGNDレベルに落とすか否かが切り替えられるようになっている。   Hereinafter, preferred embodiments of the present invention based on the above principle will be described. In the drawings used for the description, some elements are exaggerated or omitted for easy explanation. Specifically, the patch antenna is omitted from the dielectric and ground plane among the components, and only the patch pattern is shown. It should be noted that a switch is provided on a GND short-circuit line (not shown) that is a line for dropping the non-powered patch to GND, and whether or not to drop the non-powered patch to the GND level can be switched by switching the switch. Yes.

また、以下の説明においては、図8に示すような座標系を用いる。空間内の位置はXYZの三軸の直交座標で表し、X軸方向からY軸方向への回転角をφ、Z軸からXY平面への回転角をθとする。なお、Z軸の正方向は天頂方向を表し、XY平面は水平面を表す。   In the following description, a coordinate system as shown in FIG. 8 is used. The position in the space is represented by three-axis orthogonal coordinates of XYZ, where the rotation angle from the X-axis direction to the Y-axis direction is φ, and the rotation angle from the Z-axis to the XY plane is θ. The positive direction of the Z axis represents the zenith direction, and the XY plane represents the horizontal plane.

〔第1の実施形態〕
本発明を好適に実施した第1の実施形態について説明する。図1に、本実施形態にかかる指向性アンテナの構成を示す。
本実施形態にかかるパッチアンテナは給電パッチ2と無給電パッチ3とがXY平面内に配置された構成である。給電パッチ2は、給電点1において給電され、図1中に矢印で示す方向(Y軸方向)に励振されている。
[First Embodiment]
A first embodiment in which the present invention is suitably implemented will be described. FIG. 1 shows a configuration of a directional antenna according to this embodiment.
The patch antenna according to the present embodiment has a configuration in which a feeding patch 2 and a parasitic patch 3 are arranged in an XY plane. The power supply patch 2 is supplied with power at a power supply point 1 and is excited in a direction (Y-axis direction) indicated by an arrow in FIG.

図1(a)は、給電パッチ2を中心としてY軸方向の両側に無給電パッチ3を配置した構成である。無給電パッチ3には、GND短絡線4a、4b1、4b2及び4b3が設置されている。各GND短絡線は、不図示のスイッチを介して不図示の地板に短絡されている。なお、ここでは説明の簡略化のため、図中下側の無給電パッチ3にはGND短絡線は図示していない。
不図示のスイッチの切替により、GND短絡線4a、4b1、4b2及び4b3のそれぞれは、少なくともいずれかが不図示の地板と短絡した状態かいずれも地板と短絡しない状態となっている。
GND短絡線4a、4b1、4b2及び4b3のいずれも地板と短絡していない場合(全てのGND短絡線がGNDから浮いている場合)、電磁波の放射方向は、XY平面に垂直な方向(Z軸方向、すなわち天頂方向)である。
不図示のスイッチの切替によりGND短絡線4aを地板と短絡とした場合には、図1(a)に示す構成では、電磁波の放射方向は天頂方向からY軸のマイナス方向に傾く。これは、無給電パッチの片側をGNDに落とすことにより、GNDに落とさない側の無給電パッチ3の誘起電流の位相と給電パッチ2の誘起電流の位相の相互関係から起こる現象である。
FIG. 1A shows a configuration in which the non-feeding patches 3 are arranged on both sides in the Y-axis direction with the feeding patch 2 as the center. The parasitic patch 3 is provided with GND short-circuit lines 4a, 4b1, 4b2, and 4b3. Each GND short-circuit line is short-circuited to a ground plate (not shown) via a switch (not shown). Here, for the sake of simplification of explanation, the GND short-circuit line is not shown in the parasitic patch 3 on the lower side in the drawing.
By switching a switch (not shown), each of the GND short-circuit lines 4a, 4b1, 4b2, and 4b3 is in a state where at least one of them is short-circuited to a ground plate (not shown) or neither is short-circuited to the ground plate.
When none of the GND short-circuit lines 4a, 4b1, 4b2, and 4b3 is short-circuited to the ground plane (when all the GND short-circuit lines are floating from GND), the radiation direction of electromagnetic waves is a direction perpendicular to the XY plane (Z-axis) Direction, ie, zenith direction).
When the GND short-circuit line 4a is short-circuited to the ground plane by switching a switch (not shown), the radiation direction of the electromagnetic wave is inclined from the zenith direction to the negative direction of the Y-axis in the configuration shown in FIG. This is a phenomenon that occurs due to the correlation between the phase of the induced current of the parasitic patch 3 on the side that is not dropped to GND and the phase of the induced current of the feeder patch 2 by dropping one side of the parasitic patch to GND.

無給電パッチ3が両方とも地板と絶縁された状態、又は両方とも地板と短絡された状態においても、給電パッチ2の誘起電流の位相と無給電パッチ3の誘起電流の位相との相互関係は存在するが、給電パッチ2を中心として無給電パッチ3が線対称に配置されているため、各無給電パッチ3の誘起電流の影響が打ち消しあって、電磁波の放射方向は天頂方向となる。換言すると、給電パッチ2を中心とする無給電パッチ3の誘起電流の位相のシンメトリーが崩れると、電磁波の放射方向は天頂方向から傾く。   There is a correlation between the phase of the induced current of the feed patch 2 and the phase of the induced current of the parasitic patch 3 even when both the parasitic patches 3 are insulated from the ground plane or both are short-circuited to the ground plane. However, since the parasitic patches 3 are arranged symmetrically with respect to the feeding patch 2, the influence of the induced current of each parasitic patch 3 cancels out, and the radiation direction of the electromagnetic wave becomes the zenith direction. In other words, when the symmetry of the phase of the induced current of the parasitic patch 3 centered on the feeding patch 2 is broken, the radiation direction of the electromagnetic wave is inclined from the zenith direction.

無給電パッチ3は、励振方向の端部に近い位置で短絡するほど誘起電流がGNDに落ちやすい。よって、GND短絡線4b1を地板と短絡とした場合には、GND短絡線4aを地板と短絡とした場合よりも誘起電流がGNDに落ちやすい。このため、GND短絡線4b1を地板と短絡した場合の電磁波の放射方向は、GND短絡線4aを地板と短絡した場合よりも天頂方向からの傾き(Y軸マイナス方向への傾き)が大きくなる。
一方、GND短絡線4b2や4b3を地板と短絡した場合には、GND短絡線4aを地板と短絡した場合よりも誘起電流がGNDに落ちにくい。このため、GND短絡線4b2や4b3を地板と短絡した場合の電磁波の放射方向は、GND短絡線4aを地板と短絡した場合よりも天頂方向からの傾き(Y軸マイナス方向への傾き)が小さくなる。
As the parasitic patch 3 is short-circuited at a position near the end portion in the excitation direction, the induced current is likely to drop to GND. Therefore, when the GND short-circuit line 4b1 is short-circuited to the ground plane, the induced current is more likely to drop to GND than when the GND short-circuit line 4a is short-circuited to the ground plane. For this reason, the radiation direction of the electromagnetic wave when the GND short-circuit line 4b1 is short-circuited to the ground plane has a larger inclination from the zenith direction (inclination in the Y-axis minus direction) than when the GND short-circuit line 4a is short-circuited to the ground plane.
On the other hand, when the GND short-circuit lines 4b2 and 4b3 are short-circuited to the ground plane, the induced current is less likely to drop to GND than when the GND short-circuit line 4a is short-circuited to the ground plane. For this reason, the radiation direction of the electromagnetic waves when the GND short-circuit lines 4b2 and 4b3 are short-circuited to the ground plane is smaller in inclination from the zenith direction (inclination in the Y-axis minus direction) than when the GND short-circuit line 4a is short-circuited to the ground plane. Become.

なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中下側の無給電パッチ3を上記同様にして地板と短絡させればよい。   If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the non-feeding patch 3 on the lower side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

図1(b)は、給電パッチ2を中心としてX軸方向の両側に無給電パッチ3を配置した構成を示している。この構成においても、無給電パッチ3の一方を地板と短絡させるか否か、及び無給電パッチ3を地板と短絡させるのにGND短絡線4a、4b1、4b2及び4b3のいずれを用いるのかによって、電磁波の放射方向を調整できる。
ただし、この構造の場合、GND短絡線4aを地板と短絡した場合には、電磁波の放射方向が天頂方向からX軸のマイナス側に傾く。また、GND短絡線4b1を地板と短絡した場合の電磁波の放射方向は、GND短絡線4aを地板と短絡した場合よりも天頂方向からの傾き(X軸マイナス方向への傾き)が大きくなる。さらに、GND短絡線4b2や4b3を地板と短絡した場合の電磁波の放射方向は、GND短絡線4aを地板と短絡した場合よりも天頂方向からの傾き(X軸マイナス方向への傾き)が小さくなる。
なお、電磁波の放射方向をX軸プラス側に傾けるのであれば、GND短絡線を図示していない図中下側の無給電パッチ3を上記同様にして地板と短絡させればよい。
FIG. 1B shows a configuration in which the non-feeding patches 3 are arranged on both sides in the X-axis direction with the feeding patch 2 as the center. Even in this configuration, the electromagnetic wave depends on whether one of the parasitic patches 3 is short-circuited to the ground plane and whether the GND short-circuiting wires 4a, 4b1, 4b2, and 4b3 are used to short-circuit the parasitic patch 3 to the ground plane. The radiation direction can be adjusted.
However, in the case of this structure, when the GND short-circuit wire 4a is short-circuited to the ground plane, the radiation direction of the electromagnetic wave is inclined from the zenith direction to the negative side of the X axis. Further, the radiation direction of the electromagnetic wave when the GND short-circuit line 4b1 is short-circuited with the ground plane has a greater inclination from the zenith direction (slope toward the X-axis minus direction) than when the GND short-circuit line 4a is short-circuited with the ground plane. Further, the radiation direction of the electromagnetic wave when the GND short-circuit lines 4b2 and 4b3 are short-circuited to the ground plane is smaller from the zenith direction (slope to the X-axis minus direction) than when the GND short-circuit line 4a is short-circuited to the ground plane. .
If the radiation direction of the electromagnetic wave is inclined to the X axis plus side, the parasitic patch 3 on the lower side in the figure (not shown) may be short-circuited to the ground plane in the same manner as described above.

このように、本実施形態にかかる指向性アンテナは、電磁波の放射方向を天頂方向からX軸方向又はY軸方向に、任意の角度θ傾けることができる。   As described above, the directional antenna according to the present embodiment can tilt the radiation direction of the electromagnetic wave from the zenith direction to the X axis direction or the Y axis direction by an arbitrary angle θ.

なお、ここではGND短絡線が四つの構成を例に説明したが、この数やそれを配置する位置は任意に設定可能である。   Note that, here, the configuration of four GND short-circuit lines has been described as an example, but this number and the position where it is arranged can be arbitrarily set.

また、ここではGND短絡線4a、4b1、4b2及び4b3のいずれかを不図示の地板と短絡させる場合について説明したが、これらを2以上同時に地板に短絡させても良い。   Moreover, although the case where any one of the GND short-circuit lines 4a, 4b1, 4b2, and 4b3 is short-circuited to a ground plate (not shown) has been described here, two or more of them may be short-circuited to the ground plate at the same time.

〔第2の実施形態〕
本発明を好適に実施した第2の実施形態について説明する。
本実施形態にかかるパッチアンテナは給電パッチ2と無給電パッチ3とがXY平面内に配置された構成である。給電パッチ2は、給電点1において給電され、図2中に矢印で示す方向(Y軸方向)に励振されている。
[Second Embodiment]
A second embodiment in which the present invention is suitably implemented will be described.
The patch antenna according to the present embodiment has a configuration in which a feeding patch 2 and a parasitic patch 3 are arranged in an XY plane. The power supply patch 2 is supplied with power at a power supply point 1 and is excited in a direction (Y-axis direction) indicated by an arrow in FIG.

図2(a)は、給電パッチ2を中心としてY軸方向の両側に無給電パッチ3を配置した構成である。無給電パッチ3には、GND短絡線5が設置されている。各GND短絡線は、不図示のスイッチを介して不図示の地板に短絡されている。なお、ここでは説明の簡略化のため、図中下側の無給電パッチ3にはGND短絡線は図示していない。
GND短絡線5は、不図示のスイッチがONのときに無給電パッチ3と不図示の地板とを短絡させる。
全てのGND短絡線のスイッチがOFFの場合(全てのGND短絡線がGNDから浮いている場合)、電磁波の放射方向は、XY平面に垂直な方向(Z軸方向、すなわち天頂方向)である。
GND短絡線5いずれかのスイッチをONとした場合には、図2(a)に示す構成では、電磁波の放射方向は天頂方向からY軸のマイナス方向に傾く。これは、第1の実施形態の場合と同様に、無給電パッチの片側をGNDに落とすことにより、GNDに落とさない側の無給電パッチ3の誘起電流の位相と給電パッチ2の誘起電流の位相の相互関係から起こる現象である。
FIG. 2A shows a configuration in which the non-feeding patches 3 are arranged on both sides in the Y-axis direction with the feeding patch 2 as the center. The parasitic patch 3 is provided with a GND short-circuit line 5. Each GND short-circuit line is short-circuited to a ground plate (not shown) via a switch (not shown). Here, for the sake of simplification of explanation, the GND short-circuit line is not shown in the parasitic patch 3 on the lower side in the drawing.
The GND short-circuit line 5 short-circuits the parasitic patch 3 and a ground plane (not shown) when a switch (not shown) is ON.
When all the GND short-circuit line switches are OFF (when all the GND short-circuit lines are floating from GND), the radiation direction of the electromagnetic wave is a direction perpendicular to the XY plane (Z-axis direction, that is, the zenith direction).
When any switch of the GND short-circuit line 5 is turned ON, in the configuration shown in FIG. 2A, the radiation direction of the electromagnetic wave is inclined from the zenith direction to the negative direction of the Y axis. As in the case of the first embodiment, by dropping one side of the non-feeding patch to GND, the phase of the induced current of the non-feeding patch 3 on the side not dropped to GND and the phase of the induced current of the feeding patch 2 It is a phenomenon that arises from the mutual relationship.

地板と短絡させるGND短絡線5の本数を増やすと、無給電パッチ3の誘起電流はGNDに落ちやすくなる。このため、地板と短絡させるGND短絡線5の本数を増やすと、電磁波の放射方向は、天頂方向からY軸マイナス方向へ大きく傾く。
逆に、地板と短絡させるGND短絡線5の本数を減らすと、無給電パッチ3の誘起電流はGNDに落ちにくくなる。このため、地板と短絡させるGND短絡線5の本数を減らすと、電磁波の放射方向の傾き(天頂方向からY軸マイナス方向への傾き)は小さくなる。
When the number of GND short-circuit lines 5 to be short-circuited with the ground plane is increased, the induced current of the parasitic patch 3 is likely to fall to GND. For this reason, when the number of the GND short-circuit lines 5 to be short-circuited with the ground plane is increased, the electromagnetic wave radiation direction is greatly inclined from the zenith direction to the Y-axis minus direction.
Conversely, if the number of GND short-circuit lines 5 to be short-circuited with the ground plane is reduced, the induced current of the parasitic patch 3 is less likely to fall to GND. For this reason, if the number of the GND short-circuit lines 5 to be short-circuited with the ground plane is reduced, the inclination of the electromagnetic wave in the radiation direction (the inclination from the zenith direction to the Y-axis minus direction) becomes small.

なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中下側の無給電パッチ3を上記同様にして地板と短絡させればよい。   If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the non-feeding patch 3 on the lower side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

図2(b)は、給電パッチ2を中心としてX軸方向の両側に無給電パッチ3を配置した構成を示している。この構成においても、無給電パッチ3の一方を地板と短絡させるか否か、及び無給電パッチ3を地板と短絡させるのにGND短絡線5をいくつ用いるかによって、電磁波の放射方向を調整できる。
ただし、この構造の場合、地板と短絡させるGND短絡線5の本数を増やすと、天頂方向からX軸マイナス方向へ大きく傾く。また、地板と短絡させるGND短絡線5の本数を減らすと、電磁波の放射方向の傾き(天頂方向からY軸マイナス方向への傾き)は小さくなる。
なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中左側の無給電パッチ3を上記同様にして地板と短絡させればよい。
FIG. 2B shows a configuration in which the non-feeding patches 3 are arranged on both sides in the X-axis direction with the feeding patch 2 as the center. Also in this configuration, the radiation direction of the electromagnetic wave can be adjusted depending on whether one of the parasitic patches 3 is short-circuited to the ground plane and how many GND short-circuiting wires 5 are used to short-circuit the parasitic patch 3 to the ground plane.
However, in the case of this structure, if the number of the GND short-circuit lines 5 to be short-circuited with the ground plane is increased, the inclination is greatly inclined from the zenith direction to the X-axis minus direction. Further, when the number of GND short-circuit lines 5 to be short-circuited with the ground plane is reduced, the inclination of the electromagnetic wave radiation direction (inclination from the zenith direction to the Y-axis minus direction) becomes small.
If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the parasitic patch 3 on the left side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

このように、本実施形態にかかる指向性アンテナは、電磁波の放射方向を天頂方向からX軸方向又はY軸方向に、任意の角度θ傾けることができる。   As described above, the directional antenna according to the present embodiment can tilt the radiation direction of the electromagnetic wave from the zenith direction to the X axis direction or the Y axis direction by an arbitrary angle θ.

なお、ここではGND短絡線が四つの構成を例に説明したが、この数やそれを配置する位置は任意に設定可能である。   Note that, here, the configuration of four GND short-circuit lines has been described as an example, but this number and the position where it is arranged can be arbitrarily set.

〔第3の実施形態〕
本発明を好適に実施した第3の実施形態について説明する。
本実施形態にかかるパッチアンテナは給電パッチ2と無給電パッチ3とがXY平面内に配置された構成である。給電パッチ2は、給電点1において給電され、図3中に矢印で示す方向(Y軸方向)に励振されている。
[Third Embodiment]
A third embodiment in which the present invention is preferably implemented will be described.
The patch antenna according to the present embodiment has a configuration in which a feeding patch 2 and a parasitic patch 3 are arranged in an XY plane. The power supply patch 2 is supplied with power at a power supply point 1 and is excited in a direction indicated by an arrow in FIG. 3 (Y-axis direction).

図3(a)は、給電パッチ2を中心としてY軸方向の両側に無給電パッチ3を配置した構成である。無給電パッチ3には、GND短絡線6が設置されている。各GND短絡線は、不図示のスイッチを介して不図示の地板に短絡されている。なお、ここでは説明の簡略化のため、図中下側の無給電パッチ3にはGND短絡線を図示していない。
GND短絡線6は、無給電パッチ3の励振方向両端部にそれぞれ設けられており、不図示のスイッチがONのときに無給電パッチ3と不図示の地板とを短絡させる。
全てのGND短絡線のスイッチがOFFの場合(全てのGND短絡線がGNDから浮いている場合)、電磁波の放射方向は、XY平面に垂直な方向(Z軸方向、すなわち天頂方向)である。
GND短絡線6のいずれかのスイッチをONとした場合には、図2(a)に示す構成では、電磁波の放射方向は天頂方向からY軸のマイナス方向に傾く。これは、第1の実施形態の場合と同様に、無給電パッチの片側をGNDに落とすことにより、GNDに落とさない側の無給電パッチ3の誘起電流の位相と給電パッチ2の誘起電流の位相の相互関係から起こる現象である。
FIG. 3A shows a configuration in which the non-feeding patches 3 are arranged on both sides in the Y-axis direction with the feeding patch 2 as the center. The parasitic patch 3 is provided with a GND short-circuit line 6. Each GND short-circuit line is short-circuited to a ground plate (not shown) via a switch (not shown). Here, for simplification of explanation, a GND short-circuit line is not shown in the lower parasitic patch 3 in the figure.
The GND short-circuit lines 6 are respectively provided at both ends of the parasitic patch 3 in the excitation direction, and short-circuit the parasitic patch 3 and the ground plane (not shown) when a switch (not shown) is ON.
When all the GND short-circuit line switches are OFF (when all the GND short-circuit lines are floating from GND), the radiation direction of the electromagnetic wave is a direction perpendicular to the XY plane (Z-axis direction, that is, the zenith direction).
When any switch of the GND short-circuit line 6 is turned ON, in the configuration shown in FIG. 2A, the radiation direction of the electromagnetic wave is inclined from the zenith direction to the negative direction of the Y axis. As in the case of the first embodiment, by dropping one side of the non-feeding patch to GND, the phase of the induced current of the non-feeding patch 3 on the side not dropped to GND and the phase of the induced current of the feeding patch 2 It is a phenomenon that arises from the mutual relationship.

GND短絡線は無給電パッチの周縁部、特に励振方向の端部にあるほど、無給電パッチ3の誘起電流をGNDへ落としやすくなる。よって、無給電パッチ3に誘起された電流は、無給電パッチ3の励振方向端部に設けられているGND短絡線6によって効率よくGNDへ落とされる。このため、電磁波の放射方向は、天頂方向からY軸マイナス方向へ大きく傾く。さらに、GND短絡線6を両方とも地板と短絡させた場合には、無給電パッチ3に誘起された電流は、さらに効率よくGNDへ落とされるため、Y軸マイナス方向への傾きが大きくなる。   The closer the GND short-circuit line is to the periphery of the parasitic patch, particularly the end in the excitation direction, the easier it is to drop the induced current of the parasitic patch 3 to GND. Therefore, the current induced in the parasitic patch 3 is efficiently dropped to GND by the GND short-circuit line 6 provided at the excitation direction end of the parasitic patch 3. For this reason, the radiation direction of electromagnetic waves is greatly inclined from the zenith direction to the Y axis minus direction. Furthermore, when both the GND short-circuit lines 6 are short-circuited to the ground plane, the current induced in the parasitic patch 3 is more efficiently dropped to GND, and the inclination in the Y-axis minus direction increases.

なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中下側の無給電パッチ3を上記同様にして地板と短絡させればよい。   If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the non-feeding patch 3 on the lower side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

図3(b)は、給電パッチ2を中心としてX軸方向の両側に無給電パッチ3を配置した構成を示している。この構成においても、無給電パッチ3の一方を地板と短絡させるか否か、及び無給電パッチ3を地板と短絡させるのにGND短絡線6をいくつ用いるかによって、電磁波の放射方向を調整できる。
この構造の場合、放射方向の傾きは天頂方向からX軸マイナス方向への傾きであり、GND短絡線6を両方とも地板と短絡させると傾きが大きくなる。なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中左側の無給電パッチ3を上記同様にして地板と短絡させればよい。
FIG. 3B shows a configuration in which the non-feeding patches 3 are arranged on both sides in the X-axis direction with the feeding patch 2 as the center. Also in this configuration, the radiation direction of the electromagnetic wave can be adjusted depending on whether one of the parasitic patches 3 is short-circuited to the ground plane and how many GND short-circuiting wires 6 are used to short-circuit the parasitic patch 3 to the ground plane.
In the case of this structure, the inclination in the radial direction is an inclination from the zenith direction to the X-axis minus direction, and the inclination increases when both the GND short-circuit lines 6 are short-circuited to the ground plane. If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the parasitic patch 3 on the left side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

このように、本実施形態にかかる指向性アンテナは、電磁波の放射方向を天頂方向からX軸方向又はY軸方向に、任意の角度θ傾けることができる。   As described above, the directional antenna according to the present embodiment can tilt the radiation direction of the electromagnetic wave from the zenith direction to the X axis direction or the Y axis direction by an arbitrary angle θ.

なお、ここではGND短絡線が励振方向の両端に一つずつ配置されている構成を例に説明したが、励振方向の両端にそれぞれ二つ以上配置しても良い。   Here, the configuration in which one GND short-circuit line is arranged at both ends in the excitation direction has been described as an example, but two or more GND short-circuit lines may be arranged at both ends in the excitation direction.

〔第4の実施形態〕
本発明を好適に実施した第4の実施形態について説明する。
本実施形態にかかるパッチアンテナは給電パッチ2と無給電パッチ3とがXY平面内に配置された構成である。給電パッチ2は、給電点1において給電され、図4中に矢印で示す方向(Y軸方向)に励振されている。
[Fourth Embodiment]
A fourth embodiment in which the present invention is preferably implemented will be described.
The patch antenna according to the present embodiment has a configuration in which a feeding patch 2 and a parasitic patch 3 are arranged in an XY plane. The power supply patch 2 is supplied with power at a power supply point 1 and is excited in a direction (Y-axis direction) indicated by an arrow in FIG.

図4(a)は、給電パッチ2を中心としてY軸方向の両側に無給電パッチ3を配置した構成である。無給電パッチ3には、GND短絡線7が設置されている。各GND短絡線7は、不図示のスイッチを介して不図示の地板に短絡されている。なお、ここでは説明の簡略化のため、図中下側の無給電パッチ3にはGND短絡線は図示していない。
GND短絡線7は、無給電パッチ3の励振方向両端部にそれぞれ三つずつ設けられており、不図示のスイッチがONのときに無給電パッチ3と不図示の地板とを短絡させる。
全てのGND短絡線のスイッチがOFFの場合(全てのGND短絡線がGNDから浮いている場合)、電磁波の放射方向は、XY平面に垂直な方向(Z軸方向、すなわち天頂方向)である。
GND短絡線7いずれかのスイッチをONとした場合には、図4(a)に示す構成では、電磁波の放射方向は天頂方向からY軸のマイナス方向に傾く。これは、第1の実施形態の場合と同様に、無給電パッチの片側をGNDに落とすことにより、GNDに落とさない側の無給電パッチ3の誘起電流の位相と給電パッチ2の誘起電流の位相の相互関係から起こる現象である。
FIG. 4A shows a configuration in which the non-feeding patches 3 are arranged on both sides in the Y-axis direction with the feeding patch 2 as the center. The parasitic patch 3 is provided with a GND short-circuit line 7. Each GND short-circuit line 7 is short-circuited to a ground plate (not shown) via a switch (not shown). Here, for the sake of simplification of explanation, the GND short-circuit line is not shown in the parasitic patch 3 on the lower side in the drawing.
Three GND short-circuit lines 7 are provided at both ends of the parasitic patch 3 in the excitation direction, respectively, and short-circuit the parasitic patch 3 and the ground plane (not illustrated) when a switch (not illustrated) is ON.
When all the GND short-circuit line switches are OFF (when all the GND short-circuit lines are floating from GND), the radiation direction of the electromagnetic wave is a direction perpendicular to the XY plane (Z-axis direction, that is, the zenith direction).
When any switch of the GND short-circuit line 7 is turned ON, in the configuration shown in FIG. 4A, the radiation direction of the electromagnetic wave is inclined from the zenith direction to the negative direction of the Y axis. As in the case of the first embodiment, by dropping one side of the non-feeding patch to GND, the phase of the induced current of the non-feeding patch 3 on the side not dropped to GND and the phase of the induced current of the feeding patch 2 It is a phenomenon that arises from the mutual relationship.

GND短絡線の数が多くなるほど、無給電パッチ3の誘起電流はGNDへ落ちやすくなる。本実施形態においては、無給電パッチ3にGND短絡線を六つ設けているため、図4(a)に示すように六つのGND短絡線のスイッチをONとした場合は、上記各実施形態に比べて、無給電パッチ3に誘起された電流は、より効率よくGNDへ落とされる。このため、放射方向のY軸マイナス方向への傾きが大きくなる。   As the number of GND short-circuit lines increases, the induced current of the parasitic patch 3 tends to drop to GND. In the present embodiment, since six GND short-circuit lines are provided in the parasitic patch 3, when the switches of the six GND short-circuit lines are turned on as shown in FIG. In comparison, the current induced in the parasitic patch 3 is more efficiently dropped to GND. For this reason, the inclination of the radial direction in the negative Y-axis direction increases.

なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中下側の無給電パッチ3を上記同様にして地板と短絡させればよい。   If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the non-feeding patch 3 on the lower side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

図4(b)は、給電パッチ2を中心としてX軸方向の両側に無給電パッチ3を配置した構成を示している。この構成においても、無給電パッチ3の一方を地板と短絡させるか否か、及び無給電パッチ3を地板と短絡させるのにGND短絡線7をいくつ用いるかによって、電磁波の放射方向を調整できる。
この構造の場合、放射方向の傾きは天頂方向からX軸マイナス方向への傾きであり、地板と短絡させるGND短絡線7の数を増やすと放射方向の傾きが大きくなる。なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中左側の無給電パッチ3を上記同様にして地板と短絡させればよい。
FIG. 4B shows a configuration in which the non-feeding patches 3 are arranged on both sides in the X-axis direction with the feeding patch 2 as the center. Also in this configuration, the radiation direction of the electromagnetic wave can be adjusted depending on whether one of the parasitic patches 3 is short-circuited to the ground plane and how many GND short-circuiting wires 7 are used to short-circuit the parasitic patch 3 to the ground plane.
In the case of this structure, the inclination in the radial direction is an inclination from the zenith direction to the X-axis minus direction, and increasing the number of GND short-circuit lines 7 to be short-circuited with the ground plane increases the inclination in the radial direction. If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the parasitic patch 3 on the left side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

このように、本実施形態にかかる指向性アンテナは、電磁波の放射方向を天頂方向からX軸方向又はY軸方向に、任意の角度θ傾けることができる。   As described above, the directional antenna according to the present embodiment can tilt the radiation direction of the electromagnetic wave from the zenith direction to the X axis direction or the Y axis direction by an arbitrary angle θ.

