JP2006072201A - Light receiving lens - Google Patents

Light receiving lens Download PDF

Info

Publication number
JP2006072201A
JP2006072201A JP2004258343A JP2004258343A JP2006072201A JP 2006072201 A JP2006072201 A JP 2006072201A JP 2004258343 A JP2004258343 A JP 2004258343A JP 2004258343 A JP2004258343 A JP 2004258343A JP 2006072201 A JP2006072201 A JP 2006072201A
Authority
JP
Japan
Prior art keywords
light
axis
lens
light receiving
receiving lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004258343A
Other languages
Japanese (ja)
Inventor
Toshihiro Fujii
敏弘 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2004258343A priority Critical patent/JP2006072201A/en
Publication of JP2006072201A publication Critical patent/JP2006072201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection measuring instrument which accurately measures a distance to a measurement object in a wide-angle range and is made small-sized and light-weight. <P>SOLUTION: In a light receiving lens, 9 or more luminous flux dividing lenses having toric faces are provided on one surface, and maximum angles of incidence (θx and θy) of light capable of being condensed, in directions of orthogonal axes (a y axis is an axis of a direction which gives a maximum value θy out of angles of incidence of light being capable of condensed, and an x axis is an axis orthogonal to the y axis) within a plane having an optical axis of the light receiving lens as the normal satisfy a relation of 0.05<¾θx/θy¾<1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、広角度の光を集光できる受光レンズに関し、さらに詳細には、測定物体と被測定物体との距離、速度、角度等を測定する反射測定装置用の受光レンズに関するもので、例えば車両用の反射測定装置に使用可能な受光レンズに関するものである。   The present invention relates to a light receiving lens that can collect light at a wide angle, and more particularly to a light receiving lens for a reflection measuring device that measures a distance, a speed, an angle, and the like between a measurement object and a measurement object. The present invention relates to a light receiving lens that can be used in a vehicle reflection measurement device.

車両用反射測定装置に用いられる出射光学系では、照射範囲を拡げていることから、照射範囲内の多数の車両から測定対象車を正確に検出できないことやガードレール等の車両以外の障害物と測定対象車との識別が正確にできないことがある。   In the outgoing optical system used in the vehicle reflection measurement device, the irradiation range is expanded, so that the measurement target vehicle cannot be accurately detected from a large number of vehicles within the irradiation range, and measurement is performed with obstacles other than the vehicle such as guardrails. It may not be possible to accurately identify the target vehicle.

このような問題を解決するため、特許文献1に開示される反射測定装置では、受光レンズにおいて充分に屈折しなかった非測定物体からの反射光線をテーパ状の光導波路により数回反射させて受光素子に集光し受光効率を向上させようと意図している。また、カメラ等に用いられる広角度レンズによって、広角度範囲の反射光線を受光する方法も考えられている。
また、特許文献2に開示される反射測定装置では、受光レンズが外周部から中心部に向かって焦点距離が循環して変化するフレネルレンズを用いて、広角度範囲においても被測定物体との距離を測定できるように意図している。
In order to solve such a problem, in the reflection measuring apparatus disclosed in Patent Document 1, reflected light from a non-measurement object that is not sufficiently refracted by the light receiving lens is reflected several times by a tapered optical waveguide to receive light. It is intended to improve the light receiving efficiency by focusing on the element. Further, a method of receiving a reflected light beam in a wide angle range with a wide angle lens used in a camera or the like is also considered.
Further, in the reflection measuring device disclosed in Patent Document 2, the distance between the light receiving lens and the object to be measured in a wide angle range using a Fresnel lens whose focal length circulates from the outer peripheral portion toward the central portion. Is intended to be measured.

特開昭64−80894号公報Japanese Patent Application Laid-Open No. 64-80894 特開平9−21874号公報Japanese Patent Laid-Open No. 9-21874

しかしながら、特許文献1に開示されるものによると、光導波路により反射光が反射する回数をn回とすると、反射率のn乗に相当する光パワーまで減衰し、さらに光導波路により光パワーがより減衰するという問題がある。さらに、反射により光束が絞れる程度の研磨面を光導波路に形成するには高精度の研磨工程を必要としコストの増大を招くという問題がある。   However, according to what is disclosed in Patent Document 1, when the number of times the reflected light is reflected by the optical waveguide is n, the optical power is attenuated to the optical power corresponding to the nth power of the reflectance, and the optical power is further increased by the optical waveguide. There is a problem of attenuation. Further, in order to form a polished surface on the optical waveguide that can narrow the light beam by reflection, there is a problem that a high-precision polishing process is required and the cost is increased.

また、カメラ等に用いられる広角度レンズを使用する場合によると、少なくとも2枚以上のレンズが必要となることから、装置が大型化するとともに複雑な光学系になるという問題がある。このような問題を解決するため、特許文献2のごとく、小型、軽量かつ低コストで量産可能なフレネルレンズを受光レンズに使用することが考えられるが、フレネルレンズの特性上、受光性能が良好ではない斜入射光に対して受光効率が著しく低下することから、広角度範囲を走査するスキャニング方式の車両用反射測定装置へのフレネルレンズの使用は適していない。また、特許文献2図10に示されるように水平入射角±5°を超えた辺りから相対検知距離が低下し、±10°近くになると極度に低くなる。   In addition, when a wide-angle lens used in a camera or the like is used, at least two or more lenses are required, so that there is a problem that the apparatus becomes large and becomes a complicated optical system. In order to solve such a problem, it is conceivable to use a Fresnel lens that is small, light and mass-produced at low cost as in Patent Document 2, but the light receiving performance is not good due to the characteristics of the Fresnel lens. Since the light receiving efficiency is significantly reduced with respect to no obliquely incident light, it is not suitable to use a Fresnel lens for a scanning reflection measuring apparatus for a vehicle that scans a wide angle range. Further, as shown in FIG. 10 of Patent Document 2, the relative detection distance decreases from around the horizontal incident angle of ± 5 °, and becomes extremely low when it approaches ± 10 °.

本発明は、このような問題を解決するためになされたもので、広角度の光をゆがみなく集光できる受光レンズを提供すること、そして、この受光レンズを用いた、広角度範囲において、被測定物体との距離を正確に測定するとともに小型、軽量化された反射測定装置を提供することを目的とする。   The present invention has been made to solve such a problem, and provides a light receiving lens capable of condensing a wide angle light without distortion, and in a wide angle range using the light receiving lens. An object of the present invention is to provide a reflection measuring apparatus that accurately measures the distance to a measurement object and is reduced in size and weight.

前記目的を達成するための本発明による受光レンズは、(1)トーリック面を有する光束分割レンズを同一面上に備え、受光レンズの光軸を法線とする面内の直交軸方向(y軸=集光可能な光線の入射角度中最大値θyを与える方向の軸及びx軸=y軸に直交する軸)で集光可能な光線の最大入射角度(θx及びθy)が、0.05<|θx/θy|<1の関係を満たす。   In order to achieve the above object, a light receiving lens according to the present invention comprises (1) a light beam splitting lens having a toric surface on the same surface, and an orthogonal axis direction (y-axis) in a plane normal to the optical axis of the light receiving lens. = The axis in the direction giving the maximum value θy among the incident angles of the condensable rays and the x axis = the axis orthogonal to the y axis), the maximum incident angles (θx and θy) of the condensing rays are 0.05 < The relationship | θx / θy | <1 is satisfied.

本発明受光レンズの好適な態様は、(2)該y軸方向またはx軸方向の入射角度が光軸とx座標軸またはy座標軸を含む面で対称なる角度分布を有している。(3)光束分割レンズが矩形であり、光束分割レンズの光軸とx軸とで形成される断面のレンズ表面形状が直線、非球面断面の弧の一部、または真円の弧の一部で形成され、光束分割レンズの光軸とy軸とで形成される断面のレンズ表面形状が直線、非球面断面の弧の一部、または真円の弧の一部で形成され、受光レンズ全体が矩形をなしている。(4)光束分割レンズの光軸と受光レンズの光軸とのなす角度が、受光レンズの光軸から離れるに従って漸次大きくなる。(5)最大厚さdが2mm<d<15mmである。(6)受光レンズ本体が樹脂で形成され、受光レンズ本体表面に反射防止層が形成されている。(7)隣り合う光束分割レンズ間の境界に、該境界における光線入射角度の方向と平行な斜面を有する。   In a preferred aspect of the light receiving lens of the present invention, (2) the incident angle in the y-axis direction or the x-axis direction has an angle distribution that is symmetric with respect to a plane including the optical axis and the x-coordinate axis or the y-coordinate axis. (3) The light beam splitting lens is rectangular, and the lens surface shape of the cross section formed by the optical axis and the x axis of the light beam splitting lens is a straight line, a part of an aspherical cross section arc, or a part of a perfect circle arc The lens surface shape of the cross section formed by the optical axis and the y axis of the light beam splitting lens is formed by a straight line, a part of an aspherical cross section arc, or a part of a perfect circle arc, and the entire light receiving lens Is rectangular. (4) The angle formed by the optical axis of the light beam splitting lens and the optical axis of the light receiving lens gradually increases as the distance from the optical axis of the light receiving lens increases. (5) The maximum thickness d is 2 mm <d <15 mm. (6) The light receiving lens body is made of resin, and an antireflection layer is formed on the surface of the light receiving lens body. (7) A slope parallel to the direction of the light incident angle at the boundary is provided at the boundary between adjacent beam splitting lenses.

本発明の受光レンズによると、受光レンズに入射する反射光線の入射角度が変化しても、トーリック面を有する光束分割レンズを好ましくは9個以上備え、受光レンズの光軸を法線とする面内の直交軸方向(y軸=集光可能な光線の入射角度中最大値θyを与える方向の軸及びx軸=y軸に直交する軸)で集光可能な光線の最大入射角度(θx及びθy)が、0.05<|θx/θy|<1の関係を満たす受光レンズを透過した光線は、ほぼ等しい光量で受光部に集光されるため、反射光線の入射角度が広角度になっても比較的平坦な受光効率特性を保持できる。   According to the light receiving lens of the present invention, even if the incident angle of the reflected light incident on the light receiving lens changes, preferably nine or more light beam splitting lenses having a toric surface are provided, and the surface having the optical axis of the light receiving lens as a normal line The maximum incident angle (θx and the maximum incident angle of the light beam that can be collected in the direction of the orthogonal axis (y axis = the axis in the direction that gives the maximum value θy among the incident angles of the condensing light beam and x axis = the axis that is orthogonal to the y axis)) Since the light beam that has passed through the light receiving lens satisfying the relationship of θy) 0.05 <| θx / θy | <1 is condensed to the light receiving unit with almost equal light amount, the incident angle of the reflected light beam becomes a wide angle. However, a relatively flat light receiving efficiency characteristic can be maintained.

以下、本発明の実施例を図面に基づいて説明する。
本発明の実施例による受光レンズの断面図を図1に、斜視図を図3に示す。
図1及び図3に示すように、受光レンズ51は、9個以上の光束分割レンズ101を備え、正面からの形状が矩形である。これら光束分割レンズはトーリック面を有し、正面から見た形が矩形である。本実施例受光レンズは一面にのみ光束分割レンズの凹凸形状が形成され、他面は平面になっている。光線は光束分割レンズのトーリック面に入射し平面から出射する。各入射角度の光線はそれに対応する光束分割レンズを透過して、一点または複数の焦点に集光できるようになっている。焦点部分に図5に示すように受光素子52を設けることで集光した光線を感知し、距離を算出できるようになる。複数焦点に集光する場合は受光部を複数設けることができる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view of a light receiving lens according to an embodiment of the present invention, and FIG. 3 is a perspective view thereof.
As shown in FIGS. 1 and 3, the light receiving lens 51 includes nine or more light beam splitting lenses 101 and has a rectangular shape from the front. These light beam splitting lenses have a toric surface and are rectangular when viewed from the front. In this embodiment, the light-receiving lens has an uneven shape of the light beam splitting lens formed on only one surface, and the other surface is flat. The light beam enters the toric surface of the beam splitting lens and exits from the plane. Light rays at each incident angle are transmitted through a corresponding light beam splitting lens and can be condensed at one point or a plurality of focal points. By providing the light receiving element 52 as shown in FIG. 5 at the focal point, it is possible to sense the collected light and calculate the distance. In the case of focusing on a plurality of focal points, a plurality of light receiving parts can be provided.

図2は本実施例受光レンズの光束分割レンズの配置を示している。例えば、a行A列には光束分割レンズ1が、c行B列には光束分割レンズ6が配置されている。本実施例の受光レンズは矩形を成している。図1のy0断面図は図2のy0面で切断したときの断面図であり、図1のx0断面図は図2のx0面で切断したときの断面図である。本実施例受光レンズの図2中丸数字の記入のない部分はx0面またはy0面で対称形を成している。
各光束分割レンズのトーリック面は式A及び式Bで表される。
FIG. 2 shows the arrangement of the light beam splitting lens of the light receiving lens of this embodiment. For example, the light splitting lens 1 is arranged in the a row and the A column, and the light splitting lens 6 is arranged in the c row and the B column. The light receiving lens of this embodiment has a rectangular shape. 1 is a cross-sectional view taken along the plane y0 in FIG. 2, and the cross-sectional view x0 in FIG. 1 is a cross-sectional view taken along the plane x0 in FIG. The portion of the light receiving lens of this embodiment without a circled number in FIG. 2 is symmetrical with respect to the x0 plane or the y0 plane.
The toric surface of each beam splitting lens is expressed by Formula A and Formula B.

Figure 2006072201
Figure 2006072201

、C、K、A、及びBの各係数に所望の数値を入力することにより、3次元の曲面形状が規定される。表1に、本発明実施例による受光レンズの各係数を示した。X、Y、Zは光束分割レンズのローカル座標(X,Y,Z)を示す。
トーリック面は、好適には光束分割レンズの光軸とx軸とで形成される断面のレンズ表面形状が直線、非球面断面の弧の一部、または真円の弧の一部で形成され、光束分割レンズの光軸とy軸とで形成される断面のレンズ表面形状が直線、非球面断面の弧の一部、または真円の弧の一部で形成されるものが好ましい。
By inputting a desired numerical value to each coefficient of C X , C Y , K, A, and B, a three-dimensional curved surface shape is defined. Table 1 shows the coefficients of the light receiving lens according to the embodiment of the present invention. X, Y, and Z indicate local coordinates (X, Y, Z) of the light beam splitting lens.
The toric surface is preferably formed by a lens surface shape of a cross section formed by the optical axis and the x axis of the light beam splitting lens being a straight line, a part of an arc of an aspherical cross section, or a part of an arc of a perfect circle, It is preferable that the lens surface shape of the cross section formed by the optical axis and the y axis of the beam splitting lens is formed by a straight line, a part of an aspherical cross section arc, or a part of a perfect circle arc.

Figure 2006072201
Figure 2006072201

本発明実施例の受光レンズは、図4に示すように、その光軸を法線とする面内の直交軸方向(y軸=集光可能な光線の入射角度中最大値θyを与える方向の軸及びx軸=y軸に直交する軸)で集光可能な光線の最大入射角度(θx及びθy)が、0.05<|θx/θy|<1の関係を満たしている。本実施例ではy軸方向の最大入射角度θyが10°であり、x軸方向の最大入射角度が1°である。この入射角度θy及びθxは、光軸に対して対称なる角度分布を有している。すなわち、y軸方向に±10°、x軸方向に±1°の入射角度を持っている。なお、x軸方向の入射角度は+2°〜−1°のように、角度分布が非対称になっていてもよい。   As shown in FIG. 4, the light receiving lens according to the embodiment of the present invention has an orthogonal axis direction in the plane with the optical axis as a normal line (y axis = direction in which the maximum value θy of the incident angles of condensing light rays is given). The maximum incident angles (θx and θy) of rays that can be collected on the axis and the x-axis = axis perpendicular to the y-axis satisfy the relationship of 0.05 <| θx / θy | <1. In this embodiment, the maximum incident angle θy in the y-axis direction is 10 °, and the maximum incident angle in the x-axis direction is 1 °. The incident angles θy and θx have an angle distribution that is symmetric with respect to the optical axis. That is, the incident angle is ± 10 ° in the y-axis direction and ± 1 ° in the x-axis direction. The incident angle in the x-axis direction may be asymmetric in the angle distribution, such as + 2 ° to −1 °.

高速道路のように比較的直線が多く車間距離も長い道路において反射測定装置1を搭載した車両と被測定物体である車両との距離を測定するためには、±6°の角度範囲内を測定できれば十分であるが、一般道のようにカーブが多く車間距離の短い道路では、±10°の角度範囲内において一定の受光光量を保持しつつ平坦な受光光量特性が要求される。入射角度0°、4°、8°のときに屈折光線が受光素子52に集光される光束分割レンズを組み合わせることにより、±10°の範囲内において入射角度に対する受光光量の特性がほぼ平坦になる。
またy軸方向が水平方向になるように本発明実施例の受光レンズを設置することが好ましい。車両用反射測定装置では、水平方向の物体に対する検知角度を広くし、垂直方向の検知角度を小さくすることで、受光効率を高くすることができる。
To measure the distance between a vehicle equipped with the reflection measuring device 1 and a vehicle that is the object to be measured on a road that is relatively straight and has a long inter-vehicle distance, such as an expressway, measure within an angle range of ± 6 °. Although it is sufficient if possible, on a road with many curves and a short inter-vehicle distance such as a general road, a flat received light amount characteristic is required while maintaining a constant received light amount within an angle range of ± 10 °. By combining a beam splitting lens that collects the refracted light beam on the light receiving element 52 at incident angles of 0 °, 4 °, and 8 °, the characteristics of the amount of received light with respect to the incident angle are substantially flat within a range of ± 10 °. Become.
In addition, it is preferable to install the light receiving lens of the embodiment of the present invention so that the y-axis direction is a horizontal direction. In the vehicle reflection measurement apparatus, the light receiving efficiency can be increased by widening the detection angle with respect to an object in the horizontal direction and decreasing the detection angle in the vertical direction.

このような入射角度の分布を持たせるために、好適には光束分割レンズの光軸と受光レンズの光軸とのなす角度が、受光レンズの光軸が通る点から離れるに従って漸次大きくなるようにする。本実施例では、光束分割レンズの光軸とトーリック面との交点を原点とするY軸及びX軸を回転軸として、それぞれ、特定の回転角で、前記トーリック面を傾け、光束分割レンズに入射角度分布を持たせている。本実施例では表1に示すように、a行A列の光束分割レンズ1はy軸方向入射角0±2°、x軸方向入射角0±0.4°の光線を受光部に集光できるようになっている。a行B列の光束分割レンズ4はX軸回転角8.92°、Y軸回転角0°の面でy軸方向入射角4±2°、x軸方向入射角0±0.4°の光線を受光部に集光できるようになっている。a行C列の光束分割レンズ7はX軸回転角16.94°、Y軸回転角0°の面でy軸方向入射角8±2°、x軸方向入射角0±0.4°の光線を受光部に集光できるようになっている。b行A列の光束分割レンズ2はX軸回転角0°、Y軸回転角20.44°の面でy軸方向入射角0±2°、x軸方向入射角0.55±0.15°の光線を受光部に集光できるようになっている。c行A列の光束分割レンズ3はX軸回転角0°、Y軸回転角31.78°の面でy軸方向入射角0±2°、x軸方向入射角0.85±0.15°の光線を受光部に集光できるようになっている。その他の光束分割レンズ5、6、8、及び9は表1に示す回転角でトーリック面がそれぞれ傾いている。本実施例の各光束分割レンズの中心厚さは、表1に示すとおりである。受光レンズの最大厚さdは2mm<d<15mmであることが好ましい。この範囲の最大厚さにすると、高い生産性で軽量な受光レンズを得ることができる。最小厚さは、通常0.7〜1mmである。なおX軸回転角とはX軸を回転軸として回転させた角度であり、Y軸回転角とはY軸を回転軸として回転させた角度である。各光束分割レンズのX軸及びY軸は受光レンズのx軸及びy軸と平行の位置関係にある。   In order to have such an incident angle distribution, preferably the angle formed by the optical axis of the light beam splitting lens and the optical axis of the light receiving lens gradually increases as the distance from the point through which the optical axis of the light receiving lens passes is increased. To do. In this embodiment, the toric surface is inclined at a specific rotation angle with the Y-axis and the X-axis as the rotation axis with the intersection point between the optical axis and the toric surface of the light beam splitting lens as the origin, and enters the light beam splitting lens. Has an angular distribution. In this embodiment, as shown in Table 1, the light splitting lens 1 of a row A column condenses light rays having an incident angle of 0 ± 2 ° in the y-axis direction and an incident angle of 0 ± 0.4 ° in the x-axis direction on the light receiving unit. It can be done. The light splitting lens 4 in the a row and the B column has an X-axis rotation angle of 8.92 °, a Y-axis rotation angle of 0 °, and a y-axis direction incident angle of 4 ± 2 ° and an x-axis direction incident angle of 0 ± 0.4 °. The light beam can be condensed on the light receiving part. The light splitting lens 7 in a row C column has an X-axis rotation angle of 16.94 °, a Y-axis rotation angle of 0 °, and a y-axis direction incident angle of 8 ± 2 ° and an x-axis direction incident angle of 0 ± 0.4 °. The light beam can be condensed on the light receiving part. The light splitting lens 2 in the b-row A-column has a Y-axis direction incident angle of 0 ± 2 ° and an x-axis direction incident angle of 0.55 ± 0.15 on a plane with an X-axis rotation angle of 0 ° and a Y-axis rotation angle of 20.44 °. The light beam of ° can be focused on the light receiving part. The light splitting lens 3 in the c-row A-column has a Y-axis direction incident angle of 0 ± 2 ° and an x-axis direction incident angle of 0.85 ± 0.15 on a plane with an X-axis rotation angle of 0 ° and a Y-axis rotation angle of 31.78 °. The light beam of ° can be focused on the light receiving part. The other light beam splitting lenses 5, 6, 8, and 9 have their toric surfaces inclined at the rotation angles shown in Table 1. The center thickness of each light beam splitting lens of this example is as shown in Table 1. The maximum thickness d of the light receiving lens is preferably 2 mm <d <15 mm. When the maximum thickness is within this range, a light receiving lens with high productivity can be obtained. The minimum thickness is usually 0.7-1 mm. The X-axis rotation angle is an angle obtained by rotating the X-axis as a rotation axis, and the Y-axis rotation angle is an angle obtained by rotating the Y-axis as a rotation axis. The X-axis and Y-axis of each beam splitting lens are in a positional relationship parallel to the x-axis and y-axis of the light receiving lens.

隣り合う光束分割レンズ間の境界には、該境界における光線入射角度の方向と平行な斜面を有することが好ましい。本実施例では、図1に示すように、光束分割レンズ1と光束分割レンズ4との間の境界にはy軸方向光線入射角2°の方向と平行な斜面が形成されている。光束分割レンズ4と光束分割レンズ7との間の境界にはy軸方向光線入射角6°の方向と平行な斜面が形成されている。光束分割レンズ1と光束分割レンズ2との間の境界には、図示してないが、x軸方向光線入射角0.4°の方向と平行な斜面が形成されている。光束分割レンズ2と光束分割レンズ3との間の境界にはx軸方向光線入射角0.7°の方向と平行な斜面が形成されている。その他の境界も同様にy軸及びx軸方向光線入射角と平行な斜面が形成されている。   It is preferable that the boundary between adjacent beam splitting lenses has a slope parallel to the direction of the light incident angle at the boundary. In this embodiment, as shown in FIG. 1, a slope parallel to the direction of the light incident angle of 2 ° in the y-axis direction is formed at the boundary between the light beam splitting lens 1 and the light beam splitting lens 4. On the boundary between the light beam splitting lens 4 and the light beam splitting lens 7, a slope parallel to the y-axis direction light incident angle of 6 ° is formed. Although not shown in the figure, a slope parallel to the direction of the light incident angle of 0.4 ° in the x-axis direction is formed at the boundary between the light beam splitting lens 1 and the light beam splitting lens 2. At the boundary between the light beam splitting lens 2 and the light beam splitting lens 3, a slope parallel to the direction of the light incident angle of 0.7 ° in the x-axis direction is formed. Similarly, slopes parallel to the y-axis and x-axis direction beam incident angles are formed on the other boundaries.

本発明の受光レンズを構成する材料は特に限定されず、透明樹脂やガラスなどで形成できる。本実施例の受光レンズ本体は透明樹脂で形成されている。
透明樹脂としては、ポリカーボネート樹脂、アクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリシクロオレフィン樹脂などが挙げられる。これらのうち、ポリカーボネート樹脂またはポリシクロオレフィン樹脂が好適である。ポリシクロオレフィン樹脂の具体例としてはノルボルネン系樹脂(ノルボルネン系単量体の開環重合体や付加重合体)、単環環状オレフィンの付加重合体、ビニルシクロオレフィンの付加重合体、芳香族ビニル単量体の付加重合体を芳香環水添した物などが挙げられる。透明樹脂で形成される受光レンズの本体は、金型などを用いた射出成形法、圧縮成形法などの公知の成形方法によって、あるいは切削法などで光束分割レンズの形状を削り出すことによって形成できる。
受光レンズを構成する材料には可視光線の透過を遮蔽するための顔料等が含まれていることが好ましい。可視光線を遮断する顔料等を含有させることによって、可視光線によるノイズが除去でき、正確な測定ができる。
The material constituting the light receiving lens of the present invention is not particularly limited, and can be formed of a transparent resin or glass. The light receiving lens body of this embodiment is made of a transparent resin.
Examples of the transparent resin include polycarbonate resin, acrylic resin, polyester resin, polyolefin resin, and polycycloolefin resin. Of these, polycarbonate resin or polycycloolefin resin is preferred. Specific examples of the polycycloolefin resin include norbornene resins (ring-opening polymers and addition polymers of norbornene monomers), addition polymers of monocyclic olefins, addition polymers of vinylcycloolefins, aromatic vinyl monomers Examples thereof include a product obtained by hydrogenating an aromatic addition polymer with an aromatic ring. The body of the light-receiving lens formed of a transparent resin can be formed by a known molding method such as an injection molding method using a mold or the like, a compression molding method, or by cutting out the shape of the beam splitting lens by a cutting method or the like. .
The material constituting the light receiving lens preferably contains a pigment or the like for shielding transmission of visible light. By including a pigment or the like that blocks visible light, noise due to visible light can be removed and accurate measurement can be performed.

また、本発明受光レンズにおいては、レンズ本体表面に反射防止層が形成されたものであることが好ましい。反射防止層は、光線のレンズ表面での反射率を低減できるものであれば、特に限定されず、例えば、高屈折率膜と低屈折率膜とを交互に幾重にも積層したもの、微細な中空部を有することによって低屈折率化された膜(例えば、エアロゲル膜、中空粒子を樹脂マトリックスに分散させた膜など)等が挙げられる。   In the light receiving lens of the present invention, it is preferable that an antireflection layer is formed on the surface of the lens body. The antireflection layer is not particularly limited as long as it can reduce the reflectance of the light beam on the lens surface. For example, the antireflective layer is formed by laminating alternately and repeatedly a high refractive index film and a low refractive index film. Examples thereof include a film whose refractive index is lowered by having a hollow part (for example, an airgel film, a film in which hollow particles are dispersed in a resin matrix, and the like).

本発明の受光レンズは、被測定物体との距離を測定するため反射測定装置に用いることができる。
この反射測定装置は、通常、光源と、出射レンズと、前記出射レンズを透過し被測定物体において反射した光線を集光する前記受光レンズと、前記受光レンズにより集光された光線を受光する受光部と、前記受光部での受光時刻と前記光源から出射された光線の出射時刻との差から前記被測定物体と前記光源との距離を算出する演算手段とを備えるものである。
光源としては、半導体レーザが好適に用いられ、通常、波長λ:860nm程度の赤外光線を出射するものが用いられる。
出射された赤外光線は被測定物体表面で反射し、本発明の受光レンズを通して集光される。受光レンズ51は、トーリック面を有する光束分割レンズを同一面上に好ましくは9個以上備え、受光レンズの光軸を法線とする面内の直交軸方向(y軸=集光可能な光線の入射角度中最大値θyを与える方向の軸及びx軸=y軸に直交する軸)で集光可能な光線の最大入射角度(θx及びθy)が、0.05<|θx/θy|<1の関係を満たすものである。集光された光は受光素子52で感知される。受光素子52は、例えばPINフォトダイオード、アバランシェフォトダイオードなどで構成されている。
The light-receiving lens of the present invention can be used in a reflection measuring device to measure the distance to an object to be measured.
This reflection measuring device usually includes a light source, an exit lens, the light receiving lens that collects the light beam that has passed through the exit lens and reflected by the object to be measured, and the light receiving device that receives the light beam collected by the light receiving lens. And a calculating means for calculating a distance between the object to be measured and the light source from a difference between a light reception time at the light receiving unit and an emission time of the light beam emitted from the light source.
As the light source, a semiconductor laser is preferably used, and one that emits an infrared ray having a wavelength of about 860 nm is usually used.
The emitted infrared ray is reflected by the surface of the object to be measured and collected through the light receiving lens of the present invention. The light receiving lens 51 is preferably provided with nine or more light beam splitting lenses having a toric surface on the same surface, and an orthogonal axis direction (y-axis = condensable ray of light that is normal to the optical axis of the light-receiving lens). The maximum incident angle (θx and θy) of light that can be collected on the axis in the direction that gives the maximum value θy among the incident angles and the x-axis = axis that is orthogonal to the y-axis is 0.05 <| θx / θy | <1 It satisfies the relationship. The condensed light is detected by the light receiving element 52. The light receiving element 52 is composed of, for example, a PIN photodiode, an avalanche photodiode, or the like.

被測定物体において反射し、受光レンズ51を介して受光素子52に入射した光線の受光時刻と出射時刻との差から式C により被測定物体との距離を算出する。
測定距離=(受光した時刻−出射した時刻)×光速×1/2 ・・・(式C)
The distance to the object to be measured is calculated from the difference between the light reception time and the light emission time of the light beam reflected by the object to be measured and incident on the light receiving element 52 through the light receiving lens 51 using the formula C 1.
Measurement distance = (time when light is received−time when light is emitted) × speed of light × 1/2 (formula C)

図6及び図7は、本発明実施例による受光レンズの集光特性を示したものである。水平方向は±10°の範囲で16%以上でほぼフラットな受光効率を示している。そして垂直方向は±1°の範囲で16%以上の受光効率を示している。広角度の光をゆがみなく集光できることが判る。   6 and 7 show the condensing characteristics of the light receiving lens according to the embodiment of the present invention. The horizontal direction shows a substantially flat light receiving efficiency of 16% or more in a range of ± 10 °. The vertical direction shows a light receiving efficiency of 16% or more in a range of ± 1 °. It can be seen that wide-angle light can be collected without distortion.

本発明実施例の受光レンズを示すy軸断面図とx軸断面図である。It is the y-axis sectional view and x-axis sectional view which show the light-receiving lens of the present invention example. 本発明実施例の受光レンズの光束分割レンズの位置を示す図である。It is a figure which shows the position of the light beam splitting lens of the light reception lens of this invention Example. 本発明実施例の受光レンズを示す斜視図である。It is a perspective view which shows the light reception lens of this invention Example. 本発明実施例の受光レンズの入射角度の範囲の一例を説明する図である。It is a figure explaining an example of the range of the incident angle of the light reception lens of this invention Example. 本発明実施例の受光レンズと受光部との位置関係を示す図である。It is a figure which shows the positional relationship of the light reception lens of this invention Example, and a light-receiving part. 本発明実施例の受光レンズのy軸方向(水平方向)の受光効率を示す図である。It is a figure which shows the light reception efficiency of the y-axis direction (horizontal direction) of the light reception lens of this invention Example. 本発明実施例の受光レンズのx軸方向(垂直方向)の受光効率を示す図である。It is a figure which shows the light reception efficiency of the x-axis direction (vertical direction) of the light reception lens of this invention Example.

符号の説明Explanation of symbols

51:受光レンズ
101:光束分割レンズ
52:受光素子
51: Light receiving lens 101: Light beam splitting lens 52: Light receiving element

Claims (8)

トーリック面を有する光束分割レンズを同一面上に備え、
受光レンズの光軸を法線とする面内の直交軸方向(y軸=集光可能な光線の入射角度中最大値θyを与える方向の軸及びx軸=y軸に直交する軸)で集光可能な光線の最大入射角度(θx及びθy)が、0.05<|θx/θy|<1の関係を満たす
受光レンズ。
A beam splitting lens having a toric surface is provided on the same surface,
In the plane orthogonal to the optical axis of the light-receiving lens as a normal line (y-axis = axis that gives the maximum value θy of incident angles of condensing rays and x-axis = axis perpendicular to the y-axis) A light-receiving lens in which the maximum incident angle (θx and θy) of a light beam that satisfies light satisfies a relationship of 0.05 <| θx / θy | <1.
y軸方向の入射角度が、光軸とx座標軸を含む面で対称となる角度分布を有する請求項1記載の受光レンズ。 The light receiving lens according to claim 1, wherein the incident angle in the y-axis direction has an angle distribution that is symmetric with respect to a plane including the optical axis and the x-coordinate axis. x軸方向の入射角度が、光軸とy座標軸を含む面で対称となる角度分布を有する請求項1または2記載の受光レンズ。 The light receiving lens according to claim 1, wherein the incident angle in the x-axis direction has an angle distribution that is symmetric with respect to a plane including the optical axis and the y-coordinate axis. 光束分割レンズが矩形であり、光束分割レンズの光軸とx軸とで形成される断面のレンズ表面形状が直線、非球面断面の弧の一部、または真円の弧の一部で形成され、光束分割レンズの光軸とy軸とで形成される断面のレンズ表面形状が直線、非球面断面の弧の一部、または真円の弧の一部で形成され、受光レンズ全体が矩形をなしている請求項1〜3記載のいずれかの受光レンズ。 The light beam splitting lens is rectangular, and the lens surface shape of the cross section formed by the optical axis and the x axis of the light beam splitting lens is formed by a straight line, a part of an aspherical cross section arc, or a part of a perfect circle arc. The lens surface shape of the cross section formed by the optical axis and the y axis of the light beam splitting lens is formed by a straight line, a part of an aspherical cross section arc, or a part of a perfect circle arc, and the entire light receiving lens is rectangular. The light-receiving lens according to any one of claims 1 to 3. 光束分割レンズの光軸と受光レンズの光軸とのなす角度が、受光レンズの光軸の通る点から離れるに従って漸次大きくなる請求項1〜4記載のいずれかの受光レンズ。 5. The light receiving lens according to claim 1, wherein an angle formed by the optical axis of the light beam splitting lens and the optical axis of the light receiving lens gradually increases as the distance from the point through which the optical axis of the light receiving lens passes. 最大厚さdが2mm<d<15mmである請求項1〜5記載のいずれかの受光レンズ。 The light receiving lens according to claim 1, wherein the maximum thickness d is 2 mm <d <15 mm. レンズ本体が樹脂で形成され、レンズ本体表面に反射防止層が形成された請求項1〜6記載のいずれかの受光レンズ。 The light receiving lens according to claim 1, wherein the lens body is made of resin, and an antireflection layer is formed on the surface of the lens body. 隣り合う光束分割レンズ間の境界に、該境界における集光可能な光線入射角度の方向と平行な斜面を有する請求項1〜7記載のいずれかの受光レンズ。 The light receiving lens according to claim 1, wherein the light receiving lens has a slope parallel to a direction of a light incident angle at which the light can be condensed at a boundary between adjacent beam splitting lenses.
JP2004258343A 2004-09-06 2004-09-06 Light receiving lens Pending JP2006072201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258343A JP2006072201A (en) 2004-09-06 2004-09-06 Light receiving lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258343A JP2006072201A (en) 2004-09-06 2004-09-06 Light receiving lens

Publications (1)

Publication Number Publication Date
JP2006072201A true JP2006072201A (en) 2006-03-16

Family

ID=36152869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258343A Pending JP2006072201A (en) 2004-09-06 2004-09-06 Light receiving lens

Country Status (1)

Country Link
JP (1) JP2006072201A (en)

Similar Documents

Publication Publication Date Title
US7268956B2 (en) Solid catadioptric lens with two viewpoints
CN112840176B (en) Detector for determining the position of at least one object
JP5127899B2 (en) Solid-state imaging device
TW200825487A (en) Apparatus and method for an improved lens structure for polymer waveguides which maximizes free space light coupling
CN201936009U (en) Optical range measurement system
CN113015882A (en) Measuring head for determining the position of at least one object
CN114545370A (en) Laser radar transmitting system and corresponding receiving system thereof
KR101439411B1 (en) Omnidirectional lens module
JP2023518123A (en) Objective lens, use of objective lens, measurement system including objective lens, and use of double-sided aspherical plastic lens in objective lens
US10634823B2 (en) Lens for extended light source and design methods thereof
JP3752538B2 (en) Optical coupling device
JP5914852B2 (en) Condenser lens and multi-segment lens
JP2013200367A (en) Fresnel lens and optical detector
CN114641702B (en) Multilayer optical device and system
EP3332277B1 (en) Backscatter reductant anamorphic beam sampler
JP2006072201A (en) Light receiving lens
KR101513542B1 (en) Optical system
JP5914895B2 (en) Fresnel lens
US11982789B2 (en) Optical lens assembly
JP2005189231A (en) Optical device and its manufacturing method
CN111290061B (en) Optical diffusion sheet, light source device, and distance measuring device
JPH0882677A (en) Reflection measuring apparatus
CN113419247A (en) Laser detection system
CN218886321U (en) Optical structure and display system including the same
JP2002149329A (en) Optical digitizer