JP2006073265A - Fuel cell power generation system - Google Patents

Fuel cell power generation system Download PDF

Info

Publication number
JP2006073265A
JP2006073265A JP2004253028A JP2004253028A JP2006073265A JP 2006073265 A JP2006073265 A JP 2006073265A JP 2004253028 A JP2004253028 A JP 2004253028A JP 2004253028 A JP2004253028 A JP 2004253028A JP 2006073265 A JP2006073265 A JP 2006073265A
Authority
JP
Japan
Prior art keywords
fuel cell
hot water
power generation
value
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253028A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kusama
伸行 草間
Yukiteru Soga
幸照 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2004253028A priority Critical patent/JP2006073265A/en
Publication of JP2006073265A publication Critical patent/JP2006073265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system capable of determining generating output with which the power generation device of the fuel cell can operate and starting and stopping of it, according to heat demand of real time of a consumer. <P>SOLUTION: The fuel cell power generation system is equipped with a hot water tank 3 which stores the hot water from a fuel cell 1 and can discharge the hot water to the outside, at least a first and a second thermometers 6 which measure the temperatures of the hot water in the tank 3 and, by dividing the inside of the tank 3 at least into two pieces virtually in vertical direction, measure the temperatures of the hot water respectively corresponding to each virtual divided space, and a control device 8 which inputs the measured value of each thermometer 6 and changes the upper limit of the power generating output of the fuel cell 1, when the measured value of the thermometers is a first established value or lower than the temperature of the hot water supply side supplied from the fuel cell 1 to the tank 3, and the measured value of the second thermometer is lower than the first established value and is a second established value or lower closely resembling a cooling temperature which the fuel cell can permits. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば家庭用の燃料電池発電装置により発生した熱を貯める貯湯タンクを備え、貯湯タンクの蓄熱量に応じてその燃料電池発電装置の出力を調整可能な燃料電池発電システムに関する。   The present invention relates to a fuel cell power generation system that includes a hot water storage tank that stores heat generated by, for example, a household fuel cell power generation device, and that can adjust the output of the fuel cell power generation device according to the amount of heat stored in the hot water storage tank.

従来から燃料の有している化学エネルギ−を直接電気に変換するシステムとして、燃料電池発電システムが知られている。この燃料電池発電システムは、燃料である水素と酸化剤である酸素とを電気化学的に反応させて直接電気を取り出すものであり、高い効率で電気エネルギーを取り出すことができるシステムである。さらに、この燃料電池発電システムは大気汚染物質の排出が少なく、騒音も小さいという環境性に極めて優れた特徴を有する。   Conventionally, a fuel cell power generation system is known as a system that directly converts chemical energy of fuel into electricity. This fuel cell power generation system is a system in which hydrogen as a fuel and oxygen as an oxidant are reacted electrochemically to directly extract electricity, and electric energy can be extracted with high efficiency. Furthermore, this fuel cell power generation system has extremely excellent environmental characteristics such as low emission of air pollutants and low noise.

最近では家庭用コージェネレーションシステムとして給湯装置をもつ燃料電池発電設備の普及が期待されており、各所で実際の家庭に設置し、試験運転が行われている。工場等に設置されているコージェネレーションシステムとは規模が異なることから、特に、燃料電池発電装置から得られる電気と熱をいかに家庭の電力需要や熱需要と一致させるかが家庭への導入を促進するために重要となる。   Recently, it is expected that fuel cell power generation equipment having a hot water supply device as a household cogeneration system will be widespread, and installed in actual homes at various places and are being tested. Because the scale is different from cogeneration systems installed in factories, etc., in particular, how to match the electricity and heat obtained from the fuel cell power generator with the household power demand and heat demand will promote the introduction to the home To be important.

しかし、家庭の電力需要や熱需要は家庭ごとに異なり、また季節や気温等の環境条件の変化によっても異なるため、一様な運転パターンを決められず、さらには、精度よく予測することも難しい。   However, household electricity demand and heat demand vary from household to household, and vary depending on changes in environmental conditions such as seasons and temperatures, so a uniform operating pattern cannot be determined and it is difficult to predict accurately. .

そのため多くの計測機器や制御装置を新たに設置し、1日ごとの需要家の電力需要や熱需要を収集し、これらを使って需要予測を作り、この予測に基づいた運用する方法が多く提案されている(特許文献1〜6参照)。また、いずれの提案も、運転方法はエンジンコージェネがベースとなっているため、コージェネ機器は起動するか停止するかのON・OFF運転しか想定されておらず、部分負荷運転ができる燃料電池の特徴を生かした運転方法に関する提案がされていなかった。
特開2002−138902 特開2002−213303 特開2001−248910 特開2001−248909 特開2001−248907 特開2003−87970
For this reason, many new measuring instruments and control devices are installed, and electricity demand and heat demand of consumers are collected every day, and demand forecasts are made using these, and many methods of operating based on these forecasts are proposed. (See Patent Documents 1 to 6). In addition, since all the proposals are based on engine cogeneration, the operation method is based only on the ON / OFF operation of starting or stopping the cogeneration equipment. There were no proposals on how to drive the vehicle.
JP2002-138902 JP 2002-213303 A JP 2001-248910 A JP 2001-248909 A JP 2001-248907 A JP 2003-87970 A

上述のように、これまでの提案は、1日ごとの需要家の電力・熱需要を如何に精度良く予測することに主眼が置かれている。言い換えると、起動するか停止するかのON・OFF運転で、いつも同じ効率がでることを前提として、1日の終わりに丁度お湯を使いきる運転パターンを如何に正確に予想するかに主眼が置かれている。   As described above, the proposals so far have been focused on accurately predicting the daily power / heat demand of consumers. In other words, the main focus is on how to accurately predict an operation pattern that uses up hot water just at the end of the day, assuming that the same efficiency is always achieved by ON / OFF operation of starting or stopping. It has been.

具体的には、以上述べた各特許文献にあっては、以下の問題点がある。
(a)1日の終わりに丁度お湯を使いきる予測運転のため、夏場のように電力需要が多く給湯需要が少ない場合には、ほとんど運転しない運転パターンとなり、コージェネ装置としての意味をなさない。
Specifically, each of the patent documents described above has the following problems.
(a) Predictive operation that uses up hot water just at the end of the day, so when the demand for electricity is high and the demand for hot water supply is low, such as in summer, it becomes an operation pattern that hardly operates, making no sense as a cogeneration system.

確かに、コージェネ機器での省エネ性を向上させるために、需要以上の熱を極力発生させないようにすることが必要となるが、1日の終わりに丁度お湯を使いきるような設定では、夏場は特に給湯需要が少ないため、コージェネを運転する必要がなくなる。しかし、一方では、エアコン等の使用頻度が上がるため、電力需要は増加する。これに対する寄与が行われない。  Certainly, in order to improve the energy-saving performance of cogeneration equipment, it is necessary to minimize the generation of heat that exceeds demand. However, in the setting to use up hot water just at the end of the day, In particular, since there is little demand for hot water supply, there is no need to operate the cogeneration. However, on the other hand, the demand for electric power increases because the frequency of use of air conditioners and the like increases. There is no contribution to this.

(b)想定外の需要変化には対応できず、また、その後の予測運転にも影響を及ぼし、経済性や省エネ性を低下させている。 (B) It cannot respond to unexpected changes in demand, and also affects the predicted operation thereafter, reducing economic efficiency and energy saving.

過去の電力需要や熱需要に基づいた需要予測から得られた運転パターンでの運用や1日の運転パターンをスケジュール化した運用では、急な外出等により電気・熱需要が低下した場合や急な来客等で電気・熱需要が増加した場合には、需要に見合った運転はできない。また、短時間の想定外の変化であれば、その後の需要予測には特に影響しないが、1日単位での変化となると、その後の需要予測にも影響する。つまり、想定外の需要変化には対応できず、また、その後の予測運転にも影響を及ぼし、経済性や省エネ性を低下させている。   In the operation with the operation pattern obtained from the demand forecast based on the past power demand and heat demand or the operation with the schedule of the daily operation pattern, when the electricity / heat demand decreases due to sudden outing, etc. When the demand for electricity and heat increases due to visitors, etc., operation that meets the demand is not possible. In addition, if the change is unexpected for a short time, the subsequent demand prediction is not particularly affected, but if the change is made on a daily basis, the subsequent demand prediction is also affected. In other words, it cannot respond to unexpected changes in demand, and also affects the predicted operation thereafter, reducing economic efficiency and energy saving.

(c)不在時にも、運転が行われている。 (C) Driving is carried out even when absent.

過去の電力需要や熱需要に基づいた需要予測から得られた運転パターンでの運用されている限り、上述の通り、急な外出時にも家庭用コージェネレーションは運転されたままとなる。都市ガスやLPガスを燃料とする発電装置であることから、保安上は停止させることが望まれる。これに対する対応ができていない。   As long as the operation is performed with the operation pattern obtained from the demand prediction based on the past power demand and heat demand, as described above, the home cogeneration remains operated even when suddenly going out. Since it is a power generation device that uses city gas or LP gas as fuel, it is desirable to stop it for security reasons. There is no response to this.

(d)燃料電池の部分負荷での出力を定義した提案がない。 (D) There is no proposal that defines the output at the partial load of the fuel cell.

特許文献6や工場等に設置されているコージェネレーションシステムでの運用のようなスケジュール運転では、コージェネ機器の停止タイミングは明確に定義されているが、ここでも、やはり、起動するか停止するかのON・OFF運転しか考えられていない。   In the schedule operation such as the operation in the cogeneration system installed in Patent Document 6 or the factory, the stop timing of the cogeneration device is clearly defined, but here again, whether to start or stop Only ON / OFF operation is considered.

本発明は、以上のような状況を鑑みて提案されたものであり、その主たる目的は、需要家のリアルタイムの熱需要に応じて、燃料電池発電装置の運転可能な発電出力の決定や起動停止を行うことが可能な燃料電池発電システムを提供することである。   The present invention has been proposed in view of the situation as described above, and its main purpose is to determine the power generation output that can be operated by the fuel cell power generation device and to start and stop it according to the real-time heat demand of the consumer. It is providing the fuel cell power generation system which can perform.

前記目的を達成するため、請求項1に対応する発明は、電力を発生すると共に、該電力の発生に伴って生ずる排熱によって温められた温水を出力可能な燃料電池と、
前記燃料電池からの温水を貯めると共に該温水を外部に吐出可能な貯湯槽と、
前記貯湯槽内の温水の温度を計測する少なくとも第1及び第2の温度計と、
前記各温度計で計測された温度計測値に基づき得られる前記貯湯槽内の蓄熱量に応じて、前記燃料電池の発電出力を設定する手段と、
を備えた燃料電池発電システムである。
In order to achieve the above object, the invention corresponding to claim 1 is a fuel cell capable of generating electric power and outputting hot water warmed by exhaust heat generated by the generation of the electric power;
A hot water storage tank for storing hot water from the fuel cell and discharging the hot water to the outside;
At least first and second thermometers for measuring the temperature of hot water in the hot water tank;
Means for setting the power generation output of the fuel cell in accordance with the amount of heat stored in the hot water tank obtained based on the temperature measurement value measured by each thermometer;
Is a fuel cell power generation system.

前記目的を達成するため、請求項2に対応する発明は、電力を発生すると共に、該電力の発生に伴って生ずる排熱によって温められた温水を出力可能な燃料電池と、
前記燃料電池からの温水を貯めると共に該温水を外部に吐出可能な貯湯槽と、
前記貯湯槽内の温水の温度を計測するものであって、該貯湯槽内を仮想的に上下方向に少なくとも2個に分割し、該各仮想分割空間に対応して温水の温度をそれぞれ計測する少なくとも第1及び第2の温度計と、
前記第1及び第2の温度計の計測値を入力し、前記第1の温度計の計測値が前記貯湯槽内に前記燃料電池から供給される温水供給側の温度より低い第1の設定値以下で、かつ前記第2の温度計の計測値が該第1の設定値より低く前記燃料電池が許容し得る冷却温度に近似する第2の設定値以下のとき、前記燃料電池の発電出力の上限値を変化させる発電出力変化手段と、
を備えた燃料電池発電システムである。
In order to achieve the above object, an invention corresponding to claim 2 is a fuel cell capable of generating electric power and outputting hot water warmed by exhaust heat generated by the generation of the electric power;
A hot water storage tank for storing hot water from the fuel cell and discharging the hot water to the outside;
The temperature of the hot water in the hot water tank is measured, the hot water tank is virtually divided into at least two in the vertical direction, and the temperature of the hot water is measured corresponding to each virtual divided space. At least first and second thermometers;
The first and second thermometer measurement values are input, and the first thermometer measurement value is lower than the temperature of the hot water supply side supplied from the fuel cell into the hot water tank. And when the measured value of the second thermometer is lower than the first set value and lower than or equal to a second set value that approximates a cooling temperature that the fuel cell can tolerate, Power generation output changing means for changing the upper limit value;
Is a fuel cell power generation system.

本発明によれば、需要家のリアルタイムの熱需要に応じて、燃料電池発電装置の運転可能な発電出力の決定や起動停止を行うことが可能な燃料電池発電システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell power generation system which can perform the determination of the power generation output which can drive | operate a fuel cell power generation apparatus, and starting / stopping according to the real-time heat demand of a consumer can be provided.

以下、本発明に係る燃料電池発電システムの実施形態について、図面を参照して説明する。図1は本発明の概略構成を示すものである。   Embodiments of a fuel cell power generation system according to the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of the present invention.

(実施形態1)
本発明の実施形態は、概略電力を発生すると共に、該電力の発生に伴って生ずる排熱によって温められた温水を出力可能な燃料電池と、前記燃料電池からの温水を貯めると共に該温水を外部に吐出可能な貯湯槽と、前記貯湯槽内の温水の温度を計測する少なくとも第1及び第2の温度計と、前記各温度計で計測された温度計測値に基づき得られる前記貯湯槽内の蓄熱量に応じて、前記燃料電池の発電出力を設定する手段とを備えた燃料電池発電システムである。
(Embodiment 1)
Embodiments of the present invention generally generate electric power and can output hot water warmed by exhaust heat generated by the generation of the electric power, store hot water from the fuel cell, and supply the hot water to the outside A hot water storage tank that can be discharged into the hot water tank, at least first and second thermometers that measure the temperature of hot water in the hot water tank, and a hot water tank that is obtained based on the temperature measurement values measured by the thermometers. A fuel cell power generation system comprising: means for setting a power generation output of the fuel cell according to a heat storage amount.

以下、これを具体的に説明する。 本実施形態では、燃料電池1の熱は熱回収熱交換器2によって温水の形態で、配管(温水供給路)4を介して貯湯槽3に供給され、温水が貯められる。貯湯槽3内部の温水は、貯湯槽3の上部にその一端部が連結された吐出配管(利用する側への温水供給路)5の一部に設けられた図示しないバルブの開操作によって必要とする量だけ貯湯槽3の外部に取り出すことができるようになっている。また、貯湯槽3の
底部には、例えば水道水を供給するための配管7が連通され、貯湯槽3内の温水が使用されると、その使用量に応じた水量が補給されるようになっている。ここまでの構成は、従来と同じである。
This will be specifically described below. In the present embodiment, the heat of the fuel cell 1 is supplied to the hot water tank 3 through the pipe (hot water supply path) 4 in the form of hot water by the heat recovery heat exchanger 2 to store the hot water. The hot water in the hot water tank 3 is required by opening a valve (not shown) provided in a part of a discharge pipe (hot water supply path to the user side) 5 whose one end is connected to the upper part of the hot water tank 3. An amount to be taken out can be taken out of the hot water tank 3. Further, for example, a pipe 7 for supplying tap water is communicated with the bottom of the hot water tank 3, and when the hot water in the hot water tank 3 is used, the amount of water corresponding to the amount of use is replenished. ing. The configuration so far is the same as the conventional one.

ここでは、以下に述べる温度計6と、例えばマイクロコンピュータからなり、燃料電池1の発電出力を設定する発電出力変化手段(制御装置)8を新たに追加し、次のように構成したものである。すなわち、温度計6は、貯湯槽3内の温水の温度を計測する市販されている普通のものであって、該貯湯槽3内を仮想的に、例えば温度境界位置で上下方向に複数(ここでは6個)に分割し、該仮想分割空間に対応して温水の温度をそれぞれ計測できるように配設されている。   Here, a thermometer 6 described below and a microcomputer, for example, are included, and a power generation output changing means (control device) 8 for setting the power generation output of the fuel cell 1 is newly added and configured as follows. . That is, the thermometer 6 is a commercially available ordinary one that measures the temperature of the hot water in the hot water tank 3, and the hot water tank 3 is virtually arranged in the vertical direction at, for example, a temperature boundary position (here, Are arranged so that the temperature of the hot water can be measured corresponding to the virtual divided space.

温度計6は、貯湯槽3内の温水の温度を計測するものであって、貯湯槽3内を仮想的に上下方向に少なくとも2個に分割し、各仮想分割空間に対応して温水の温度をそれぞれ計測する少なくとも第1及び第2の温度計からなっている。   The thermometer 6 measures the temperature of the hot water in the hot water tank 3 and virtually divides the hot water tank 3 into at least two parts in the vertical direction, and the temperature of the hot water corresponding to each virtual divided space. It consists of at least first and second thermometers that respectively measure.

発電出力変化手段(制御装置)8は、温度計6の計測値をそれぞれ入力し、第1の温度計6の計測値が貯湯槽3内に燃料電池1から供給される温水供給側の温度より低い第1の設定値例えば55℃以下で、かつ第2の温度計6の計測値が第1の設定値より低く燃料電池1が許容し得る冷却温度に近似する第2の設定値例えば40℃以下のとき、燃料電池1の発電出力の上限値を変化させるものである。   The power generation output changing means (control device) 8 inputs the measured values of the thermometer 6, and the measured value of the first thermometer 6 is calculated from the temperature on the hot water supply side supplied from the fuel cell 1 into the hot water tank 3. A low first set value, for example, 55 ° C. or less, and a measured value of the second thermometer 6 is lower than the first set value, and a second set value, for example, 40 ° C., which approximates a cooling temperature that the fuel cell 1 can tolerate. At the following time, the upper limit value of the power generation output of the fuel cell 1 is changed.

図3及び図4は、第1及び第2の温度設定値と電池出力の関係を示す図ならびに温度、電池出力と時間の関係を示す図である。   3 and 4 are diagrams showing a relationship between the first and second temperature set values and the battery output, and a diagram showing a relationship between the temperature, the battery output and time.

このように燃料電池1で発生した熱は、貯湯槽3に蓄熱される。蓄熱された温水は、需要家に供給される。この結果、次のような作用効果が得られる。   Thus, the heat generated in the fuel cell 1 is stored in the hot water tank 3. The stored hot water is supplied to consumers. As a result, the following effects can be obtained.

(1)夏場のような給湯需要が少なく、逆に電力需要が多い場合でも、極力燃料電池発電装置の運転を継続でき、経済性や省エネ性を向上させることができる。   (1) Even when there is little demand for hot water supply such as in summer, and there is much demand for power, the operation of the fuel cell power generator can be continued as much as possible, and the economy and energy saving can be improved.

(2)需要家のリアルタイムの熱需要に応じて、燃料電池発電装置の運転可能な発電出力の決定や起動停止を行うことが可能な燃料電池発電システムを提供すること需要家が不在の場合には、速やかに燃料電池1を停止させることにより、経済性や省エネ性の向上を行うと共に保安上の安全性も向上させることができる。   (2) To provide a fuel cell power generation system capable of determining the power generation output capable of operating the fuel cell power generation device and starting and stopping according to the real-time heat demand of the customer. By stopping the fuel cell 1 promptly, it is possible to improve economic efficiency and energy saving and improve safety.

前述した発電出力変化手段(制御装置)8は、前述した実施形態において、第2の温度計6の計測値が第2の設定値を超えたとき、燃料電池1の発電運転を停止する機能を付加させてもよい。   The power generation output changing means (control device) 8 has a function of stopping the power generation operation of the fuel cell 1 when the measured value of the second thermometer 6 exceeds the second set value in the above-described embodiment. It may be added.

また、前述した発電出力変化手段(制御装置)8は、前述した実施形態において、一定時間ごとの温度計測値の変化量を演算する機能を有し、得られた変化量が予め設定された変化量以下で予め設定された時間継続した場合には、前記燃料電池の発電運転を停止する機能を付加させてもよい。   In addition, the power generation output changing means (control device) 8 described above has a function of calculating the amount of change in the temperature measurement value per fixed time in the embodiment described above, and the obtained amount of change is a preset change. A function of stopping the power generation operation of the fuel cell may be added when the preset time is maintained below the amount.

さらに、前述した発電出力変化手段(制御装置)8は、前述した実施形態において、燃料電池1が停止中であっても、第2の温度計の計測値を取り込み、温度計測値が予め設定された値以下となった場合には、燃料電池1の運転を再開する機能を付加させてもよい。   Furthermore, in the above-described embodiment, the power generation output changing means (control device) 8 takes in the measurement value of the second thermometer and sets the temperature measurement value in advance even when the fuel cell 1 is stopped. When the value is less than or equal to the value, a function of resuming the operation of the fuel cell 1 may be added.

また、前述した発電出力変化手段(制御装置)8は、前述した実施形態において、燃料電池1の起動停止回数を把握し、該起動停止回数が予め設定された値以上となった場合は燃料電池の起動を不可とする保護機能を付加させてもよい。   Further, the power generation output changing means (control device) 8 described above grasps the number of times of starting and stopping the fuel cell 1 in the above-described embodiment, and when the number of times of starting and stopping exceeds a preset value, the fuel cell. A protection function may be added to disable the activation of.

以上述べた実施形態は、発電出力変化手段(制御装置)8の入力として蓄熱量とほぼ比例関係にある、温度計6の計測値を取り込んだ例について説明したが、このり代わりに以下に述べる蓄熱量(貯湯槽内熱量)を取り込むようにしても、前述の実施形態と同様な効果が得られる。   In the above-described embodiment, the example in which the measured value of the thermometer 6 that is substantially proportional to the heat storage amount is input as the input of the power generation output changing means (control device) 8 has been described. Even if the amount of stored heat (the amount of heat in the hot water storage tank) is taken in, the same effect as in the above-described embodiment can be obtained.

発電出力変化手段(制御装置)8は、各温度計6で計測された温度計測値T1〜T2と、外気温度T6並びに貯湯槽3内の温水の体積R1〜R2に基いて、貯湯槽3内の仮想分割空間毎の貯湯槽内熱量をそれぞれ演算し、これらの総和から貯湯槽内全体の貯湯槽内熱量Qhwを演算する。 The power generation output changing means (control device) 8 is based on the temperature measurement values T1 to T2 measured by the thermometers 6, the outside air temperature T6, and the volumes of hot water R1 to R2 in the hot water storage tank 3, and in the hot water storage tank 3. The amount of heat in the hot water tank is calculated for each virtual divided space, and the amount of heat Qhw in the hot water tank in the entire hot water tank is calculated from the sum of these.

具体的には、(1)式により演算する。   Specifically, the calculation is performed according to equation (1).

Qhw=R1×(T1-T6)+R2×((T1+T2)/2−T6) ・・・(1)式
ここで、 Qhw:貯湯槽内熱量
Rn:体積 (R1〜R2)
Tn:温度計測値(例えばT1〜T2)
T6:外気温度
また、電池排熱量演算手段は、燃料電池1の冷却水配管の入口側及び出口側にそれぞれ設けられた温度計9、10により計測した温水の温度計測値TI、TOと、燃料電池1の冷却水配管内の流量から燃料電池からの排熱量dQFCを求めるものである。この場合流量は、例えば冷却水配管の一部に設けられているポンプ8の回転数を所定時間例えば5秒毎にモニタしこれらの積算値から求めるものである。
Q hw = R1 × (T1-T6) + R2 × ((T1 + T2) / 2−T6) (1) where Q hw is the amount of heat in the hot water tank
Rn: Volume (R1-R2)
Tn: Temperature measurement value (for example, T1 to T2)
T6: Outside air temperature Further, the battery exhaust heat amount calculation means includes temperature measurement values TI and TO of hot water measured by thermometers 9 and 10 provided on the inlet side and the outlet side of the cooling water pipe of the fuel cell 1, respectively, and fuel The amount of exhaust heat dQ FC from the fuel cell is obtained from the flow rate in the cooling water piping of the battery 1. In this case, the flow rate is obtained, for example, by monitoring the number of revolutions of the pump 8 provided in a part of the cooling water pipe every predetermined time, for example, every 5 seconds, and calculating the integrated value thereof.

これとは別に、(2)式によって排熱量dQFCを求めることもできる。 Apart from this, the amount of exhaust heat dQ FC can also be obtained by equation (2).

dQFC=dW×A ・・・(2)式
ここで
dW : 燃料電池発電電力
A : 熱電比 ( 燃料電池の発電電力と排熱量比)
さらに、貯湯槽内熱量変化演算手段は、前記貯湯槽内熱量演算手段で演算された演算値から所定時間毎に貯湯槽内の熱量変化dQhwを演算するものである。
dQ FC = dW × A (2) where dW: fuel cell power generation A: thermoelectric ratio (fuel cell power generation and exhaust heat ratio)
Further, the hot water tank heat quantity change calculating means calculates the heat quantity change dQ hw in the hot water tank every predetermined time from the calculated value calculated by the hot water tank heat quantity calculating means.

そして、このような構成を備えている演算装置7において、(3)式により
貯湯槽内の熱量変化dQhwと、燃料電池1から貯湯槽3へ供給する排熱量dQFCとあわせて、貯湯槽から利用側への熱需要量dQuserを正確に推定することができる。
In the arithmetic unit 7 having such a configuration, the hot water storage tank is combined with the heat quantity change dQ hw in the hot water tank and the exhaust heat quantity dQ FC supplied from the fuel cell 1 to the hot water tank 3 according to the equation (3). It is possible to accurately estimate the heat demand dQ user from the user to the user side.

dQuser=dQhw+dQFC ・・・(3)式
図2は、以上述べたことを説明するための図で、(a)は燃料電池1から貯湯槽3への熱量特性、(b)は毎時刻毎の貯湯槽内熱量特性、(c)は貯湯槽3から利用側の熱需要特性を示す。
dQ user = dQ hw + dQ FC (3) Formula FIG. 2 is a diagram for explaining the above description, (a) is a calorific characteristic from the fuel cell 1 to the hot water tank 3, and (b) is The amount of heat in the hot water tank at each hour, (c) shows the heat demand characteristic on the use side from the hot water tank 3.

本発明の実施形態を示す概略構成図。The schematic block diagram which shows embodiment of this invention. (a)は燃料電池1から貯湯槽3への熱量特性であり、(b)は毎時刻毎の貯湯槽内熱量特性であり、(c)は貯湯槽3から利用側の熱需要特性を示す図。(a) is a calorific value characteristic from the fuel cell 1 to the hot water tank 3, (b) is a calorific value characteristic in the hot water tank every hour, and (c) is a heat demand characteristic on the use side from the hot water tank 3. Figure. 図1の実施形態の制御装置の機能を説明するための図。The figure for demonstrating the function of the control apparatus of embodiment of FIG. 図1の実施形態の制御装置の機能を説明するための図。The figure for demonstrating the function of the control apparatus of embodiment of FIG.

符号の説明Explanation of symbols

1…燃料電池、2…熱回収熱交換器、3…貯湯槽、4…配管、5…吐出配管、7…配管、 8…発電出力変化手段(制御装置)   DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... Heat recovery heat exchanger, 3 ... Hot water tank, 4 ... Piping, 5 ... Discharge piping, 7 ... Piping, 8 ... Power generation output change means (control device)

Claims (6)

電力を発生すると共に、該電力の発生に伴って生ずる排熱によって温められた温水を出力可能な燃料電池と、
前記燃料電池からの温水を貯めると共に該温水を外部に吐出可能な貯湯槽と、
前記貯湯槽内の温水の温度を計測する少なくとも第1及び第2の温度計と、
前記各温度計で計測された温度計測値に基づき得られる前記貯湯槽内の蓄熱量に応じて、前記燃料電池の発電出力を設定する手段と、
を備えた燃料電池発電システム。
A fuel cell capable of generating electric power and outputting hot water warmed by exhaust heat generated by the generation of the electric power;
A hot water storage tank for storing hot water from the fuel cell and discharging the hot water to the outside;
At least first and second thermometers for measuring the temperature of hot water in the hot water tank;
Means for setting the power generation output of the fuel cell in accordance with the amount of heat stored in the hot water tank obtained based on the temperature measurement value measured by each thermometer;
Fuel cell power generation system equipped with.
電力を発生すると共に、該電力の発生に伴って生ずる排熱によって温められた温水を出力可能な燃料電池と、
前記燃料電池からの温水を貯めると共に該温水を外部に吐出可能な貯湯槽と、
前記貯湯槽内の温水の温度を計測するものであって、該貯湯槽内を仮想的に上下方向に少なくとも2個に分割し、該各仮想分割空間に対応して温水の温度をそれぞれ計測する少なくとも第1及び第2の温度計と、
前記第1及び第2の温度計の計測値を入力し、前記第1の温度計の計測値が前記貯湯槽内に前記燃料電池から供給される温水供給側の温度より低い第1の設定値以下で、かつ前記第2の温度計の計測値が該第1の設定値より低く前記燃料電池が許容し得る冷却温度に近似する第2の設定値以下のとき、前記燃料電池の発電出力の上限値を変化させる発電出力変化手段と、
を備えた燃料電池発電システム。
A fuel cell capable of generating electric power and outputting hot water warmed by exhaust heat generated by the generation of the electric power;
A hot water storage tank for storing hot water from the fuel cell and discharging the hot water to the outside;
The temperature of the hot water in the hot water tank is measured, the hot water tank is virtually divided into at least two in the vertical direction, and the temperature of the hot water is measured corresponding to each virtual divided space. At least first and second thermometers;
The first and second thermometer measurement values are input, and the first thermometer measurement value is lower than the temperature of the hot water supply side supplied from the fuel cell into the hot water tank. And when the measured value of the second thermometer is lower than the first set value and lower than or equal to a second set value that approximates a cooling temperature that the fuel cell can tolerate, Power generation output changing means for changing the upper limit value;
Fuel cell power generation system equipped with.
前記発電出力変化手段は、前記第2の温度計の計測値が前記第2の設定値を超えたとき、燃料電池の発電運転を停止する機能を有することを特徴とする請求項2記載の燃料電池発電システム。   3. The fuel according to claim 2, wherein the power generation output changing means has a function of stopping the power generation operation of the fuel cell when a measured value of the second thermometer exceeds the second set value. Battery power generation system. 前記発電出力変化手段は、一定時間ごとの温度計測値の変化量を演算する機能を有し、得られた変化量が予め設定された変化量以下で予め設定された時間継続した場合には、前記燃料電池の発電運転を停止する機能を有することを特徴とする請求項2記載の燃料電池発電システム。   The power generation output changing means has a function of calculating the amount of change in the temperature measurement value per fixed time, and when the obtained amount of change continues below a preset amount of change for a preset time, 3. The fuel cell power generation system according to claim 2, wherein the fuel cell power generation system has a function of stopping power generation operation of the fuel cell. 前記発電出力変化手段は、前記燃料電池が停止中であっても、前記第1の温度計の計測値を取り込み、温度計測値が予め設定された値以下となった場合には、前記燃料電池の運転を再開する機能を有することを特徴とする請求項2記載の燃料電池発電システム。    The power generation output changing means takes in the measured value of the first thermometer even when the fuel cell is stopped, and when the measured temperature value is equal to or lower than a preset value, the fuel cell The fuel cell power generation system according to claim 2, wherein the fuel cell power generation system has a function of restarting the operation. 前記発電出力変化手段は、前記燃料電池の起動停止回数を把握し、該起動停止回数が予め設定された値以上となった場合は燃料電池発電設備の起動を不可とする保護機能を有した請求項2記載の燃料電池発電システム。   The power generation output changing means has a protection function for grasping the number of times of starting and stopping the fuel cell and prohibiting the starting of the fuel cell power generation facility when the number of times of starting and stopping is equal to or greater than a preset value. Item 3. The fuel cell power generation system according to Item 2.
JP2004253028A 2004-08-31 2004-08-31 Fuel cell power generation system Pending JP2006073265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253028A JP2006073265A (en) 2004-08-31 2004-08-31 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253028A JP2006073265A (en) 2004-08-31 2004-08-31 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2006073265A true JP2006073265A (en) 2006-03-16

Family

ID=36153673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253028A Pending JP2006073265A (en) 2004-08-31 2004-08-31 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2006073265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196264A (en) * 2005-01-12 2006-07-27 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2010513840A (en) * 2006-12-20 2010-04-30 マクロゲン エンジン コーポレーション ホールディング ビー.ブイ. Storage combined boiler
CN104566941A (en) * 2015-02-02 2015-04-29 孟书芳 Double-chamber electric water boiler unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075392A (en) * 2000-09-05 2002-03-15 Toyota Industries Corp Heat accumulating device for fuel cell power generation system
JP2002349965A (en) * 2001-05-31 2002-12-04 Tokyo Gas Co Ltd Hot-water supply system and control method therefor
JP2005038753A (en) * 2003-07-16 2005-02-10 Sekisui Chem Co Ltd Method for controlling cogeneration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075392A (en) * 2000-09-05 2002-03-15 Toyota Industries Corp Heat accumulating device for fuel cell power generation system
JP2002349965A (en) * 2001-05-31 2002-12-04 Tokyo Gas Co Ltd Hot-water supply system and control method therefor
JP2005038753A (en) * 2003-07-16 2005-02-10 Sekisui Chem Co Ltd Method for controlling cogeneration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196264A (en) * 2005-01-12 2006-07-27 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP4681303B2 (en) * 2005-01-12 2011-05-11 東芝燃料電池システム株式会社 Fuel cell power generator
JP2010513840A (en) * 2006-12-20 2010-04-30 マクロゲン エンジン コーポレーション ホールディング ビー.ブイ. Storage combined boiler
KR101460594B1 (en) 2006-12-20 2014-11-13 마이크로젠 엔진 코포레이션 홀딩 비 브이 Storage combination boiler
CN104566941A (en) * 2015-02-02 2015-04-29 孟书芳 Double-chamber electric water boiler unit

Similar Documents

Publication Publication Date Title
JP5373939B2 (en) Cogeneration system and operation method
WO2016125583A1 (en) Heat source system operation management device, heat source system operation management method, and computer program
JP2006127967A (en) Cogeneration system and its operation method
JP6582755B2 (en) Method, system, and program for optimizing operation plan of heat source equipment network
JP6533952B2 (en) Apparatus and method for predicting cooling water temperature of heat source equipment operating with cooling water, and program
JP2006073265A (en) Fuel cell power generation system
JP4681303B2 (en) Fuel cell power generator
JP5906421B2 (en) Cogeneration system and operation method thereof
JP2008066016A (en) Operation method of fuel cell system and fuel cell system
US7951497B2 (en) Fuel cell system
JP5671694B2 (en) Fuel cell system
JP2005223964A (en) Operation control system for cogeneration system
JP2014030295A (en) Co-generation system, and operation control apparatus and operational method therefor
JP4511810B2 (en) Cogeneration system and control method thereof
JP4994108B2 (en) Thermal storage control device
JP4915115B2 (en) Cogeneration system
WO2012147269A1 (en) Power generation system
JP2006250380A (en) Heating load predicting device for cogeneration system
JP6617478B2 (en) Method, system, and program for generating device characteristic model of heat source device
Fu et al. The steady and dynamic performance of an innovative natural gas CHP system
JP2004264012A (en) Energy saving degree operation method of cogeneration system
JP3986982B2 (en) Cogeneration system
JP2012119114A (en) Fuel cell system
JP4716446B2 (en) Cogeneration system and operation control method thereof
JP2002295309A (en) Method of operating heat/electricity utilizing system and heat/electricity utilizing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914