なお、ここではGND短絡線が六つの構成を例に説明したが、この数やそれを配置する位置は任意に設定可能である。   Here, the configuration in which the number of GND short-circuit lines is six has been described as an example, but this number and the position where it is arranged can be arbitrarily set.

〔第5の実施形態〕
本発明を好適に実施した第5の実施形態について説明する。
本実施形態にかかるパッチアンテナは給電パッチ2と無給電パッチ3とがXY平面内に配置された構成である。給電パッチ2は、給電点1において給電され、図5中に矢印で示す方向(Y軸方向)に励振されている。
[Fifth Embodiment]
A fifth embodiment in which the present invention is preferably implemented will be described.
The patch antenna according to the present embodiment has a configuration in which a feeding patch 2 and a parasitic patch 3 are arranged in an XY plane. The power supply patch 2 is supplied with power at a power supply point 1 and is excited in a direction (Y-axis direction) indicated by an arrow in FIG.

図5(a)は、給電パッチ2を中心としてY軸方向の両側に無給電パッチ3を配置した構成である。無給電パッチ3には、GND短絡線8が設置されている。各GND短絡線8は、不図示のスイッチを介して不図示の地板に短絡されている。なお、ここでは説明の簡略化のため、図中下側の無給電パッチ3にはGND短絡線は図示していない。
GND短絡線8は、無給電パッチ3の励振方向両端部にそれぞれ二つずつ設けられており、不図示のスイッチがONのときに無給電パッチ3と不図示の地板とを短絡させる。各GND短絡線8は、励振方向に重ならないように(換言すると、X座標が異なるように)配置されている。
全てのGND短絡線のスイッチがOFFの場合(全てのGND短絡線がGNDから浮いている場合)、電磁波の放射方向は、XY平面に垂直な方向(Z軸方向、すなわち天頂方向)である。
GND短絡線7いずれかのスイッチをONとした場合には、図5(a)に示す構成では、電磁波の放射方向は天頂方向からY軸のマイナス方向に傾く。これは、第1の実施形態の場合と同様に、無給電パッチの片側をGNDに落とすことにより、GNDに落とさない側の無給電パッチ3の誘起電流の位相と給電パッチ2の誘起電流の位相の相互関係から起こる現象である。
FIG. 5A shows a configuration in which the non-feeding patches 3 are arranged on both sides in the Y-axis direction with the feeding patch 2 as the center. The parasitic patch 3 is provided with a GND short-circuit line 8. Each GND short-circuit wire 8 is short-circuited to a ground plate (not shown) via a switch (not shown). Here, for the sake of simplification of explanation, the GND short-circuit line is not shown in the parasitic patch 3 on the lower side in the drawing.
Two GND short lines 8 are provided at both ends of the parasitic patch 3 in the excitation direction, respectively, and short-circuit the parasitic patch 3 and the ground plane (not illustrated) when a switch (not illustrated) is ON. Each GND short-circuit line 8 is arranged so as not to overlap the excitation direction (in other words, the X coordinate is different).
When all the GND short-circuit line switches are OFF (when all the GND short-circuit lines are floating from GND), the radiation direction of the electromagnetic wave is a direction perpendicular to the XY plane (Z-axis direction, that is, the zenith direction).
When any switch of the GND short-circuit line 7 is turned ON, in the configuration shown in FIG. 5A, the radiation direction of the electromagnetic wave is inclined from the zenith direction to the negative direction of the Y axis. As in the case of the first embodiment, by dropping one side of the non-feeding patch to GND, the phase of the induced current of the non-feeding patch 3 on the side not dropped to GND and the phase of the induced current of the feeding patch 2 It is a phenomenon that arises from the mutual relationship.

GND短絡線を励振方向で重ならないように設けた場合、同じ数のGND短絡線を用いて無給電パッチ3を地板に短絡しても無給電パッチ3の誘起電流はGNDへ落ちやすくなる。よって、上記第1〜第3の実施形態に比べて、無給電パッチ3に誘起された電流は、より効率よくGNDへ落とされる。このため、放射方向のY軸マイナス方向への傾きが大きくなる。   When the GND short-circuit lines are provided so as not to overlap with each other in the excitation direction, even if the parasitic patches 3 are short-circuited to the ground plane using the same number of GND short-circuit lines, the induced current of the parasitic patches 3 tends to drop to GND. Therefore, as compared with the first to third embodiments, the current induced in the parasitic patch 3 is more efficiently dropped to GND. For this reason, the inclination of the radial direction in the negative Y-axis direction increases.

なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中下側の無給電パッチ3を上記同様にして地板と短絡させればよい。   If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the non-feeding patch 3 on the lower side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

図5(b)は、給電パッチ2を中心としてX軸方向の両側に無給電パッチ3を配置した構成を示している。この構成においても、無給電パッチ3の一方を地板と短絡させるか否か、及び無給電パッチ3を地板と短絡させるのにGND短絡線8をいくつ用いるかによって、電磁波の放射方向を調整できる。
この構造の場合、放射方向の傾きは天頂方向からX軸マイナス方向への傾きである。なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、GND短絡線を図示していない図中左側の無給電パッチ3を上記同様にして地板と短絡させればよい。
FIG. 5B shows a configuration in which the non-feeding patches 3 are arranged on both sides in the X-axis direction with the feeding patch 2 as the center. Also in this configuration, the radiation direction of the electromagnetic wave can be adjusted depending on whether one of the parasitic patches 3 is short-circuited to the ground plane and how many GND short-circuit wires 8 are used to short-circuit the parasitic patch 3 to the ground plane.
In the case of this structure, the inclination in the radial direction is an inclination from the zenith direction to the X axis minus direction. If the radiation direction of the electromagnetic wave is inclined to the Y axis plus side, the parasitic patch 3 on the left side in the drawing (not shown) may be short-circuited to the ground plane in the same manner as described above.

このように、本実施形態にかかる指向性アンテナは、電磁波の放射方向を天頂方向からX軸方向又はY軸方向に、任意の角度θ傾けることができる。   As described above, the directional antenna according to the present embodiment can tilt the radiation direction of the electromagnetic wave from the zenith direction to the X axis direction or the Y axis direction by an arbitrary angle θ.

なお、ここではGND短絡線が四つの構成を例に説明したが、この数やそれを配置する位置は任意に設定可能である。   Note that, here, the configuration of four GND short-circuit lines has been described as an example, but this number and the position where it is arranged can be arbitrarily set.

〔第6の実施形態〕
本発明を好適に実施した第6の実施形態について説明する。
本実施形態にかかるパッチアンテナは給電パッチ2と無給電パッチ3とがXY平面内に配置された構成である。給電パッチ2は、給電点1において給電され、図6中に矢印で示す方向(Y軸方向)に励振されている。
[Sixth Embodiment]
A sixth embodiment in which the present invention is preferably implemented will be described.
The patch antenna according to the present embodiment has a configuration in which a feeding patch 2 and a parasitic patch 3 are arranged in an XY plane. The power supply patch 2 is supplied with power at a power supply point 1 and is excited in a direction (Y-axis direction) indicated by an arrow in FIG.

図6は、給電パッチ2を中心としてその周囲に無給電パッチ3を配置し、マトリクス状のアンテナとした構成である。各無給電パッチ3には、GND短絡線9が設置されている。GND短絡線9は、不図示のスイッチを介して不図示の地板に短絡されている。なお、ここでは説明の簡略化のため、(a)では図中上側の無給電パッチ3のみ、(b)では図中右側の無給電パッチ3飲みGND短絡線9を図示している。
全ての無給電パッチ3のGND短絡線9のスイッチがOFFの場合(全てのGND短絡線がGNDから浮いている場合)、電磁波の放射方向は、XY平面に垂直な方向(Z軸方向、すなわち天頂方向)である。
FIG. 6 shows a configuration in which a non-feeding patch 3 is arranged around a feeding patch 2 to form a matrix antenna. Each parasitic patch 3 is provided with a GND short-circuit line 9. The GND short-circuit line 9 is short-circuited to a ground plate (not shown) via a switch (not shown). Here, for simplification of explanation, only the parasitic patch 3 on the upper side in the drawing is shown in (a), and the GND short-circuiting wire 9 for feeding the non-feeding patch 3 on the right side in the drawing is shown in (b).
When the switches of the GND short-circuit wires 9 of all the parasitic patches 3 are OFF (when all the GND short-circuit wires are floating from the GND), the electromagnetic wave radiation direction is a direction perpendicular to the XY plane (Z-axis direction, that is, Zenith direction).

図6(a)に示すように、Y軸プラス側の無給電パッチ3のGND短絡線9のスイッチをONとした場合には、電磁波の放射方向は天頂方向からY軸のマイナス方向に傾く。これは、第1の実施形態の場合と同様に、給電パッチ2の周囲の無給電パッチ3をGNDに落とすことにより、GNDに落とさない側の無給電パッチ3の誘起電流の位相と給電パッチ2の誘起電流の位相の相互関係から起こる現象である。   As shown in FIG. 6A, when the switch of the GND short-circuit wire 9 of the parasitic patch 3 on the Y axis plus side is turned ON, the radiation direction of the electromagnetic wave is inclined from the zenith direction to the minus direction of the Y axis. As in the case of the first embodiment, the phase of the induced current of the parasitic patch 3 on the side not to be dropped to GND and the feeding patch 2 are reduced by dropping the parasitic patch 3 around the feeding patch 2 to GND. This is a phenomenon that occurs from the correlation of the phases of the induced current.

同様に、図6(b)に示すように、X軸プラス側の無給電パッチ3のGND短絡線9のスイッチをONとした場合には、電磁波の放射方向は天頂方向からX軸のマイナス方向へ傾く。   Similarly, as shown in FIG. 6B, when the switch of the GND short-circuit wire 9 of the parasitic patch 3 on the X axis plus side is turned ON, the radiation direction of the electromagnetic wave is from the zenith direction to the minus direction of the X axis. Lean to.

なお、電磁波の放射方向をY軸プラス側に傾けるのであれば、Y軸マイナス側の無給電パッチ3のGND短絡線9を上記同様にして地板と短絡させればよい。また、電磁波の放射方向をY軸プラス側に傾けるのであれば、X軸マイナス側の無給電パッチ3のGND短絡線9を上記同様にして地板と短絡させればよい。   If the electromagnetic wave radiation direction is inclined to the Y-axis plus side, the GND short-circuit wire 9 of the parasitic patch 3 on the Y-axis minus side may be short-circuited to the ground plane in the same manner as described above. If the electromagnetic wave radiation direction is inclined to the Y-axis plus side, the GND short-circuit wire 9 of the parasitic patch 3 on the X-axis minus side may be short-circuited to the ground plane in the same manner as described above.

このように、本実施形態にかかる指向性アンテナは、電磁波の放射方向を天頂方向からX軸方向又はY軸方向に、任意の角度θ傾けることができる。   As described above, the directional antenna according to the present embodiment can tilt the radiation direction of the electromagnetic wave from the zenith direction to the X axis direction or the Y axis direction by an arbitrary angle θ.

三つの無給電パッチ3の誘起電流をGNDに落とすことにより、一つの無給電パッチ3の誘起電流だけをGNDへ落とす場合と比較して電磁波の放射方向の傾きを大きくできる。   By dropping the induced currents of the three parasitic patches 3 to GND, the inclination of the radiation direction of the electromagnetic wave can be increased compared to the case where only the induced current of one parasitic patch 3 is dropped to GND.

なお、ここでは各無給電パッチ3にGND短絡線9が一つずつ設けられた構成を例に説明したが、この数やそれを配置する位置は任意に設定可能である。   Here, the configuration in which one GND short-circuit line 9 is provided in each parasitic patch 3 has been described as an example, but this number and the position where it is arranged can be arbitrarily set.

〔第7の実施形態〕
本発明を好適に実施した第7の実施形態について説明する。
本実施形態にかかるパッチアンテナは給電パッチ2と無給電パッチ3とがXY平面内に配置された構成である。給電パッチ2は、給電点1において給電され、図7中に矢印で示す方向(Y軸方向)に励振されている。
[Seventh Embodiment]
A seventh embodiment in which the present invention is preferably implemented will be described.
The patch antenna according to the present embodiment has a configuration in which a feeding patch 2 and a parasitic patch 3 are arranged in an XY plane. The power supply patch 2 is supplied with power at the power supply point 1 and is excited in a direction (Y-axis direction) indicated by an arrow in FIG.

図7は、給電パッチ2を中心としてその周囲に無給電パッチ3を配置し、マトリクス状のアンテナとした構成である。各無給電パッチ3には、GND短絡線10が設置されている。GND短絡線10は、不図示のスイッチを介して不図示の地板に短絡されている。なお、ここでは説明の簡略化のため、図中上側及び右側の無給電パッチ3のみ短絡線10を図示している。
全ての無給電パッチ3のGND短絡線10のスイッチがOFFの場合(全てのGND短絡線がGNDから浮いている場合)、電磁波の放射方向は、XY平面に垂直な方向(Z軸方向、すなわち天頂方向)である。
FIG. 7 shows a configuration in which a non-feeding patch 3 is arranged around a feeding patch 2 to form a matrix antenna. Each parasitic patch 3 is provided with a GND short-circuit line 10. The GND short-circuit line 10 is short-circuited to a ground plate (not shown) via a switch (not shown). Here, for the sake of simplification of explanation, only the parasitic patch 3 on the upper and right sides in the drawing shows the short-circuit line 10.
When the switches of the GND short-circuit wires 10 of all the parasitic patches 3 are OFF (when all the GND short-circuit wires are floating from GND), the electromagnetic wave radiation direction is a direction perpendicular to the XY plane (Z-axis direction, that is, Zenith direction).

図7に示すように、給電パッチ2の右、上及び右斜め上の無給電パッチ3のGND短絡線10のスイッチをONとした場合には、電磁波の放射方向は天頂方向からX軸マイナス方向とY軸マイナス方向との中間方向へ傾く。これは、GNDに落とさない無給電パッチ3の誘起電流の位相と給電パッチ2の誘起電流の位相の相互関係から起こる現象である。   As shown in FIG. 7, when the switch of the GND short-circuit wire 10 of the non-feeding patch 3 on the right, upper and diagonally right of the feeding patch 2 is turned on, the radiation direction of the electromagnetic wave is the X-axis minus direction from the zenith direction. And the Y axis minus direction. This is a phenomenon that occurs due to the correlation between the phase of the induced current of the non-feeding patch 3 and the phase of the induced current of the feeding patch 2 that are not dropped to GND.

なお、電磁波の放射方向を反対側に傾けるのであれば、給電パッチ2の左、下及び左下の無給電パッチ3のGND短絡線10を上記同様にして地板と短絡させればよい。同様に、電磁波の放射方向をX軸マイナス方向とY軸プラス方向との中間方向へ傾けるのであれば、給電パッチ2の右、下及び右下の無給電パッチ3のGND短絡線10を地板と短絡させればよい。さらに、電磁波の放射方向をX軸プラス方向とY軸マイナス方向との中間方向へ傾けるのであれば、静電パッチの左、上及左上の無給電パッチ3のGND短絡線10を地板と短絡させればよい。   If the radiation direction of the electromagnetic wave is inclined to the opposite side, the GND short-circuit wire 10 of the non-feeding patch 3 on the left, lower and lower left of the feeding patch 2 may be short-circuited with the ground plane in the same manner as described above. Similarly, if the radiation direction of the electromagnetic wave is inclined in the intermediate direction between the X-axis minus direction and the Y-axis plus direction, the GND short-circuit wire 10 of the non-feeding patch 3 on the right side, the lower side and the lower right side of the feeding patch 2 is used as the ground plane. What is necessary is just to short-circuit. Furthermore, if the radiation direction of the electromagnetic wave is inclined in the intermediate direction between the X axis plus direction and the Y axis minus direction, the GND short-circuit wire 10 of the parasitic patch 3 on the left, upper and upper left of the electrostatic patch is short-circuited to the ground plane. Just do it.

上記例以外でも、地板と短絡させる無給電パッチ3の位置及び数を変えることによって、電磁波の放射方向を任意の方向とできる。すなわち、電磁波の放射方向の傾き成分であるθ及びφを任意の値とできる。   Other than the above example, the radiation direction of the electromagnetic wave can be set to an arbitrary direction by changing the position and the number of the parasitic patches 3 to be short-circuited with the ground plane. That is, θ and φ, which are inclination components of the electromagnetic wave radiation direction, can be set to arbitrary values.

なお、上記各実施形態は、本発明の好適な実施の一例であり、本発明はこれに限定されることはない。
例えば、上記第1から第5の実施形態においては、給電パッチ及び無給電パッチを合計三つ並べた構成を例に説明したが、パッチの数は任意である。
また、上記第6の実施形態及び第7の実施形態においては、3×3のマトリクス状の構成のアンテナを例に説明したが、5×5やそれ以上のマトリクス状であっても、指向性のコントロールには何ら問題はない。
このように本発明は様々な変形が可能である。
Each of the above embodiments is an example of a preferred embodiment of the present invention, and the present invention is not limited to this.
For example, in the first to fifth embodiments, the configuration in which a total of three feeding patches and non-feeding patches are arranged has been described as an example, but the number of patches is arbitrary.
In the sixth embodiment and the seventh embodiment, the antenna having the 3 × 3 matrix configuration has been described as an example. However, the directivity can be achieved even in a 5 × 5 matrix or more. There is no problem with the controls.
Thus, the present invention can be variously modified.

本発明を好適に実施した第1の実施形態にかかるアンテナの構成を示す図である。It is a figure which shows the structure of the antenna concerning 1st Embodiment which implemented this invention suitably. 本発明を好適に実施した第2の実施形態にかかるアンテナの構成を示す図である。It is a figure which shows the structure of the antenna concerning 2nd Embodiment which implemented this invention suitably. 本発明を好適に実施した第3の実施形態にかかるアンテナの構成を示す図である。It is a figure which shows the structure of the antenna concerning 3rd Embodiment which implemented this invention suitably. 本発明を好適に実施した第4ン実施形態にかかるアンテナの構成を示す図である。It is a figure which shows the structure of the antenna concerning 4th Embodiment which implemented this invention suitably. 本発明を好適に実施した第5の実施形態にかかるアンテナの構成を示す図である。It is a figure which shows the structure of the antenna concerning 5th Embodiment which implemented this invention suitably. 本発明を好適に実施した第6の実施形態にかかるアンテナの構成を示す図である。It is a figure which shows the structure of the antenna concerning 6th Embodiment which implemented this invention suitably. 本発明を好適に実施した第7の実施形態にかかるアンテナの構成を示図である。It is a figure which shows the structure of the antenna concerning 7th Embodiment which implemented this invention suitably. 座標系の定義を示す図である。It is a figure which shows the definition of a coordinate system.

符号の説明Explanation of symbols

1 給電点
2 給電パッチ
3 無給電パッチ
4a、4b1、4b2、4b3、5、6、7、8、9、10 GND短絡線
DESCRIPTION OF SYMBOLS 1 Feeding point 2 Feeding patch 3 Non-feeding patch 4a, 4b1, 4b2, 4b3, 5, 6, 7, 8, 9, 10 GND short circuit line

Claims (11)

給電パッチと、その周囲に配置された少なくとも一つの無給電パッチとを有し、前記無給電パッチに誘起された電流を接地することによって電磁波の放射方向が変化する指向性アンテナであって、
前記無給電パッチは、励振方向の中心とは異なる箇所に、該無給電パッチを接地するための短絡線を複数備え、
それぞれの短絡線は、前記無給電パッチとグランドとを電気的に接続するか否かを切り替えるスイッチを備えることを特徴とする指向性アンテナ。
A directional antenna having a feeding patch and at least one parasitic patch arranged around the feeding patch, wherein a radiation direction of electromagnetic waves is changed by grounding a current induced in the parasitic patch;
The parasitic patch includes a plurality of short-circuit wires for grounding the parasitic patch at a location different from the center of the excitation direction,
Each short-circuit line includes a switch that switches whether to electrically connect the parasitic patch and the ground.
前記無給電パッチは、2以上の前記短絡線によってグランドと電気的に接続されることを特徴とする請求項1記載の指向性アンテナ。   The directional antenna according to claim 1, wherein the parasitic patch is electrically connected to a ground through the two or more short-circuit wires. 前記無給電パッチをグランドと電気的に接続する短絡線は、該無給電パッチの励振方向の一端側に複数個設けられていることを特徴とする請求項2記載の指向性アンテナ。   The directional antenna according to claim 2, wherein a plurality of short-circuit lines electrically connecting the parasitic patch to the ground are provided on one end side in the excitation direction of the parasitic patch. 前記無給電パッチをグランドと電気的に接続する短絡線は、該無給電パッチの励振方向の両端部に、少なくとも一つずつ設けられていることを特徴とする請求項2記載の指向性アンテナ。   3. The directional antenna according to claim 2, wherein at least one short-circuit line that electrically connects the parasitic patch to the ground is provided at both ends of the parasitic patch in the excitation direction. 前記無給電パッチをグランドと電気的に接続する短絡性は、該無給電パッチの励振方向の両端部に、各々2以上設けられていることを特徴とする請求項4記載の指向性アンテナ。   5. The directional antenna according to claim 4, wherein two or more short-circuits for electrically connecting the parasitic patch to the ground are provided at both ends in the excitation direction of the parasitic patch. 前記無給電パッチをグランドと電気的に接続する短絡線は、該無給電パッチの励振方向に重ならないように配置されていることを特徴とする請求項4又は5記載の指向性アンテナ。   6. The directional antenna according to claim 4, wherein a short-circuit line that electrically connects the parasitic patch to the ground is disposed so as not to overlap an excitation direction of the parasitic patch. 給電パッチと、その周囲に配置された少なくとも一つの無給電パッチとを有する指向性アンテナであって、
前記無給電パッチは、該無給電パッチをグランドと電気的に接続して該無給電パッチに誘起された電流を接地するか否かを切り替えるスイッチを備えた短絡線を有し、
2以上の無給電パッチをグランドと電気的に接続することによって、電磁波の放射方向が変化することを特徴とする指向性アンテナ。
A directional antenna having a feeding patch and at least one parasitic patch arranged around the feeding patch,
The parasitic patch includes a short-circuit line including a switch that switches whether to electrically connect the parasitic patch to the ground and to ground the current induced in the parasitic patch.
A directional antenna characterized in that the radiation direction of electromagnetic waves is changed by electrically connecting two or more parasitic patches to the ground.
請求項1から6のいずれか1項記載の指向性アンテナの指向方向を制御する方法であって、
前記無給電パッチをグランドと接続するのに用いる前記短絡線の位置及び数を、前記スイッチの切り替えによって変化させることにより、電磁波の放射方向を制御することを特徴とするアンテナの指向性制御方法。
A method for controlling a directivity direction of a directional antenna according to any one of claims 1 to 6,
An antenna directivity control method, comprising: controlling a radiation direction of an electromagnetic wave by changing a position and a number of the short-circuit line used for connecting the parasitic patch to a ground by switching the switch.
請求項7記載の指向性アンテナの指向方向を制御する方法であって、
グランドと接続する前記無給電パッチの位置及び数を変化させることにより、電磁波の放射方向を制御することを特徴とするアンテナの指向性制御方法。
A method for controlling a directivity direction of a directional antenna according to claim 7,
An antenna directivity control method, comprising: controlling a radiation direction of an electromagnetic wave by changing a position and a number of the non-feeding patches connected to a ground.
請求項1から7のいずれか1項記載の指向性アンテナを用いたアンテナシステムであって、
前記無給電パッチをグランドと接続するのに用いる前記短絡線の位置及び数を前記スイッチの切り替えによって変化させて、電磁波の放射方向を制御する手段を有することを特徴とするアンテナシステム。
An antenna system using the directional antenna according to any one of claims 1 to 7,
An antenna system comprising: means for controlling a radiation direction of an electromagnetic wave by changing a position and a number of the short-circuit line used for connecting the parasitic patch to a ground by switching the switch.
請求項7記載の指向性アンテナを用いたアンテナシステムであって、
グランドと接続する前記無給電パッチの位置及び数を変化させて、電磁波の放射方向を制御する手段を有することを特徴とするアンテナシステム。
An antenna system using the directional antenna according to claim 7,
An antenna system comprising means for controlling the radiation direction of electromagnetic waves by changing the position and number of the parasitic patches connected to the ground.
JP2004258839A 2004-09-06 2004-09-06 Directional antenna, directivity control method thereof, and antenna system Expired - Fee Related JP4452588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258839A JP4452588B2 (en) 2004-09-06 2004-09-06 Directional antenna, directivity control method thereof, and antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258839A JP4452588B2 (en) 2004-09-06 2004-09-06 Directional antenna, directivity control method thereof, and antenna system

Publications (2)

Publication Number Publication Date
JP2006074697A true JP2006074697A (en) 2006-03-16
JP4452588B2 JP4452588B2 (en) 2010-04-21

Family

ID=36154777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258839A Expired - Fee Related JP4452588B2 (en) 2004-09-06 2004-09-06 Directional antenna, directivity control method thereof, and antenna system

Country Status (1)

Country Link
JP (1) JP4452588B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295966A (en) * 2004-03-31 2006-10-26 Toto Ltd Microstrip antenna and high frequency sensor
JP2008072701A (en) * 2006-08-14 2008-03-27 Toto Ltd High frequency sensor device
GB2445592A (en) * 2007-01-12 2008-07-16 E2V Tech Driven and parasitic patch antenna structure with an inclined beam
JP2008252857A (en) * 2006-07-12 2008-10-16 Toto Ltd High-frequency sensor device
WO2010057062A2 (en) 2008-11-13 2010-05-20 Microsoft Corporation Wireless antenna for emitting conical radiation
JP2016001791A (en) * 2014-06-11 2016-01-07 株式会社デンソー Antenna device
WO2023095223A1 (en) * 2021-11-24 2023-06-01 エイターリンク株式会社 Wireless power supply device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295966A (en) * 2004-03-31 2006-10-26 Toto Ltd Microstrip antenna and high frequency sensor
JP2008252857A (en) * 2006-07-12 2008-10-16 Toto Ltd High-frequency sensor device
JP2008295062A (en) * 2006-07-12 2008-12-04 Toto Ltd Microstrip antenna and high-frequency sensor comprising same
JP2008072701A (en) * 2006-08-14 2008-03-27 Toto Ltd High frequency sensor device
GB2445592A (en) * 2007-01-12 2008-07-16 E2V Tech Driven and parasitic patch antenna structure with an inclined beam
GB2445592B (en) * 2007-01-12 2012-01-04 E2V Tech Uk Ltd Antenna structure
WO2010057062A3 (en) * 2008-11-13 2010-08-12 Microsoft Corporation Wireless antenna for emitting conical radiation
EP2353207A2 (en) * 2008-11-13 2011-08-10 Microsoft Corporation Wireless antenna for emitting conical radiation
WO2010057062A2 (en) 2008-11-13 2010-05-20 Microsoft Corporation Wireless antenna for emitting conical radiation
US8279137B2 (en) 2008-11-13 2012-10-02 Microsoft Corporation Wireless antenna for emitting conical radiation
EP2353207A4 (en) * 2008-11-13 2013-03-06 Microsoft Corp Wireless antenna for emitting conical radiation
JP2016001791A (en) * 2014-06-11 2016-01-07 株式会社デンソー Antenna device
WO2023095223A1 (en) * 2021-11-24 2023-06-01 エイターリンク株式会社 Wireless power supply device

Also Published As

Publication number Publication date
JP4452588B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP5282097B2 (en) Antenna device
JP4270278B2 (en) Antenna device
US7106270B2 (en) Array antenna capable of controlling antenna characteristic
US20090102723A1 (en) Dual moded stacked microstrip patch antenna
US8098199B2 (en) Array antenna apparatus including multiple steerable antennas and capable of avoiding affection among steerable antennas
JP5314704B2 (en) Array antenna device
US20140176385A1 (en) Compact cylindrically symmetric uhf satcom antenna
JP2008109214A (en) Antenna unit
US8836600B2 (en) Quadrifilar helix antenna system with ground plane
US8493278B2 (en) Antennas and methods to provide adaptable omnidirectional ground nulls
US20110025571A1 (en) Circularly Polarized Microstrip Antennas
US8988303B1 (en) Extended performance SATCOM-ORIAN antenna
JP4452588B2 (en) Directional antenna, directivity control method thereof, and antenna system
KR20080006427A (en) Antenna device
JP2008278414A (en) Antenna apparatus
JP2006148728A (en) Antenna system and radio communication apparatus using the same
JP4563208B2 (en) Directional antenna and directional antenna system
JP2006197449A (en) Antenna device
JP2006262008A (en) Antenna unit and antenna device
US10797395B2 (en) Antenna and antenna apparatus
JP2006186841A (en) Antenna system
JP2006238294A (en) Directional antenna and antenna system
KR102023108B1 (en) Directional patch array antenna for reducing coupling
JP2010074532A (en) Array antenna
JP2006186851A (en) Antenna system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees