JP2006074557A - Optical communication system and method, optical multi-communication system and method, and optical receiver - Google Patents

Optical communication system and method, optical multi-communication system and method, and optical receiver Download PDF

Info

Publication number
JP2006074557A
JP2006074557A JP2004256837A JP2004256837A JP2006074557A JP 2006074557 A JP2006074557 A JP 2006074557A JP 2004256837 A JP2004256837 A JP 2004256837A JP 2004256837 A JP2004256837 A JP 2004256837A JP 2006074557 A JP2006074557 A JP 2006074557A
Authority
JP
Japan
Prior art keywords
optical
communication
signal
optical signal
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004256837A
Other languages
Japanese (ja)
Other versions
JP2006074557A5 (en
JP4531496B2 (en
Inventor
Manabu Yoshino
學 吉野
Norimoto Miki
準基 三鬼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004256837A priority Critical patent/JP4531496B2/en
Publication of JP2006074557A publication Critical patent/JP2006074557A/en
Publication of JP2006074557A5 publication Critical patent/JP2006074557A5/ja
Application granted granted Critical
Publication of JP4531496B2 publication Critical patent/JP4531496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical multi-communication system and its method which can eliminating a disturbance optical signal at the previous stage of a photodetector and realizes optical transmission with no mutual interference between the existing optical communication system and an added optical communication system of an optical CDM (code division multiplex) method. <P>SOLUTION: This optical multi-communication system has a first optical transmitter for transmitting an optical signal for communication of an optical CDM method, a second optical transmitter for transmitting an optical signal for communication different from the optical signal for communication, a first optical receiver for receiving the optical signal for communication transmitted from the first optical transmitter, and a second optical receiver for receiving the other optical signal for communication transmitted from the second optical transmitter. The first optical receiver is provided with a disturbance optical signal eliminator for branching the optical signal received by the first optical receiver into two optical signals or more, providing prescribed optical path length difference, combining the optical signals and outputting the combined optical signals at prescribed light intensity, and a photodetector for detecting the optical signals output from the disturbance optical signal eliminator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光送信装置で符号化した光信号を送受信する光CDM(Code Division Multiplex)方式の光通信システム、光多重通信システム、光通信方法、光多重通信方法及び光受信装置に関する。   The present invention relates to an optical CDM (Code Division Multiplex) optical communication system, an optical multiplex communication system, an optical communication method, an optical multiplex communication method, and an optical reception device that transmit and receive an optical signal encoded by an optical transmission device.

既設の光通信システムに影響を与えずに、既設の光通信システムに新たに光通信システムを追加する方法として、光CDM方式が有望視されている(例えば、非特許文献1参照。)。光CDM方式では、広帯域の光周波数幅に光信号を拡散することで、その符号化利得により、既設の光通信システムに影響を与えない弱い強度の光信号で通信することが可能となるためである。ここで、消光比8〜12dBと想定される既設の光通信システムに影響を与えない光信号の強度レベルは、その数%と十分小さなものが要求される。
菊池和明、多久島裕一「光ファイバ通信におけるスペクトル拡散技術」信学技報SSE93−141,OCS93−71(1994−03)
An optical CDM system is promising as a method for newly adding an optical communication system to an existing optical communication system without affecting the existing optical communication system (for example, see Non-Patent Document 1). In the optical CDM system, since an optical signal is spread over a wide optical frequency width, it is possible to communicate with an optical signal having a weak intensity that does not affect the existing optical communication system due to the coding gain. is there. Here, the intensity level of the optical signal that does not affect the existing optical communication system assumed to have an extinction ratio of 8 to 12 dB is required to be as small as several percent.
Kazuaki Kikuchi, Yuichi Takushima “Spread Spectrum Technology in Optical Fiber Communication” IEICE Tech. SSE 93-141, OCS 93-71 (1994-03)

しかし、既設の光通信システムにおいて伝送する光信号の光強度は、追加する光CDM方式の光通信システムにおいて伝送する光信号の光強度と比較して極めて大きい。そのため、光CDM方式の光通信システムにとっては既設の光通信システムにおいて伝送する光信号が妨害光信号として作用する。このような妨害光信号に対する十分な符号化利得の確保は、光周波数帯域幅の拡大を要するため、光伝送路における波長分散に起因する信号波形の劣化により制限される。さらに、光受信装置の飽和、耐妨害性を高めるためのハードリミッタは複雑な処理回路が必要である。   However, the optical intensity of the optical signal transmitted in the existing optical communication system is extremely large compared to the optical intensity of the optical signal transmitted in the optical CDM optical communication system to be added. For this reason, for an optical CDM optical communication system, an optical signal transmitted in an existing optical communication system acts as an interference optical signal. Ensuring a sufficient coding gain for such an interfering optical signal requires expansion of the optical frequency bandwidth, and thus is limited by signal waveform deterioration caused by chromatic dispersion in the optical transmission line. Furthermore, the hard limiter for enhancing the saturation and anti-jamming resistance of the optical receiver requires a complicated processing circuit.

そこで、本発明では、簡易な方法により、光検出器の前段で妨害光信号を除去可能で既設の光通信システムと追加の光CDM方式の光通信システムとの間での相互干渉のない光伝送を実現する光通信システム、光多重通信システム及び光受信装置を提供することを目的とする。また、その方法を提供することを目的とする。   Therefore, in the present invention, an optical transmission without mutual interference between an existing optical communication system and an additional optical CDM optical communication system can be performed by a simple method so that an interference optical signal can be removed before the photodetector. It is an object of the present invention to provide an optical communication system, an optical multiplex communication system, and an optical receiver that realize the above. Moreover, it aims at providing the method.

上記目的を達成するために、本発明者らは、既設の光通信システムにおいて伝送する光信号の周波数帯域幅が光CDM方式の光通信システムにおいて伝送する光信号の光周波数帯域幅よりも狭いこと、可干渉長が長いこと又はパルス幅が広いことに着目して本発明を完成させた。   In order to achieve the above object, the present inventors have determined that the frequency bandwidth of an optical signal transmitted in an existing optical communication system is narrower than the optical frequency bandwidth of an optical signal transmitted in an optical CDM optical communication system. The present invention was completed by paying attention to the long coherence length or the wide pulse width.

具体的には、本発明に係る光通信システムは、光周波数領域で拡散符号化された通信用光信号を送信する光送信装置と、前記光送信装置から送信される前記通信用光信号を受信する光受信装置と、を有する光通信システムであって、前記光受信装置は、前記光送信装置から送信される前記通信用光信号を2以上に分岐させ前記通信用光信号の光周波数帯域幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、を備えることを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、例えばマッハツェンダー干渉計、マイケルソン干渉計、ファブリペロー干渉計の場合は、以下の数式1によって換算するものとする。また、例えば、AWG(アレイ導波路回折格子)の場合には、以下の数式2によって換算するものとする。   Specifically, an optical communication system according to the present invention receives an optical transmitter for transmitting a communication optical signal spread-coded in an optical frequency domain, and receives the optical signal for communication transmitted from the optical transmitter. An optical communication system comprising: an optical communication device, wherein the optical reception device branches the communication optical signal transmitted from the optical transmission device into two or more optical frequency bandwidths of the communication optical signal An interference light signal remover that outputs an optical path with a predetermined light intensity by providing an optical path length difference equal to or greater than a value converted into a length, and detecting the communication optical signal output from the interference light signal remover And a photodetector. Here, “the value obtained by converting the optical frequency bandwidth of the optical signal for communication into a length” is, for example, converted by the following formula 1 in the case of a Mach-Zehnder interferometer, Michelson interferometer, and Fabry-Perot interferometer. It shall be. Further, for example, in the case of an AWG (arrayed waveguide diffraction grating), it is converted by the following formula 2.

Figure 2006074557
Figure 2006074557

Figure 2006074557
Figure 2006074557

また、本発明に係る光通信システムは、光周波数領域で拡散符号化された通信用光信号を送信する光送信装置と、前記光送信装置から送信される前記通信用光信号を受信する光受信装置と、を有する光通信システムであって、前記光受信装置は、前記光送信装置から送信される前記通信用光信号を2以上に分岐させ前記通信用光信号の可干渉長以上の光路長差を設けて結合させて所定の強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、を備えることを特徴とする。   An optical communication system according to the present invention includes an optical transmitter that transmits an optical signal for communication that is spread-coded in the optical frequency domain, and an optical receiver that receives the optical signal for communication transmitted from the optical transmitter. And an optical path length equal to or longer than a coherence length of the optical signal for communication by branching the optical signal for communication transmitted from the optical transmitter into two or more. A jamming light signal remover that outputs a predetermined intensity by combining with a difference, and a photodetector that detects the communication optical signal output from the jamming light signal remover. .

また、本発明に係る光通信システムは、光周波数領域で拡散符号化された通信用パルス光信号を送信する光送信装置と、前記光送信装置から送信される前記通信用パルス光信号を受信する光受信装置と、を有する光通信システムであって、前記光受信装置は、前記光送信装置から送信される前記通信用パルス光信号を2以上に分岐させ前記通信用パルス光信号のパルス幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記通信用パルス光信号を検出する光検出器と、を備えることを特徴とする。   An optical communication system according to the present invention receives an optical transmission device that transmits a communication pulse optical signal that is spread-encoded in an optical frequency domain, and receives the communication pulse optical signal that is transmitted from the optical transmission device. An optical communication system comprising: an optical receiving device, wherein the optical receiving device branches the communication pulse optical signal transmitted from the optical transmission device into two or more, and sets a pulse width of the communication pulse optical signal. An interference light signal eliminator that outputs an optical path with a predetermined light intensity by providing an optical path length difference equal to or greater than a length converted value, and detecting the communication pulse light signal output from the interference light signal eliminator And a photodetector.

また、本発明に係る光多重通信システムは、光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第2光送信装置から前記光合波器を介して送信される前記別の通信用光信号を受信する第2光受信装置と、前記第1光受信装置と前記第2光受信装置とを接続する光分波器と、を有する光多重通信システムであって、前記第1光受信装置は、前記第1光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記光信号を検出する光検出器と、を備えることを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、数式1又は数式2によって換算するものとする。   An optical multiplex communication system according to the present invention includes a first optical transmitter that transmits a communication optical signal spread-coded in an optical frequency domain, and an optical frequency band narrower than an optical frequency bandwidth of the communication optical signal. A second optical transmission device that transmits an optical signal for communication having another width, an optical multiplexer that connects the first optical transmission device and the second optical transmission device, and the optical multiplexing from the first optical transmission device. A first optical receiving device that receives the communication optical signal transmitted through the optical receiver, and a second optical receiver that receives the other optical signal for communication transmitted from the second optical transmitting device through the optical multiplexer. An optical multiplex communication system including a two-optical receiver, and an optical demultiplexer that connects the first optical receiver and the second optical receiver, wherein the first optical receiver is the first optical receiver The optical signal received by the optical receiver is divided into two or more optical signals, and the optical signal is transmitted to the branched optical signal. A predetermined light by combining with an optical path length difference that is equal to or greater than the value obtained by converting the optical frequency bandwidth of the optical signal for use into a length and less than the value obtained by converting the optical frequency bandwidth of the other communication optical signal into a length. An interference light signal remover that outputs at an intensity, and a photodetector that detects the optical signal output from the interference light signal remover. Here, the “value obtained by converting the optical frequency bandwidth of the optical signal for communication into the length” is converted according to Equation 1 or Equation 2.

また、本発明に係る光通多重信システムは、光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第2光送信装置から前記光合波器を介して送信される前記別の通信用光信号を受信する第2光受信装置と、前記第1光受信装置と前記第2光受信装置とを接続する光分波器と、を有する光多重通信システムであって、前記第1光受信装置は、前記第1光受信装置の受信する光信号を2以上の光信号に分岐し前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記光信号を検出する光検出器と、を備えることを特徴とする。   The optical communication multiplex system according to the present invention includes a first optical transmission device that transmits a communication optical signal that is spread-coded in the optical frequency domain, and a coherence length that is longer than the coherence length of the communication optical signal. A second optical transmitter that transmits another optical signal for communication, an optical multiplexer that connects the first optical transmitter and the second optical transmitter, and the optical multiplexer from the first optical transmitter A first optical receiver that receives the communication optical signal transmitted via the second optical receiver, and a second optical receiver that receives the other optical signal for communication transmitted from the second optical transmitter via the optical multiplexer. An optical multiplex communication system comprising: an optical receiver; and an optical demultiplexer that connects the first optical receiver and the second optical receiver, wherein the first optical receiver includes the first optical receiver. An optical signal received by the receiving device is branched into two or more optical signals, and the coherence length of the optical signal for communication is longer than An interference optical signal remover that outputs an optical signal with a predetermined light intensity by providing an optical path length difference equal to or less than the coherence length of the other communication optical signal, and the optical signal output from the interference optical signal remover. And a photodetector for detection.

また、本発明に係る光通多重信システムは、光周波数領域で拡散符号化された通信用パルス光信号を送信する第1光送信装置と、前記通信用パルス光信号のパルス幅より大きいパルス幅の別の通信用パルス光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用パルス光信号を受信する第1光受信装置と、前記第2光送信装置から前記光合波器を介して送信される前記別の通信用パルス光信号を受信する第2光受信装置と、前記第1光受信装置と前記第2光受信装置とを接続する光分波器と、を有する光多重通信システムであって、前記第1光受信装置は、前記第1光受信装置の受信するパルス光信号を2以上の光信号に分岐し前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記パルス光信号を検出する光検出器と、を備えることを特徴とする。   The optical communication multiplex system according to the present invention includes a first optical transmission device that transmits a communication pulse optical signal that is spread-encoded in an optical frequency domain, and a pulse width that is larger than a pulse width of the communication pulse optical signal. A second optical transmitter that transmits another optical pulse signal for communication, an optical multiplexer that connects the first optical transmitter and the second optical transmitter, and the optical multiplexer from the first optical transmitter A first optical receiving device that receives the communication pulse optical signal transmitted through the optical receiver, and a second communication pulse optical signal transmitted from the second optical transmission device through the optical multiplexer. And an optical demultiplexer that connects the first optical receiver and the second optical receiver, wherein the first optical receiver includes the first optical receiver and the optical demultiplexer that connects the first optical receiver and the second optical receiver. The pulse optical signal received by the first optical receiver is converted into two or more optical signals. An optical path length difference equal to or greater than a value obtained by converting the pulse width of the communication pulse optical signal into a length and equal to or less than a value obtained by converting the pulse width of the other communication pulse optical signal into a length is combined to be predetermined. The interference light signal eliminator that outputs the light with the light intensity and the photodetector that detects the pulsed light signal output from the interference light signal eliminator.

また、本発明に係る光通多重信システムは、光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第1光受信装置に接続され前記第2光送信装置から前記光合波器及び前記第1光受信装置を介して送信される前記別の通信用光信号を受信する第2光受信装置と、を有する光多重通信システムであって、前記第1光受信装置は、前記第1光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記第1光受信装置の内部に出力し、他方を前記第2光受信装置に向けて出力する妨害光信号除去器と、前記妨害光信号除去器から前記第1光受信装置の内部に出力される前記光信号を検出する光検出器と、を備えることを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、数式1又は数式2によって換算するものとする。   The optical communication multiplex system according to the present invention includes a first optical transmitter that transmits a communication optical signal spread-coded in an optical frequency domain, and an optical frequency narrower than an optical frequency bandwidth of the communication optical signal. A second optical transmission device that transmits another optical signal for communication of bandwidth, an optical multiplexer that connects the first optical transmission device and the second optical transmission device, and the optical multiplexing device from the first optical transmission device. A first optical receiver for receiving the communication optical signal transmitted via a wave multiplier; and the optical multiplexer and the first optical receiver connected to the first optical receiver from the second optical transmitter A second optical receiving device that receives the other optical signal for communication transmitted via the optical communication system, wherein the first optical receiving device receives the first optical receiving device. The optical signal for communication is converted into a branched optical signal obtained by branching an optical signal into two or more optical signals. An optical path length difference equal to or greater than a value obtained by converting a frequency bandwidth into a length and less than or equal to a value obtained by converting an optical frequency bandwidth of the other communication optical signal into a length is provided, and the branched light provided with the optical path length difference A disturbing light signal remover for combining and branching signals, outputting one of the signals to the first optical receiver with a predetermined light intensity, and outputting the other toward the second optical receiver; and the disturbing light A photodetector that detects the optical signal output from the signal remover to the inside of the first optical receiver. Here, the “value obtained by converting the optical frequency bandwidth of the optical signal for communication into the length” is converted according to Equation 1 or Equation 2.

また、本発明に係る光通多重信システムは、光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第1光受信装置に接続され前記第2光送信装置から前記光合波器及び前記第1光受信装置を介して送信される前記別の通信用光信号を受信する第2光受信装置と、を有する光多重通信システムであって、前記第1光受信装置は、前記第1光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記第1光受信装置の内部に出力し、他方を前記第2光受信装置に向けて出力する妨害光信号除去器と、前記妨害光信号除去器から前記第1光受信装置の内部に出力される前記光信号を検出する光検出器と、を備えることを特徴とする。   The optical communication multiplex system according to the present invention includes a first optical transmission device that transmits a communication optical signal that is spread-coded in the optical frequency domain, and a coherence length that is longer than the coherence length of the communication optical signal. A second optical transmitter that transmits another optical signal for communication, an optical multiplexer that connects the first optical transmitter and the second optical transmitter, and the optical multiplexer from the first optical transmitter A first optical receiver that receives the communication optical signal transmitted via the first optical receiver, and the second optical transmitter connected to the first optical receiver via the optical multiplexer and the first optical receiver. And a second optical receiving device that receives the other optical signal for communication transmitted in this manner, wherein the first optical receiving device receives the optical signal received by the first optical receiving device. Is equal to or longer than the coherence length of the optical signal for communication to a branched optical signal that is branched into two or more optical signals. An optical path length difference equal to or shorter than the coherence length of the other optical signal for communication is provided, the branched optical signals provided with the optical path length difference are combined and branched, and one of the first optical signals with a predetermined light intensity is provided. An interfering optical signal remover that outputs to the inside of the receiving device and outputs the other to the second optical receiving device, and the optical signal that is output from the interfering optical signal remover to the inside of the first optical receiving device And a photodetector for detecting.

また、本発明に係る光通多重信システムは、光周波数領域で拡散符号化された通信用パルス光信号を送信する第1光送信装置と、前記通信用パルス光信号のパルス幅より大きいパルス幅の別の通信用パルス光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用パルス光信号を受信する第1光受信装置と、前記第1光受信装置に接続され前記第2光送信装置から前記光合波器及び前記第1光受信装置を介して送信される前記別の通信用パルス光信号を受信する第2光受信装置と、を有する光多重通信システムであって、前記第1光受信装置は、前記第1光受信装置の受信するパルス光信号を2以上の光信号に分岐した分岐光信号に前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記第1光受信装置の内部に出力し、他方を前記第2光受信装置に向けて出力する妨害光信号除去器と、前記妨害光信号除去器から前記第1光受信装置の内部に出力される前記パルス光信号を検出する光検出器と、を備えることを特徴とする。   The optical communication multiplex system according to the present invention includes a first optical transmission device that transmits a communication pulse optical signal that is spread-encoded in an optical frequency domain, and a pulse width that is larger than a pulse width of the communication pulse optical signal. A second optical transmitter that transmits another optical pulse signal for communication, an optical multiplexer that connects the first optical transmitter and the second optical transmitter, and the optical multiplexer from the first optical transmitter A first optical receiver for receiving the communication pulse optical signal transmitted via the optical device; and the optical multiplexer and the first optical receiver connected to the first optical receiver from the second optical transmitter A second optical receiver that receives the other optical pulse signal for communication transmitted via the optical multiplex communication system, wherein the first optical receiver receives the first optical receiver. Branching pulse optical signal into two or more optical signals An optical path length difference equal to or greater than a value obtained by converting the pulse width of the communication pulse light signal into a length and less than a value obtained by converting the pulse width of the other communication pulse light signal into a length is provided in the signal, and the optical path length difference Is coupled to the branched optical signal and branched, and one is output to the inside of the first optical receiver with a predetermined light intensity, and the other is output to the second optical receiver. And a photodetector that detects the pulsed optical signal output from the interfering optical signal remover to the inside of the first optical receiver.

また、本発明に係る光受信装置は、光周波数領域で拡散符号化された通信用光信号を受信する光受信装置であって、前記通信用光信号を2以上に分岐させ前記通信用光信号の光周波数帯域幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、を備えることを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、数式1又は数式2によって換算するものとする。   The optical receiver according to the present invention is an optical receiver that receives a communication optical signal that is spread-encoded in an optical frequency domain, and branches the communication optical signal into two or more, and the communication optical signal. An interference light signal remover that outputs a predetermined optical intensity by providing an optical path length difference equal to or greater than a value obtained by converting the optical frequency bandwidth into a length, and the communication light output from the interference light signal remover And a photodetector for detecting an optical signal. Here, the “value obtained by converting the optical frequency bandwidth of the optical signal for communication into the length” is converted according to Equation 1 or Equation 2.

また、本発明に係る光受信装置は、光周波数領域で拡散符号化された通信用光信号を受信する光受信装置であって、前記通信用光信号を2以上に分岐させ前記通信用光信号の可干渉長以上の光路長差を設けて結合させて所定の強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、を備えることを特徴とする。   The optical receiver according to the present invention is an optical receiver that receives a communication optical signal that is spread-encoded in an optical frequency domain, and branches the communication optical signal into two or more, and the communication optical signal. An interference optical signal eliminator that outputs an optical path with a predetermined intensity by providing an optical path length difference equal to or greater than the coherence length, and a photodetector that detects the communication optical signal output from the interference optical signal eliminator. It is characterized by providing.

また、本発明に係る光受信装置は、光周波数領域で拡散符号化された通信用パルス光信号を受信する光受信装置であって、前記通信用パルス光信号を2以上に分岐させ前記通信用パルス光信号のパルス幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、前記妨害光信号除去器から出力される前記通信用パルス光信号を検出する光検出器と、を備えることを特徴とする。   An optical receiving apparatus according to the present invention is an optical receiving apparatus that receives a communication pulse optical signal that is spread-encoded in an optical frequency domain, and branches the communication pulse optical signal into two or more for communication. An interference light signal eliminator that outputs an optical path with a predetermined optical intensity by providing an optical path length difference equal to or greater than a value obtained by converting the pulse width of the pulse optical signal into a length, and the communication output from the interference light signal eliminator And a photodetector for detecting a pulse light signal for use.

また、本発明に係る光受信装置は、光周波数領域で拡散符号化された通信用光信号及び該通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を受信する光受信装置であって、前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記光受信装置の内部に出力し、且つ他方を前記光受信装置の外部に出力する妨害光信号除去器と、前記妨害光信号除去器から前記光受信装置の内部に出力される前記光信号を検出する光検出器と、を備えることを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、数式1又は数式2によって換算するものとする。   The optical receiver according to the present invention receives a communication optical signal spread-coded in the optical frequency domain and another optical signal for communication having an optical frequency bandwidth narrower than the optical frequency bandwidth of the optical signal for communication. An optical receiving device, wherein the optical signal received by the optical receiving device is branched into two or more optical signals, and the optical frequency bandwidth of the optical signal for communication is converted into a length or more, and An optical path length difference equal to or less than a value obtained by converting the optical frequency bandwidth of another optical signal for communication into a length is provided, and the branched optical signals provided with the optical path length difference are combined and branched, and one of them is divided into predetermined light. An interference light signal remover that outputs the light intensity inside the optical reception device and outputs the other to the outside of the optical reception device; and the light output from the interference light signal removal device to the inside of the optical reception device. And a photodetector for detecting a signal. Here, the “value obtained by converting the optical frequency bandwidth of the optical signal for communication into the length” is converted according to Equation 1 or Equation 2.

また、本発明に係る光受信装置は、光周波数領域で拡散符号化された通信用光信号及び該通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を受信する光受信装置であって、前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記光受信装置の内部に出力し、且つ他方を前記光受信装置の外部に出力する妨害光信号除去器と、前記妨害光信号除去器から前記光受信装置の内部に出力される前記光信号を検出する光検出器と、を備えることを特徴とする。   The optical receiving apparatus according to the present invention also includes a communication optical signal that is spread-coded in the optical frequency domain and a light that receives another communication optical signal having a coherence length longer than the coherence length of the communication optical signal. A receiving device, wherein the optical signal received by the optical receiving device is branched into two or more optical signals, and the coherence length of the other optical signal for communication is greater than the coherence length of the optical signal for communication. The following optical path length difference is provided, the branched optical signals provided with the optical path length difference are combined and branched, one is output to the inside of the optical receiver at a predetermined light intensity, and the other is the optical receiver An interference light signal remover that outputs to the outside of the device, and a photodetector that detects the optical signal output from the interference light signal remover to the inside of the optical receiver.

また、本発明に係る光受信装置は、光周波数領域で拡散符号化された通信用パルス光信号及び該通信用パルス光信号のパルス幅より広いパルス幅の別の通信用パルス光信号を受信する光受信装置であって、前記光受信装置の受信するパルス光信号を2以上の光信号に分岐した分岐光信号に前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を結合させて所定の光強度で前記光受信装置の内部に出力し、且つ他方を前記光受信装置の外部に出力する妨害光信号除去器と、前記妨害光信号除去器から前記光受信装置の内部に出力される前記パルス光信号を検出する光検出器と、を備えることを特徴とする。   The optical receiver according to the present invention receives a communication pulse optical signal spread-encoded in the optical frequency domain and another communication pulse optical signal having a pulse width wider than the pulse width of the communication pulse optical signal. An optical receiver, wherein the pulse optical signal received by the optical receiver is branched into two or more optical signals, and is equal to or greater than a value obtained by converting the pulse width of the communication pulse optical signal into a length. An optical path length difference equal to or smaller than a value obtained by converting the pulse width of the communication pulse optical signal into a length is provided, the branched optical signals provided with the optical path length difference are combined and branched, and one of them is combined to obtain a predetermined An interference light signal remover that outputs the light intensity to the inside of the optical reception device and outputs the other to the outside of the optical reception device, and the interference light signal remover that is output to the inside of the optical reception device. A photodetector for detecting a pulsed optical signal; It is characterized in.

また、本発明に係る光通信方法は、光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で送受信する光通信方法であって、前記光受信装置は、前記光送信装置から送信された前記通信用光信号を2以上に分岐させ前記通信用光信号の光周波数帯域幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、数式1又は数式2によって換算するものとする。   The optical communication method according to the present invention is an optical communication method for transmitting and receiving a communication optical signal spread-coded in the optical frequency domain between an optical transmission device and an optical reception device, wherein the optical reception device comprises: The optical signal for communication transmitted from the optical transmitter is branched into two or more, and the optical frequency bandwidth of the optical signal for communication is provided with an optical path length difference equal to or greater than the value converted into a length to be combined with a predetermined value. It detects after making it light intensity, It is characterized by the above-mentioned. Here, the “value obtained by converting the optical frequency bandwidth of the optical signal for communication into the length” is converted according to Equation 1 or Equation 2.

また、本発明に係る光通信方法は、光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で送受信する光通信方法であって、前記光受信装置は、前記光送信装置から送信された前記通信用光信号を2以上に分岐させ前記通信用光信号の可干渉長以上の光路長差を設けて結合させて所定の強度とした後に検出することを特徴とする。   The optical communication method according to the present invention is an optical communication method for transmitting and receiving a communication optical signal spread-coded in the optical frequency domain between an optical transmission device and an optical reception device, wherein the optical reception device comprises: Detecting after the optical signal for communication transmitted from the optical transmission device is branched into two or more and combined with an optical path length difference equal to or greater than the coherence length of the optical signal for communication to obtain a predetermined intensity. Features.

また、本発明に係る光通信方法は、光周波数領域で拡散符号化された通信用パルス光信号を光送信装置と光受信装置との間で送受信する光通信方法であって、前記光受信装置は、前記光送信装置から送信された前記通信用パルス光信号を2以上に分岐させ前記通信用パルス光信号のパルス幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする。   The optical communication method according to the present invention is an optical communication method for transmitting and receiving a communication pulse optical signal spread-encoded in an optical frequency domain between an optical transmitter and an optical receiver, the optical receiver The optical pulse transmission signal transmitted from the optical transmitter is branched into two or more, and the optical pulse length difference equal to or greater than the value obtained by converting the pulse width of the communication optical pulse signal into a length is combined and combined. It detects after making it the light intensity of this.

また、本発明に係る光多重通信方法は、光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の光周波数帯域より狭い光周波数帯域の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、数式1又は数式2によって換算するものとする。   The optical multiplex communication method according to the present invention transmits / receives a communication optical signal spread-coded in the optical frequency domain between an optical transmission device and an optical reception device via an optical transmission line, and transmits the communication optical signal. An optical multiplex communication method for transmitting and receiving another optical signal for communication in an optical frequency band narrower than the optical frequency band of a signal between another optical transmitter and another optical receiver via the optical transmission path, The optical receiver has a branch optical signal obtained by branching an optical signal received by the optical receiver into two or more optical signals, and the optical frequency bandwidth of the communication optical signal is equal to or more than a value converted into a length. It is characterized in that detection is performed after providing an optical path length difference equal to or less than a value obtained by converting the optical frequency bandwidth of the optical signal for communication into a length and combining them to obtain a predetermined light intensity. Here, the “value obtained by converting the optical frequency bandwidth of the optical signal for communication into the length” is converted according to Equation 1 or Equation 2.

また、本発明に係る光多重通信方法は、光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐し前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする。   The optical multiplex communication method according to the present invention transmits / receives a communication optical signal spread-coded in the optical frequency domain between an optical transmission device and an optical reception device via an optical transmission line, and transmits the communication optical signal. An optical multiplex communication method for transmitting and receiving another optical signal for communication having a coherence length longer than the coherence length of a signal between another optical transmission device and another optical reception device via the optical transmission path, The optical receiving device branches an optical signal received by the optical receiving device into two or more optical signals, and has an optical path length that is not less than the coherence length of the communication optical signal and not more than the coherence length of the other communication optical signal. Detection is performed after a difference is provided and combined to obtain a predetermined light intensity.

また、本発明に係る光多重通信方法は、光周波数領域で拡散符号化された通信用パルス光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号のパルス幅より広いパルス幅の別の通信用パルス光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、前記光受信装置は、前記光受信装置の受信するパルス光信号を2以上のパルス光信号に分岐し前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする。   Also, the optical multiplex communication method according to the present invention transmits / receives a communication pulse optical signal, which is spread-coded in the optical frequency domain, between an optical transmission device and an optical reception device via an optical transmission line. An optical multiplex communication method for transmitting and receiving another optical pulse signal for communication having a wider pulse width than that of an optical signal between another optical transmission device and another optical reception device via the optical transmission path, The optical receiving device branches the pulse optical signal received by the optical receiving device into two or more pulse optical signals, and has a value equal to or greater than a value obtained by converting the pulse width of the communication pulse optical signal into a length, and the other communication pulse. An optical path length difference equal to or less than a value obtained by converting a pulse width of an optical signal into a length is provided and combined to obtain a predetermined light intensity, and then detected.

また、本発明に係る光多重通信方法は、光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度にした後に検出すると共に他方を前記別の光受信装置に向けて出力することを特徴とする。ここで、上記「通信用光信号の光周波数帯域幅を長さに換算した値」とは、数式1又は数式2によって換算するものとする。   The optical multiplex communication method according to the present invention transmits / receives a communication optical signal spread-coded in the optical frequency domain between an optical transmission device and an optical reception device via an optical transmission line, and transmits the communication optical signal. An optical multiplex communication method for transmitting and receiving another optical signal for communication having an optical frequency bandwidth narrower than the optical frequency bandwidth of a signal between another optical transmission device and another optical reception device via the optical transmission line. The optical receiving device is equal to or more than a value obtained by converting the optical frequency bandwidth of the communication optical signal into a length to a branched optical signal obtained by branching an optical signal received by the optical receiving device into two or more optical signals. An optical path length difference equal to or less than a value obtained by converting the optical frequency bandwidth of another optical signal for communication into a length is provided, and the branched optical signals provided with the optical path length difference are combined and branched, and one of them is divided into predetermined light. It is detected after the intensity is increased and the other is output to the other optical receiver. To. Here, the “value obtained by converting the optical frequency bandwidth of the optical signal for communication into the length” is converted according to Equation 1 or Equation 2.

また、本発明に係る光多重通信方法は、光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐し、分岐した分岐光信号に前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度にした後に検出すると共に他方を前記別の光受信装置に向けて出力することを特徴とする。   The optical multiplex communication method according to the present invention transmits / receives a communication optical signal spread-coded in the optical frequency domain between an optical transmission device and an optical reception device via an optical transmission line, and transmits the communication optical signal. An optical multiplex communication method for transmitting and receiving another optical signal for communication having a coherence length longer than the coherence length of a signal between another optical transmission device and another optical reception device via the optical transmission path, The optical receiving device branches an optical signal received by the optical receiving device into two or more optical signals, and the branched optical signal is longer than a coherence length of the communication optical signal and the other optical signal for communication. An optical path length difference equal to or shorter than the coherence length is provided, the branched optical signals provided with the optical path length difference are combined and branched, one of them is set to a predetermined light intensity, and the other is detected as another optical receiver. The output is directed to.

また、本発明に係る光多重通信方法は、光周波数領域で拡散符号化された通信用パルス光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用パルス光信号のパルス幅より広いパルス幅の別の通信用パルス光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、前記光受信装置は、前記光受信装置の受信するパルス光信号を2以上のパルス光信号に分岐し、分岐した分岐光信号に前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度にした後に検出すると共に他方を前記別の光受信装置に向けて出力することを特徴とする。   Also, the optical multiplex communication method according to the present invention transmits / receives a communication pulse optical signal, which is spread-coded in the optical frequency domain, between an optical transmission device and an optical reception device via an optical transmission line. An optical multiplex communication method for transmitting and receiving another communication pulse optical signal having a wider pulse width than a pulse optical signal between another optical transmission device and another optical reception device via the optical transmission line. The optical receiver branches the pulse optical signal received by the optical receiver into two or more pulse optical signals, and the branched optical signal is a value obtained by converting the pulse width of the communication pulse optical signal into a length. An optical path length difference equal to or less than the value obtained by converting the pulse width of the other communication optical pulse signal into a length is provided, the branched optical signals provided with the optical path length difference are combined and branched, and one of them is predetermined. The other light receiving device is detected after the other light intensity is detected. And outputs toward the.

本発明の光通信システム及び光通信方法によれば、簡易な構成により、光検出器の前段で妨害光信号を除去可能で、高い通信精度を得ることができる。   According to the optical communication system and the optical communication method of the present invention, the interference light signal can be removed at the front stage of the photodetector with a simple configuration, and high communication accuracy can be obtained.

また、本発明の光多重通信システム及び光多重通信方法によれば、既設の光通信システムと追加の光CDM方式の光通信システムとの間での相互干渉のない光伝送を簡易な構成により実現することができる。さらに、既設の光通信システムと追加のCDM方式の光通信システムが同一の周波数であっても両システムでの通信が可能で、同一光周波数(波長)多重通信を実現することができる。   Further, according to the optical multiplex communication system and the optical multiplex communication method of the present invention, optical transmission without mutual interference between the existing optical communication system and the additional optical CDM optical communication system is realized with a simple configuration. can do. Furthermore, even if the existing optical communication system and the additional CDM optical communication system have the same frequency, communication in both systems is possible, and the same optical frequency (wavelength) multiplex communication can be realized.

また、本発明の光受信装置によれば、CDM方式の光通信システムにおいて、簡易な構成により、光検出器の前段で妨害光信号を除去可能で、高い通信精度を得ることができる。また、既設の光通信システムに追加しても、既設の光通信システムと追加の光CDM方式の光通信システムとの間での相互干渉のない光伝送を実現することができる。さらに、既設の光通信システムと追加のCDM方式の光通信システムが同一の周波数であっても両システムの同時通信が可能で、同一光周波数(波長)多重通信を実現することができる。   Also, according to the optical receiver of the present invention, in a CDM optical communication system, the interference optical signal can be removed at the front stage of the photodetector with a simple configuration, and high communication accuracy can be obtained. Further, even if added to an existing optical communication system, optical transmission without mutual interference between the existing optical communication system and the additional optical CDM optical communication system can be realized. Furthermore, even if the existing optical communication system and the additional CDM optical communication system have the same frequency, both systems can communicate simultaneously, and the same optical frequency (wavelength) multiplex communication can be realized.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。
(第1実施形態)
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.
(First embodiment)

図1に、本実施形態に係る光通信システムの概略構成図を示す。図1に示す光通信システム100は、光周波数領域で拡散符号化された通信用光信号70cを送信する光送信装置10と、光送信装置10から送信される通信用光信号70cを受信する光受信装置20と、を有する。   FIG. 1 shows a schematic configuration diagram of an optical communication system according to the present embodiment. An optical communication system 100 illustrated in FIG. 1 includes an optical transmission device 10 that transmits a communication optical signal 70c that is spread-coded in the optical frequency domain, and an optical signal that receives the communication optical signal 70c transmitted from the optical transmission device 10. Receiving device 20.

本実施形態では、光送信装置10は、光信号70aを出力する光源11と、光源11から出力された光信号70aを通信信号60aに基づいて変調して変調光信号70bを出力する光変調器12と、光変調器12から出力される変調光信号70bを光周波数領域で拡散符号化して通信用光信号70cを出力する光符号器14と、を有している。   In the present embodiment, the optical transmitter 10 includes a light source 11 that outputs an optical signal 70a, and an optical modulator that modulates the optical signal 70a output from the light source 11 based on a communication signal 60a and outputs a modulated optical signal 70b. 12 and an optical encoder 14 that spread-codes the modulated optical signal 70b output from the optical modulator 12 in the optical frequency domain and outputs a communication optical signal 70c.

ここで、光源11が出力する光信号70aは、十分な符号化利得を得るために、広光周波数帯域幅であることがよい。例えば、SLD(Super Lunimescent Diode)、ASE(Amplitude Spontaneous
Emission)等の非コヒーレント光を出力する光源を適用することができる。また、光源11から出力される光信号70aがパルス光信号である場合は、パルス幅が短い短パルス光信号であることがよい。光源11から出力される光信号70aを広光周波数帯域幅の光信号又は短パルス光信号とすることにより、高符号化利得の確保と妨害光信号の高い除去効果を得ることができる。
Here, the optical signal 70a output from the light source 11 may have a wide optical frequency bandwidth in order to obtain a sufficient coding gain. For example, SLD (Super Luminescent Diode), ASE (Amplitude Spontaneous)
A light source that outputs non-coherent light such as Emission) can be applied. When the optical signal 70a output from the light source 11 is a pulsed optical signal, it is preferable that the optical signal 70a is a short pulsed optical signal with a short pulse width. By making the optical signal 70a output from the light source 11 an optical signal having a wide optical frequency bandwidth or a short pulse optical signal, it is possible to obtain a high coding gain and a high removal effect of the interfering optical signal.

光変調器12は、光通信システム100の通信方式に応じて、例えば、光周波数変調器、光強度変調器及び光位相変調器等の光変調器を適用することができる。   As the optical modulator 12, for example, an optical modulator such as an optical frequency modulator, an optical intensity modulator, and an optical phase modulator can be applied according to the communication method of the optical communication system 100.

光符号器14は、通信用光信号70bを光CDM通信方式による拡散符号化を行う。例えば、光変調器12から出力される変調光信号70bにM系列符号、Gold系列符号等の符号を直接掛け合わせてベースバンド信号を拡散符号化することとしてもよいし、光変調器から出力される変調光信号70bを周波数フィルタに通して変調光信号の周波数帯域を分割して拡散符号化することとしてもよい。例えば、マッハツェンダー干渉計を適用することができる。   The optical encoder 14 performs spread coding on the optical signal for communication 70b by the optical CDM communication method. For example, the baseband signal may be spread-coded by directly multiplying the modulated optical signal 70b output from the optical modulator 12 with a code such as an M-sequence code or Gold sequence code, or output from the optical modulator. The modulated optical signal 70b may be passed through a frequency filter, and the frequency band of the modulated optical signal may be divided and spread encoded. For example, a Mach-Zehnder interferometer can be applied.

なお、本実施形態では、光源11が1つであるが、出力する光信号の光周波数が異なる複数の光源を設けてもよい。光源を複数とすることで、光周波数(波長)多重通信を可能とする。また、光強度の光周波数特性が符号に応じた単一又は複数の光信号を出力する光源であってもよい。また、光源は、光信号を直接変調して出力するものであってもよい。光源と光変調器と光符号器とを1つのデバイスとすることにより、光送信装置10のコンパクト化を図ることができる。   In the present embodiment, one light source 11 is provided, but a plurality of light sources having different optical frequencies of optical signals to be output may be provided. By using a plurality of light sources, optical frequency (wavelength) multiplex communication is enabled. Further, it may be a light source that outputs a single optical signal or a plurality of optical signals whose optical frequency characteristics of light intensity correspond to codes. Further, the light source may directly modulate and output an optical signal. By making the light source, the optical modulator, and the optical encoder into one device, the optical transmitter 10 can be made compact.

また、本実施形態では、光受信装置20は、光送信装置10から送信される通信用光信号70dを2以上に分岐させ所定の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器21と、妨害光信号除去器21から出力される通信用光信号70eを逆拡散符号により復号化する光復号器22と、光復号器22により復号化された通信用光信号70fを検出する光検出器23と、を有する。なお、本実施形態では、妨害光信号除去器21、光復号器22、光検出器23の順で配置しているが、妨害光信号除去器21は、光検出器23の前段であれば、いずれの位置にあってもよい。   In the present embodiment, the optical receiver 20 branches the communication optical signal 70d transmitted from the optical transmitter 10 into two or more, combines them with a predetermined optical path length difference, and outputs them with a predetermined light intensity. Interfering optical signal remover 21, optical decoder 22 that decodes communication optical signal 70 e output from interfering optical signal remover 21 with a despreading code, and an optical signal for communication decoded by optical decoder 22 And a photodetector 23 for detecting 70f. In this embodiment, the interfering optical signal remover 21, the optical decoder 22, and the photodetector 23 are arranged in this order. However, the interfering optical signal remover 21 is a front stage of the photodetector 23, It may be in any position.

光復号器22は、光送信装置10の光符号器14に対応した所定の光復号器を適用する。また、光検出器23は、光送信装置10の光変調器12に対応した所定の光検出器を適用する。   The optical decoder 22 applies a predetermined optical decoder corresponding to the optical encoder 14 of the optical transmitter 10. In addition, a predetermined photodetector corresponding to the optical modulator 12 of the optical transmission device 10 is applied as the photodetector 23.

本実施形態では、妨害光信号除去器21は、通信用光信号70dを2以上に分岐して所定の光路長差を与えて干渉させることによって光送信装置10と光受信装置20との間で例えば、光合波器65により通信用光信号70cに重畳した妨害光信号70gを除去する機能を有する。本実施形態では、妨害光信号70gとして、光送信装置10が送信する通信用光信号70cの光周波数帯域幅より狭いか或いは可干渉長が長いものを除去する。また、通信用光信号70cがパルス光信号である場合は、妨害光信号70gとして、光送信装置10が送信する通信用光信号70cのパルス幅よりも長いパルス幅のものを除去する。これらの妨害光信号70gは、光送信装置10が送信する光CDM方式の通信用光信号70cより光強度が強く、光受信装置20の通信用光信号の受信に対する影響が大きいためである。   In the present embodiment, the interfering optical signal remover 21 splits the communication optical signal 70d into two or more and gives interference by giving a predetermined optical path length difference between the optical transmitting device 10 and the optical receiving device 20. For example, the optical multiplexer 65 has a function of removing the interference light signal 70g superimposed on the communication optical signal 70c. In the present embodiment, as the interference light signal 70g, signals that are narrower than the optical frequency bandwidth of the communication optical signal 70c transmitted by the optical transmitter 10 or have a long coherence length are removed. When the communication optical signal 70c is a pulse optical signal, the interference optical signal 70g having a pulse width longer than the pulse width of the communication optical signal 70c transmitted by the optical transmitter 10 is removed. This is because the interference light signal 70g has a stronger light intensity than the optical CDM communication optical signal 70c transmitted by the optical transmitter 10, and has a large influence on the reception of the communication optical signal by the optical receiver 20.

ここで、上記の光路長差は、通信用光信号70cの光周波数帯域幅を長さに換算した値以上若しくは通信用光信号70cの可干渉長以上とする。また、通信用光信号70cをパルス信号とする場合は、通信用光信号70cとしての通信用パルス光信号のパルス幅を長さに換算した値以上とする。このことに関しては、後に説明する。   Here, the optical path length difference is equal to or greater than the value obtained by converting the optical frequency bandwidth of the communication optical signal 70c into a length, or greater than the coherence length of the communication optical signal 70c. When the communication optical signal 70c is a pulse signal, the pulse width of the communication pulse optical signal as the communication optical signal 70c is set to a value converted to a length or more. This will be described later.

妨害光信号除去器21は、例えば、マッハツェンダー干渉計を適用することができる。ここで、妨害光信号除去器21としてマッハツェンダー干渉計を適用した場合の、妨害光信号除去器21の動作原理について詳細に説明する。   For example, a Mach-Zehnder interferometer can be used as the interfering light signal remover 21. Here, the operation principle of the interfering light signal remover 21 when a Mach-Zehnder interferometer is applied as the interfering light signal remover 21 will be described in detail.

図2に、妨害光信号除去器21としてのマッハツェンダー干渉計の概略構成図を示す。図2に示すマッハツェンダー干渉計91は、2つのハーフミラー50、53と、2つのミラー52、54と、位相遅延部51と、レンズ55と、からなる。   FIG. 2 shows a schematic configuration diagram of a Mach-Zehnder interferometer as the interfering light signal remover 21. The Mach-Zehnder interferometer 91 shown in FIG. 2 includes two half mirrors 50 and 53, two mirrors 52 and 54, a phase delay unit 51, and a lens 55.

ハーフミラー50、53は、例えば、光強度に応じた透過・反射率を有するハーフミラーや、光周波数に応じた透過・反射率を有するハーフミラーを適用することができる。ハーフミラー50は、図1に示す光送信装置10から送信される通信用光信号70dを例えば光強度が半分の分岐光信号80a、80bに2分岐する。また、ハーフミラー53は、分岐光信号80bを半分の光強度で反射し、分岐光信号80aを半分の光強度で透過させる。なお、実際は、ハーフミラー53は、分岐光信号80bを半分の光強度で透過させ、分岐光信号80aを半分の光強度で反射するが、便宜上これらの光信号の記載は省略した。   As the half mirrors 50 and 53, for example, a half mirror having transmittance / reflectance according to light intensity or a half mirror having transmittance / reflectivity according to optical frequency can be applied. The half mirror 50 bifurcates the communication optical signal 70d transmitted from the optical transmitter 10 shown in FIG. 1 into, for example, branched optical signals 80a and 80b having half the light intensity. The half mirror 53 reflects the branched optical signal 80b with half the light intensity and transmits the branched optical signal 80a with the half light intensity. Actually, the half mirror 53 transmits the branched optical signal 80b with half light intensity and reflects the branched optical signal 80a with half light intensity, but the description of these optical signals is omitted for convenience.

位相遅延部51は、通過する光信号の位相をずらす機能を有する。例えば、外領域と屈折率が相対的に異なる媒質や、電気光学効果により屈折率が可変の光導波路を適用することができる。この位相遅延部51により分岐光信号80a、80bに光路長差を設けることができる。   The phase delay unit 51 has a function of shifting the phase of the optical signal that passes therethrough. For example, a medium having a refractive index relatively different from that of the outer region or an optical waveguide having a variable refractive index due to an electro-optic effect can be applied. This phase delay unit 51 can provide a difference in optical path length between the branched optical signals 80a and 80b.

レンズ55は、図1に示す光復号器22と接続される光ファイバ56に分岐光信号80a、80bを集光する。   The lens 55 collects the branched optical signals 80a and 80b on the optical fiber 56 connected to the optical decoder 22 shown in FIG.

図1に示す光送信装置10から送信される通信用光信号70dは、ハーフミラー50によって2分岐される。一方の分岐光信号80aは、ミラー54で反射しハーフミラー53を透過してレンズ55に入射する。他方の分岐光信号80bは、位相遅延部51によって分岐光信号80aに対して光路長差が与えられ、ミラー52で反射し、さらにハーフミラー53で反射してレンズ55に入射する。レンズ55は、光ファイバ56に2つの分岐光信号80a、80bを集光する。このとき、位相遅延部51で屈折率を調節して分岐光信号80a、80bの光路長差を通信用光信号70cの光周波数帯域幅を長さに換算した値以上で妨害光信号70gの半波長の自然数倍とすると、分岐光信号80a、80bを集光した光信号のうち妨害光信号70gの成分が弱め合うこととなる。   The communication optical signal 70d transmitted from the optical transmission device 10 shown in FIG. One branched optical signal 80 a is reflected by the mirror 54, passes through the half mirror 53, and enters the lens 55. The other branched optical signal 80 b is given a difference in optical path length from the branched optical signal 80 a by the phase delay unit 51, reflected by the mirror 52, further reflected by the half mirror 53, and incident on the lens 55. The lens 55 collects the two branched optical signals 80 a and 80 b on the optical fiber 56. At this time, the refractive index is adjusted by the phase delay unit 51 so that the optical path length difference between the branched optical signals 80a and 80b is equal to or greater than the value obtained by converting the optical frequency bandwidth of the communication optical signal 70c into the length, and half of the interfering optical signal 70g. Assuming that the wavelength is a natural number multiple, the components of the interfering light signal 70g out of the optical signals obtained by collecting the branched optical signals 80a and 80b are weakened.

ここで、図1に示す通信用光信号70cがパルス光信号でない場合、通信用光信号70cの光周波数と妨害光信号70gの光周波数が一致すると、妨害光信号70gが重畳した通信用光信号70dを干渉させたときに、妨害光信号70gと共に本来必要とされる通信用光信号70cの中心周波数成分も弱めあう。しかし、光路長差を、光CDM方式の通信用光信号70cの光周波数帯域幅を長さに換算した値以上とするため、中心周波数の光の光強度が弱められても、中心周波数以外の光のうち強めあう光の光強度によって、妨害光信号除去器21としてのマッハツェンダー干渉計91を透過した後の通信用光信号70eの光強度を担保することができる。一方、妨害光信号70gは光強度が大きいため光周波数帯域幅は狭く、妨害光信号除去器21としてのマッハツェンダー干渉計91を透過した後の光強度は略0となる。そのため、光路長差は、通信用光信号70cの光周波数帯域幅を長さに換算した値以上とする。そして望ましくは、妨害光信号70gの光周波数帯域幅を長さに換算した値以下とする。ここで、上記「通信用光信号70cの光周波数帯域幅を長さに換算した値」とは、以下の数式3によって換算するものとする。   Here, when the communication optical signal 70c shown in FIG. 1 is not a pulse optical signal, if the optical frequency of the communication optical signal 70c matches the optical frequency of the interference optical signal 70g, the communication optical signal on which the interference optical signal 70g is superimposed. When 70d is caused to interfere, the center frequency component of the communication optical signal 70c that is originally required is also weakened together with the disturbing optical signal 70g. However, since the optical path length difference is equal to or greater than the value obtained by converting the optical frequency bandwidth of the optical signal for optical communication 70c of the optical CDM system into the length, even if the light intensity of the light at the center frequency is weakened, The light intensity of the intensifying light among the light can ensure the light intensity of the communication optical signal 70e after passing through the Mach-Zehnder interferometer 91 as the interference light signal remover 21. On the other hand, since the interference light signal 70g has a high light intensity, the optical frequency bandwidth is narrow, and the light intensity after passing through the Mach-Zehnder interferometer 91 as the interference light signal remover 21 becomes substantially zero. Therefore, the optical path length difference is not less than a value obtained by converting the optical frequency bandwidth of the communication optical signal 70c into a length. Desirably, the optical frequency bandwidth of the interfering light signal 70g is set to be equal to or less than a value converted into a length. Here, the “value obtained by converting the optical frequency bandwidth of the communication optical signal 70c into a length” is converted by the following Equation 3.

Figure 2006074557
Figure 2006074557

一方、光路長差を通信用光信号70cの可干渉長以上とする場合、通信用光信号70cは干渉せずに通信用光信号70cの半分が妨害光信号除去器21を通過して光復号器22に入力される。そのため、所定の光強度で通信用光信号70eを出力させるためには、光路長差は、通信用光信号70cの可干渉長以上で妨害光信号70gの可干渉長以下とすることが望ましい。可干渉長は、光周波数帯域幅の拡大と共に短くなるからである。   On the other hand, when the optical path length difference is equal to or greater than the coherence length of the communication optical signal 70c, the communication optical signal 70c does not interfere, and half of the communication optical signal 70c passes through the interfering optical signal remover 21 and is optically decoded. Is input to the device 22. Therefore, in order to output the communication optical signal 70e with a predetermined light intensity, it is desirable that the optical path length difference is not less than the coherence length of the communication optical signal 70c and not more than the coherence length of the interfering light signal 70g. This is because the coherence length decreases as the optical frequency bandwidth increases.

また、図1に示す通信用光信号70cがパルス光信号の場合、光路長差を通信用光信号70cとしての通信用パルス光信号のパルス幅を長さに換算した値以上とし、さらに妨害光信号70gのパルス幅を長さに換算した値以下とすることが望ましい。光路長差を通信用パルス光信号のパルス幅を長さに換算した値以上とすると、光路長差によって通信用光信号70cとしての通信用パルス光信号のパルス同士が重ならない。そして、光路長差を妨害光信号70gのパルス幅を長さに換算した値以下とすると、光路長差によって妨害光信号70gのパルス同士が重なるため、干渉により妨害光信号のみを除去することができる。なお、妨害光信号は、RZ(Return−To−Zero)信号或いはNRZ(Non−Return−To−Zero)信号いずれの場合であっても除去可能である。   Further, when the communication optical signal 70c shown in FIG. 1 is a pulsed optical signal, the optical path length difference is set to a value equal to or greater than the value obtained by converting the pulse width of the communication pulsed optical signal as the communication optical signal 70c into a length, and the interference light It is desirable that the pulse width of the signal 70g be equal to or less than the value converted into the length. If the optical path length difference is greater than or equal to the value obtained by converting the pulse width of the communication pulse optical signal into a length, the pulses of the communication pulse optical signal as the communication optical signal 70c do not overlap each other due to the optical path length difference. If the optical path length difference is equal to or less than the value obtained by converting the pulse width of the interfering light signal 70g into a length, the pulses of the interfering optical signal 70g overlap each other due to the optical path length difference, and therefore only the interfering optical signal can be removed by interference. it can. The interference light signal can be removed regardless of whether it is an RZ (Return-To-Zero) signal or an NRZ (Non-Return-To-Zero) signal.

また、光路長差は、妨害光信号除去器21としてのマッハツェンダー干渉計91が出力する光の光強度が光周波数に対して櫛状の正弦関数となることから、図1に示す光符号器14、光復号器22との関係においても定めることができる。即ち、図2に示すマッハツェンダー干渉計91が出力する光の光強度である正弦関数の周期が以下の条件のいずれかを満たせばよい。   Further, since the optical intensity of the light output from the Mach-Zehnder interferometer 91 as the interfering optical signal remover 21 becomes a comb-like sine function with respect to the optical frequency, the optical path length difference is the optical encoder shown in FIG. 14 can also be determined in relation to the optical decoder 22. In other words, the period of the sine function that is the light intensity of the light output from the Mach-Zehnder interferometer 91 shown in FIG. 2 only needs to satisfy one of the following conditions.

(ア)光符号器14での各符号を構成するチップの光周波数幅の自然数分の1。
光符号器14での符号が、複数の繰り返し部分に分けられる繰返し符号である場合は、
(イ)繰返し符号の各繰り返し部分の光周波数幅の2(mは自然数)倍で、通信用光信号70cの光周波数帯域幅の2−k(kは自然数)倍。
(A) A natural number of the optical frequency width of the chip constituting each code in the optical encoder 14.
When the code in the optical encoder 14 is a repetition code divided into a plurality of repetition parts,
(B) 2 m (m is a natural number) times the optical frequency width of each repeated portion of the repetition code, and 2 −k (k is a natural number) times the optical frequency bandwidth of the communication optical signal 70c.

上記(ア)又は(イ)の一方の条件を満たすことによって、妨害光信号除去器21としてのマッハツェンダー干渉計91を通過し、光復号器22を通過した後の通信用光信号70fの光強度を光検出器が検出しうる所定の光強度とすることができる。また、上記(ア)、(イ)のそれぞれの条件に、以下の条件を加えることで、さらに妨害光信号の除去効率を向上させることができる。
(ウ)妨害光信号の光周波数帯域幅の2倍以上。
By satisfying one of the conditions (a) and (b) above, the light of the communication optical signal 70 f that has passed through the Mach-Zehnder interferometer 91 as the interfering optical signal remover 21 and has passed through the optical decoder 22. The intensity can be a predetermined light intensity that can be detected by the photodetector. Further, by adding the following conditions to the above conditions (a) and (b), the interference light signal removal efficiency can be further improved.
(C) More than twice the optical frequency bandwidth of the interfering light signal.

ここで、上記(ア)の条件について、具体的な例を示して説明する。図3に、本実施形態の光通信システム100により妨害光信号70gを除去する場合の光強度を示した概略図を示す。図3において、細点線は図1に示す妨害光信号除去器21としての図2に示すマッハツェンダー干渉計91の光周波数特性を示し、細実線は、光復号器14としてマッハツェンダー干渉計を適用した場合の周波数特性を示している。ここで、光復号器14としてのマッハツェンダー干渉計の半周期を符号のチップ幅とし、101010・・・の光周波数領域の符号で符号化している。また、細点線は、図1に示す光送信装置10が送信する通信用光信号70cの光周波数特性を示し、太実線は、妨害光信号70gが重畳した通信用光信号70dが、妨害光信号除去器21としての図2に示すマッハツェンダー干渉計91及び光復号器22としてのマッハツェンダー干渉計を通過した後の光周波数特性を示している。ここでは、上記(ア)の条件を満たすように、妨害光信号除去器21としての図2に示すマッハツェンダー干渉計91の光周波数特性の周期を光符号器22としてのマッハツェンダー干渉計の符号を構成するチップの光周波数幅の1/2とした。また、図3(a)は、妨害光信号70gの光周波数がFdである場合に、妨害光信号除去器21としてのマッハツェンダー干渉計91における光路長差を調節して妨害光信号70gの周波数に一致させるようにした場合の光強度を示し、図3(b)は、妨害光信号除去器21としてのマッハツェンダー干渉計91の光周波数幅を変更しないまま、妨害光信号70gの光周波数をfdからfdに変更した場合の光強度を示している。 Here, the condition (a) will be described with a specific example. FIG. 3 is a schematic diagram showing the light intensity when the interference light signal 70g is removed by the optical communication system 100 of the present embodiment. In FIG. 3, the thin dotted line indicates the optical frequency characteristics of the Mach-Zehnder interferometer 91 shown in FIG. 2 as the interfering light signal remover 21 shown in FIG. 1, and the thin solid line applies the Mach-Zehnder interferometer as the optical decoder 14. The frequency characteristics are shown. Here, the half-cycle of the Mach-Zehnder interferometer as the optical decoder 14 is set as the chip width of the code, and is encoded with the code in the optical frequency region of 101010. A thin dotted line indicates the optical frequency characteristics of the communication optical signal 70c transmitted by the optical transmitter 10 shown in FIG. 1, and a thick solid line indicates that the communication optical signal 70d on which the interference optical signal 70g is superimposed is the interference optical signal. The optical frequency characteristics after passing through the Mach-Zehnder interferometer 91 shown in FIG. 2 as the remover 21 and the Mach-Zehnder interferometer as the optical decoder 22 are shown. Here, the period of the optical frequency characteristic of the Mach-Zehnder interferometer 91 shown in FIG. 2 as the interfering light signal remover 21 is set to the code of the Mach-Zehnder interferometer as the optical encoder 22 so as to satisfy the condition (A). It was set to 1/2 of the optical frequency width of the chip constituting the chip. FIG. 3A shows that when the optical frequency of the interfering optical signal 70g is Fd 1 , the optical path length difference in the Mach-Zehnder interferometer 91 as the interfering optical signal remover 21 is adjusted to adjust the interfering optical signal 70g. FIG. 3B shows the optical intensity when matched with the frequency, and FIG. 3B shows the optical frequency of the interfering optical signal 70 g without changing the optical frequency width of the Mach-Zehnder interferometer 91 as the interfering optical signal remover 21. Shows the light intensity when f is changed from fd 1 to fd 2 .

図3(a)の太実線が示すように、光周波数がfdの妨害光信号70gを除去した場合でも、光強度が50%を超えており十分な光強度を確保できることがわかる。また、図3(b)の太実線が示すように、光周波数をfdから変更してfdとした場合でも、通過後の光強度が通信用光信号70cの光強度と略一致しており十分な光強度を確保できることがわかる。 As shown by the thick solid line in FIG. 3A, it can be seen that even when the interfering light signal 70g having the optical frequency fd 1 is removed, the light intensity exceeds 50% and sufficient light intensity can be secured. Further, as shown by the thick solid line in FIG. 3B, even when the optical frequency is changed from fd 1 to fd 2 , the light intensity after passing substantially matches the light intensity of the communication optical signal 70c. It can be seen that sufficient light intensity can be secured.

なお、本実施形態では、図1に示す妨害光信号除去器21としてマッハツェンダー干渉計を適用して説明を行っているが、光路長差を用いる他の干渉計、例えばマイケルソン干渉計、ファブリペロー干渉計、AWG等により実現することができる。マッハツェンダー干渉計、マイケルソン干渉計、ファブリペロー干渉計の場合は、光路長差を数式3によって換算することができ、AWG(アレイ導波路回折格子)の場合には、以下の数式4によって換算するものとする。また、例えば光カプラを複数縦続に接続させ、各光カプラによる分岐光信号を結合させるものでもよい。   In the present embodiment, a Mach-Zehnder interferometer is applied as the interfering light signal remover 21 shown in FIG. 1. However, other interferometers using an optical path length difference, such as a Michelson interferometer, a Fabry, are used. It can be realized by a Perot interferometer, AWG or the like. In the case of a Mach-Zehnder interferometer, Michelson interferometer, and Fabry-Perot interferometer, the optical path length difference can be converted by Equation 3, and in the case of an AWG (arrayed waveguide grating), converted by Equation 4 below. It shall be. Further, for example, a plurality of optical couplers may be connected in cascade to combine the branched optical signals from the respective optical couplers.

Figure 2006074557
Figure 2006074557

以上説明したように、本実施形態に係る光通信システム100では、光送信装置10と光受信装置20との間で光周波数帯域が狭いか或いは可干渉長が長く光強度の大きい妨害光信号70gやパルス間隔が広く光強度の大きい妨害光信号70gが結合しても、光受信装置20において妨害光信号70gを除去できるため、高精度の光通信を実現することができる。また、本実施形態に係る光通信システム100では、光受信装置20にその特徴を有しており、本実施形態に係る光受信装置20では、光周波数帯域が狭いか或いは可干渉長が長く光強度の大きい妨害光信号70gやパルス間隔が広く光強度の大きい妨害光信号70gが結合した通信用光信号70dを受信しても、妨害光信号70gを除去できるため、高精度の光受信を実現することができる。   As described above, in the optical communication system 100 according to the present embodiment, the interference optical signal 70g between the optical transmission device 10 and the optical reception device 20 has a narrow optical frequency band or a long coherence length and a high light intensity. Even if the interference light signal 70g having a wide pulse interval and a high light intensity is combined, the interference light signal 70g can be removed by the optical receiver 20, so that highly accurate optical communication can be realized. In the optical communication system 100 according to the present embodiment, the optical receiver 20 has the characteristics. In the optical receiver 20 according to the present embodiment, the optical frequency band is narrow or the coherence length is long. Even if the interference light signal 70g having a high intensity or the communication light signal 70d having a wide pulse interval and a high light intensity combined is received, the interference light signal 70g can be removed, thereby realizing high-precision optical reception. can do.

ここで、本実施形態に係る光通信システム100における光通信方法について図1を参照して説明する。   Here, an optical communication method in the optical communication system 100 according to the present embodiment will be described with reference to FIG.

本実施形態に係る光通信システム100における光通信方法では、光周波数領域で拡散符号化された通信用光信号70cを光送信装置10と光受信装置20との間で光伝送路67を介して送受信する。   In the optical communication method in the optical communication system 100 according to the present embodiment, the communication optical signal 70c spread-coded in the optical frequency domain is transmitted between the optical transmitter 10 and the optical receiver 20 via the optical transmission path 67. Send and receive.

即ち、光変調器12が、光送信装置10の光源11から出力された光信号70aを通信信号60aに基づいて例えば強度変調して光符号器14に向けて変調光信号70bとして出力する。光符号器14は、光拡散符号に基づいて、例えば変調光信号70bの光周波数帯域を複数に分割して拡散符号化した通信用光信号70cを光受信装置20に向けて出力する。   That is, the optical modulator 12 modulates, for example, the intensity of the optical signal 70a output from the light source 11 of the optical transmitter 10 based on the communication signal 60a, and outputs the modulated optical signal 70b to the optical encoder 14. For example, the optical encoder 14 divides the optical frequency band of the modulated optical signal 70b into a plurality of signals based on the optical diffusion code, and outputs the communication optical signal 70c that is spread-encoded to the optical receiving device 20.

光送信装置10から送信された通信用光信号70cには、光送信装置10と光受信装置20との間で、相対的に周波数帯域幅の狭い妨害光信号70gや可干渉長の長い妨害光信号70gが光合波器65を介して結合することがある。そのため、この場合、光受信装置20は、妨害光信号70gが重畳した通信用光信号70dを受信することとなる。   The communication optical signal 70c transmitted from the optical transmitter 10 includes an interference optical signal 70g having a relatively narrow frequency bandwidth and an interference light having a long coherence length between the optical transmitter 10 and the optical receiver 20. The signal 70g may be coupled through the optical multiplexer 65. Therefore, in this case, the optical receiving device 20 receives the communication optical signal 70d on which the interference light signal 70g is superimposed.

光受信装置20は、光送信装置10から送信された通信用光信号70dを妨害光信号除去器21により2以上に分岐させ所定の光路長差を設けて結合させて妨害光信号70gを除去して出力する。妨害光信号除去器21から出力された通信用光信号70eは、光符号器14に対応する光復号器22により、復号化して変調光信号70bの周波数特性を復元した後に光検出器23に向けて出力される。光検出器23は、光復号器により復号化された通信用光信号70fを電気信号60bに変換して光送信装置10の通信信号60aを検出する。   The optical receiver 20 removes the interfering optical signal 70g by branching the communication optical signal 70d transmitted from the optical transmitter 10 into two or more by the interfering optical signal remover 21 and combining them with a predetermined optical path length difference. Output. The communication optical signal 70e output from the interfering optical signal remover 21 is decoded by the optical decoder 22 corresponding to the optical encoder 14 to restore the frequency characteristic of the modulated optical signal 70b, and then directed to the photodetector 23. Is output. The photodetector 23 detects the communication signal 60a of the optical transmission device 10 by converting the communication optical signal 70f decoded by the optical decoder into an electric signal 60b.

ここで、上記の所定の光路長差は、光送信装置10から送信される通信用光信号70cの光周波数帯域幅を長さに換算した値以上又は通信用光信号70cの可干渉長以上とするか或いは通信用光信号70cがパルス光信号である場合は、通信用光信号70cとしての通信用パルス光信号のパルス幅を長さに換算した値以上とする。光路長差を上記いずれかの長さとすることにより、妨害光信号除去器21を通過した後の通信用光信号70eの光強度を確保しながら、妨害光信号70gを効率的に除去することができる。   Here, the predetermined optical path length difference is equal to or greater than a value obtained by converting the optical frequency bandwidth of the communication optical signal 70c transmitted from the optical transmitter 10 into a length or greater than the coherence length of the communication optical signal 70c. Alternatively, when the communication optical signal 70c is a pulse optical signal, the pulse width of the communication pulse optical signal as the communication optical signal 70c is set to a value converted to a length or more. By setting the optical path length difference to one of the above lengths, the interference light signal 70g can be efficiently removed while ensuring the light intensity of the communication optical signal 70e after passing through the interference light signal remover 21. it can.

以上説明したように、本実施形態に係る光通信方法では、光送信装置10と光受信装置20との間で光周波数帯域が狭いか或いは可干渉長が長く光強度の大きい妨害光信号70gやパルス間隔が広く光強度の大きい妨害光信号70gが結合しても、光受信装置20において妨害光信号70gを除去できるため、高精度の光通信を実現することができる。
(第2実施形態)
As described above, in the optical communication method according to the present embodiment, the interfering optical signal 70g having a narrow optical frequency band or a long coherence length and a high light intensity between the optical transmitting apparatus 10 and the optical receiving apparatus 20 Even if the interfering light signal 70g having a wide pulse interval and a large light intensity is combined, the interfering light signal 70g can be removed by the optical receiving device 20, so that highly accurate optical communication can be realized.
(Second Embodiment)

図4に本実施形態に係る光多重通信システムの概略構成図を示す。図4に示す光多重通信システム101は、光周波数領域で拡散符号化された通信用光信号70cを送信する第1の光送信装置10と、通信用光信号70cと異なる通信用光信号70jを送信する第2光送信装置30と、第1、第2の光送信装置10、30とを接続する光合波器65と、第1光送信装置10から送信される通信用光信号70cを光合波器65を介して受信する第1光受信装置20と、第2光送信装置30から送信される通信用光信号70jを光合波器65を介して受信する第2光受信装置40と、第1、第2光受信装置20、40を接続する光分波器66と、を有する。   FIG. 4 shows a schematic configuration diagram of an optical multiplex communication system according to the present embodiment. An optical multiplex communication system 101 shown in FIG. 4 includes a first optical transmission device 10 that transmits a communication optical signal 70c that is spread-coded in the optical frequency domain, and a communication optical signal 70j that is different from the communication optical signal 70c. An optical multiplexer 65 that connects the second optical transmission device 30 to transmit, the first and second optical transmission devices 10 and 30, and an optical signal for communication 70c transmitted from the first optical transmission device 10 are optically multiplexed. A first optical receiver 20 that receives the optical signal for communication 70j transmitted from the second optical transmitter 30 via the optical multiplexer 65; And an optical demultiplexer 66 for connecting the second optical receivers 20 and 40.

本実施形態では、既設の第2光送信装置30と第2光受信装置40とで構成される光CDM方式を用いない既設の光通信システムに、第1実施形態で説明した第1光送信装置10と第1光受信装置20とで構成された光CDM方式の光通信システムを追加した形態を示している。ここで、第1実施形態で説明したものと同様のものについては番号を同一のものとし、説明は省略する。   In the present embodiment, the first optical transmission device described in the first embodiment is added to the existing optical communication system that does not use the optical CDM method, which is configured by the existing second optical transmission device 30 and the second optical reception device 40. 10 shows an embodiment in which an optical CDM optical communication system composed of 10 and the first optical receiver 20 is added. Here, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2光送信装置30は、光源32と、光変調器33と、を有し、第2光受信装置は、光変調器33に対応した検出器41を有する。光変調器33は、通信信号60cに基づいて光周波数変調、光強度変調、又は光位相変調等を行う光変調器である。   The second optical transmission device 30 includes a light source 32 and an optical modulator 33, and the second optical reception device includes a detector 41 corresponding to the optical modulator 33. The optical modulator 33 is an optical modulator that performs optical frequency modulation, optical intensity modulation, optical phase modulation, or the like based on the communication signal 60c.

光合波器65及び光分波器66は、光方向性結合器や光カプラやWDM(Wavelength Division Multiplex)カプラ等を適用することができる。また、本実施形態では、光合波器65、光分波器66を別に設けたが、光合波器65と光分波器66との機能を併せ持つ光合分波器を用いて、第1、第2光送受信装置10、20、30、40を結合することとしてもよい。   An optical directional coupler, an optical coupler, a WDM (Wavelength Division Multiplex) coupler, or the like can be applied to the optical multiplexer 65 and the optical demultiplexer 66. In this embodiment, the optical multiplexer 65 and the optical demultiplexer 66 are provided separately. However, the first and second optical multiplexers having both functions of the optical multiplexer 65 and the optical demultiplexer 66 are used. Two optical transceivers 10, 20, 30, and 40 may be combined.

既設の光通信システムでは、光CDM方式を用いずに通信精度を向上させるために、光周波数帯域幅が小さく光強度が大きい通信用光信号70jを使用する。従って、既設の通信システムに、第1実施形態で説明した光CDM方式の光通信システムを追加すると、第2光送信装置30から送信された通信用光信号70jが、光合波器65を介して第1光送信装置10から送信される通信用光信号70cに結合することとなる。そして、第2光送信装置30から送信された通信用光信号70jが結合した通信用光信号70dは、光分波器66を透過してそのまま第1光受信装置20に受信されることとなる。ここで、第1光送信装置10から送信される通信用光信号70cの光周波数と第2光送信装置30から送信される通信用光信号70jの光周波数とが異なる場合、光分波器66の波長依存性により第1光送信装置10から送信される通信用光信号70cと第2光送信装置30から送信される通信用光信号70jとを分波させることができる場合がある。しかし、第1光送信装置10から送信される通信用光信号70aの光周波数と第2光送信装置30から送信される通信用光信号70jの光周波数とが一致する場合、光分波器66によっても第1光送信装置10から送信される通信用光信号70aと第2光送信装置30から送信される通信用光信号70jとを分波させることはできない。   In the existing optical communication system, in order to improve the communication accuracy without using the optical CDM system, the communication optical signal 70j having a small optical frequency bandwidth and a high light intensity is used. Therefore, when the optical CDM optical communication system described in the first embodiment is added to the existing communication system, the communication optical signal 70j transmitted from the second optical transmission device 30 passes through the optical multiplexer 65. This is combined with the communication optical signal 70c transmitted from the first optical transmission device 10. Then, the communication optical signal 70d combined with the communication optical signal 70j transmitted from the second optical transmission device 30 passes through the optical demultiplexer 66 and is received by the first optical reception device 20 as it is. . Here, when the optical frequency of the communication optical signal 70 c transmitted from the first optical transmission device 10 and the optical frequency of the communication optical signal 70 j transmitted from the second optical transmission device 30 are different, the optical demultiplexer 66. Depending on the wavelength dependency, the communication optical signal 70c transmitted from the first optical transmission device 10 and the communication optical signal 70j transmitted from the second optical transmission device 30 may be demultiplexed. However, when the optical frequency of the communication optical signal 70a transmitted from the first optical transmitter 10 matches the optical frequency of the communication optical signal 70j transmitted from the second optical transmitter 30, the optical demultiplexer 66 is used. Therefore, the communication optical signal 70a transmitted from the first optical transmitter 10 and the communication optical signal 70j transmitted from the second optical transmitter 30 cannot be demultiplexed.

そこで、第2光送信装置30から送信され、第1光受信装置20に対する妨害光信号である通信用光信号70jを第1光受信装置20の妨害光信号除去器21により除去する。第1光受信装置20の妨害光信号除去器21の構成は第1実施形態で説明したものと略同様である。但し、本実施形態では、妨害光信号除去器21の光路長差の設定について第1実施形態で説明した構成に加えてさらに以下の値に設定する。即ち、本実施形態では、光路長差を通信用光信号70cの光周波数帯域幅を長さに換算した値以上且つ第2光送信装置30が送信する通信用光信号70jの光周波数帯域幅を長さに換算した値以下か或いは第1光送信装置10が送信する通信用光信号70cの可干渉長以上且つ第2光送信装置30が送信する通信用光信号70jの可干渉長以下とする。ここで、上記「通信用光信号70cの光周波数帯域幅を長さに換算した値」は、数式3又は4によって換算するものとし、「通信用光信号70jの光周波数帯域幅を長さに換算した値」は、妨害光信号除去器21がマッハツェンダー干渉計、マイケルソン干渉計、ファブリペロー干渉計の場合は、光路長差を数式5によって換算し、AWG(アレイ導波路回折格子)の場合には、以下の数式6によって換算するものとする。   Therefore, the optical signal for communication 70j transmitted from the second optical transmitter 30 and being an interfering optical signal for the first optical receiver 20 is removed by the interfering optical signal remover 21 of the first optical receiver 20. The configuration of the interference light signal remover 21 of the first optical receiver 20 is substantially the same as that described in the first embodiment. However, in this embodiment, the setting of the optical path length difference of the interfering light signal remover 21 is further set to the following value in addition to the configuration described in the first embodiment. That is, in the present embodiment, the optical path length difference is equal to or larger than the value obtained by converting the optical frequency bandwidth of the communication optical signal 70c into the length, and the optical frequency bandwidth of the communication optical signal 70j transmitted by the second optical transmission device 30 is set. The value converted into the length or less, or the coherence length of the communication optical signal 70c transmitted by the first optical transmission device 10 and the coherence length of the communication optical signal 70j transmitted by the second optical transmission device 30. . Here, the “value obtained by converting the optical frequency bandwidth of the communication optical signal 70c into a length” is converted according to Equation 3 or 4, and “the optical frequency bandwidth of the communication optical signal 70j is converted into a length. When the interfering light signal remover 21 is a Mach-Zehnder interferometer, a Michelson interferometer, or a Fabry-Perot interferometer, the optical path length difference is converted by Equation 5 and the converted value is calculated by AWG (arrayed waveguide diffraction grating). In this case, conversion is performed according to the following Equation 6.

Figure 2006074557
Figure 2006074557

Figure 2006074557
Figure 2006074557

また、第1、2光送信装置10、30が送信する通信用光信号70c、70jがパルス光信号である場合は、光路長差を第1光送信装置10が送信する通信用光信号70cとしての通信用パルス光信号のパルス幅を長さに換算した値以上且つ第2光送信装置30が送信する通信用光信号70jとしての通信用パルス光信号のパルス幅を長さに換算した値以下とする。なお、第2光送信装置30が送信する通信用光信号70jは、RZ(Return−To−Zero)信号又はNRZ(Non−Return−To−Zero)信号いずれの場合であってもよい。   When the communication optical signals 70c and 70j transmitted by the first and second optical transmission devices 10 and 30 are pulse optical signals, the optical path length difference is set as the communication optical signal 70c transmitted by the first optical transmission device 10. More than or equal to the value obtained by converting the pulse width of the communication pulse optical signal to the length and not more than the value obtained by converting the pulse width of the communication pulse optical signal as the communication optical signal 70j transmitted by the second optical transmitter 30 to the length. And The communication optical signal 70j transmitted by the second optical transmitter 30 may be either an RZ (Return-To-Zero) signal or an NRZ (Non-Return-To-Zero) signal.

第1光受信装置20の妨害光信号除去器21が第2光送信装置30から送信される通信用光信号70jを除去することができるのは、第1実施形態で説明したように、第2光送信装置30から送信される通信用光信号70jの光周波数帯域幅が第1光送信装置10から送信される通信用光信号70cの光周波数帯域幅より狭いか、第2光送信装置30から送信される通信用光信号70jの可干渉長が第1光送信装置10から送信される通信用光信号70cの可干渉長より長いためである。また、光CDM方式では、第1光送信装置10から送信される通信用光信号70cを通信用パルス光信号とする場合には、通信用光信号70cが拡散符号により符号化されているために、通信用光信号70cのパルス幅が第2光送信装置30から送信される通信用パルス光信号のパルス幅より小さいためである。   As described in the first embodiment, the interference optical signal remover 21 of the first optical receiver 20 can remove the communication optical signal 70j transmitted from the second optical transmitter 30. The optical frequency bandwidth of the communication optical signal 70j transmitted from the optical transmission device 30 is smaller than the optical frequency bandwidth of the communication optical signal 70c transmitted from the first optical transmission device 10, or from the second optical transmission device 30. This is because the coherence length of the transmitted communication optical signal 70j is longer than the coherence length of the communication optical signal 70c transmitted from the first optical transmission device 10. Further, in the optical CDM system, when the communication optical signal 70c transmitted from the first optical transmission device 10 is a communication pulse optical signal, the communication optical signal 70c is encoded by a spread code. This is because the pulse width of the communication optical signal 70 c is smaller than the pulse width of the communication pulse optical signal transmitted from the second optical transmitter 30.

以上説明したように、本実施形態に係る光多重通信システム101では、光CDM方式を用いない既設の光通信システムで使用される通信用光信号70jと第1実施形態で説明した光CDM方式の光通信システムで使用される通信用光信号70cの光周波数が異なるときはもちろんのこと、光周波数が同一である場合でも相互干渉を起こさずに高精度の同一周波数光多重通信を実現することができる。また、本実施形態に係る光多重通信システム101では、光受信装置20にその特徴を有しており、本実施形態に係る光受信装置20では、既設の光通信システムにおいて、通信用光信号70と同一周波数の通信用光信号70jを用いていた場合でも、通信用光信号70cと共に既設の光通信システムの通信用光信号70jを受信したときに、通信用光信号70jを除去できるため、高精度の光受信を実現することができる。   As described above, in the optical multiplex communication system 101 according to the present embodiment, the communication optical signal 70j used in the existing optical communication system that does not use the optical CDM system and the optical CDM system described in the first embodiment. In addition to the case where the optical frequency of the optical signal for communication 70c used in the optical communication system is different, even if the optical frequency is the same, it is possible to realize highly accurate single-frequency optical multiplex communication without causing mutual interference. it can. The optical multiplex communication system 101 according to the present embodiment has the characteristics of the optical receiver 20. The optical receiver 20 according to the present embodiment has a communication optical signal 70 in the existing optical communication system. Even when the communication optical signal 70j having the same frequency as that of the communication optical signal 70j is received together with the communication optical signal 70c of the existing optical communication system, the communication optical signal 70j can be removed. Accurate optical reception can be realized.

ここで、本実施形態に係る光多重通信システム101における光多重通信方法について図4を参照して説明する。   Here, an optical multiplex communication method in the optical multiplex communication system 101 according to the present embodiment will be described with reference to FIG.

本実施形態に係る光多重通信システム101における光多重通信方法では、光周波数領域で拡散符号化された通信用光信号70cを第1光送信装置10と第1光受信装置20との間で光伝送路67を介して送受信し、通信用光信号70cと異なる通信用光信号70jを光伝送路67を介して第2光送信装置30と第2光受信装置40との間で送受信する。   In the optical multiplex communication method in the optical multiplex communication system 101 according to the present embodiment, a communication optical signal 70c spread-coded in the optical frequency domain is transmitted between the first optical transmission device 10 and the first optical reception device 20. A communication optical signal 70j different from the communication optical signal 70c is transmitted / received between the second optical transmitter 30 and the second optical receiver 40 via the optical transmission path 67.

即ち、第1光送信装置10の光源11から出力された光信号70aを光変調器12により、通信信号60aに基づいて例えば強度変調して光符号器14に向けて変調光信号70bを出力する。光符号器14は、光拡散符号に基づいて、例えば変調光信号70bの光周波数帯域を複数に分割して拡散符号化して通信用光信号70cとして第1光受信装置20に向けて出力する。   That is, the optical signal 70 a output from the light source 11 of the first optical transmission device 10 is, for example, intensity-modulated based on the communication signal 60 a by the optical modulator 12, and the modulated optical signal 70 b is output toward the optical encoder 14. . For example, the optical encoder 14 divides the optical frequency band of the modulated optical signal 70b into a plurality of signals based on the optical diffusion code, performs spread encoding, and outputs the optical signal to the first optical receiver 20 as a communication optical signal 70c.

一方、第2光送信装置30の光源32から出力された光信号70hを光変調器33により通信信号60cに基づいて例えば強度変調して通信用光信号70jとして第2光受信装置40に向けて出力する。   On the other hand, the optical signal 70h output from the light source 32 of the second optical transmission device 30 is intensity-modulated by the optical modulator 33 based on the communication signal 60c, for example, and is transmitted to the second optical reception device 40 as a communication optical signal 70j. Output.

第1光送信装置10から送信された通信用光信号70cには、第2光送信装置30から送信された通信用光信号70jが、光合波器65を介して結合する。そのため、第1光受信装置は、妨害光信号である通信用光信号70jが重畳した通信用光信号70dを受信することとなる。   The communication optical signal 70 j transmitted from the second optical transmission device 30 is coupled to the communication optical signal 70 c transmitted from the first optical transmission device 10 via the optical multiplexer 65. Therefore, the first optical receiving device receives the communication optical signal 70d on which the communication optical signal 70j that is an interfering optical signal is superimposed.

第1光受信装置20は、第1光受信装置20が受信する通信用光信号70dを妨害光信号除去器21により2以上に分岐させ所定の光路長差を設けて結合させて、妨害光信号である通信用光信号70jを除去して出力する。妨害光信号除去器21から出力された通信用光信号70eは、光符号器14に対応する光復号器22により、復号化して変調光信号70bの光周波数特性を復元した後に光検出器23に向けて出力される。光検出器23は、光復号器22により復号化された通信用光信号70fを電気信号60bに変換して第1光送信装置10の通信信号60aを検出する。   The first optical receiving device 20 divides the communication optical signal 70d received by the first optical receiving device 20 into two or more by the interfering optical signal remover 21 and combines them by providing a predetermined optical path length difference, thereby interfering optical signals. The communication optical signal 70j is removed and output. The optical signal for communication 70e output from the interfering optical signal remover 21 is decoded by the optical decoder 22 corresponding to the optical encoder 14 to restore the optical frequency characteristic of the modulated optical signal 70b, and then to the optical detector 23. Is output. The photodetector 23 detects the communication signal 60a of the first optical transmission device 10 by converting the communication optical signal 70f decoded by the optical decoder 22 into an electric signal 60b.

ここで、上記所定の光路長差は、通信用光信号70cの光周波数帯域幅を長さに換算した値以上且つ第2光送信装置30が送信する通信用光信号70jの光周波数帯域幅を長さに換算した値以下か或いは第1光送信装置10が送信する通信用光信号70cの可干渉長以上且つ第2光送信装置30が送信する通信用光信号70jの可干渉長以下とする。   Here, the predetermined optical path length difference is equal to or greater than a value obtained by converting the optical frequency bandwidth of the communication optical signal 70c into a length, and the optical frequency bandwidth of the communication optical signal 70j transmitted by the second optical transmission device 30. The value converted into the length or less, or the coherence length of the communication optical signal 70c transmitted by the first optical transmission device 10 and the coherence length of the communication optical signal 70j transmitted by the second optical transmission device 30. .

また、第1、2光送信装置10、30が送信する通信用光信号70c、70jがパルス光信号である場合は、第1光送信装置10が送信する通信用光信号70cとしての通信用パルス光信号のパルス幅を長さに換算した値以上且つ第2光送信装置30が送信する通信用光信号70jとしての通信用パルス光信号のパルス幅を長さに換算した値以下とする。光路長差を上記いずれかの長さとすることにより、妨害光信号除去器21を通過した後の通信用光信号70eの光強度を確保しながら、妨害光信号である通信用光信号70jを効率的に除去することができる。   In addition, when the communication optical signals 70c and 70j transmitted by the first and second optical transmitters 10 and 30 are pulse optical signals, the communication pulse as the communication optical signal 70c transmitted by the first optical transmitter 10 is used. The pulse width of the optical signal is equal to or greater than the value converted to the length, and the pulse width of the communication pulse optical signal as the communication optical signal 70j transmitted by the second optical transmitter 30 is equal to or less than the value converted to the length. By setting the optical path length difference to one of the above lengths, the communication optical signal 70j, which is the interference optical signal, is efficiently obtained while ensuring the optical intensity of the communication optical signal 70e after passing through the interference optical signal remover 21. Can be removed.

一方、第2光受信装置40は、第2光送信装置30から送信される通信用光信号70jを第1光送信装置10から送信される通信用光信号70cと共に受信することとなる。しかし、第1光送信装置10から送信される通信用光信号70cの光強度は、第2光送信装置30から送信される通信用光信号70jと比較してごく小さいため、第2光受信装置40の通信用光信号70jの受信には影響を及ぼさない。そのため、第2光受信装置40は、第2光受信装置40の受信する通信用光信号70kを光検出器41により電気信号60dに変換して第2光送信装置30の通信信号60cを検出することができる。   On the other hand, the second optical receiver 40 receives the communication optical signal 70j transmitted from the second optical transmitter 30 together with the communication optical signal 70c transmitted from the first optical transmitter 10. However, since the optical intensity of the communication optical signal 70c transmitted from the first optical transmitter 10 is very small compared to the communication optical signal 70j transmitted from the second optical transmitter 30, the second optical receiver The reception of the 40 communication optical signals 70j is not affected. Therefore, the second optical receiver 40 detects the communication signal 60c of the second optical transmitter 30 by converting the communication optical signal 70k received by the second optical receiver 40 into an electric signal 60d by the photodetector 41. be able to.

以上説明したように、本実施形態に係る光多重通信システムでは、光CDM方式を用いない既設の光通信システムで使用される通信用光信号70jと第1実施形態で説明した光CDM方式の光通信システムで使用される通信用光信号70cの光周波数が異なるときはもちろんのこと、光周波数が同一である場合でも相互干渉を起こさずに高精度の同一周波数光多重通信を実現することができる。また、本実施形態に係る光多重通信システム101では、第1光受信装置20にその特徴を有しており、本実施形態に係る第1光受信装置20では、既設の光通信システムにおいて、通信用光信号70cと同一周波数の通信用光信号70jを用いていた場合でも、通信用光信号70cと共に既設の光通信システムの通信用光信号70jを受信したときに、通信用光信号70jを除去できるため、高精度の光受信を実現することができる。
(第3実施形態)
As described above, in the optical multiplex communication system according to the present embodiment, the communication optical signal 70j used in the existing optical communication system that does not use the optical CDM system and the optical CDM system light described in the first embodiment. Of course, when the optical frequency of the optical signal for communication 70c used in the communication system is different, even when the optical frequency is the same, it is possible to realize highly accurate same-frequency optical multiplex communication without causing mutual interference. . Further, the optical multiplex communication system 101 according to the present embodiment has the characteristics of the first optical receiving device 20, and the first optical receiving device 20 according to the present embodiment has a communication function in an existing optical communication system. Even when the communication optical signal 70j having the same frequency as that of the communication optical signal 70c is used, the communication optical signal 70j is removed when the communication optical signal 70j of the existing optical communication system is received together with the communication optical signal 70c. Therefore, highly accurate optical reception can be realized.
(Third embodiment)

図5に本実施形態に係る光多重通信システムの概略構成図を示す。図5に示す光多重通信システム102は、光周波数領域で拡散符号化された通信用光信号70cを送信する第1の光送信装置10と、通信用光信号70cと異なる通信用光信号70jを送信する第2光送信装置30と、第1、第2の光送信装置10、30とを接続する光合波器65と、第1光送信装置10から送信される通信用光信号70cを光合波器65を介して受信する第1光受信装置20と、第1光受信装置20に接続され第2光送信装置30から送信される通信用光信号70jを光合波器65及び第1光受信装置20を介して受信する第2光受信装置40と、を有する。   FIG. 5 shows a schematic configuration diagram of an optical multiplex communication system according to the present embodiment. The optical multiplex communication system 102 shown in FIG. 5 includes a first optical transmission device 10 that transmits a communication optical signal 70c that is spread-coded in the optical frequency domain, and a communication optical signal 70j that is different from the communication optical signal 70c. An optical multiplexer 65 that connects the second optical transmission device 30 to transmit, the first and second optical transmission devices 10 and 30, and an optical signal for communication 70c transmitted from the first optical transmission device 10 are optically multiplexed. The first optical receiver 20 that receives the signal via the optical device 65, and the optical signal for communication 70j that is connected to the first optical receiver 20 and transmitted from the second optical transmitter 30. The optical multiplexer 65 and the first optical receiver And a second optical receiving device 40 that receives the signal via the second optical receiving device 20.

本実施形態では、第2実施形態で説明した光多重通信システム101と略同様の構成であるが、第2光受信装置40が第1光受信装置20の妨害光信号除去器21に接続されている点が第2実施形態で説明した光多重通信システム101と異なる。また、第2光受信装置20が、第2光送信装置30から送信される通信用光信号70jを光合波器65及び第1光受信装置20の妨害光信号除去器21を介して受信する点が第2実施形態で説明した光多重通信システム102と異なる。ここで、第2実施形態で説明したものと同様のものについては番号を同一のものとし、説明は省略する。   In this embodiment, the configuration is substantially the same as that of the optical multiplex communication system 101 described in the second embodiment, but the second optical receiver 40 is connected to the interfering optical signal remover 21 of the first optical receiver 20. This is different from the optical multiplex communication system 101 described in the second embodiment. The second optical receiver 20 receives the communication optical signal 70j transmitted from the second optical transmitter 30 via the optical multiplexer 65 and the interfering optical signal remover 21 of the first optical receiver 20. Is different from the optical multiplex communication system 102 described in the second embodiment. Here, the same components as those described in the second embodiment have the same numbers, and the description thereof is omitted.

第1光受信装置20の妨害光信号除去器21は、第1光受信装置20の受信する通信用光信号70dを2以上の光信号に分岐した分岐光信号に所定の光路長差を設け、所定の光路長差が設けられた分岐光信号を結合して分岐し、一方を所定の光強度で第1光受信装置20の内部に通信用光信号70eとして出力し、且つ他方を通信用光信号70kとして第1光受信装置20の外部の第2光受信装置20に向けて出力する。このような構成とすることで、通信用光信号70dを第2光受信装置20に向けて分岐する光分波器を設けることがないため、光分波器による光損失を軽減させることができる。また、経済的でもある。   The interfering optical signal remover 21 of the first optical receiving device 20 provides a predetermined optical path length difference to the branched optical signal obtained by branching the communication optical signal 70d received by the first optical receiving device 20 into two or more optical signals, The branched optical signals provided with a predetermined optical path length difference are combined and branched, one of them is output as a communication optical signal 70e inside the first optical receiver 20 with a predetermined light intensity, and the other is transmitted as communication light. The signal 70k is output toward the second optical receiver 20 outside the first optical receiver 20. With such a configuration, an optical demultiplexer that branches the communication optical signal 70d toward the second optical receiving device 20 is not provided, so that optical loss due to the optical demultiplexer can be reduced. . It is also economical.

ここで、妨害光信号除去器21の具体的な構成例について説明する。図6は、妨害光信号除去器21としてマッハツェンダー干渉計を適用した例を示している。図6に示すマッハツェンダー干渉計は、図2で説明したものと略同一であるため、図2に示すものと同様のものについては番号を同一にして説明は省略する。   Here, a specific configuration example of the interfering light signal remover 21 will be described. FIG. 6 shows an example in which a Mach-Zehnder interferometer is applied as the interfering light signal remover 21. The Mach-Zehnder interferometer shown in FIG. 6 is substantially the same as that described in FIG. 2, and therefore, the same components as those shown in FIG.

図6に示す妨害光信号除去器21としてのマッハツェンダー干渉計92では、分岐光信号80bのうちハーフミラー53を透過した分岐光信号80d、分岐光信号80aのうちハーフミラー53で反射した分岐光信号80cをレンズ59で光ファイバ58に集光して通信用光信号70kを図5に示す第2光受信装置40に送信する。   In the Mach-Zehnder interferometer 92 as the interference light signal remover 21 shown in FIG. 6, the branched light signal 80d of the branched light signal 80b transmitted through the half mirror 53 and the branched light reflected by the half mirror 53 of the branched light signal 80a. The signal 80c is condensed on the optical fiber 58 by the lens 59, and the communication optical signal 70k is transmitted to the second optical receiver 40 shown in FIG.

分岐光信号80a、80bには、図4に示す第2光送信装置30から送信された通信用光信号70jが含まれている。分岐光信号80a、80bの光路長差を調整し、通信用光信号70jを通信用光信号70kに出力することで、第2光受信装置40は、分岐光信号80c、80dを基に、図5に示す第2光送信装置30の通信信号60cを検出することができる。   The branched optical signals 80a and 80b include a communication optical signal 70j transmitted from the second optical transmission device 30 shown in FIG. By adjusting the optical path length difference between the branched optical signals 80a and 80b and outputting the optical signal for communication 70j to the optical signal for communication 70k, the second optical receiver 40 can generate a signal based on the optical signals 80c and 80d. The communication signal 60c of the second optical transmission device 30 shown in FIG. 5 can be detected.

なお、本実施形態では、妨害光信号除去器21としてマッハツェンダー干渉計92を適用して説明を行っているが、光路長差を用いる他の干渉計、例えばマイケルソン干渉計、ファブリペロー干渉計、AWG等により実現することができる。また、例えば光カプラを複数縦続に接続させ、各光カプラによる分岐光信号を結合させるものでもよい。   In the present embodiment, the Mach-Zehnder interferometer 92 is used as the interfering light signal remover 21. However, other interferometers using an optical path length difference, such as a Michelson interferometer and a Fabry-Perot interferometer, are described. , AWG or the like. Further, for example, a plurality of optical couplers may be connected in cascade to combine the branched optical signals from the respective optical couplers.

以上説明したように、本実施形態に係る光多重通信システム102では、光CDM方式を用いない既設の光通信システムで使用される通信用光信号70jと第1実施形態で説明した光CDM方式の光通信システムで使用される通信用光信号70cの光周波数が異なるときはもちろんのこと、光周波数が同一である場合でも相互干渉を起こさずに高精度の同一周波数光多重通信を実現することができる。さらに、通信用光信号70dを第2光受信装置に向けて分岐する光分波器を設けることがないため、光分波器による光損失を軽減させることができる。また、経済的でもある。また、本実施形態に係る光多重通信システム102では、第1光受信装置20にその特徴を有しており、本実施形態に係る第1光受信装置20では、既設の光通信システムにおいて、通信用光信号70cと同一周波数の通信用光信号70jを用いていた場合でも、通信用光信号70cと共に既設の光通信システムの通信用光信号70jを受信したときに、通信用光信号70jを除去できるため、高精度の光受信を実現することができる。さらに、通信用光信号70dを第2光受信装置40に向けて分岐する光分波器を設けることがないため、光分波器による光損失を軽減させることができる。また、経済的でもある。   As described above, in the optical multiplex communication system 102 according to the present embodiment, the communication optical signal 70j used in the existing optical communication system that does not use the optical CDM system and the optical CDM system described in the first embodiment. In addition to the case where the optical frequency of the optical signal for communication 70c used in the optical communication system is different, even if the optical frequency is the same, it is possible to realize highly accurate single-frequency optical multiplex communication without causing mutual interference. it can. Furthermore, since there is no optical demultiplexer that branches the communication optical signal 70d toward the second optical receiving device, it is possible to reduce optical loss due to the optical demultiplexer. It is also economical. Further, the optical multiplex communication system 102 according to the present embodiment has the characteristics of the first optical receiving device 20, and the first optical receiving device 20 according to the present embodiment has a communication function in an existing optical communication system. Even when the communication optical signal 70j having the same frequency as that of the communication optical signal 70c is used, the communication optical signal 70j is removed when the communication optical signal 70j of the existing optical communication system is received together with the communication optical signal 70c. Therefore, highly accurate optical reception can be realized. Furthermore, since there is no optical demultiplexer that branches the communication optical signal 70d toward the second optical receiver 40, optical loss due to the optical demultiplexer can be reduced. It is also economical.

ここで、本実施形態に係る光多重通信システム102における光多重通信方法について、第2実施形態で説明した光多重通信方法と異なる部分について図5を参照して説明する。   Here, the optical multiplex communication method in the optical multiplex communication system 102 according to the present embodiment will be described with reference to FIG. 5 for differences from the optical multiplex communication method described in the second embodiment.

本実施形態に係る光多重通信システム102における光多重通信方法では、光周波数領域で拡散符号化された通信用光信号70cを第1光送信装置10と第1光受信装置20との間で光伝送路67を介して送受信し、通信用光信号70cと異なる通信用光信号70jを第2光送信装置30と第2光受信装置40との間で光伝送路67を介して送受信する。   In the optical multiplex communication method in the optical multiplex communication system 102 according to the present embodiment, a communication optical signal 70c spread-coded in the optical frequency domain is transmitted between the first optical transmission device 10 and the first optical reception device 20. Transmission / reception is performed via the transmission path 67, and a communication optical signal 70 j different from the communication optical signal 70 c is transmitted / received between the second optical transmission apparatus 30 and the second optical reception apparatus 40 via the optical transmission path 67.

即ち、第1光受信装置20は、第1光受信装置20が受信する通信用光信号70dを妨害光信号除去器21により2以上に分岐し、分岐した分岐光信号に所定の光路長差を設け、光路長差が設けられた分岐光信号を結合して分岐し、一方から妨害光信号である通信用光信号70jを除去して出力する。それと共に、妨害光信号除去器21は、他方を第2光受信装置40に向けて出力する。   That is, the first optical receiver 20 branches the communication optical signal 70d received by the first optical receiver 20 into two or more by the interference optical signal remover 21, and gives a predetermined optical path length difference to the branched optical signal. The branched optical signal having the optical path length difference is combined and branched, and the communication optical signal 70j that is the interference optical signal is removed from one of the branched optical signals and output. At the same time, the interfering light signal remover 21 outputs the other toward the second optical receiver 40.

以上説明したように、本実施形態に係る光多重通信システム102では、光CDM方式を用いない既設の光通信システムで使用される通信用光信号70jと第1実施形態で説明した光CDM方式の光通信システムで使用される通信用光信号70cの光周波数が異なるときはもちろんのこと、光周波数が同一である場合でも相互干渉を起こさずに高精度の同一周波数光多重通信を実現することができる。さらに、通信用光信号70dを第2光受信装置40へ分岐する光分波器を設けることがないため、光分波器による光損失を軽減することができる。また、経済的でもある。
(第4実施形態)
As described above, in the optical multiplex communication system 102 according to the present embodiment, the communication optical signal 70j used in the existing optical communication system that does not use the optical CDM system and the optical CDM system described in the first embodiment. In addition to the case where the optical frequency of the optical signal for communication 70c used in the optical communication system is different, even if the optical frequency is the same, it is possible to realize highly accurate single-frequency optical multiplex communication without causing mutual interference. it can. Furthermore, since an optical demultiplexer that branches the communication optical signal 70d to the second optical receiver 40 is not provided, optical loss due to the optical demultiplexer can be reduced. It is also economical.
(Fourth embodiment)

図7に本実施形態に係る光多重通信システムの概略構成図を示す。本実施形態では、第2実施形態で示した光多重通信システム101(図4)のうち、第1光送信装置10の光源11、光符号器14、第1光受信装置20の妨害光信号除去器21、光復号器22及び光検出器23に具体的なデバイスを適用した。なお、第2実施形態で説明したものと同一のものには番号を同一にして説明を省略する。   FIG. 7 shows a schematic configuration diagram of an optical multiplex communication system according to the present embodiment. In the present embodiment, in the optical multiplex communication system 101 (FIG. 4) shown in the second embodiment, the light source 11 of the first optical transmitter 10, the optical encoder 14, and the interference optical signal removal of the first optical receiver 20 are removed. Specific devices were applied to the detector 21, the optical decoder 22, and the photodetector 23. Note that the same components as those described in the second embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、光源15は、可干渉長が短い光を出力するSLDと、光増幅器と、中心周波数1555nmで半値幅8nmの光フィルタからなる。   In this embodiment, the light source 15 includes an SLD that outputs light having a short coherence length, an optical amplifier, and an optical filter having a center frequency of 1555 nm and a half-value width of 8 nm.

また、光変調器16として光強度変調器を適用している。光源15から出力された光信号70aを通信信号60aに基づいて互いに光強度が反転した相補的な変調光信号90a、90bを出力する。   Further, a light intensity modulator is applied as the light modulator 16. Based on the communication signal 60a, the optical signal 70a output from the light source 15 is output as complementary modulated optical signals 90a and 90b whose light intensity is inverted.

また、光符号器としてのマッハツェンダー型光導波路フィルタ19は、光変調器16から出力された2つの変調光信号90a、90bを光方向性結合器17aにより合波・分波する。そして、マッハツェンダー型光導波路18(FSR10GHz)の一方の分岐光信号90dに光路長差を与えた上で、他方の分岐光信号90cと結合させる。分岐光信号90c、90dは光方向性結合器17bにより合波・分波され拡散符号化され、一方の出力から光周波数特性が双極の通信用光信号70cとして出力する。光復号器としてのマッハツェンダー型光導波路フィルタ29についても光符号器としてのマッハツェンダー型光導波路フィルタ19と同様の構成である。   The Mach-Zehnder type optical waveguide filter 19 as an optical encoder multiplexes / demultiplexes the two modulated optical signals 90a and 90b output from the optical modulator 16 by the optical directional coupler 17a. Then, an optical path length difference is given to one branched optical signal 90d of the Mach-Zehnder type optical waveguide 18 (FSR 10 GHz), and then combined with the other branched optical signal 90c. The branched optical signals 90c and 90d are multiplexed / demultiplexed by the optical directional coupler 17b and spread coded, and output from one output as a communication optical signal 70c having a bipolar optical frequency characteristic. The Mach-Zehnder type optical waveguide filter 29 as an optical decoder has the same configuration as the Mach-Zehnder type optical waveguide filter 19 as an optical encoder.

妨害光信号除去器としてマッハツェンダー型光導波路25(FSR1000GHz)(FSR:周波数帯域幅)及びその入出力に光方向性結合器24a、24bを接続したマッハツェンダー型光導波路フィルタ26を適用している。妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26は、第2光送信装置30から送信される通信用光信号70jが重畳した通信用光信号70dを光方向性結合器24aで例えば光強度に応じて2分岐し、一方の分岐光信号90fに光路長差を与えた上で、光方向性結合器24bにおいて他方の分岐光信号90eと結合させる。ここで、光方向性結合器24bは、例えば光強度に応じて任意の結合比を分岐光信号90e、90fに与えることができる。そのため、光方向性結合器24bの一方の出力37から、妨害光信号である通信用光信号70jを除去した通信用光信号90gを得ることができる。妨害光信号除去器としてマッハツェンダー型光導波路フィルタ26を適用することで妨害光信号除去器のコンパクト化を図ることができる。   A Mach-Zehnder type optical waveguide 25 (FSR 1000 GHz) (FSR: frequency bandwidth) and a Mach-Zehnder type optical waveguide filter 26 in which optical directional couplers 24a and 24b are connected to its input and output are applied as interference light signal removers. . The Mach-Zehnder type optical waveguide filter 26 serving as an interfering optical signal remover is configured such that a communication optical signal 70d on which a communication optical signal 70j transmitted from the second optical transmission device 30 is superimposed is, for example, optical intensity by an optical directional coupler 24a. And branching into two in accordance with the optical path length difference of one of the branched optical signals 90f and combining with the other branched optical signal 90e in the optical directional coupler 24b. Here, the optical directional coupler 24b can give an arbitrary coupling ratio to the branched optical signals 90e and 90f according to, for example, the light intensity. Therefore, it is possible to obtain the communication optical signal 90g from which the communication optical signal 70j, which is an interference optical signal, is removed from one output 37 of the optical directional coupler 24b. By applying the Mach-Zehnder type optical waveguide filter 26 as the interference light signal remover, the interference light signal remover can be made compact.

また、光検出器として差動光検出器36を適用している。光検出器としての差動検出器36は、光復号器としてのマッハツェンダー型光導波路フィルタ29から出力される双極の通信用光信号90k、90mの光強度を受光素子35、36により電気信号に変換して、差分をとることによって第1光送信装置10の通信信号60aを検出する。   Further, a differential photodetector 36 is applied as the photodetector. The differential detector 36 as a photodetector detects the light intensity of the bipolar communication optical signals 90k and 90m output from the Mach-Zehnder type optical waveguide filter 29 as an optical decoder by the light receiving elements 35 and 36. The communication signal 60a of the first optical transmission device 10 is detected by converting and taking the difference.

ここで、本実例による光多重通信システム103において光受信装置20での妨害光信号の具体的な除去効果について説明する。図8に、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26によって妨害光信号を除去した場合と、除去しない場合での光復号器としてのマッハツェンダー型光導波路フィルタ29を通過後の通信用光信号70dの光周波数スペクトルを示す。また、図8(a)は妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26によって妨害光信号を除去した場合の光周波数スペクトルを示し、図8(b)は妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26によって妨害光信号を除去しない場合の光周波数スペクトルを示している。妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26の除去効果を検証するために、光変調器16では、パルスパターンジェネレータからの1Gbit/s、31段の擬似ランダム信号に従って光信号70aを強度変調することとした。また、妨害光信号として、1Gbit/s、31段の擬似ランダム信号で強度変調した中心周波数1555nmで半値幅130MHzの光信号を用いた。なお、図8のスペクトルは、妨害光信号除去器としてのマッハツェンダー光導波路フィルタ26の通信用光信号70dの入力と異なる入力39から妨害光信号を入力して、除去効果を検証したスペクトルである。このため、実際の構成でのスペクトルは、図8のスペクトルとは異なる形になる。   Here, a specific removal effect of the interfering optical signal in the optical receiver 20 in the optical multiplex communication system 103 according to this example will be described. FIG. 8 shows communication after passing through a Mach-Zehnder type optical waveguide filter 29 as an optical decoder when the interference light signal is removed by the Mach-Zehnder type optical waveguide filter 26 as an interference light signal remover. The optical frequency spectrum of the optical signal for use 70d is shown. FIG. 8A shows an optical frequency spectrum when the interference light signal is removed by the Mach-Zehnder optical waveguide filter 26 as the interference light signal remover, and FIG. 8B shows the interference light signal remover. The optical frequency spectrum when the interference light signal is not removed by the Mach-Zehnder type optical waveguide filter 26 is shown. In order to verify the removal effect of the Mach-Zehnder type optical waveguide filter 26 as an interfering light signal remover, the optical modulator 16 intensifies the optical signal 70a according to a 1 Gbit / s, 31-stage pseudo-random signal from the pulse pattern generator. It was decided to modulate. Further, as the interfering light signal, an optical signal having a center frequency of 1555 nm and a half-value width of 130 MHz modulated with a 1 Gbit / s, 31-stage pseudo-random signal was used. The spectrum in FIG. 8 is a spectrum in which the interference effect is verified by inputting the interference light signal from the input 39 different from the input of the communication optical signal 70d of the Mach-Zehnder optical waveguide filter 26 as the interference light signal remover. . For this reason, the spectrum in an actual structure becomes a form different from the spectrum of FIG.

図8(b)に示すように、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26を設けない場合では、妨害光信号の影響が大きく、光周波数が1555nmにピークが立っていることがわかる。一方、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26を設けた場合では、図8(a)に示すように、光周波数が1555nmの妨害光信号は20dB以上抑制されており、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26により妨害光信号が除去できていることがわかる。   As shown in FIG. 8B, in the case where the Mach-Zehnder type optical waveguide filter 26 as the interference light signal remover is not provided, the influence of the interference light signal is large and the optical frequency has a peak at 1555 nm. Recognize. On the other hand, in the case where the Mach-Zehnder type optical waveguide filter 26 as the interference light signal remover is provided, the interference light signal having an optical frequency of 1555 nm is suppressed by 20 dB or more as shown in FIG. It can be seen that the interference light signal can be removed by the Mach-Zehnder type optical waveguide filter 26 as the signal remover.

また、図9に、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26によって妨害光信号を除去した場合と、除去しない場合及び妨害光信号がない場合での光復号器としてのマッハツェンダー型光導波路フィルタ29を通過後の通信用光信号70dのアイパターンを示す。図9(a)は妨害光信号がない場合の通信用光信号70cのアイパターンで、図9(b)は妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26によって妨害光信号を除去した場合の光復号器としてのマッハツェンダー型光導波路フィルタ29を通過後の通信用光信号70cのアイパターンで、図9(c)は妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26によって妨害光信号を除去しない場合の光復号器としてのマッハツェンダー型光導波路フィルタ29を通過後の通信用光信号70cのアイパターンをそれぞれ示している。図9において、横軸は時間で、縦軸は光強度を示す。縦軸の1目盛りは、それぞれ図9(a)(b)では、20nW/div、図9(c)では40nW/divである。この例では、妨害光信号と通信用光信号との強度比は、妨害光信号の消光比より十分小さい16dBとした。図9(b)に示すアイパターンが図9(a)に示すアイパターンに略一致していることから、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ29により、妨害光信号が除去されていることがわかる。   Further, FIG. 9 shows a Mach-Zehnder type as an optical decoder when the interference light signal is removed by the Mach-Zehnder type optical waveguide filter 26 as the interference light signal remover, and when the interference light signal is not removed and when there is no interference light signal. The eye pattern of the optical signal for communication 70d after passing through the optical waveguide filter 29 is shown. FIG. 9A shows an eye pattern of the communication optical signal 70c when there is no interfering optical signal, and FIG. 9B shows that the interfering optical signal is removed by the Mach-Zehnder optical waveguide filter 26 as an interfering optical signal remover. FIG. 9C shows an eye pattern of the communication optical signal 70c after passing through the Mach-Zehnder type optical waveguide filter 29 as an optical decoder. FIG. The eye patterns of the communication optical signal 70c after passing through the Mach-Zehnder type optical waveguide filter 29 as an optical decoder when the optical signal is not removed are shown. In FIG. 9, the horizontal axis represents time, and the vertical axis represents light intensity. One scale on the vertical axis is 20 nW / div in FIGS. 9A and 9B and 40 nW / div in FIG. 9C, respectively. In this example, the intensity ratio between the interference light signal and the communication optical signal is 16 dB, which is sufficiently smaller than the extinction ratio of the interference light signal. Since the eye pattern shown in FIG. 9B substantially matches the eye pattern shown in FIG. 9A, the interference light signal is removed by the Mach-Zehnder optical waveguide filter 29 as the interference light signal remover. You can see that

ここで、本実施形態に係る光多重通信システム103における光多重通信方法について、第2実施形態で説明した光多重通信方法と異なる部分について図7を参照して説明する。即ち、第2光送信装置30と第2光受信装置40との間での通信は、第2実施形態で説明したものと同様であるため、説明は省略する。   Here, the optical multiplex communication method in the optical multiplex communication system 103 according to the present embodiment will be described with reference to FIG. 7 for differences from the optical multiplex communication method described in the second embodiment. That is, since the communication between the second optical transmitter 30 and the second optical receiver 40 is the same as that described in the second embodiment, the description thereof is omitted.

まず、光源15から出力された光信号70aを光変調器16により通信信号60aに基づいて強度変調し、互いに光強度が反転した相補的な変調光信号90a、90bを光符号器としてのマッハツェンダー型光導波路フィルタ19に向けて出力する。光符号器としてのマッハツェンダー型光導波路フィルタ19は、フィルタの光周波数特性に基づいて、変調光信号90a、90bの光周波数帯域を複数に分割して拡散符号化し、通信用光信号70cとして第1光受信装置20に向けて出力する。ここで、光変調器16から出力される相補的な変調光信号90a、90bを拡散符号化するために、光符号器としてのマッハツェンダー型光導波路フィルタ19の出力からは、光周波数特性が双極の通信用光信号70cが出力される。   First, the optical signal 70a output from the light source 15 is intensity-modulated by the optical modulator 16 based on the communication signal 60a, and complementary modulated optical signals 90a and 90b whose optical intensities are inverted from each other are Mach-Zehnders as optical encoders. Output toward the optical waveguide filter 19. The Mach-Zehnder type optical waveguide filter 19 serving as an optical encoder divides the optical frequency band of the modulated optical signals 90a and 90b into a plurality of signals based on the optical frequency characteristics of the filter and performs spread encoding to obtain a communication optical signal 70c. Output to one optical receiver 20. Here, since the complementary modulated optical signals 90a and 90b output from the optical modulator 16 are subjected to spread encoding, the optical frequency characteristic is bipolar from the output of the Mach-Zehnder type optical waveguide filter 19 as an optical encoder. Communication optical signal 70c is output.

第1光受信装置10は、通信用光信号70cに重畳した妨害光信号である通信用光信号70jを妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26により除去して出力する。ここで、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26は、第2光送信装置30から送信される通信用光信号70jが重畳した通信用光信号70dを光方向性結合器24aにより分岐光信号90e、90fに分岐する。その後、一方の分岐光信号90fに光路長差を与えた上で光方向性結合器24bで結合させる。光方向性結合器24bでは、結合した分岐光信号90e、90fを分岐して一方の出力37から、妨害光信号である通信用光信号70jが除去された通信用光信号90gを出力する。   The first optical receiver 10 removes and outputs the communication optical signal 70j, which is an interference optical signal superimposed on the communication optical signal 70c, by the Mach-Zehnder optical waveguide filter 26 as an interference optical signal remover. Here, the Mach-Zehnder type optical waveguide filter 26 as an interference light signal remover uses the optical directional coupler 24a to transmit the communication optical signal 70d on which the communication optical signal 70j transmitted from the second optical transmission device 30 is superimposed. Branches to branched optical signals 90e and 90f. Thereafter, an optical path length difference is given to one of the branched optical signals 90f, and the optical signals are coupled by the optical directional coupler 24b. The optical directional coupler 24 b branches the combined branched optical signals 90 e and 90 f and outputs a communication optical signal 90 g from which the communication optical signal 70 j that is an interference optical signal is removed from one output 37.

光方向性結合器24bから出力された通信用光信号90gは、光符号器に対応する光復号器としてのマッハツェンダー型光導波路フィルタ29により、復号化して光周波数特性が双極の通信用光信号90k、90mを光検出器としての差動検出器36に向けて出力される。光検出器としての差動検出器36は、光復号器としてのマッハツェンダー型光導波路フィルタ29から出力された双極の通信用光信号90k、90mをそれぞれ電気信号に変換してその差分値を検出する。
(第5実施形態)
The communication optical signal 90g output from the optical directional coupler 24b is decoded by a Mach-Zehnder optical waveguide filter 29 as an optical decoder corresponding to the optical encoder, and has a bipolar optical frequency characteristic. 90k and 90m are output toward the differential detector 36 as a photodetector. The differential detector 36 as the optical detector converts the bipolar communication optical signals 90k and 90m output from the Mach-Zehnder optical waveguide filter 29 as the optical decoder into electrical signals, and detects the difference value. To do.
(Fifth embodiment)

図10に本実施形態に係る光多重通信システムの概略構成図を示す。本実施形態では、第3実施形態で示した光多重通信システム102(図5)のうち、第1光送信装置10の光源11、光符号器14、第1光受信装置20の妨害光信号除去器21、光復号器22及び光検出器23に具体的なデバイスを適用した。具体的には、第4実施形態で説明したマッハツェンダー型光導波路フィルタ26の出力38を第2光受信装置40へ接続した形態である。なお、第2、第4実施形態で説明したものと同一のものには番号を同一にして説明を省略する。   FIG. 10 shows a schematic configuration diagram of an optical multiplex communication system according to the present embodiment. In the present embodiment, in the optical multiplex communication system 102 (FIG. 5) shown in the third embodiment, the light source 11 of the first optical transmitter 10, the optical encoder 14, and the interference optical signal removal of the first optical receiver 20 are removed. Specific devices were applied to the detector 21, the optical decoder 22, and the photodetector 23. Specifically, the output 38 of the Mach-Zehnder optical waveguide filter 26 described in the fourth embodiment is connected to the second optical receiver 40. The same components as those described in the second and fourth embodiments are denoted by the same reference numerals and the description thereof is omitted.

マッハツェンダー型光導波路フィルタ26の光方向性結合器24bは、マッハツェンダー型光導波路25からの分岐光信号90e、90fを任意の光強度で分岐できる。そのため、光方向性結合器24bの一方の出力38から妨害光信号である通信用光信号70jを出力することが可能となる。この場合、光方向性結合器24bの一方の出力38からは、通信用光信号70jと共に、第1光送信装置10から送信される通信用光信号70cが出力されることとなる。しかし、第1光送信装置10から送信される通信用光信号70cの光強度は、第2光送信装置から送信される通信用光信号70jの光強度と比較してごく小さいため、第2光受信装置40の通信用光信号70jの受信には影響を及ぼさない。そのため、第2光受信装置40は、第1光受信装置20を介して送信される通信用光信号70kを光検出器41により電気信号60dに変換して第2光送信装置30の通信信号60cを検出することができる。また、妨害光信号除去器としてマッハツェンダー型光導波路フィルタ26を適用することで妨害光信号除去器のコンパクト化を図ることができる。さらに、通信用光信号70dを第2光受信装置40へ分岐する光分波器を設けることがないため、光分波器による光損失を軽減させることができる。また、経済的でもある。   The optical directional coupler 24b of the Mach-Zehnder type optical waveguide filter 26 can branch the branched optical signals 90e and 90f from the Mach-Zehnder type optical waveguide 25 with an arbitrary light intensity. Therefore, it becomes possible to output the communication optical signal 70j, which is an interfering optical signal, from one output 38 of the optical directional coupler 24b. In this case, from one output 38 of the optical directional coupler 24b, the communication optical signal 70c transmitted from the first optical transmitter 10 is output together with the communication optical signal 70j. However, since the optical intensity of the communication optical signal 70c transmitted from the first optical transmitter 10 is very small compared to the optical intensity of the communication optical signal 70j transmitted from the second optical transmitter, the second light The reception of the communication optical signal 70j by the receiving device 40 is not affected. Therefore, the second optical receiving device 40 converts the communication optical signal 70k transmitted via the first optical receiving device 20 into an electric signal 60d by the photodetector 41, and transmits the communication signal 60c of the second optical transmitting device 30. Can be detected. Further, the interference light signal remover can be made compact by applying the Mach-Zehnder type optical waveguide filter 26 as the interference light signal remover. Furthermore, since an optical demultiplexer for branching the communication optical signal 70d to the second optical receiver 40 is not provided, optical loss due to the optical demultiplexer can be reduced. It is also economical.

ここで、本実施形態に係る光多重通信システム104における光多重通信方法について、第4実施形態で説明した光多重通信方法と異なる部分について図10を参照して説明する。なお、妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26を除く各装置の動作は、第2、第4実施形態で説明したものと同様であるため、説明は省略する。   Here, the optical multiplex communication method in the optical multiplex communication system 104 according to the present embodiment will be described with reference to FIG. 10 for differences from the optical multiplex communication method described in the fourth embodiment. Note that the operation of each device except the Mach-Zehnder type optical waveguide filter 26 as an interference light signal remover is the same as that described in the second and fourth embodiments, and a description thereof will be omitted.

第1光受信装置20の妨害光信号除去器としてのマッハツェンダー型光導波路フィルタ26は、第2光送信装置30から送信される通信用光信号70jが重畳した光信号を光方向性結合器24aにより分岐光信号90e、90fに分岐する。その後、一方の分岐光信号90fに光路長差を与えた上で光方向性結合器24bで結合させる。ここで、光方向性結合器24bでは、結合した分岐光信号90e、90fを分岐し、一方の出力37からは、妨害光信号である通信用光信号70jが除去された通信用光信号90gを出力し、他方の出力38からは第2光送信装置30から送信される通信用光信号70jを含む通信用光信号70kを出力する。   The Mach-Zehnder type optical waveguide filter 26 serving as an interfering optical signal remover of the first optical receiving device 20 converts an optical signal on which a communication optical signal 70j transmitted from the second optical transmitting device 30 is superimposed into an optical directional coupler 24a. Branches to branched optical signals 90e and 90f. Thereafter, an optical path length difference is given to one of the branched optical signals 90f, and the optical signals are coupled by the optical directional coupler 24b. Here, in the optical directional coupler 24b, the combined branched optical signals 90e and 90f are branched, and from one output 37, the communication optical signal 90g from which the communication optical signal 70j which is an interference optical signal is removed is obtained. The other output 38 outputs the communication optical signal 70k including the communication optical signal 70j transmitted from the second optical transmitter 30.

第2光受信装置40は、光方向性結合器24bの他方の出力38から出力された通信用光信号70kを受信する。光CDM方式での通信用光信号70cは、光強度が弱いために、第2光受信装置40の通信用光信号70jの受信には影響を及ぼさない。   The second optical receiver 40 receives the communication optical signal 70k output from the other output 38 of the optical directional coupler 24b. The optical signal for communication 70c in the optical CDM system does not affect the reception of the optical signal for communication 70j of the second optical receiver 40 because the light intensity is weak.

本発明の光通信システム、光多重通信システム、光通信方法、光多重通信方法及び光受信装置では、長距離基幹回線からアクセス回線まで幅広く利用することができる。   In the optical communication system, the optical multiplex communication system, the optical communication method, the optical multiplex communication method, and the optical receiving apparatus of the present invention, it can be widely used from a long distance trunk line to an access line.

第1実施形態に係る光通信システムの概略構成図である。1 is a schematic configuration diagram of an optical communication system according to a first embodiment. 妨害光信号除去器としてのマッハツェンダー干渉計の概略構成図である。It is a schematic block diagram of the Mach-Zehnder interferometer as an interference light signal remover. 妨害光信号除去器により妨害光信号を除去する場合の光強度を示した概略図である。It is the schematic which showed the light intensity in the case of removing an interference light signal with an interference light signal remover. 第2実施形態に係る光多重通信システムの概略構成図である。It is a schematic block diagram of the optical multiplex communication system which concerns on 2nd Embodiment. 第3実施形態に係る光多重通信システムの概略構成図である。It is a schematic block diagram of the optical multiplex communication system which concerns on 3rd Embodiment. 第3実施形態に係る光多重通信システムの妨害光信号除去器としてマッハツェンダー干渉計を適用した例を示した図である。It is the figure which showed the example which applied the Mach-Zehnder interferometer as an interference light signal remover of the optical multiplex communication system which concerns on 3rd Embodiment. 第4実施形態に係る光多重通信システムの概略構成図である。It is a schematic block diagram of the optical multiplex communication system which concerns on 4th Embodiment. 妨害光信号を除去した場合と、除去しない場合での光復号器通過後の通信用光信号の光周波数スペクトルを示した図である。It is the figure which showed the optical frequency spectrum of the optical signal for communication after the optical decoder in the case where an interference optical signal is removed, and the case where it is not removed. 妨害光信号を除去した場合と、除去しない場合及び妨害光信号がない場合での光復号器通過後の通信用光信号のアイパターンを示した図である。It is the figure which showed the eye pattern of the optical signal for communication after the optical decoder in the case where an interference light signal is removed, the case where it does not remove, and the case where there is no interference light signal. 第5実施形態に係る光多重通信システムの概略構成図である。It is a schematic block diagram of the optical multiplex communication system which concerns on 5th Embodiment.

符号の説明Explanation of symbols

10 光送信装置、第1光送信装置 11、15、32 光源
12、16、33 光変調器 14 光符号器
17a、17b、24a、24b、27a、27b 光方向性結合器
18、25、28 マッハツェンダー型光導波路
19、26、29 マッハツェンダー型光導波路フィルタ
20 光受信装置、第1光受信装置 21 妨害光信号除去器
22 光復号器 23、41 光検出器
30 第2光送信装置 35a、35b 受光素子 36 差動検出器
37、38 出力
39 入力
40 第2光受信装置
50、53、57 ハーフミラー 51 位相遅延部 52、54 ミラー
55、59 レンズ 56、58 光ファイバ
60a、60c 通信信号 60b、60d 電気信号
65 光合波器 66 光分波器 67 光伝送路
70a、70h 光信号 70b、90a、90b、90h 変調光信号
70c、70d、70g、70k、70m、70j、70k、90g 通信用光信号
80a、80b、80c、80d、90c、
90d、90e、90f、90i、90j 分岐光信号
91、92 マッハツェンダー干渉計
100 光通信システム 101、102、103 光多重通信システム

DESCRIPTION OF SYMBOLS 10 Optical transmitter, 1st optical transmitter 11, 15, 32 Light source 12, 16, 33 Optical modulator 14 Optical encoder 17a, 17b, 24a, 24b, 27a, 27b Optical directional coupler 18, 25, 28 Mach Zehnder type optical waveguide 19, 26, 29 Mach-Zehnder type optical waveguide filter 20 Optical receiver, first optical receiver 21 Interfering optical signal remover 22 Optical decoder 23, 41 Photodetector 30 Second optical transmitter 35a, 35b Light receiving element 36 Differential detector 37, 38 Output 39 Input 40 Second optical receiver 50, 53, 57 Half mirror 51 Phase delay unit 52, 54 Mirror 55, 59 Lens 56, 58 Optical fiber 60a, 60c Communication signal 60b, 60d Electric signal 65 Optical multiplexer 66 Optical demultiplexer 67 Optical transmission line 70a, 70h Optical signal 70b, 90a, 90b, 90h Optical signals 70c, 70d, 70g, 70k, 70m, 70j, 70k, 90g communication optical signals 80a, 80b, 80c, 80d, 90c,
90d, 90e, 90f, 90i, 90j Branched optical signal 91, 92 Mach-Zehnder interferometer
100 Optical Communication System 101, 102, 103 Optical Multiplex Communication System

Claims (24)

光周波数領域で拡散符号化された通信用光信号を送信する光送信装置と、前記光送信装置から送信される前記通信用光信号を受信する光受信装置と、を有する光通信システムであって、
前記光受信装置は、
前記光送信装置から送信される前記通信用光信号を2以上に分岐させ前記通信用光信号の光周波数帯域幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、
を備えることを特徴とする光通信システム。
An optical communication system comprising: an optical transmission device that transmits an optical signal for communication that is spread-encoded in an optical frequency domain; and an optical reception device that receives the optical signal for communication transmitted from the optical transmission device. ,
The optical receiver is
The optical signal for communication transmitted from the optical transmitter is branched into two or more, and the optical frequency bandwidth of the optical signal for communication is provided with an optical path length difference equal to or greater than the length, and combined with predetermined light. Interference light signal remover that outputs with intensity,
A photodetector for detecting the communication optical signal output from the interfering optical signal remover;
An optical communication system comprising:
光周波数領域で拡散符号化された通信用光信号を送信する光送信装置と、前記光送信装置から送信される前記通信用光信号を受信する光受信装置と、を有する光通信システムであって、
前記光受信装置は、
前記光送信装置から送信される前記通信用光信号を2以上に分岐させ前記通信用光信号の可干渉長以上の光路長差を設けて結合させて所定の強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、
を備えることを特徴とする光通信システム。
An optical communication system comprising: an optical transmission device that transmits an optical signal for communication that is spread-encoded in an optical frequency domain; and an optical reception device that receives the optical signal for communication transmitted from the optical transmission device. ,
The optical receiver is
An interfering optical signal remover for branching the optical signal for communication transmitted from the optical transmitter into two or more, providing an optical path length difference equal to or greater than the coherence length of the optical signal for communication, and outputting the optical signal with a predetermined intensity. When,
A photodetector for detecting the communication optical signal output from the interfering optical signal remover;
An optical communication system comprising:
光周波数領域で拡散符号化された通信用パルス光信号を送信する光送信装置と、前記光送信装置から送信される前記通信用パルス光信号を受信する光受信装置と、を有する光通信システムであって、
前記光受信装置は、
前記光送信装置から送信される前記通信用パルス光信号を2以上に分岐させ前記通信用パルス光信号のパルス幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記通信用パルス光信号を検出する光検出器と、
を備えることを特徴とする光通信システム。
An optical communication system comprising: an optical transmission device that transmits a communication pulse optical signal that is spread-encoded in an optical frequency domain; and an optical reception device that receives the communication pulse optical signal transmitted from the optical transmission device. There,
The optical receiver is
The communication pulse optical signal transmitted from the optical transmission device is branched into two or more, and a predetermined light is combined by providing an optical path length difference equal to or greater than a value obtained by converting the pulse width of the communication pulse optical signal into a length. Interference light signal remover that outputs with intensity,
A photodetector for detecting the communication pulse optical signal output from the interfering optical signal remover;
An optical communication system comprising:
光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第2光送信装置から前記光合波器を介して送信される前記別の通信用光信号を受信する第2光受信装置と、前記第1光受信装置と前記第2光受信装置とを接続する光分波器と、を有する光多重通信システムであって、
前記第1光受信装置は、
前記第1光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記光信号を検出する光検出器と、
を備えることを特徴とする光多重通信システム。
A first optical transmission device that transmits a communication optical signal spread-encoded in an optical frequency domain; and a second optical transmission device that transmits another communication optical signal having an optical frequency bandwidth narrower than the optical frequency bandwidth of the communication optical signal. Two optical transmitters, an optical multiplexer connecting the first optical transmitter and the second optical transmitter, and the communication optical signal transmitted from the first optical transmitter via the optical multiplexer , A second optical receiver that receives the other optical signal for communication transmitted from the second optical transmitter via the optical multiplexer, and the first optical receiver And an optical demultiplexer for connecting the second optical receiver,
The first optical receiver is
The optical signal received by the first optical receiver is branched into two or more optical signals, and the optical frequency bandwidth of the optical signal for communication is equal to or greater than the length and the other optical signal for communication An interfering optical signal remover that outputs an optical frequency bandwidth with a predetermined light intensity by combining an optical path length difference equal to or less than a value obtained by converting the optical frequency bandwidth into a length; and
A photodetector for detecting the optical signal output from the interfering optical signal remover;
An optical multiplex communication system comprising:
光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第2光送信装置から前記光合波器を介して送信される前記別の通信用光信号を受信する第2光受信装置と、前記第1光受信装置と前記第2光受信装置とを接続する光分波器と、を有する光多重通信システムであって、
前記第1光受信装置は、
前記第1光受信装置の受信する光信号を2以上の光信号に分岐し前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記光信号を検出する光検出器と、
を備えることを特徴とする光多重通信システム。
A first optical transmitter that transmits a communication optical signal spread-encoded in an optical frequency domain, and a second optical signal that transmits another communication optical signal having a coherence length longer than the coherence length of the communication optical signal. A transmission device; an optical multiplexer connecting the first optical transmission device and the second optical transmission device; and the communication optical signal transmitted from the first optical transmission device via the optical multiplexer. A first optical receiver, a second optical receiver that receives the other optical signal for communication transmitted from the second optical transmitter via the optical multiplexer, the first optical receiver, and the An optical demultiplexing system having an optical demultiplexer for connecting the second optical receiving device,
The first optical receiver is
An optical signal received by the first optical receiver is branched into two or more optical signals, and an optical path length difference equal to or greater than the coherence length of the communication optical signal and less than or equal to the coherence length of the other communication optical signal is provided. An interfering light signal remover that combines and outputs at a predetermined light intensity;
A photodetector for detecting the optical signal output from the interfering optical signal remover;
An optical multiplex communication system comprising:
光周波数領域で拡散符号化された通信用パルス光信号を送信する第1光送信装置と、前記通信用パルス光信号のパルス幅より大きいパルス幅の別の通信用パルス光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用パルス光信号を受信する第1光受信装置と、前記第2光送信装置から前記光合波器を介して送信される前記別の通信用パルス光信号を受信する第2光受信装置と、前記第1光受信装置と前記第2光受信装置とを接続する光分波器と、を有する光多重通信システムであって、
前記第1光受信装置は、
前記第1光受信装置の受信するパルス光信号を2以上の光信号に分岐し前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記パルス光信号を検出する光検出器と、
を備えることを特徴とする光多重通信システム。
A first optical transmission device that transmits a communication pulse optical signal that is spread-encoded in the optical frequency domain; and a second optical transmission device that transmits another communication pulse optical signal having a pulse width larger than the pulse width of the communication pulse optical signal. An optical transmitter for connecting the first optical transmitter to the second optical transmitter; and the communication pulse optical signal transmitted from the first optical transmitter via the optical multiplexer. , A second optical receiver for receiving the other optical pulse signal for communication transmitted from the second optical transmitter through the optical multiplexer, and the first optical receiver. An optical demultiplexer for connecting a device and the second optical receiver,
The first optical receiver is
The pulse optical signal received by the first optical receiver is branched into two or more optical signals, and the pulse width of the other communication pulse optical signal is equal to or greater than the value obtained by converting the pulse width of the communication pulse optical signal into a length. An interference light signal remover that outputs an optical path with a predetermined light intensity by combining an optical path length difference equal to or less than a value converted into a length;
A photodetector for detecting the pulsed optical signal output from the interfering optical signal remover;
An optical multiplex communication system comprising:
光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第1光受信装置に接続され前記第2光送信装置から前記光合波器及び前記第1光受信装置を介して送信される前記別の通信用光信号を受信する第2光受信装置と、を有する光多重通信システムであって、
前記第1光受信装置は、
前記第1光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記第1光受信装置の内部に出力し、他方を前記第2光受信装置に向けて出力する妨害光信号除去器と、
前記妨害光信号除去器から前記第1光受信装置の内部に出力される前記光信号を検出する光検出器と、
を備えることを特徴とする光多重通信システム。
A first optical transmission device that transmits a communication optical signal spread-encoded in an optical frequency domain; and a second optical transmission device that transmits another communication optical signal having an optical frequency bandwidth narrower than the optical frequency bandwidth of the communication optical signal. Two optical transmitters, an optical multiplexer connecting the first optical transmitter and the second optical transmitter, and the communication optical signal transmitted from the first optical transmitter via the optical multiplexer And the other optical signal for communication transmitted from the second optical transmission device via the optical multiplexer and the first optical reception device, connected to the first optical reception device. An optical multiplex communication system having a second optical receiving device for receiving
The first optical receiver is
The optical signal received by the first optical receiver is branched into two or more optical signals, and the optical frequency bandwidth of the optical signal for communication is equal to or greater than the length and the other optical signal for communication An optical path length difference equal to or less than a value obtained by converting the optical frequency bandwidth into a length is provided, the branched optical signals provided with the optical path length difference are combined and branched, and one of the first light beams with a predetermined light intensity is provided. An interfering optical signal remover that outputs to the inside of the receiving device and outputs the other toward the second optical receiving device;
A photodetector for detecting the optical signal output from the interfering optical signal remover to the inside of the first optical receiver;
An optical multiplex communication system comprising:
光周波数領域で拡散符号化された通信用光信号を送信する第1光送信装置と、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用光信号を受信する第1光受信装置と、前記第1光受信装置に接続され前記第2光送信装置から前記光合波器及び前記第1光受信装置を介して送信される前記別の通信用光信号を受信する第2光受信装置と、を有する光多重通信システムであって、
前記第1光受信装置は、
前記第1光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記第1光受信装置の内部に出力し、他方を前記第2光受信装置に向けて出力する妨害光信号除去器と、
前記妨害光信号除去器から前記第1光受信装置の内部に出力される前記光信号を検出する光検出器と、
を備えることを特徴とする光多重通信システム。
A first optical transmitter that transmits a communication optical signal spread-encoded in an optical frequency domain, and a second optical signal that transmits another communication optical signal having a coherence length longer than the coherence length of the communication optical signal. A transmission device; an optical multiplexer connecting the first optical transmission device and the second optical transmission device; and the communication optical signal transmitted from the first optical transmission device via the optical multiplexer. A first optical receiving device that receives the second optical transmission device connected to the first optical receiving device and transmitted from the second optical transmitting device via the optical multiplexer and the first optical receiving device. An optical multiplex communication system having a second optical receiver,
The first optical receiver is
An optical path length that is greater than or equal to the coherence length of the communication optical signal and less than or equal to the coherence length of the other communication optical signal to a branched optical signal obtained by branching the optical signal received by the first optical receiver into two or more optical signals Providing a difference, combining and branching the branched optical signals provided with the optical path length difference, outputting one to the inside of the first optical receiver with a predetermined light intensity, and supplying the other to the second optical receiver An interfering light signal remover that outputs to
A photodetector for detecting the optical signal output from the interfering optical signal remover to the inside of the first optical receiver;
An optical multiplex communication system comprising:
光周波数領域で拡散符号化された通信用パルス光信号を送信する第1光送信装置と、前記通信用パルス光信号のパルス幅より大きいパルス幅の別の通信用パルス光信号を送信する第2光送信装置と、前記第1光送信装置と前記第2光送信装置とを接続する光合波器と、前記第1光送信装置から前記光合波器を介して送信される前記通信用パルス光信号を受信する第1光受信装置と、前記第1光受信装置に接続され前記第2光送信装置から前記光合波器及び前記第1光受信装置を介して送信される前記別の通信用パルス光信号を受信する第2光受信装置と、を有する光多重通信システムであって、
前記第1光受信装置は、
前記第1光受信装置の受信するパルス光信号を2以上の光信号に分岐した分岐光信号に前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記第1光受信装置の内部に出力し、他方を前記第2光受信装置に向けて出力する妨害光信号除去器と、
前記妨害光信号除去器から前記第1光受信装置の内部に出力される前記パルス光信号を検出する光検出器と、
を備えることを特徴とする光多重通信システム。
A first optical transmission device that transmits a communication pulse optical signal that is spread-encoded in the optical frequency domain; and a second optical transmission device that transmits another communication pulse optical signal having a pulse width larger than the pulse width of the communication pulse optical signal. An optical transmitter for connecting the first optical transmitter to the second optical transmitter; and the communication pulse optical signal transmitted from the first optical transmitter via the optical multiplexer. A first optical receiver that receives the signal, and another communication pulse light that is connected to the first optical receiver and transmitted from the second optical transmitter via the optical multiplexer and the first optical receiver. An optical multiplex communication system having a second optical receiving device for receiving a signal,
The first optical receiver is
More than the value obtained by converting the pulse width of the communication pulse optical signal into a length to a branched optical signal obtained by branching the pulse optical signal received by the first optical receiver into two or more optical signals, and the other communication pulse light An optical path length difference equal to or less than a value obtained by converting the pulse width of the signal into a length is provided, the branched optical signals provided with the optical path length difference are combined and branched, and one of them is received with the predetermined optical intensity at the first optical reception An interfering optical signal remover that outputs to the inside of the apparatus and outputs the other to the second optical receiver;
A photodetector for detecting the pulsed optical signal output from the interfering optical signal remover to the inside of the first optical receiver;
An optical multiplex communication system comprising:
光周波数領域で拡散符号化された通信用光信号を受信する光受信装置であって、
前記通信用光信号を2以上に分岐させ前記通信用光信号の光周波数帯域幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、
を備えることを特徴とする光受信装置。
An optical receiver that receives a communication optical signal that is spread-coded in the optical frequency domain,
Interference light signal elimination that outputs the optical signal with a predetermined optical intensity by branching the optical signal for communication into two or more and combining the optical signal signals for communication by providing an optical path length difference equal to or greater than the length converted into the length. And
A photodetector for detecting the communication optical signal output from the interfering optical signal remover;
An optical receiving device comprising:
光周波数領域で拡散符号化された通信用光信号を受信する光受信装置であって、
前記通信用光信号を2以上に分岐させ前記通信用光信号の可干渉長以上の光路長差を設けて結合させて所定の強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記通信用光信号を検出する光検出器と、
を備えることを特徴とする光受信装置。
An optical receiver that receives a communication optical signal that is spread-coded in the optical frequency domain,
An interfering optical signal remover for branching the optical signal for communication into two or more, providing an optical path length difference equal to or greater than the coherence length of the optical signal for communication, and outputting the optical signal with a predetermined intensity;
A photodetector for detecting the communication optical signal output from the interfering optical signal remover;
An optical receiving device comprising:
光周波数領域で拡散符号化された通信用パルス光信号を受信する光受信装置であって、
前記通信用パルス光信号を2以上に分岐させ前記通信用パルス光信号のパルス幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度で出力する妨害光信号除去器と、
前記妨害光信号除去器から出力される前記通信用パルス光信号を検出する光検出器と、
を備えることを特徴とする光受信装置。
An optical receiver that receives a communication pulse optical signal that is spread-coded in the optical frequency domain,
Interference light signal elimination that outputs the optical signal with a predetermined light intensity by branching the communication pulse optical signal into two or more and combining them by providing an optical path length difference equal to or greater than the value obtained by converting the pulse width of the communication pulse optical signal into a length. And
A photodetector for detecting the communication pulse optical signal output from the interfering optical signal remover;
An optical receiving device comprising:
光周波数領域で拡散符号化された通信用光信号及び該通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を受信する光受信装置であって、
前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記光受信装置の内部に出力し、且つ他方を前記光受信装置の外部に出力する妨害光信号除去器と、
前記妨害光信号除去器から前記光受信装置の内部に出力される前記光信号を検出する光検出器と、
を備えることを特徴とする光受信装置。
An optical receiver for receiving a communication optical signal spread-coded in the optical frequency domain and another communication optical signal having an optical frequency bandwidth narrower than the optical frequency bandwidth of the communication optical signal,
The optical signal received by the optical receiver is divided into two or more optical signals, and the optical frequency bandwidth of the optical signal for communication is equal to or longer than the optical frequency bandwidth of the optical signal for communication and the light of the other optical signal for communication An optical path length difference equal to or less than a value obtained by converting a frequency bandwidth into a length is provided, and the branched optical signals provided with the optical path length difference are combined and branched, and one of them is provided with a predetermined light intensity inside the optical receiver. And an interfering optical signal remover that outputs the other to the outside of the optical receiver;
A photodetector for detecting the optical signal output from the interfering optical signal remover to the inside of the optical receiver;
An optical receiving device comprising:
光周波数領域で拡散符号化された通信用光信号及び該通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を受信する光受信装置であって、
前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度で前記光受信装置の内部に出力し、且つ他方を前記光受信装置の外部に出力する妨害光信号除去器と、
前記妨害光信号除去器から前記光受信装置の内部に出力される前記光信号を検出する光検出器と、
を備えることを特徴とする光受信装置。
An optical receiver for receiving a communication optical signal spread-encoded in the optical frequency domain and another communication optical signal having a coherence length longer than the coherence length of the communication optical signal,
An optical path length difference that is greater than or equal to the coherence length of the communication optical signal and less than or equal to the coherence length of the other communication optical signal is added to a branched optical signal obtained by branching the optical signal received by the optical receiver into two or more optical signals. And branching by combining the branched optical signals provided with the optical path length difference, outputting one to the inside of the optical receiver with a predetermined light intensity, and outputting the other to the outside of the optical receiver An interfering light signal remover;
A photodetector for detecting the optical signal output from the interfering optical signal remover to the inside of the optical receiver;
An optical receiving device comprising:
光周波数領域で拡散符号化された通信用パルス光信号及び該通信用パルス光信号のパルス幅より広いパルス幅の別の通信用パルス光信号を受信する光受信装置であって、
前記光受信装置の受信するパルス光信号を2以上の光信号に分岐した分岐光信号に前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を結合させて所定の光強度で前記光受信装置の内部に出力し、且つ他方を前記光受信装置の外部に出力する妨害光信号除去器と、
前記妨害光信号除去器から前記光受信装置の内部に出力される前記パルス光信号を検出する光検出器と、
を備えることを特徴とする光受信装置。
An optical receiver for receiving a communication pulse optical signal spread-encoded in an optical frequency region and another communication pulse optical signal having a pulse width wider than the pulse width of the communication pulse optical signal,
A branched optical signal obtained by branching a pulse optical signal received by the optical receiver into two or more optical signals is equal to or greater than a value obtained by converting the pulse width of the communication pulse optical signal into a length, and the other communication pulse optical signal An optical path length difference equal to or less than a value obtained by converting a pulse width into a length is provided, the branched optical signals provided with the optical path length difference are combined and branched, and one of the optical signals is combined to have a predetermined light intensity. An interfering optical signal remover that outputs to the outside and outputs the other to the outside of the optical receiver;
A photodetector for detecting the pulsed optical signal output from the interfering optical signal remover to the inside of the optical receiver;
An optical receiving device comprising:
光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で送受信する光通信方法であって、
前記光受信装置は、前記光送信装置から送信された前記通信用光信号を2以上に分岐させ前記通信用光信号の光周波数帯域幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする光通信方法。
An optical communication method for transmitting and receiving an optical signal for communication that is spread-encoded in an optical frequency domain between an optical transmitter and an optical receiver,
The optical receiving apparatus branches the optical signal for communication transmitted from the optical transmitting apparatus into two or more, and provides an optical path length difference equal to or greater than a value obtained by converting an optical frequency bandwidth of the optical signal for communication into a length. An optical communication method comprising: detecting after combining to a predetermined light intensity.
光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で送受信する光通信方法であって、
前記光受信装置は、前記光送信装置から送信された前記通信用光信号を2以上に分岐させ前記通信用光信号の可干渉長以上の光路長差を設けて結合させて所定の強度とした後に検出することを特徴とする光通信方法。
An optical communication method for transmitting and receiving an optical signal for communication that is spread-encoded in an optical frequency domain between an optical transmitter and an optical receiver,
The optical receiver splits the optical signal for communication transmitted from the optical transmitter into two or more, and provides an optical path length difference equal to or greater than the coherence length of the optical signal for communication to obtain a predetermined intensity. An optical communication method, which is detected later.
光周波数領域で拡散符号化された通信用パルス光信号を光送信装置と光受信装置との間で送受信する光通信方法であって、
前記光受信装置は、前記光送信装置から送信された前記通信用パルス光信号を2以上に分岐させ前記通信用パルス光信号のパルス幅を長さに換算した値以上の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする光通信方法。
An optical communication method for transmitting and receiving a communication pulse optical signal that is spread-encoded in an optical frequency domain between an optical transmitter and an optical receiver,
The optical receiving device branches the communication pulse optical signal transmitted from the optical transmission device into two or more, and provides an optical path length difference equal to or greater than a value obtained by converting a pulse width of the communication pulse optical signal into a length. An optical communication method comprising: detecting after combining to a predetermined light intensity.
光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の光周波数帯域より狭い光周波数帯域の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、
前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする光多重通信方法。
An optical signal for communication that is spread-encoded in the optical frequency domain is transmitted and received between the optical transmitter and the optical receiver via an optical transmission path, and an optical frequency band narrower than the optical frequency band of the optical signal for communication is separated. An optical multiplex communication method for transmitting and receiving an optical signal for communication between another optical transmitter and another optical receiver via the optical transmission path,
The optical receiver has a branch optical signal obtained by branching an optical signal received by the optical receiver into two or more optical signals, and the optical frequency bandwidth of the communication optical signal is equal to or more than a value converted into a length. An optical multiplex communication method comprising: detecting an optical frequency bandwidth of a communication optical signal after providing a predetermined optical intensity by providing an optical path length difference equal to or less than a value converted into a length.
光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、
前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐し前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする光多重通信方法。
An optical signal for communication that is spread-coded in the optical frequency domain is transmitted and received between the optical transmitter and the optical receiver via an optical transmission line, and the coherence length is longer than the coherence length of the optical signal for communication. An optical multiplex communication method for transmitting and receiving an optical signal for communication between another optical transmitter and another optical receiver via the optical transmission path,
The optical receiving device branches an optical signal received by the optical receiving device into two or more optical signals, and has an optical path length that is not less than the coherence length of the communication optical signal and not more than the coherence length of the other communication optical signal. An optical multiplex communication method comprising: detecting after a difference is provided and combined to obtain a predetermined light intensity.
光周波数領域で拡散符号化された通信用パルス光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号のパルス幅より広いパルス幅の別の通信用パルス光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、
前記光受信装置は、前記光受信装置の受信するパルス光信号を2以上のパルス光信号に分岐し前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設けて結合させて所定の光強度とした後に検出することを特徴とする光多重通信方法。
A communication pulse optical signal spread-coded in the optical frequency domain is transmitted / received between the optical transmitter and the optical receiver via an optical transmission path, and another pulse width wider than the pulse width of the communication optical signal is transmitted. An optical multiplex communication method for transmitting and receiving a communication pulse optical signal between another optical transmission device and another optical reception device via the optical transmission path,
The optical receiving device branches the pulse optical signal received by the optical receiving device into two or more pulse optical signals, and has a value equal to or greater than a value obtained by converting the pulse width of the communication pulse optical signal into a length, and the other communication pulse. An optical multiplex communication method comprising: detecting a pulse width of an optical signal after providing a predetermined light intensity by providing an optical path length difference equal to or less than a value converted into a length.
光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の光周波数帯域幅より狭い光周波数帯域幅の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、
前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐した分岐光信号に前記通信用光信号の光周波数帯域幅を長さに換算した値以上且つ前記別の通信用光信号の光周波数帯域幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度にした後に検出すると共に他方を前記別の光受信装置に向けて出力することを特徴とする光多重通信方法。
An optical signal for communication that is spread-encoded in the optical frequency domain is transmitted and received between an optical transmitter and an optical receiver via an optical transmission line, and an optical frequency bandwidth that is narrower than the optical frequency bandwidth of the optical signal for communication An optical multiplex communication method for transmitting / receiving another optical signal for communication between another optical transmitter and another optical receiver via the optical transmission path,
The optical receiver has a branch optical signal obtained by branching an optical signal received by the optical receiver into two or more optical signals, and the optical frequency bandwidth of the communication optical signal is equal to or more than a value converted into a length. An optical path length difference equal to or less than the value obtained by converting the optical frequency bandwidth of the communication optical signal into a length is provided, and the branched optical signals provided with the optical path length difference are combined and branched, and one of them is set to a predetermined light intensity. And then outputting the other to the other optical receiving apparatus.
光周波数領域で拡散符号化された通信用光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用光信号の可干渉長より長い可干渉長の別の通信用光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、
前記光受信装置は、前記光受信装置の受信する光信号を2以上の光信号に分岐し、分岐した分岐光信号に前記通信用光信号の可干渉長以上且つ前記別の通信用光信号の可干渉長以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度にした後に検出すると共に他方を前記別の光受信装置に向けて出力することを特徴とする光多重通信方法。
An optical signal for communication that is spread-coded in the optical frequency domain is transmitted and received between the optical transmitter and the optical receiver via an optical transmission line, and the coherence length is longer than the coherence length of the optical signal for communication. An optical multiplex communication method for transmitting and receiving an optical signal for communication between another optical transmitter and another optical receiver via the optical transmission path,
The optical receiving device branches an optical signal received by the optical receiving device into two or more optical signals, and the branched optical signal is longer than a coherence length of the communication optical signal and the other optical signal for communication. An optical path length difference equal to or shorter than the coherence length is provided, the branched optical signals provided with the optical path length difference are combined and branched, one of them is set to a predetermined light intensity, and the other is detected as another optical receiver. An optical multiplex communication method characterized by output to
光周波数領域で拡散符号化された通信用パルス光信号を光送信装置と光受信装置との間で光伝送路を介して送受信し、前記通信用パルス光信号のパルス幅より広いパルス幅の別の通信用パルス光信号を前記光伝送路を介して別の光送信装置と別の光受信装置との間で送受信する光多重通信方法であって、
前記光受信装置は、前記光受信装置の受信するパルス光信号を2以上のパルス光信号に分岐し、分岐した分岐光信号に前記通信用パルス光信号のパルス幅を長さに換算した値以上且つ前記別の通信用パルス光信号のパルス幅を長さに換算した値以下の光路長差を設け、該光路長差が設けられた前記分岐光信号を結合して分岐し、一方を所定の光強度にした後に検出すると共に他方を前記別の光受信装置に向けて出力することを特徴とする光多重通信方法。
A communication pulse optical signal spread-coded in the optical frequency domain is transmitted / received between the optical transmission device and the optical reception device via an optical transmission path, and the pulse width of the communication pulse optical signal is larger than the pulse width of the communication pulse optical signal. An optical multiplex communication method for transmitting and receiving a communication pulse optical signal between another optical transmitter and another optical receiver via the optical transmission path,
The optical receiving apparatus branches the pulse optical signal received by the optical receiving apparatus into two or more pulse optical signals, and the branched optical signal is equal to or greater than a value obtained by converting the pulse width of the communication pulse optical signal into a length. And providing an optical path length difference equal to or less than a value obtained by converting the pulse width of the other communication optical pulse signal into a length, combining the branched optical signals provided with the optical path length difference, and branching, An optical multiplex communication method characterized in that after detecting the light intensity, the other is output to the other optical receiver.
JP2004256837A 2004-09-03 2004-09-03 Optical communication system, optical multiplex communication system, optical communication method, optical multiplex communication method, and optical receiver Expired - Fee Related JP4531496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256837A JP4531496B2 (en) 2004-09-03 2004-09-03 Optical communication system, optical multiplex communication system, optical communication method, optical multiplex communication method, and optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256837A JP4531496B2 (en) 2004-09-03 2004-09-03 Optical communication system, optical multiplex communication system, optical communication method, optical multiplex communication method, and optical receiver

Publications (3)

Publication Number Publication Date
JP2006074557A true JP2006074557A (en) 2006-03-16
JP2006074557A5 JP2006074557A5 (en) 2006-10-19
JP4531496B2 JP4531496B2 (en) 2010-08-25

Family

ID=36154660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256837A Expired - Fee Related JP4531496B2 (en) 2004-09-03 2004-09-03 Optical communication system, optical multiplex communication system, optical communication method, optical multiplex communication method, and optical receiver

Country Status (1)

Country Link
JP (1) JP4531496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061149A (en) * 2006-09-04 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JP2008160707A (en) * 2006-12-26 2008-07-10 Nippon Telegr & Teleph Corp <Ntt> Optical receiver
JP2008219211A (en) * 2007-02-28 2008-09-18 National Institute Of Information & Communication Technology Ocdma system of fsk data format

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312619A (en) * 1996-02-15 1997-12-02 Alcatel Alsthom Co General Electricite Frequency coding optical cdma transmission system and its optical receiver
JP2000286825A (en) * 1999-02-06 2000-10-13 Alcatel Light transmission system, its transmitter and receiver
JP2001168761A (en) * 1999-12-03 2001-06-22 Keio Gijuku Optical receiver, optical reception method and optical communication system
JP2001264246A (en) * 2000-03-21 2001-09-26 Olympus Optical Co Ltd Optical imaging device
JP2002141889A (en) * 2000-11-01 2002-05-17 Kddi Corp Transmission and reception system for optical code division multiple access system
JP2002290375A (en) * 2001-03-22 2002-10-04 Keio Gijuku Optical communication transmitter and optical communication receiver
JP2003209531A (en) * 2002-01-11 2003-07-25 Mitsubishi Cable Ind Ltd Code interference elimination device for optical code division multiplex communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312619A (en) * 1996-02-15 1997-12-02 Alcatel Alsthom Co General Electricite Frequency coding optical cdma transmission system and its optical receiver
JP2000286825A (en) * 1999-02-06 2000-10-13 Alcatel Light transmission system, its transmitter and receiver
JP2001168761A (en) * 1999-12-03 2001-06-22 Keio Gijuku Optical receiver, optical reception method and optical communication system
JP2001264246A (en) * 2000-03-21 2001-09-26 Olympus Optical Co Ltd Optical imaging device
JP2002141889A (en) * 2000-11-01 2002-05-17 Kddi Corp Transmission and reception system for optical code division multiple access system
JP2002290375A (en) * 2001-03-22 2002-10-04 Keio Gijuku Optical communication transmitter and optical communication receiver
JP2003209531A (en) * 2002-01-11 2003-07-25 Mitsubishi Cable Ind Ltd Code interference elimination device for optical code division multiplex communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010031938, 吉野 學、三鬼 準基, "耐妨害性の高い光CDMシステム", 電子情報通信学会2004年通信ソサイエティ大会講演論文集2, 20040908, B−10−28, p.257, JP, 電子情報通信学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061149A (en) * 2006-09-04 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
JP4641013B2 (en) * 2006-09-04 2011-03-02 日本電信電話株式会社 Optical communication system
JP2008160707A (en) * 2006-12-26 2008-07-10 Nippon Telegr & Teleph Corp <Ntt> Optical receiver
JP2008219211A (en) * 2007-02-28 2008-09-18 National Institute Of Information & Communication Technology Ocdma system of fsk data format

Also Published As

Publication number Publication date
JP4531496B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US7574143B2 (en) All-optical signal processing method and device
KR100305258B1 (en) optical transmission system, and optical transmitter and optical receiver used therein
EP2034647A1 (en) Optical code communication system
US20060115272A1 (en) Optical code division multiplexing transmission and reception method and optical code division multiplexing transceiver
US7200342B2 (en) Direct-sequence spread-spectrum optical-frequency-shift-keying code-division-multiple-access communication system
Huang et al. Reductions of multiple-access interference in fiber-grating-based optical CDMA network
JP2000286825A (en) Light transmission system, its transmitter and receiver
JP4531496B2 (en) Optical communication system, optical multiplex communication system, optical communication method, optical multiplex communication method, and optical receiver
JP5334718B2 (en) Optical code division multiplexing transmission circuit and optical code division multiplexing reception circuit
JP5621530B2 (en) Receiver, optical spectrum shaping method, and optical communication system
JP4680223B2 (en) Chromatic dispersion measurement device
US20060098986A1 (en) Optical receiver for reducing optical beat interference and optical network including the optical receiver
JP2007088859A (en) Optical code division multiplex packet communication system
JP2002521957A (en) Method and apparatus for reducing interference in optical CDMA
US6831773B2 (en) Bidirectional coding splitter
WO2000070804A1 (en) Photonic integrated circuit for optical cdma
EP1097536A1 (en) Optical cdma using a cascaded mask structure
JP4694301B2 (en) Optical demodulation circuit
US20090269064A1 (en) Optical CDMA by Self Heterodyne Filtering
JP4750009B2 (en) Optical receiver
KR101104550B1 (en) Apparatus and method of photo detection in WDM-PON
Sahbudin et al. An and Detection Technique for Hybrid Subcarrier Multiplexed Spectral–Amplitude–Coding Optical CDMA Technique
EP2044706B1 (en) Coherent gated receiver
JPH1117657A (en) Optical transmitter
JP2000201110A (en) Optical transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees